ECSS-E-ST-40C
6 March 2009
[image: image1.png]

ECSS-E-ST-40C

6 March 2009

Annex F (normative)
Software design document (SDD) - DRD

F.1 DRD identification

F.1.1 Requirement identification and source document

The software design document (SDD) is called from the normative provisions summarized in Table F-1.

Table F-1 : SDD traceability to ECSS-E-ST-40 Part 1 and ECSS-Q-ST-80 clauses

	ECSS Standard
	Clauses
	DRD section

	ECSS-E-ST-40
	5.4.3.1
	<4.1>, <4.2>, <4.3>, <5.1>, <5.2>, <5.3>

	
	5.4.3.2
	<4.6>, <4.7>

	
	5.4.3.3
	<5.2>c.

	
	5.4.3.4
	<4.3>, <5.2>e.

	
	5.4.3.5 eo b.
	<4.4>

	
	5.4.3.6c.
	<4.1>c.

	
	5.5.2.1a.
	<5.4>

	
	5.5.2.1b.
	<5.4>

	
	5.5.2.1c.
	<5.4>

	
	5.5.2.2 eo b.
	<5.5>

	
	5.5.2.3 eo a.,

b.,

c.
	<5.4>,

<5.4>,

<5.4>

	
	5.5.2.4
	<4.7>

	
	5.5.2.5a. to e.
	<5.2>c.

	
	5.5.2.6
	<4.7>

	
	5.5.2.7
	<4.7>

	
	5.5.3.1 eo a.
	<5>

	
	5.5.3.2a. eo a.
	<5>

	
	5.5.3.2b eo a.
	<5>

	
	5.8.3.3 eo a.
	<6>

	
	5.8.3.4 eo a.
	<6>

	ECSS-Q-ST-80
	7.2.2.3.b
	<4.5>

F.1.2 Purpose and objective

This software design document is a constituent of the design definition file (DDF). It provides description of the software architectural design and the software detailed design. Internal interfaces design is also included in this document.

F.2 Expected response

F.2.1 Scope and content

<1> Introduction

a. The SDD shall contain a description of the purpose, objective, content and the reason prompting its preparation.

<2> Applicable and reference documents

b. The SDD shall list the applicable and reference documents to support the generation of the document.

<3> Terms, definitions and abbreviated terms

c. The SDD shall include any additional terms, definition or abbreviated terms used.

<4> Software design overview

NOTE The SDD briefly introduces the system context and design and discuss the background to the project detailed as follows.

<4.1> Software static architecture

d. The SDD shall describe the architecture of the software item, as well as the main relationship with the major components identified.

e. The SDD shall also describe any system state or mode in which the software operates.

f. The SDD shall describe the separated mission and configuration data.

NOTE Data can be classified in the following categories:

· data resulting from the mission analysis and which thus vary from one mission to another;

· reference data which are specific to a family of software product;

· reference data which never change;·

· data depending only on the specific mission requirements (e.g. calibration of sensors);

· data required for the software operation which only vary the higher level system design (in which is embedded the software) is changed;

<4.2> Software dynamic architecture

g. The SDD shall describe the design choices to cope with the real time constraints (e.g. selection and description of the computational model).

<4.3> Software behaviour

<4.4> Interfaces context

h. The SDD shall identify all the external interfaces or refer to the ICD.

i. The description in <4.4>a. should be based on system block diagram or context diagram to illustrate the relationship between this system and other systems.

<4.5> Long lifetime software

j. The SDD shall describe the design choices to cope with the long planned lifetime of the software, in particular minimum dependency on the operating system and the hardware to improve portability.

<4.6> Memory and CPU budget

k. The SDD shall document and summarize the allocation of memory and processing time to the software components.

<4.7> Design standards, conventions and procedures

l. The SDD shall summarize (or reference in the SDP) the software methods adopted for the architectural and the detailed design.

NOTE A design method offers often the following characteristics:

· decomposition of the software architecture in design objects having integral parts that communicate with each other and with the outside environment

· explicit recognition of typical activities of real-time systems (i.e. cyclic and sporadic threads, protected resources)

· integration of appropriate scheduling paradigms with the design process

· explicit definition of the application timing requirements for each activity

· static verification of processor allocation, schedulability and timing analysis

· consistent code generation

m. The following information shall be summarized:

1. software architectural design method;

2. software detailed design method;

3. code documentation standards;

4. naming conventions;

5. programming standards;

6. intended list of reuse components

7. main design trade-off.

<5> Software design

<5.1> General

n. The SDD shall describe the software architectural design.

o. The architecture structure of the software item shall be described, identifying the software components, their hierarchical relationships, any dependency and interfaces between them.

p. For flight software, the design shall reflect in flight modification requirements.

q. The structure in <5.2> to <5.5> should be used.

<5.2> Overall architecture

r. The SDD shall describe the software architectural design, from a static point of view and also, when the software to be developed has real time constraints, from a dynamic point of view, and from a behaviour point of view.

s. The software static architecture shall be summarized describing its components.

t. For real–time software, the software dynamic architecture shall be summarized describing its selected computational model.

NOTE An analysable computational model generally consists in defining:

· the types of components (objects) participating to the real-time behaviour, from which the system is constructed (e.g. active-periodic, active-sporadic, protected, passive, actors, process, blocks, drivers)

· the scheduling type (e.g. sequential or multithreaded), the scheduling model (e.g. cyclic or pre-emptive, fixed or dynamic priority based), and the analytical model (e.g. Rate Monotonic Scheduling, Deadline Monotonic Scheduling, Earliest Deadline First), under which the system is executed and its associated mechanisms

· the means of communication between components/objects (e.g. mailboxes, entry parameters)

· the means of synchronization between components or objects (e.g. mutual exclusion, protected object entries, basic semaphores)

· If applicable , the means of distribution and internode communication (e.g. virtual nodes, Remote Procedure Call)

and (optional for non flight software):

· the means of providing timing facilities (e.g. real clock, with or without interrupt, multiple interrupting count-down, relative or absolute delays, timers time-out)

· the means of providing asynchronous transfer of control (e.g. watchdog to transfer control from anywhere to the reset sequence, software service of the underlying run-time system to cause transfer of control within the local scope of the thread)

u. The description in <5.2>c. should consist in the following information:

1. type of components participating to the real time behaviour,

2. scheduling type (e.g. single or multi–threads),

3. scheduling model (e.g. pre–emptive or not, fixed or dynamic priority based),

4. analytical model (e.g. rate monotonic scheduling, deadline monotonic scheduling),

5. Tasks identification and priorities,

6. Means of communication and synchronization,

7. Time management.

v. The software behaviour shall be described e.g. with automata or scenarios.

w. The software static, dynamic and behavioural architecture shall be described in accordance with the selected design method.

x. The SDD shall describe the error handling and fault tolerance principles (e.g. error detection, reporting, logging, and fault containment regions.)

<5.3> Software components design - General

y. The SDD shall describe:

1. The software components, constituting the software item.

2. The relationship between the software components.

3. The purpose of each software component.

4. For each software component, the development type (e.g. new development, software to be reused).

5. If the software is written for the reuse,

· its provided functionality from an external point of view, and

· its external interfaces.

6. Handling of existing reused components.

NOTE See Annex N.

z. The following shall apply to the software components specified in <5.3>a.1.:

1. Each software component is uniquely identified.

2. When components are expressed as models, the supplier establishes a way to assign identifiers within the model for sake of traceability.

3. The software requirements allocation provides for each software component;

NOTE The documented trace can be provided automatically by tools when models are used to express components.

aa. The description of the components should be laid out hierarchically, in accordance with the following aspects for each component, further described in <5.4>:

· <Component identifier>

· <Type>

· <Purpose>

· <Function>

· <Subordinates>

· <Dependencies>

· <Interfaces>

· <Resources>

· <References>

· <Data>

NOTE Detailed description of the aspects for each component are describe in <5.4>.

<5.4> Software components design - Aspects of each component

<5.4.1> General

ab. This part of the DRD, as well as <5.5>, may be produced as the detailed design model of a tool, if agreed with the customer.

<5.4.2> <Component identifier>

ac. Each component should have a unique identifier.

ad. The component should be named according to the rules of the programming language or operating system to be used.

ae. A hierarchical naming scheme should be used that identifies the parent of the component (e.g. ParentName_ChildName).

<5.4.3> <Type>

af. Component type should be described by stating its logical and physical characteristics.

ag. The logical characteristics should be described by stating the package, library or class that the component belongs to.

ah. The physical characteristics should be described by stating the type of component, using the implementation terminology (e.g. task, subroutine, subprogram, package and file).

NOTE The contents of some components description clauses depend on the component type. For the purpose of this guide, the following categories are used: executable (i.e. contains computer instructions) or non–executable (i.e. contains only data).

<5.4.4> <Purpose>

ai. The purpose of a component should describe its trace to the software requirements that it implements.

NOTE Backward traceability depends upon each component description explicitly referencing the requirements that justify its existence.

<5.4.5> <Function>

aj. The function of a component shall be described in the software architectural design.

ak. The description specified in <5.4.5>a. should be done by stating what the component does.

NOTE 1
The function description depends upon the component type. Therefore, it can be a description of the process.

NOTE 2
Process descriptions can use such techniques as structured English, precondition–postcondition specifications and state–transition diagrams.

<5.4.6> <Subordinates>

al. The subordinates of a component should be described by listing the immediate children.

NOTE 1
The subordinates of a unit are the units that are ’called by’ it. The subordinates of a database can be the files that ’compose’ it.

NOTE 2
The subordinates of an object are the objects that are ’used by’ it.

<5.4.7> <Dependencies>

am. The dependencies of a component should be described by listing the constraints upon its use by other components.

NOTE Examples are:
· Operations to take place before this component is called,
· Operations that are excluded when this operation takes place.

<5.4.8> <Interfaces>

an. Both control flow and data flow aspects of an interface shall be described for each “executable” component.

ao. Data aspects of ’non executable’ components should be described.

ap. The control flow to and from a component should be described in terms of how to start (e.g. subroutine call) and terminate (e.g. return) the execution of the component.

aq. If the information in <5.4.8>c. is implicit in the definition of the type of component, a description need not be done.

ar. If control flows take place during execution (e.g. interrupt), they should be described.

as. The data flow input to and output from each component shall be described.

at. It should be ensured that data structures:

1. are associated with the control flow (e.g. call argument list);

2. interface components through common data areas and files.

<5.4.9> <Resources>

au. The resources’ needs of a component should be described by itemising what the component needs from its environment to perform its function.

NOTE 1
Items that are part of the component interface are excluded.

NOTE 2
Examples of resources’ needs of a component are displays, printers and buffers.

<5.4.10> <References>

av. Explicit references should be inserted where a component description uses or implies material from another document.

<5.4.11> <Data>

aw. The data internal to a component should be described.

NOTE The amount of details to be provided depends strongly on the type of the component.

ax. The data structures internal to a program or subroutine should also be described.

ay. Data structure definitions shall include the:

1. description of each element (e.g. name, type, dimension);

2. relationships between the elements (i.e. the structure);

3. range of possible values of each element;

4. initial values of each element.

<5.5> Internal interface design

az. The SDD shall describe the internal interfaces among the identified software components.

ba. The interface data specified in a., by component, shall be organized showing the complete interfaces map, using as appropriate diagrams or matrices supporting their cross–checking.

bb. For each identified internal interface, all the defined data elements shall be included.

NOTE The amount of detail to be provided depends strongly on the type of component.

bc. The logical and physical data structure of files that interface major component should be postponed to the detailed design.

bd. Data structure definitions shall include:

1. the description of each element (e.g. name, type, dimension);

2. the relationships between the elements (i.e. the structure);

3. the initial values of each element.

<6> Requirements to design components traceability

be. The SDD shall provide traceability matrices

1. from the software requirements to component down to the lower identified component in the software hierarchy (forward traceability) and

2. from the software components to its upper level component up to the software requirements (backward traceability).

bf. In case the information in <6>a. is provided as separate documentation in the DJF, a reference to it shall be stated.

bg. The SDD shall define the potential specific measures taken for critical software in the design documentation.

F.2.2 Special remarks

None.
1

