Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

Application Protocol: Exchange of Thermal
Model Data for Space Applications (STEP-
TAS)

Copyright © 1995-2016 European Space Agency (ESA). All rights reserved.

ESA reference ESA-TEC-ST-002776

version 6.0

date 2018-02-09

download URI|http://ecss.nl/wp-content/uploads/2018/01/ecss-e-st-31-04-annex-c.zip

Copyright ©1995-2016 European Space Agency page 1

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

Table of contents

1.1
1.2
1.3
1.3.1
1.3.2

3.1
3.1.1
3.1.2
3.13
3.14
3.1.5
3.1.6
3.1.7
3.1.8
3.1.9
3.1.10
3.1.11
3.1.12
3.1.13
3.1.14
3.1.15
3.1.16
3.1.17
3.1.18
3.1.19
3.1.20
3.1.21
3.1.22
3.1.23
3.1.24
3.1.25
3.1.26
3.1.27
3.1.28
3.1.29
3.1.30
3.1.31
3.1.32
3.1.33
3.2
3.2.1

Foreword

Introduction

General

Protocol and dictionary

Scope

Overall scope of STEP-TAS

Specific scope of STEP-NRF

Fundamental concepts and assumptions of STEP-NRF
Activities relevant to analysis, simulation, test and operation
The results datacube concept

Normative references

Terms, definitions and abbreviations

Terms defined in ISO 10303-1

abstract test suite

application

application activity model (AAM)

application context

application interpreted model (AIM)

application object

application protocol
application reference model (ARM)

application resource
assembly

component

conformance class
conformance requirement
data

data exchange

data specification language
exchange structure

generic resource
implementation method

information
information model
integrated resource

interpretation
PICS proforma
presentation
product

product data
product information

product information model

protocol implementation conformance statement (PICS)
resource construct

structure

unit of functionality

Terms Defined in ISO 10303-42

geometric coordinate system

Copyright ©1995-2016 European Space Agency

page 2

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

322 surface
33 Terms Defined in ISO 10303-45
3.3.1 material

332 material designation

3.3.3 material property
3.4 Terms defined in the STEP-NRF protocol

34.1 case

342 class

343 datacube

344 derived quantity category
345 exchange dataset

3.4.6 identifier

34.7 model

348 name

349 observable item

3.4.10 principal quantity category

3.4.11 property
34.12 qualifier

34.13 quantity
3.4.14 root-model

34.15 run
34.16 sensor
3.4.17 state

3.4.18 submodel

3.4.19 supermodel

3.4.20 tensor

3.4.21 Unicode base character
3422 unit

3.5 Terms defined in the STEP-TAS protocol
3.5.1 apoapsis

352 multiple reflection

353 orbit

354 orbit arc

3.5.5 periapsis

3.5.6 radiative coupling

3.5.7 radiative exchange factor
358 rigid body

3.5.9 sensor

3.5.10 space mission

3.5.11 thermal network model
3.5.12 thermal node

3.5.13 thermal-radiative face
3.5.14 thermal-radiative model
3.5.15 viewfactor

3.6 Abbreviations

4 Information requirements

4.1 Modular breakdown of the protocol

4.2 Network-model and results format (NRF) module
4.2.1 SCHEMA declaration for nrf arm

422 CONSTANT declaration

423 NRF General support UoF
4.2.3.1 TYPE nrf identifier

4.2.3.2 FUNCTION nrf verify_identifier

Copyright ©1995-2016 European Space Agency page 3

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4233
4234
4235
4.2.3.6
4.2.3.7
4.2.3.8
4239
4.2.3.10
4.23.11
4.2.3.12
4.2.3.13
4.23.14
4.2.3.15
4.2.3.16
4.2.3.17
4.2.3.18
4.2.3.19
4.2.3.20
424
4.2.4.1
4242
4243
4244
4.24.5
4.2.4.6
4.2.4.7
42438
4249
4.2.4.10
4.24.11
4.2.4.12
4.2.4.13
4.24.14
4.24.15
4.2.4.16
4.2.4.17
4.2.4.18
4.2.4.19
4.2.4.20
4.2.4.21
4.2.4.22
4.2.4.23
4.2.4.24
4.2.4.25
4.2.4.26
4.2.4.27
4.2.4.28
4.2.4.29
4.2.4.30
4.2.431
4.2.4.32
4.2.4.33
4.2.4.34

TYPE nrf uniform resource identifier
TYPE nrf label

TYPE nrf non blank label
FUNCTION nrf verify label

TYPE nrf text

TYPE nrf positive integer

TYPE nrf non negative integer
TYPE nrf negative integer

ENTITY nrf address

ENTITY nrf organization

ENTITY nrf organizational address

ENTITY nrf organizational project

ENTITY nrf person

ENTITY nrf person _and_organization
ENTITY nrf personal address

ENTITY nrf approval

ENTITY nrf tool or_facility

ENTITY nrf security_classification_level
NRF Quantities and units UoF

TYPE nrf unit symbol_identifier

FUNCTION nrf verify unit symbol identifier
ENTITY nrf any_unit

ENTITY nrf base unit

ENTITY nrf extended si_unit

ENTITY nrf conversion_based unit
FUNCTION nrf verify no circular reference unit dependency
ENTITY nrf context dependent unit

ENTITY nrf derived unit

ENTITY nrf derived unit_element

FUNCTION nrf verify dimensional exponents

FUNCTION nrf verify equal dimensional exponents for quantity categories
FUNCTION nrf verify base name_and exponents for extended si_unit

FUNCTION nrf _derive_extended si_symbol
FUNCTION nrf derive derived unit_symbol
FUNCTION nrf verify dimensional exponents_for_derived_unit
FUNCTION nrf derive extended si prefix factor
TYPE nrf uncertainty margins type

ENTITY nrf uncertainty probability distribution
ENTITY nrf uncertainty_specification method
ENTITY nrf physical quantity category

ENTITY nrf basic_physical quantity category
ENTITY nrf primary physical quantity category
ENTITY nrf secondary physical quantity category
ENTITY nrf qualified physical quantity category
ENTITY nrf quantity qualifier

ENTITY nrf any quantity_type

ENTITY nrf any_scalar_quantity_type

ENTITY nrf physical quantity type
ENTITY nrf real quantity type
ENTITY nrf _integer quantity type
ENTITY nrf string_quantity type
ENTITY nrf enumeration quantity type

ENTITY nrf enumeration_item

Copyright ©1995-2016 European Space Agency

page 4

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4.2.4.35 FUNCTION nrf verify unique names in enumeration item list
4.2.436 ENTITY nrf tensor characteristic

4.2.437 ENTITY nrf tensor element

4.2.438 ENTITY nrf any_tensor_quantity_type

4.2.4.39 ENTITY nrf general tensor quantity type

4.2.4.40 ENTITY nrf symmetric_matrix_quantity type

4.2.441 ENTITY nrf anti symmetric_matrix _quantity type

4.2.4.42 FUNCTION nrf get qualified quantity name

4.2.4.43 FUNCTION nrf get qualified quantity symbol

4.2.4.44 FUNCTION nrf get qualified quantity description

4.2.4.45 FUNCTION nrf get required number of elements in _any tensor
4.2.4.46 FUNCTION nrf get number of real values for real quantity type
4.2.4.47 FUNCTION nrf get number of real values for integer quantity type
4.2.4.48 FUNCTION nrf get number of real values in any tensor
4.2.4.49 FUNCTION nrf get number of integer values in any tensor
4.2.4.50 ENTITY nrf quantity type list

4.2.4.51 FUNCTION nrf derive number_of real values_in_quantity type list
4.2.4.52 FUNCTION nrf derive_number_of integer _values_in_quantity type_list

4.2.5 NRF Date and time UoF

4.2.5.1 TYPE nrf ahead or behind

4.2.5.2 TYPE nrf year number

4.2.5.3 TYPE nrf month in year number

4.2.54 TYPE nrf day in month number

4.2.5.5 TYPE nrf hour_in_day

4.2.5.6 TYPE nrf minute_in_hour

4.2.5.7 TYPE nrf second in_minute

4.2.5.8 ENTITY nrf calendar date

4.2.5.9 ENTITY nrf coordinated universal time offset
4.2.5.10 ENTITY nrf local time

4.2.5.11 ENTITY nrf date and time

4.2.5.12 FUNCTION nrf verify calendar date

4.2.5.13 FUNCTION nrf verify_time

4.2.5.14 FUNCTION nrf verify leap year

4.2.6 NRF Parametrics UoF

4.2.6.1 TYPE nrf algorithmic expression

4.2.6.2 TYPE nrf algorithmic statement

4.2.6.3 ENTITY nrf algorithmic language

4.2.6.4 ENTITY nrf variable

4.2.6.5 ENTITY nrf model constraint

4.2.6.6 TYPE nrf formal parameter_in_out

4.2.6.7 ENTITY nrf formal parameter

4.2.6.8 ENTITY nrf model function

4.2.6.9 ENTITY nrf any_quantity_value_prescription
4.2.6.10 ENTITY nrf real quantity value prescription
4.2.6.11 ENTITY nrf real quantity value literal
4.2.6.12 ENTITY nrf real quantity value expression
4.2.6.13 ENTITY nrf real univariate power series polynomial expression
4.2.6.14 TYPE nrf_interpolation_type

4.2.6.15 ENTITY nrf real interpolation table expression
4.2.6.16 ENTITY nrf cyclic_real interpolation table expression

4.2.6.17 FUNCTION nrf verify independent quantity types
4.2.6.18 ENTITY nrf real lookup table

4.2.6.19 FUNCTION nrf verify number of dependent values in real lookup table

Copyright ©1995-2016 European Space Agency page 5

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4.2.6.20 ENTITY nrf integer quantity value prescription
4.2.6.21 ENTITY nrf integer quantity value literal

4.2.6.22 ENTITY nrf integer quantity value expression
4.2.6.23 ENTITY nrf string quantity value prescription
4.2.6.24 ENTITY nrf string quantity value literal

4.2.6.25 ENTITY nrf string_quantity value expression
4.2.6.26 ENTITY nrf enumeration quantity value prescription
4.2.6.27 ENTITY nrf enumeration quantity value literal
4.2.6.28 ENTITY nrf enumeration quantity value expression
4.2.6.29 ENTITY nrf tensor_ quantity value prescription
4.2.6.30 ENTITY nrf tensor quantity value literal

4.2.6.31 ENTITY nrf tensor quantity value expression

4.2.6.32 ENTITY nrf quantity value prescription for item
4.2.7 NRF Network model representation UoF

4.2.7.1 ENTITY nrf observable item

4.2.7.2 ENTITY nrf observable item relationship

4.2.7.3 ENTITY nrf named observable item class

4.2.7.4 ENTITY nrf named observable_item

4.2.7.5 ENTITY nrf observable item list

4.2.7.6 ENTITY nrf named observable item list

4.2.7.7 ENTITY nrf named observable item group class

4.2.7.8 ENTITY nrf named observable item group

4.2.7.9 ENTITY nrf network model class

4.2.7.10 ENTITY nrf network model

4.2.7.11 FUNCTION nrf verify named observable items in model tree
4.2.7.12 FUNCTION nrf verify_acyclic_item_group_tree

4.2.7.13 FUNCTION nrf verify nodes in network model

4.2.7.14 FUNCTION nrf verify node relationships in network model
4.2.7.15 FUNCTION nrf verify acyclic network model tree

4.2.7.16 FUNCTION nrf verify nodes referenced in relationships
4.2.7.17 FUNCTION nrf verify node in submodel tree

4.2.7.18 FUNCTION nrf verify complete list of material properties

4.2.7.19 FUNCTION nrf verify same material property environment as containing model

4.2.7.20 FUNCTION nrf verify same item class as containing model
4.2.7.21 ENTITY nrf network node class

4.2.7.22 ENTITY nrf network node

4.2.7.23 ENTITY nrf network node_relationship_class
4.2.7.24 ENTITY nrf network node relationship

4.2.7.25 ENTITY nrf model represents product relationship
4.2.8 NREF Cases, runs and results UoF

4.2.8.1 ENTITY nrf root

4.2.8.2 ENTITY nrf case

4.2.8.3 ENTITY nrf case_event

4.2.84 ENTITY nrf case interval

4.2.8.5 ENTITY nrf run

4.2.8.6 TYPE nrf quantity sequencing_type

4.2.8.7 ENTITY nrf state list

4.2.8.8 TYPE nrf datacube order_type

4.2.8.9 ENTITY nrf datacube

4.2.8.10 ENTITY nrf derivation_procedure

4.2.8.11 ENTITY nrf datacube derivation relationship
4.2.8.12 ENTITY nrf network model nodes mapping
4.2.8.13 ENTITY nrf network node mapping

Copyright ©1995-2016 European Space Agency page 6

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4.2.8.14 RULE nrf root is_singleton

4.2.8.15 FUNCTION nrf verify initializations
4.2.8.16 FUNCTION nrf verify unique_identifiers

4.2.8.17 FUNCTION nrf verify_item_in_model_tree

4.2.8.18 FUNCTION nrf verify_acyclic_case_tree

4.2.8.19 FUNCTION nrf derive number_of states_in_state list
4.2.8.20 FUNCTION nrf verify state value sequencing
4.2.8.21 RULE nrf valid values_in_datacubes

4.2.8.22 FUNCTION nrf verify values_in_datacube

4.2.8.23 FUNCTION nrf verify values for quantity type
4.2.8.24 FUNCTION nrf verify nodes in mapping

4.2.9 NRF Product structure UoF

4.29.1 ENTITY nrf product

4.2.9.2 ENTITY nrf product context

4.2.9.3 ENTITY nrf product definition

4.2.9.4 ENTITY nrf product definition context

4.2.9.5 ENTITY nrf product next assembly usage relationship
4.2.9.6 FUNCTION nrf verify acyclic_product definition_relationship
4.2.9.7 ENTITY nrf product version

4.2.10 Materials UoF

4.2.10.1 ENTITY nrf material class

4.2.10.2 ENTITY nrf material

4.2.10.3 FUNCTION nrf get all required quantity type names
4.2.10.4 FUNCTION nrf verify_acyclic_material class tree
4.2.11 END_SCHEMA declaration for nrf arm

43 Meshed geometric model (MGM) module

43.1 SCHEMA declaration for mgm arm

432 Interfaced schema(ta) for mgm arm

433 CONSTANT specifications

434 MGM visual presentation UoF

43.4.1 TYPE mgm rgb component

4.3.42 ENTITY mgm colour_rgb

43.5 MGM basic geometry objects UoF

4.3.5.1 ENTITY mgm 3d cartesian point

4.3.5.2 ENTITY mgm parametric 3d_cartesian_point
4.3.5.3 ENTITY mgm 3d direction

4.3.54 ENTITY mgm parametric 3d direction

4.3.5.5 ENTITY mgm axis transformation

43.5.6 ENTITY mgm axis placement

4.3.5.7 ENTITY mgm axis transformation sequence
4.3.5.8 ENTITY mgm translation or rotation

4.3.5.9 ENTITY mgm translation

4.3.5.10 ENTITY mgm_parametric_translation

4.3.5.11 ENTITY mgm rotation

4.3.5.12 ENTITY mgm rotation with axes fixed

4.3.5.13 ENTITY mgm_parametric_rotation_with axes_fixed
4.3.5.14 ENTITY mgm rotation with axes moving
4.3.5.15 ENTITY mgm parametric_rotation with axes moving
4.3.5.16 ENTITY mgm quantity context

4.3.5.17 FUNCTION mgm_verify context quantity types
4.3.5.18 FUNCTION mgm_verify context uncertainties
4.3.5.19 FUNCTION mgm get context quantity type
4.3.5.20 FUNCTION mgm_get_context uncertainty value

Copyright ©1995-2016 European Space Agency page 7

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4.3.5.21
4.3.5.22
4.3.6
4.3.6.1
4.3.6.2
4.3.6.3
4.3.6.4
4.3.6.5
4.3.6.6
4.3.6.7
4.3.6.8
4.3.6.9
4.3.6.10
4.3.6.11
4.3.6.12
4.3.6.13
4.3.6.14
4.3.6.15
4.3.6.16
4.3.6.17
4.3.6.18
4.3.6.19
4.3.6.20
4.3.6.21
4.3.6.22
4.3.6.23
4.3.6.24
4.3.6.25
4.3.6.26
4.3.6.27
4.3.6.28
4.3.6.29
4.3.6.30
4.3.6.31
4.3.6.32
4.3.6.33
4.3.6.34
4.3.6.35
4.3.6.36
4.3.6.37
4.3.6.38
4.3.6.39
4.3.6.40
4.3.6.41
4.3.6.42
4.3.6.43
4.3.6.44
4.3.7
4.3.7.1
4.3.7.2
43.73
43.74
4.3.8

FUNCTION mgm_compute_distance_between_points
RULE mgm all plane angle quantity types in degree
MGM meshed geometric model UoF

TYPE mgm_active_side_type

ENTITY mgm_meshed geometric_model

ENTITY mgm_any_meshed geometric_item

ENTITY mgm compound meshed geometric item
ENTITY mgm_meshed geometric_item_by_submodel
ENTITY mgm_meshed primitive_bounded surface
RULE mgm_verify_referencing_of meshed geometric_items
FUNCTION mgm _get items from meshed geometric item
ENTITY mgm_primitive_bounded_surface

ENTITY mgm_triangle

ENTITY mgm_rectangle

ENTITY mgm quadrilateral

ENTITY mgm disc

ENTITY mgm_cylinder

ENTITY mgm_cone

ENTITY mgm_sphere

ENTITY mgm_paraboloid

ENTITY mgm_primitive_solid

ENTITY mgm infinite solid by plane

ENTITY mgm infinite solid cylinder

ENTITY mgm_solid_cylinder

ENTITY mgm_solid _cone

ENTITY mgm solid sphere

ENTITY mgm solid paraboloid

ENTITY mgm_solid box

ENTITY mgm solid triangular prism

ENTITY mgm_qualified compound meshed primitive bounded surface

ENTITY mgm_face

ENTITY mgm_face pair

ENTITY mgm_enclosure

FUNCTION mgm_verify transformation

FUNCTION mgm_verify_acyclic_compound meshed geometric_item_tree

FUNCTION mgm verify no coincident points

FUNCTION mgm verify no colinear points

FUNCTION mgm_verify quadrilateral

FUNCTION mgm_verify_points_span_orthogonal system
FUNCTION mgm_verify_points_use_context length_quantity_type
FUNCTION mgm_verify_surface_grid_spacings

FUNCTION mgm verify start and end angles

FUNCTION mgm_verify_solid box

FUNCTION mgm verify solid triangular prism

RULE mgm verify referencing of faces

FUNCTION mgm_get faces_from meshed geometric_item
FUNCTION mgm_verify_enclosure_faces

MGM meshed boolean construction geometry UoF

TYPE mgm_half space_selector_type

ENTITY tas half space_solid

ENTITY mgm meshed boolean difference surface
FUNCTION mgm_verify_boolean_difference_base_surface
END_SCHEMA declaration for mgm_arm

Copyright ©1995-2016 European Space Agency

page 8

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4.4
4.4.1
442
443
444
4.4.4.1
4442
4443
4444
4.44.5
445
4.5
4.5.1
4.5.2
453
454
4.5.4.1
4.54.2
4543
4544
4.54.5
4.54.6
4.54.7
4.54.8
4549
4.5.4.10
4.54.11
4.54.12
4.54.13
4.54.14
4.54.15
4.54.16
4.5.4.17
4.54.18
4.54.19
4.5.4.20
4.54.21
4.5.4.22
4.5.4.23
4.54.24
4.5.4.25
4.5.5
4.6
4.6.1
4.6.2
4.6.3
4.6.4

5

5.1

52

Annex A (normative) ARM EXPRESS expanded listing
Annex B (informative) Application protocol usage guide

B.1

Space kinematic model (SKM) module
SCHEMA declaration for skm arm
Interfaced schema(ta) for skm arm
CONSTANT specifications

SKM rigid body kinematics UoF

ENTITY skm_kinematic_degree of freedom
ENTITY skm_sliding degree of freedom
ENTITY skm_revolute_degree of freedom
ENTITY skm kinematic joint
FUNCTION skm _verify degrees of freedom
END SCHEMA declaration for skm arm
Space mission aspects (SMA) module
SCHEMA declaration for sma_arm
Interfaced schema(ta) for sma_arm
CONSTANT specifications

SMA space mission aspects UoF

ENTITY sma space mission case
ENTITY sma_space_coordinate_system
ENTITY sma_orbit_arc

ENTITY sma_orbit_position_and_velocity
ENTITY sma_discretized orbit arc
ENTITY sma kepler parameter set
ENTITY sma keplerian orbit arc

ENTITY sma_keplerian_orbit_arc_with_evaluation_interval

ENTITY sma_keplerian_orbit_arc_with_evaluation_positions

ENTITY sma_celestial body_class
ENTITY sma celestial body

ENTITY sma_celestial body with_orbit
ENTITY sma space environment
ENTITY sma kinematic articulation

ENTITY sma_parametric_kinematic_articulation

ENTITY sma_kinematic_articulation with pointing_constraint

ENTITY sma kinematic pointing_constraint

ENTITY sma kinematic cartesian pointing constraint
ENTITY sma_kinematic_pointing_to_star_constraint
ENTITY sma kinematic tracked point pointing constraint
ENTITY sma fast spinning_kinematic articulation

ENTITY sma pointing_to_star

FUNCTION sma_verify kinematic_pointing_constraint
FUNCTION sma_verify_kinematic_articulations

FUNCTION sma verify evaluation positions

END_SCHEMA declaration for sma_arm
STEP-TAS procotol

SCHEMA declaration for tas_arm
Interfaced schema(ta) for tas arm
CONSTANT specifications
END_SCHEMA declaration for tas arm

Conformance requirements

Conformance requirements for STEP-TAS as a whole
Conformance requirements for STEP-NRF in isolation

Dictionary of standard pre-defined entities

Copyright ©1995-2016 European Space Agency

page 9

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

B.2 Use of the STEP-TAS dictionary
B.3 Use of the STEP-NRF dictionary
Annex C (informative) Bibliography

Copyright ©1995-2016 European Space Agency page 10

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

Foreword

This document describes the STEP-TAS data exchange protocol as a whole, and is derived from two
previous documents which considered the protocol as being comprised of two parts:

— Part 1: Application protocol: Network-model and results format (STEP-NRF)
— Part 2: Application protocol: Thermal analysis for space (STEP-TAS)

The STEP-NREF part is an exchange protocol than can be used in its own right, and could potentially form a
foundation layer for many other exchange protocols, not just STEP-TAS, and is the reason why two different
documents were created. Other protocols would be able to reference STEP-NRF without needing STEP-
TAS.

The original idea was to submit both documents describing the STEP-NRF and STEP-TAS exchange
protocols for consideration by ISO (the International Organization for Standardization) for adoption as
separate standards. STEP-NRF and STEP-TAS both follow the established ISO 10303 philosophy and use
the same architectural building blocks, most notably for describing the protocol, the low-level data
structures, and the exchange file representation. As as a consequence, the layout, format and terminology of
the original documents describing the STEP-NRF and STEP-TAS protocols use the same conventions as the
ISO 10303 standards.

The decision to submit STEP-TAS and STEP-NRF to ECSS instead of ISO provides the opportunity to
review and harmonize these standards within one document. Some information about the ISO
standardization process and standards will be retained in the document in order to provide context as to how
and why the overall STEP-TAS exchange protocol is organized in the way it is.

Copyright ©1995-2016 European Space Agency page 11

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

Introduction

General

This protocol is based on ISO 10303. ISO 10303 is an International Standard for the computer-interpretable
representation and exchange of product data. Its objective is to provide a neutral mechanism capable of
describing product data throughout the life cycle of a product independent from any particular system. The
nature of this description makes it suitable not only for neutral file exchange, but also as a basis for
implementing and sharing product databases and long term archiving.

This protocol enables exchange and sharing of data needed for thermal control engineering of space
products. It defines the context, scope, information requirements and a detailed formal computer-
interpretable data model (in the form of an ISO 10303-11 EXPRESS schema) to support the exchange and
sharing of all data needed in space thermal analysis and testing activities as well as the thermal aspects of the
operation of space products.

The need for such a protocol has become evident in many space projects. Space industry is a domain in
which very complex products are developed and operated by (usually large) international industrial teams.
Analysis and test models are an essential part of the engineering process. It is not possible for the many
partners in the industrial teams to standardise on the same tools for thermal analysis and test or operation
results data processing. Nor is it desirable to do so, since healthy competition between the tool vendors
promotes improvement and innovation at an affordable cost. At the same time an open standard that specifies
an adequate neutral data format is the only viable way to realize reliable and cost effective data exchange and
data sharing for the end-users: the thermal control engineers in the space industry.

Protocol and dictionary

This protocol is designed in such a way that all definitions in the data model (EXPRESS SCHEMA) are kept
as generic as possible, so in the protocol itself no thermal control concepts are introduced. The full STEP-
TAS data exchange standard consists of this protocol and a run-time loadable dictionary, that can be
downloaded from a given URI. This dictionary contains a collection of pre-defined terms in the form of
instances conforming to ENTITY specifications in this protocol's formal EXPRESS SCHEMA.

In order to use the standard an implementation first loads the STEP-TAS dictionary, which is a file in
ISO 10303-21 format, and then uses the protocol plus the dictionary terms to create a STEP-TAS exchange
dataset.

Splitting the standard into a core protocol and a run-time loadable dictionary has three major advantages:

1. The core protocol (EXPRESS SCHEMA) can be kept as simple as possible and free of particular
space thermal engineering terminology. Its modules can be re-used without further adaptation by
other space engineering disciplines such as space environment effects analysis.

2. Also the core protocol can remain unmodified for relatively long periods of time, because there is
no need to produce new editions of the protocol for extension with simple new capabilities like
adding support for a new physical property or a new type of node in a network model. This is good
because the production and adoption of a new edition of an international standard is by its nature a
time-consuming process, and usually necessitates upgrades of the software that implements the
protocol, and in the worst case causes backwards incompatibility.

Copyright ©1995-2016 European Space Agency page 12

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

3. Last but not least, the run-time loadable dictionary can be extended as required through use of a
light and flexible maintenance process. In almost all cases the extensions can be ensured to be
backwards compatible with earlier releases of the dictionary and will not break existing software
implementations.

Copyright ©1995-2016 European Space Agency page 13

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

1 Scope

1.1 Overall scope of STEP-TAS

In scope for this application protocol is all data that needs to be exchanged (or shared) between parties
working in the domain of space thermal control engineering, over the whole life cycle of space products. The
table below lists the main activities with typical input and output data. Typically these activities are run in an
iterative incremental process, in which there is significant interaction with the other engineering and non-
engineering disciplines needed to develop and operate a space product. Also there is substantial work in
coordinating the analysis and test activities between different layers of the project team: the (international)
supply chain consisting of a customer and a prime contractor with multiple tiers of subcontractors with and
without engineering responsibility. The most important purpose of this protocol is indeed to help overcome
the data exchange problems in the supply chain, by enabling smooth and reliable exchange and sharing of
thermal control analysis and test models and results across the different levels of both project team and space
system.

Table 1 — Main activities concerning space thermal control engineering

Activity Input data Output data
Specify system requirements, including operational space environment |thermal control part of product
thermal specification; properties of standard parts and materials; overall |[specification;
control product structure; CAD specification; analysis results; test results;
design design data from prior projects; relevant standards, guidelines and

handbooks;
Define product specification; analysis models; test models; analysis case specifications; test
thermal case specifications;
control
analysis and
test cases
Construct [product specification; analysis case specifications; test case analysis models; test models;
thermal specifications;
control

analysis and
test models

Do thermal |analysis models; analysis cases; pre-processing results, such as
radiative radiative exchange factors,
and incident and absorbed
conductive environmental heat flows,
pre- thermal conductive network;
processing

Do thermal |analysis models; analysis cases; thermal radiative and conductive |analysis results, such as
network |pre-processing results; temperature fields and heat
analysis balances;

Run test article specification; test facility specification; sensor test results, such as time series
thermal allocation specification; test procedures; test case specifications; |of sensor readings;

tests

Correlate |analysis results (predictions); test results (measurements); correlated analysis models;

analysis and
test results

analysis model node to test sensor mapping specifications;

correlated analysis results;

The requirements for the data to be exchanged are defined in detail in:

Copyright ©1995-2016 European Space Agency

page 14

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

— Clause 4 “Information Requirements”

1.2 Specific scope of STEP-NRF

The STEP-NRF protocol specifies the formal data structures necessary for the electronic exchange of
network models and associated results data. A network model in this context is a generic representation of an
engineering object (or a set of related engineering objects) by a collection of discrete network nodes and
relationships between these nodes. The results are characteristic, predicted, assigned or observed quantities
for components of the engineering object(s), which are sampled during an analysis, simulation, test or
operation run.

This protocol is aimed at batch exchange of large amounts of results data, after completion of a run of the
model. The protocol does not include specific provisions to handle streaming of results data during the
execution of a run, although it is possible to address streaming in an implementation of this protocol.

The following are within the scope of this protocol:

— The representation of an engineering object by a network model of discrete nodes and relationships
between the nodes, for the purpose of analysis, simulation, test or operation.

— Simple classification of network-models, discrete nodes and relationships between the nodes.

— The hierarchical breakdown of network-models, consisting of a root- model and a tree of
submodels. There is no limit on the allowed number of breakdown levels.

— The definition and representation of scalar quantities and tensor quantities of any rank, including
vector and matrix quantities. Scalar quantities may have the following value types: real, integer,
character string or enumeration. All physical quantity values are associated with a unit.

— The definition and representation of properties of engineering objects.

— The definition and representation of analysis, simulation, test and operation runs with associated
results.

— The definition and representation of a simple product structure, in the form of a product tree or an
assembly tree, and the relationships between items defined in the product structure and items
defined in the network-model representation.

The following are outside the scope of the STEP-NRF protocol:

— Discipline dependent specializations of network models, such as: thermal network models,
structural finite element models, computational flow dynamics models.

— Geometric shape and topology definitions.

1.3 Fundamental concepts and assumptions of STEP-NRF

1.3.1 Activities relevant to analysis, simulation, test and operation

From an engineering perspective the following seven major categories of activity can be distinguished in the
life cycle of a product:

1. Definition of the mission to be fulfilled, which is commonly called the mission need statement. This
is then detailed into a full set of verifiable requirements, through a process of requirements

Copyright ©1995-2016 European Space Agency page 15

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

discovery and flowdown. The requirements specification starts as a systems engineering activity
and is subsequently elaborated in full detail by each of the involved specialist disciplines.

2. Definition of the product design that fulfills the requirements specification. This is again a top-down

activity coordinated by systems engineering and elaborated in each of the involved specialist
disciplines. In general a phased approach is used with distinctive conceptual design, preliminary

design and detailed design phases.

3. Definition of analysis, simulation, test or operation cases, and one or more representative models of
the product of interest and its relevant environment. The cases define usage scenarios with relevant

control parameters, initial and boundary conditions. The cases and models typically constitute
idealizations of reality and combinations of expected extreme conditions in order to analyze,

simulate or test a design rigourously against the specified requirements. Analysis or simulation is
used to predict how the product will perform, in order to assist in design decisions and design
option trade-offs. Analysis or simulation can also be used to verify that a given (detailed) product

design meets its requirements in case physical test is impossible or too costly. Test is used to verify

that the realized product (or an initial representative realization) operates conform the specified
requirements. Observations from actual operation are used to measure how the product is
performing while deployed in real use, and possibly to improve future designs for the same or

similar kinds of product. An analysis, simulation, test or operation case may be broken down into a
sequence of subcases. Similarly a model may need to be broken down into one or more submodels,
in order to manage complexity, for instance by reflecting the hierarchical breakdown of a system in

the form of a function tree, product tree or assembly tree.

4. Execution of analysis, simulation, test or operation cases and models , producing results data. One

execution of a case and model is commonly called a run.

5. Manufacturing, assembly and integration of the product according to the design definitions.

Delivery, deployment, operation and maintenance of the product.

~

Disposal of the product.

In this protocol categories 3. and 4. are in scope, the other categories are not in scope.

The table below summarises the most important concepts that play a role in these two categories.

Table 2 — Most important data elements in the categories of activity relevant to analysis, simulation,

test and operation

Category 3 — Definition of analyses, simulations, tests
and operations

Category 4 — Execution of analyses, simulations, tests
and operations

discrete network model

(analysis, simulation, test, operation) case
conceptual or detailed product structure
quantity types and units

material names and properties

initial and boundary conditions
parametric prescriptions

user-defined logic

(analysis, simulation, test, operation) run
results (produced per run)
identification of the used tool or facility

1.3.2 The results datacube concept

The concept for storing results is very simple: results are stored as characteristic, predicted, assigned or

observed quantities of observable items in a results space. In this results space, a property is identified by co-

ordinates in only three dimensions:

Copyright ©1995-2016 European Space Agency

page 16

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

— what is the quantity type for which a property is stored in the dataset?
— where in the model — for which item — does this property apply?

— when — that is: for which state — is a property observed?
The results space can be visualised as in Figure 1.
In the real world a number of factors complicate this simple concept:

— In order to interpret the results data correctly, an exchange dataset needs to provide an application
and its user with sufficient (meta-)information about the exchange dataset and the properties.

— The results are not restricted to just bare numbers, so it is necessary to include information about
how the results are represented. Even when the values of properties can be expressed as numeric
scalars, it is necessary to include information about what these numbers signify. In the case of
physical quantities one needs to know in which unit the values are expressed. Besides scalars, the
values can also be vectors, tensors or descriptive data, for which representation structures have to be
specified.

Figure 1 — Schematic illustration of the datacube and its three dimensions: observable items, quantity
types and (discrete) states

A final consideration in the design of this protocol is that of efficiency, which is very important for bulk
results data where models may contain many thousands of observable items, and the quantities for each item
may be sampled thousands of times in a run, i.e. producing millions of results values. The straightforward
approach of storing a potential property value for every property class, for every model component, at every
possible state would lead to very inefficient storage because:

Copyright ©1995-2016 European Space Agency page 17

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

— Quantity types do not necessarily apply to all observable items.

— The observation of quantity values is not necessarily synchronised as the values are not always
obtained for the same state (for example sample time). There is a good chance that it is impossible
to determine the full state — which contains all applicable properties for all items — at a particular
state of the represented engineering object.

Because of these reasons, valid and/or defined quantity values may be distributed very sparsely throughout
the datacube.

The NRF protocol contains special features to achieve efficient storage, even for sparsely distributed data:

— the use of item lists prevent storage of data for meaningless combinations of items, quantity types
and states,

— referencing common data structures (like text strings) prevents data duplication.

Copyright ©1995-2016 European Space Agency page 18

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

2 Normative references

IEC 60027-2 Letter symbols to be used in electrical technology - Part 2: Telecommunications and electronics

IETF/ "Uniform Resource Identifiers (URI): Generic Syntax", see http://www.ietf.org/rfc/rfc2396.txt
RFC2396
ISO 31 Quantities and units

ISO 10303-1 Industrial automation systems and integration — Product data representation and exchange —
Part 1: Overview and fundamental principles

ISO 10303-11 Industrial automation systems and integration — Product data representation and exchange —
Part 11: Description methods: The EXPRESS language reference manual

ISO 10303-21 Industrial automation systems and integration — Product data representation and exchange —
Part 21: Implementation methods: Clear text encoding of the exchange structure

Copyright ©1995-2016 European Space Agency page 19

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

3 Terms, definitions and abbreviations

For the purposes of this document, the terms and definitions given in ISO 10303 and the following apply.

3.1 Terms defined in ISO 10303-1

3.1.1

abstract test suite

a part of this International Standard that contains the set of abstract test cases necessary for conformance
testing of an implementation of an application protocol.

3.1.2
application
a group of one or more processes creating or using product data.

3.1.3
application activity model (AAM)
a model that describes an application in terms of its processes and information flows.

3.14

application context

the environment in which the integrated resources are interpreted to support the use of product data in a
specific application.

3.15

application interpreted model (AIM)

an information model that uses the integrated resources necessary to satisfy the information requirements and
constraints of an application reference model, within an application protocol.

3.1.6

application object

an atomic element of an application reference model that defines a unique concept and contains attributes
specifying the data elements of the object.

3.1.7

application protocol

a document complying with [AP-Guide] that specifies an application interpreted model satisfying the scope
and information requirements for a specific application.

3.1.8
application reference model (ARM)
an information model that describes the information requirements and constraints of a specific application.

3.1.9
application resource
an integrated resource whose contents are related to a group of application contexts.

3.1.10
assembly

Copyright ©1995-2016 European Space Agency page 20

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

a product that is decomposable into a set of components or other assemblies from the perspective of a
specific application.

3.1.11
component
a product that is not subject to decomposition from the perspective of a specific application.

3.1.12
conformance class
a subset of an application protocol for which conformance may be claimed.

3.1.13
conformance requirement
a precise, text definition of a characteristic required to be present in a conforming implementation.

3.1.14

data

a representation of information in a formal manner suitable for communication, interpretation, or processing
by human beings or computers.

3.1.15
data exchange
the storing, accessing, transferring, and archiving of data.

3.1.16

data specification language

a set of rules for defining data and their relationships suitable for communication, interpretation, or
processing by computers.

3.1.17
exchange structure
a computer-interpretable format used for storing, accessing, transferring, and archiving data.

3.1.18
generic resource
an integrated resource whose contents are context-independent.

3.1.19

implementation method

a part of this International Standard that specifies a technique used by computer systems to exchange product
data that is described using the EXPRESS data specification language ISO 10303-11.

3.1.20
information
facts, concepts, or instructions.

3.1.21
information model
a formal model of a bounded set of facts, concepts or instructions to meet a specified requirement.

3.1.22
integrated resource

Copyright ©1995-2016 European Space Agency page 21

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

a part of this International Standard (that is ISO 10303) that defines a group of resource constructs used as
the basis for product data.

3.1.23

interpretation

the process of adapting a resource construct from the integrated resources to satisfy a requirement of an
application protocol. This may involve the addition of restrictions on attributes, the addition of constraints,
the addition of relationships among resource constructs and application constructs, or all of the above.

3.1.24

PICS proforma

a standardised document in the form of a questionnaire, which, when completed for a particular
implementation, becomes the protocol implementation conformance statement.

3.1.25
presentation
a recognisable visual representation of product data.

3.1.26
product
a thing or substance produced by a natural or artificial process.

3.1.27

product data

a representation of information about a product in a formal manner suitable for communication,
interpretation, or processing by human beings or by computers.

3.1.28
product information
facts, concepts, or instructions about a product.

3.1.29

product information model

an information model which provides an abstract description of facts, concepts and instructions about a
product.

3.1.30

protocol implementation conformance statement (PICS)

a statement of which capabilities and options are supported within an implementation of a given standard.
This statement is produced by completing a PICS proforma.

3.1.31

resource construct

a collection of EXPRESS language entities, types, functions, rules and references that together define a valid
description of an aspect of product data.

3.1.32
structure
a set of interrelated parts of any complex thing, and the relationships between them.

3.1.33
unit of functionality

Copyright ©1995-2016 European Space Agency page 22

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

a collection of application objects and their relationships that defines one of more concepts within the
application context such that removal of any component would render the concept incomplete or ambiguous.

3.2 Terms Defined in ISO 10303-42

3.2.1
geometric coordinate system
the underlying global rectangular Cartesian coordinate system to which all geometry refers.

3.2.2
surface
a set of mathematical points which is the image of a continuous function defined over a connected subset of

the plane (Rz). This image shall not be a single point or in part, or entirely, a curve.

3.3 Terms Defined in ISO 10303-45

3.3.1
material
the substance or substances of which product is composed or made.

3.3.2
material designation
an identifier which is assigned by agreement.

333
material property
a product characteristic which depends upon the material or materials comprising the product.

3.4 Terms defined in the STEP-NRF protocol

34.1

case

named collection of purpose, parameters, initial conditions, boundary conditions and sequencing information
that specifies how a model shall be executed

NOTE In this protocol "case" is used as a generalized term encompassing the specializations: "analysis

case", "simulation case", "test case" and "product operation case".

NOTE The definition of a case may also contain pass and/or fail criteria for successful execution.

34.2
class
named category of items which share common characteristics and behaviour

343

datacube

collection of discrete quantity values, structured in a three-dimensional mathematical space with discrete lists
of observable items, quantity types and states as bases

Copyright ©1995-2016 European Space Agency page 23

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

344
derived quantity category
named subcategory of quantities of the same kind that is a specialisation of a principal quantity category

345
exchange dataset
coherent and valid set of instances of entities conforming to the schema defined in this protocol

NOTE The dataset is instantiated in the form of a physical file, such as ISO 10303-21, a working form (e.g.
in computer memory) or as part of a (shareable) database. An exchange dataset can be accessed through a
programming interface, such as the SDAI defined in ISO 10303-22.

3.4.6
identifier
character string that uniquely identifies an item in a context

NOTE The context in which the item is thus uniquely identified is often referred to as the identifier scope
or namespace. The identifier does not need to have a natural language meaning but be a computer sensible
encoding. The term identifier is often referred to by the abbreviation id. In many applications the terms
number or key are used as synonyms for identifier.

34.7

model

representation in software or hardware of one or more aspects of a product, and possibly its operational
environment, for the purpose of design, analysis, simulation or verification

NOTE A model is typically an idealised representation of a product.

348
name
character string with natural-language meaning by which something can be referred to

NOTE A name is a string that represents the human-interpretable name of something. Often a name does
not uniquely identify an item. In many applications the terms "label" or "tag" are used as synonyms for
name.

349
observable item
item of which one or more properties can be observed

3.4.10
principal quantity category
named top level category of quantities of the same kind

NOTE Principal for a quantity category means that it constitutes a base or top level category from which
other quantity categories may be derived.

EXAMPLE An example of a principal quantity category is "length" which is also a base quantity in
ISO 31. To "length" a number of derived quantity categories may be associated such as "distance",

"diameter", "radius" and "width".
34.11

property
quality or attribute belonging and especially peculiar to an item, common to all members of a class

Copyright ©1995-2016 European Space Agency page 24

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

NOTE 1 Definition derived from [Webster].

NOTE 2 In this protocol "property” is specifically used in the meaning of a "quantity" for an "observable
item" in a certain "state".

3.4.12
qualifier
word or word group that limits or modifies the meaning of another word or word group [Webster]

NOTE In this protocol "qualifier" is specifically used to qualify the meaning of a "quantity".

3.4.13
quantity
number or character-string valued characteristic of something

NOTE In this protocol the definition of "quantity"” is extended beyond the more restrictive meaning of
physical quantity (i.e. a number valued characteristic) as defined in ISO 31.

3.4.14
root-model
highest level model in a hierarchical model breakdown

3.4.15
run
named execution of an analysis, simulation, test or operation model and case

NOTE A "run" has a clearly defined start and end. A "run" is the execution of a model and a case using
some tool or facility. For analysis or simulation this is typically a software tool, for test this is a test facility
and for operation this is the operational environment itself. A "run" produces analysis, simulation, test or
operation results. Such a collection of results is identified by the identifier, name, timestamp and similar
attributes of a run.

3.4.16
sensor
means or device for observation of a quantity

3.4.17
state
mode or condition of being [Webster]

NOTE In this protocol a "state" is identified by a state quantity value. The state quantity type is typically
(discrete sampled) time or frequency, but can also be a string valued quantity type.

EXAMPLE An example of a string valued quantity type is "product life-time category" with values
"Beginning of Life" and "End of Life".

3.4.18
submodel
next lower level model in a hierarchical model breakdown

NOTE A submodel may contain other (yet lower level) submodels. The model breakdown is a whole-part
composite tree structure that forms an acyclic graph.

Copyright ©1995-2016 European Space Agency page 25

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

3.4.19
supermodel
next higher level model in a hierarchical model breakdown

NOTE A supermodel contains one or more submodels. The model breakdown is a whole-part composite
tree structure that forms an acyclic graph.

3.4.20

tensor

generalization of the concept of vector that consists of a set of components usually having multiple rows of
indices that are functions of the co-ordinate system and have invariant properties under transformation of the
co-ordinate system [Webster]

34.21

Unicode base character

character that does not graphically combine with preceding characters, and that is neither a control nor a
format character.

NOTE Definition D13 from Unicode standard v4.0, Section 3.6.

3.4.22
unit
reference quantity with numerical value one

NOTE Definition from ISO 31-0.

3.5 Terms defined in the STEP-TAS protocol

3.5.1
apoapsis
orbit position farthest away from the celestial body that governs the orbit

3.5.2

multiple reflection

thermal radiation propagating from one thermal-radiative face to another thermal-radiative face via at least
one intermediate reflection

353
orbit
trajectory in space, governed by gravitational forces and/or propulsion

3.54
orbit arc
part of an orbit.

3.5.5
periapsis
orbit position nearest to the celestial body that governs the orbit

3.5.6
radiative coupling

Copyright ©1995-2016 European Space Agency page 26

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

thermal mathematical network model conductor that specifies thermal-radiative heat transfer between two
thermal-radiative faces i and j

NOTE The radiative coupling between two thermal-radiative faces i and j is equal to the product of the
surface area of face i and the radiative exchange factor from i to j and the emissivity of face i, or —
alternatively — the product of the surface area of face j and the radiative exchange factor from j to i and the

emissivity of face j. The physical dimension of a radiative coupling is L.

3.5.7

radiative exchange factor

fraction of the thermal radiation between two thermal-radiative faces 1 and j that is emitted by face i and that
is finally — possibly after multiple reflections — absorbed by face j

3.5.8
rigid body
rigid kinematic object

NOTE A rigid body is a collection of parts of a product which can not move one relative to another. The
collection of parts is considered to be rigid at least for the purpose of engineering analysis. As a
consequence movement is only possible at interfaces between rigid bodies. The boundaries of a rigid body
coincide with the boundaries of a (compound) meshed geometric item.

359
sensor
means or device for observation of a quantity during test or operation

3.5.10
space mission
activity performed or to be performed by a space product

NOTE Aspects of a space mission comprise the orbit trajectories, attitudes, space environment, operational
modes and sequence of events. A space mission may be subdivided into mission phases.

3.5.11

thermal network model

thermal mathematical model defined by a network of discrete nodes, where the physical properties of the
network nodes are considered to be uniform

NOTE A thermal network node is considered to be iso-thermal and has uniform thermo-optical and
thermo-physical properties. The model comprises a nodal breakdown and a network of links between the
nodes. Such a model is usually called a thermal network model, because of the analogy with an electrical
circuit network schema. The purpose of the model is to represent a product for the purpose of thermal
analysis computations.

3.5.12
thermal node
network node, that is the discretization atom in a thermal network model

3.5.13
thermal-radiative face
part of one side of a bounded surface, that is used as a discretization atom in a thermal- radiative model.

Copyright ©1995-2016 European Space Agency page 27

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

NOTE A thermal-radiative face has thermo-optical properties and represents a the part of a surface where
thermal-radiative heat transfer can occur. In many space thermal analysis tools thermal-radiative faces are
also used to define thermal- conductive (pseudo-)solids by assigning a notional thickness to the face as well
as thermo-physical properties.

3.5.14

thermal-radiative model
geometrical surface model representing a product for the purpose of thermal-radiation analysis, in particular

for computation of radiative exchange factors and environmental thermal heat flows

3.5.15
viewfactor

fraction that specifies the measure for the direct view from one face to another face

NOTE The viewfactor from face i to face j is defined as the quotient of the solid angle representing the

direct view from i to j over the solid angle of total possible view from face i. For a flat face the total

possible view is a solid angle of 2= steradians, i.e. a hemisphere. The viewfactor is also often referred to as
the geometric viewfactor.

3.6 Abbreviations

AAM |Application Activity Model
AIM Application Interpreted Model
AP Application Protocol
ARM |Application Reference Model
B-rep |Boundary Representation Solid Model
CAD Computer Aided Design
CNES |Centre National d’Etudes Spatiales — French Space Agency
ESA European Space Agency
ESTEC |ESA's European Space Research and Technology Centre
IETF Internet Engineering Task Force (http://www.ietf.org)
ISO International Organization for Standardization
MGM |Meshed Geometric Model
NRF Network-model and Results Format
00 Object-Oriented
RFC Request For Comments (IETF)
SDAI |Standard Data Access Interface (defined in [STEP-22])
SET Standard d’Echange et de Transfert (French Standard AFNOR Z68-300)
SET-ATS|SET Protocol d’ Application Thermique Spatiale
SI Systeme International des Unités - International System of Units
SKM Space Kinematic Model
SMA |Space Mission Aspects
STEP |Standard for the Exchange of Product Model Data (ISO 10303)
TAS Thermal Analysis for Space
TBD To be defined
UoF Unit of Functionality
URD User Requirements Document
URI Uniform Resource Identifier
(specified in IETF/RFC2396, see http://www.ietf.org/rfc/rfc2396.txt)

Copyright ©1995-2016 European Space Agency

page 28

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4 Information requirements

This clause specifies in detail what kind of data needs to be exchanged in the domain of discrete engineering
models and associated results. The engineering models are restricted to those that can be represented by a
network of discrete nodes and relationships between the nodes. The information requirements are grouped in
three subclauses: Units of Functionality, Application Objects and Application Assertions.

4.1 Modular breakdown of the protocol

The protocol is composed of the following four modules:

Network-model and results format (NRF) module, defined below in clause 4.2;
Meshed geometric model (MGM) module, defined below in clause 4.3;

Space kinematic model (SKM) module, defined below in clause 4.4;

bl

Space mission aspects (SMA) module, defined below in clause 4.5.

Each module extends the previous one. The complete STEP-TAS protocol contains all four modules and is
defined in clause 4.5.

4.2 Network-model and results format (NRF) module

This subclause specifies the units of functionality for the Network-model and Results Format Application
Protocols. This protocol specifies the following units of functionality:

NRF General support

NRF Quantities and units

NRF Date and time

NRF Parametrics

NRF Network model representation
NRF Cases, runs and results

NRF Product structure

© N kR =

Materials

The elements that each UoF supports are given below. The application objects included in the UoFs are
defined in subclause 4.2.

4.2.1 SCHEMA declaration for nrf_arm

The following EXPRESS declaration begins the nrf arm schema.

Express specification:

SCHEMA nrf_arm;
-- Id

Copyright ©1995-2016 European Space Agency page 29

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

-—- Copyright (c) 1995-2018 European Space Agency (ESA).
—-— All rights reserved.

4.2.2 CONSTANT declaration

The following EXPRESS specification declares the global constants.

Express specification:

CONSTANT
SCHEMA OBJECT IDENTIFIER : STRING :=
"{http://www.purl.org/ESA/step-tas/v6.0/nrf arm.exp}';
-- in formal ISO version to be replaced with
-- '{ iso standard n part(p) version(v) }'
END CONSTANT;

Constant definitions:

— SCHEMA_OBIJECT IDENTIFIER provides a built-in way to reference the object identifier of the
protocol for version verification. For the definition and usage of the object identifier see
ISO 10303-1 and Annex E.

4.2.3 NRF General support UoF

The general support UoF specifies application objects that are used to support the use of the principal
application objects that are listed in the other Units of Functionality of this subclause.

NOTE The objects in this UoF are taken as much as possible literally from ISO 10303-41 and

ISO 10303-203. An "nrf " tag is prefixed to all CONSTANT, TYPE, ENTITY, RULE, FUNCTION and
PROCEDURE identifiers.

4.2.3.1 TYPE nrf _identifier

An nrf_identifier is a string suitable for identifying some data.

NOTE Typically the id attribute of type nrf_identifier is used to uniquely identify an entity instance within
a given context.

Express specification:

TYPE nrf identifier = STRING;
WHERE

is valid identifier: nrf verify identifier (SELF);
END TYPE;

Formal propositions:

— 1is_valid_identifier: the identifier string may only contain alpha-numeric, underscore, hyphen or dot
characters and may not start with a hyphen or dot.

Copyright ©1995-2016 European Space Agency page 30

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4.2.3.2 FUNCTION nrf _verify_identifier

The function nrf_verify_identifier verifies the value of an nrf_identifier. It returns TRUE if the provided
identifier string only contains alpha- numeric, underscore, hyphen, or dot characters and does not start with a
hyphen or dot. Otherwise FALSE is returned.

Express specification:

FUNCTION nrf verify identifier(a string : STRING) : BOOLEAN;
IF LENGTH(a_string) < 1 THEN
RETURN (FALSE) ;

END IF;
IF (a_string[l] = '-') OR (a_string[l] = '.') THEN
RETURN (FALSE) ;
END IF;
REPEAT i := 1 TO LENGTH(aistring);
IF NOT (

{'A'" <= a string[i] <= 'Z'} OR

1
{'a' <= a_string[i] <= 'z'} OR
{'0" <= a_string[i] <= '9'} OR
(a_string[i] = ' ') OR
(a_string[i] = '-"') OR
(a_string[i] = '.')) THEN
RETURN (FALSE) ;
END IF;
END REPEAT;

RETURN (TRUE) ;
END FUNCTION;

Argument definitions:

— a_string specifies the candidate identifier to be verified.
4.2.3.3 TYPE nrf _uniform_resource_identifier

An nrf_uniform_resource identifier is a URI string suitable to identify some product data resource.

Express specification:

TYPE nrf uniform resource_identifier = STRING;
END TYPE;

Informal propositions:

— ipl: The string value shall conform to IETF/RFC2396.
4.2.3.4 TYPE nrf _label

An nrf_label is the term by which something can be referred to. It is a string that represents the human-
interpretable name of something and shall have a natural-language meaning. An nrf_label may contain any
Unicode base characters.

Express specification:

TYPE nrf label = STRING;
WHERE

Copyright ©1995-2016 European Space Agency page 31

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

is valid label: nrf verify label (SELF) ;
END TYPE;

Formal propositions:

— is_valid_label: verify that the label does not contain control characters as defined in ISO-IEC 10646
/ Unicode.

4.2.3.5 TYPE nrf non_blank label

An nrf_non_blank_label is an nrf_label that contains at least one character and does not start with a space.

Express specification:

TYPE nrf non blank label = nrf label;
WHERE

is valid non blank label: (LENGTH(SELF) > 0) AND (SELF[1] <> ' '");
END TYPE;

Formal propositions:

— is_valid_non_blank label: The label contains at least one character and does not start with a space.
4.2.3.6 FUNCTION nrf_verify_label

The function nrf_verify_label verifies the value of an nrf _label. The function returns TRUE if the provided
nrf label contains only non-control characters as defined in ISO-IEC 10646 / Unicode. Otherwise FALSE is
returned.

Express specification:

FUNCTION nrf verify label (a string : STRING) : BOOLEAN;
REPEAT i := 1 TO LENGTH(a_ string);
IF NOT (
{'" ' <= a_string[i] <= '~'} OR
(a_string[i] >= "000000AO")) THEN
RETURN (FALSE) ;
END IF;
END REPEAT;
RETURN (TRUE) ;
END FUNCTION;

Argument definitions:

— a_string specifies the candidate label to be verified.
4.2.3.7 TYPE nrf_text

An nrf_text is a string of characters that is intended to be read and understood by a human being. It has
information purposes only.

Express specification:

Copyright ©1995-2016 European Space Agency page 32

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

TYPE nrf text = STRING;
END TYPE;

4.2.3.8 TYPE nrf positive_integer

An nrf_positive_integer is an INTEGER value greater than zero.

Express specification:

TYPE nrf positive_integer = INTEGER;
WHERE

is positive: SELF > 0;
END TYPE;

Formal propositions:

— is_positive: the value shall be greater than zero
4.2.3.9 TYPE nrf non_negative_integer

An nrf_non_negative_integer is an INTEGER value greater than or equal to zero.

Express specification:

TYPE nrf non negative_integer = INTEGER;
WHERE

is_non negative: SELF >= 0;
END TYPE;

Formal propositions:

— is_non_negative: the value shall be greater than or equal to zero.
4.2.3.10 TYPE nrf negative integer

An nrf_negative_integer is an INTEGER value less than zero.

Express specification:

TYPE nrf negative_integer = INTEGER;
WHERE

is_negative: SELF < 0;
END TYPE;

Formal propositions:

— is_negative: the value shall be less than zero.
4.2.3.11 ENTITY nrf_address

An nrf_address is the information necessary for communicating, using one or more communication
methods.

Copyright ©1995-2016 European Space Agency page 33

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

Express specification:

ENTITY nrf_ address
SUPERTYPE OF (ONEOF (nrf organizational address, nrf personal address));
internal location : OPTIONAL nrf label;
street number : OPTIONAL nrf label;

street : OPTIONAL nrf label;
postal box : OPTIONAL nrf label;
town : OPTIONAL nrf label;
region : OPTIONAL nrf label;
postal code : OPTIONAL nrf label;
country : OPTIONAL nrf label;
facsimile number : OPTIONAL nrf label;
telephone number : OPTIONAL nrf label;
electronic mail address : OPTIONAL nrf label;
telex number : OPTIONAL nrf label;
WHERE

has at least one attribute:
EXISTS (internal location) OR
EXISTS (street number) OR
EXISTS (street) OR
EXISTS (postal box) OR
EXISTS (town) OR
EXISTS (region) OR
EXISTS (postal code) OR
EXISTS (country) OR

EXISTS (facsimile number) OR

EXISTS (telephone number) OR

EXISTS (electronic mail address) OR

EXISTS (telex number) ;

END ENTITY;

Attribute definitions:

— internal_location optionally specifies an organization-defined address for internal mail delivery.

— street_number optionally specifies the number of a location on a street.

— street optionally specifies the name of a street.

— postal_box optionally specifies the number of a postal box.

— town optionally specifies the name of a town.

— region optionally specifies the name of a region.

— postal code optionally specifies the code that is used by the country's postal service.
— country optionally specifies the name of a country.

— facsimile number optionally specifies the number at which facsimiles may be received.

— telephone number optionally specifies the number at which telephone calls may be received.

— electronic_mail address optionally specifies the electronic address at which electronic mail may be

received.

— telex_number optionally specifies the number at which telex messages may be received.

Formal propositions:

— has_at least one_attribute: At least one of the attributes shall have a value.

Copyright ©1995-2016 European Space Agency

page 34

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4.2.3.12 ENTITY nrf organization

An nrf_organization is an administrative structure.
NOTE This definition is re-used from ISO 10303-41.

Express specification:

ENTITY nrf_organization;

id : nrf identifier;

name : nrf label;

description : nrf text;
UNIQUE

has unique name: name;
END ENTITY;

Attribute definitions:

— id specifies the identifier of an instance of nrf_organization.

— name specifies the human-interpretable name of an instance of nrf_organization, that is the name
by which the organization is known.

— description specifies the textual description of an instance of nrf_organization.

Formal propositions:

— has_unique_name: The name of an nrf_organization shall be unique in a dataset.
4.2.3.13 ENTITY nrf_organizational_address

An nrf_organizational_address is an address for one or more organizations.
NOTE This definition is re-used from ISO 10303-41.

Express specification:

ENTITY nrf organizational_ address
SUBTYPE OF (nrf address) ;
organizations : SET [1:?] OF nrf organization;
description : nrf text;

END ENTITY;

Attribute definitions:

— organizations specifies the organizations located at the address.

— description specifies the textual description of an instance of nrf_organizational_address.
4.2.3.14 ENTITY nrf_organizational_project

An nrf_organizational_project is a project for which one or more organizations are responsible.

Express specification:

Copyright ©1995-2016 European Space Agency page 35

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

ENTITY nrf organizational project;

name : nrf label;
description : nrf text;
responsible organizations : SET [1:?] OF nrf organization;

END ENTITY;

Attribute definitions:

— name specifies the human-interpretable name of an instance of nrf_organizational_project.
— description specifies the textual description of an instance of nrf_organizational project.

— responsible organizations specifies the nrf organization(s) who are responsible for the project.
4.2.3.15 ENTITY nrf_person

An nrf_person represents an individual human being.

Express specification:

ENTITY nrf person;

id : nrf identifier;

last name : OPTIONAL nrf label;

first name : OPTIONAL nrf label;

middle_names : OPTIONAL LIST [1:?] OF nrf label;

prefix titles : OPTIONAL LIST [1:?] OF nrf label;

suffix titles : OPTIONAL LIST [1:?] OF nrf label;
UNIQUE

has unique id: id;
WHERE

has first or last name: EXISTS(last name) OR EXISTS(first name);
END ENTITY;

Attribute definitions:

— id specifies the identifier of an instance of nrf_person, which distinguishes the person.
— last_name optionally specifies a person's last name.

— first_name optionally specifies a person's first name.

— middle names optionally specifies a person's middle name(s).

— prefix_titles optionally specifies the person's social or professional standing and appear before his
or her name(s).

— suffix _titles optionally specifies the person's social or professional standing and appear after his or
her name(s).

Formal propositions:

— has_unique_id: The nrf_person's id shall be unique in the dataset.

— has_first or last name: Either the last name, the first name or both shall be defined.
4.2.3.16 ENTITY nrf_person_and_organization

An nrf_person_and_organization represents a person in an organization.

Express specification:

Copyright ©1995-2016 European Space Agency page 36

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

ENTITY nrf person_and organization;
the person : nrf person;
the organization : nrf organization;
END ENTITY;

Attribute definitions:

— the_person specifies a person who is related to an organization.

— the_organization specifies the organization to which the person is related.
4.2.3.17 ENTITY nrf_personal_address

An nrf_personal_address is an address for one or more persons.

Express specification:

ENTITY nrf personal_ address
SUBTYPE OF (nrf address);
people : SET [1l:?] OF nrf person;
description : nrf text;

END ENTITY;

Attribute definitions:

— people specifies the people who reside at the address.

— description specifies the textual description of an instance of nrf_personal_address.
4.2.3.18 ENTITY nrf _approval

An nrf_approval is a confirmation of the quality of the product data that it is related to.

Express specification:

ENTITY nrf approval;

level : nrf label;

date time : nrf date and time;

by person organization : nrf person and organization;
END ENTITY;

Attribute definitions:

— level specifies a type or level of approval in terms of its usage.
— date_time specifies the date and time at which the approval was given.

— by _person_organization specifies the person and organization by whom the approval was given.
4.2.3.19 ENTITY nrf _tool or_facility

An nrf_tool _or_facility specifies the identification of a (software) tool or a facility (e.g. a test facility) that
was used to produce (part of) the data in an exchange dataset.

Express specification:

Copyright ©1995-2016 European Space Agency page 37

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

ENTITY nrf tool or facility;

name : nrf label;

description : nrf text;

owner : OPTIONAL nrf organization;
UNIQUE

has_unique name: name;
END ENTITY;

Attribute definitions:

— name specifies the name of the tool or facility, when applicable including its version.
— description specifies the textual description of the tool or facility.

— owner optionally specifies the organization that owns or manages the tool or facility.

Formal propositions:

— has_unique name: the name shall be unique in the dataset.
4.2.3.20 ENTITY nrf_security_classification_level

An nrf_security_classification_level is a specification of a category of security for access to data.
NOTE nrf_security_classification level is adapted from ISO 10303-41.

EXAMPLE The following strings are typical security classification level identifiers:
'unclassified', 'classified', 'proprietary’, 'confidential', 'secret', 'top_secret'

Express specification:

ENTITY nrf security classification_level;

id : nrf identifier;

name : nrf label;

description : nrf text;
UNIQUE

has unique id: id;
END ENTITY;

Attribute definitions:

— 1id specifies the identifier of an nrf_security_classification_level.
— name specifies the human-interpretable name of an nrf_security_classification_level.

— description specifies the textual description of an nrf_security classification_level.

Formal propositions:

— has_unique id: the id shall be unique in the dataset.

4.2.4 NRF Quantities and units UoF

The quantities_and units UoF specifies application objects that capture the definition of physical and non-
physical quantities, SI and non-SI units, and aggregated quantities in the form of vectors, matrices and
tensors.

Copyright ©1995-2016 European Space Agency page 38

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

The guiding reference for these specifications is ISO 31-0, which says in its first Clause: "This part of
ISO 31 gives general information about principles concerning physical quantities, equations, quantity and
unit symbols, and coherent unit systems, especially the International System of Units, SI."

ISO 31-0 Clause 2.1 "Physical quantity, unit and numerical value" continues with:

In ISO 31 only physical quantities used for the quantitative description of physical phenomena are
treated. Conventional scales, such as the Beaufort scale, Richter scale and colour intensity scales, and
quantities expressed as the results of conventional tests, e.g. corrosion resistance, are not treated here,
neither are currencies nor information contents.

Physical quantities may be grouped together into categories of quantities which are mutually comparable.
Lengths, diameters, distances, heights, wavelengths and so on would constitute such a category. Mutually
comparable quantities are called "quantities of the same kind".

If a particular example of a quantity from such a category is chosen as a reference quantity called the unit,
then any other quantity from this category can be expressed in terms of this unit, as a product of this unit
and a number. This number is called the numerical value of the quantity expressed in this unit.

In formal treatment of quantities and units, this relation may be expressed in the form: A= {A} : [A]
where A is the symbol for the physical quantity, [A] the symbol for the unit and {A} symbolizes the
numerical value of the quantity A expressed in the unit [A] . For vectors and tensors the components are
quantities which may be expressed as described above.

In this protocol the concept of quantities and units is generalized as described hereafter.

A distinction is made between scalar and tensor quantities. All quantities must have a unique name and a
(preferrably) unique symbol. A scalar quantity has a single value, possibly with uncertainty margin(s). A
tensor quantity is a compound quantity containing a number of scalar quantity elements that are accessed
through indices along one or more dimensions.

A physical quantity is a scalar quantity with a numerical value that denotes magnitude or multitude. It must
also have an associated unit. The unit defines the scale on which to interpret the numerical value. The
datatype of the value of a physical quantity is a real number when expressing magnitude, and an integer
number when expressing multitude.

The physical dimensions of a physical quantity are specified through seven dimensional exponents, one for
each of the seven SI base quantities: length, mass, time, electric current, thermodynamic temperature,
amount of substance and luminous intensity. A quantity may be dimensionless, in which case all its
dimensional exponents are zero.

A physical quantity category is a named category of physical quantities of the same kind, i.e. mutually
comparable quantities in ISO 31-0 terminology. All quantities that belong to one physical quantity category
must have — by definition — the same physical dimensions.

A quantity category qualifier is a qualifier that is used to further specialize the meaning and usage of a
physical quantity category. One or more qualifiers may be applied to create such a specialized physical

quantity category.

A unit is a named reference quantity for a particular physical quantity category, with numerical value one,
that is standardized by some standardization body. A unit has a (unique) symbol in addition to its name. A
dimensionless quantity always has the special unit one, denoting the mathematical number 1, as defined in
ISO 31. SI units may be defined using multiple or submultiple prefixes such as milli, kilo, mega, etc. In this

Copyright ©1995-2016 European Space Agency page 39

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

protocol the SI units are extended with the binary data units byte and bit as defined in IEC 60027-2 and the
binary data multiple prefixes kibi, mebi, gibi , tebi, etc.

Besides the physical quantity, also two kinds of non-physical quantity are introduced: enumeration quantity
and string quantity. An enumeration quantity has a value that is selected from a given (finite) enumeration of
character strings and a string quantity may have any character string value.

A quantity type defines the kind of quantity and the datatype in which the quantity values will be stored. A
physical quantity type must also specify the applicable unit and it may optionally specify an uncertainty
margin specification method. A (scalar) quantity can therefore be considered to consist of the combination of
a value — possibly with uncertainty margins — and a quantity type. A physical quantity type is always
associated with one physical quantity category.

As already mentioned a tensor quantity is a multi-dimensional, compound quantity built up from a number of
scalar quantity elements. The number of dimensions is called the rank of the tensor. A rank one tensor is a
vector and a rank two tensor is a matrix. Rank three and higher tensors are called higher order tensors. The
number of elements in a tensor quantity is equal to the product of its dimensions. Each of the elements of a
tensor quantity may be given a separate name. In this protocol the concept of tensor is taken beyond its strict
mathematical definition in the sense that its elements may be non-physical quantities: enumeration or string
quantities as described earlier.

NOTE 1 The nrf quantities_and units definitions take into account the measure _schema of ISO 10303-41,
but simplify and generalize those definitions at the same time. In particular the entity inheritance tree has
been rationalized to need single inheritance only and avoid any complex entity instances as in the original
ISO 10303-41 definitions. Care has been taken to ensure that a one-to- one mapping of the entities defined
here to those of ISO 10303-41 remains straightforward.

NOTE 2 Conventional scales, such as the Beaufort scale, Richter scale and colour intensity scales, and
quantities expressed as the results of conventional tests, e.g. corrosion resistance (as quoted above from
ISO 31-0), can be captured in the form of nrf context dependent unit instances.

4.2.4.1 TYPE nrf _unit_symbol_identifier

An nrf_unit_symbol_identifier is a string suitable for identifying the symbol for a unit.

Express specification:

TYPE nrf unit symbol identifier = STRING;
WHERE

has valid characters: nrf verify unit symbol identifier (SELF);
END TYPE;

Formal propositions:

— has_valid_characters: only alpha-numeric, dot, circonflex, minus sign, slash, left or right
parenthesis characters are allowed within an nrf_unit_symbol_identifier.

4.2.4.2 FUNCTION nrf_verify_unit_symbol_identifier

The function nrf_verify_unit_symbol_identifier verifies the value of an nrf_unit symbol identifier. It
returns TRUE if the unit symbol string only contains alpha-numeric, dot, circonflex, minus sign, slash, left or
right parenthesis characters. Otherwise FALSE is returned.

Copyright ©1995-2016 European Space Agency page 40

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

Express specification:

FUNCTION nrf verify unit symbol identifier (a symbol : STRING) : BOOLEAN;
IF LENGTH(a symbol) < 1 THEN
RETURN (FALSE) ;

END IF;
REPEAT i := 1 TO LENGTH (a_symbol) ;
IF NOT (
{'A'" <= a symbol[i] <= 'Z'} OR
{'a' <= a_symbol[i] <= 'z'} OR
{'0' <= a symbol[i] <= '9'} OR
(a_symbol[i] = '.') OR
(a_symbol[i] = ""~') OR
(a_symbol[i] = '-") OR
(a_symbol[i] = '/') OR
(a_symbol[i] = '"(') OR
(a_symbol[i] ')')) THEN
RETURN (FALSE) ;
END IF;

END REPEAT;
RETURN (TRUE) ;
END FUNCTION;

Argument definitions:

— a_symbol specifies the candidate unit symbol identifier to be verified.

4.2.4.3 ENTITY nrf_any_unit

The nrf_any_unit is an abstract supertype that provides a generic mechanism to reference any unit. Each

nrf_any unit is either an nrf_base_unit, an nrf context dependent unit or an nrf derived unit.

Express specification:

ENTITY nrf any unit
ABSTRACT SUPERTYPE OF (ONEOF (
nrf base unit,
nrf context dependent unit,
nrf derived unit));

name : STRING;

symbol : nrf unit symbol identifier;

quantity category : nrf primary physical guantity category;
UNIQUE

has unique name: name;
has unique symbol: symbol;
END ENTITY;

Attribute definitions:

— name specifies the name of a unit.

— symbol specifies the short symbol string through which a unit may be presented when a short

notation is appropriate.

— quantity category specifies the nrf_primary physical quantity category to which the unit is

related. Through the quantity category the dimensional exponents for the unit are defined in terms

of the seven SI base quantities as defined in ISO 31.

Formal propositions:

Copyright ©1995-2016 European Space Agency

page 41

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

— has_unique name: the name shall be unique in the dataset.

— has_unique_symbol: the symbol shall be unique in the dataset.
4.2.4.4 ENTITY nrf_base unit

An nrf_base_unit is a type of nrf_any_unit that provides a generic mechanism to reference an
nrf_extended si_unit or an nrf conversion based unit. It is a single base unit with exponent one.

Express specification:

ENTITY nrf base unit
ABSTRACT SUPERTYPE OF (ONEOF (
nrf extended si unit,
nrf conversion based unit))
SUBTYPE OF (nrf any unit);
END ENTITY;

4.2.4.5 ENTITY nrf_extended_si_unit

An nrf_extended_si_unit is a type of nrf_base_unit that specifies an SI unit complying with one of the units

defined in ISO 31 or a binary data unit complying with one of the units defined in IEC 60027-2.

NOTE The prefixes for binary data units are listed in the table below.

FactorName|Symbol|Origin Corresponding SI prefix
210 Jkibi Ki |kjlobinary: 219! |kilo: (10°)!

220 mebi Mi megabinary: (210)2 mega: (103)2

230 |gibi |Gi gigabinary: (210)3 giga: (103)3

240 ltebi |Ti terabinary: (210)4 tera: (103)4

230 |pebi |Pi petabinary: (210)5 peta: (103)5

260 lexbi |Ei exabinary: (210)6 exa: (103)6

Express specification:

ENTITY nrf extended si_ unit
SUBTYPE OF (nrf base unit);

prefix : STRING;
base name : STRING;
DERIVE
SELF\nrf any unit.name : nrf non blank label := prefix + base name;

SELF\nrf any unit.symbol : nrf unit symbol identifier :=
nrf derive extended si symbol (SELF) ;
prefix factor : REAL := nrf derive extended si prefix factor (prefix);
WHERE
has valid prefix: prefix IN [
'','yotta', 'zetta', 'exa', 'peta', 'tera', 'giga', 'mega', 'kilo"', '"hecto', 'deca’',
'deci', 'centi', 'milli', 'micro', 'nano', 'pico', 'femto', 'atto"', 'zepto', 'yocto',
'exbi', 'pebi', 'tebi', 'gibi', 'mebi', 'kibi'];
has valid name and dimensional exponents:
nrf verify base name and exponents for extended si unit (SELF) ;
END ENTITY;

Attribute definitions:

Copyright ©1995-2016 European Space Agency

page 42

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

— prefix specifies the multiple or submultiple name as defined in ISO 31 and IEC 60027-2. This
defines the multiplication factor for the unit. It may be the empty string. An empty string implies a
multiplication factor of one.

— base_name specifies the SI or [EC 60027-2 base name of an nrf_extended_si_unit.
— name is derived from the concatenation of prefix and base name.

— symbol is derived from the concatenation of the prefix symbol and base_name symbol as defined in
ISO 31 and IEC 60027-2.

— prefix_factor is the multiplication factor that is derived from the prefix string.

Formal propositions:

— has_valid_prefix: the prefix shall be specified as the empty string or it shall be one of the prefixes
for multiples or submultiples as defined in ISO 31 and IEC 60027-2.

— has valid name and dimensional exponents: the base name shall be one of the SI unit names
defined in ISO 31 or 'bit' or 'byte' as defined in IEC 60027-2, and shall have the matching
dimensional exponents.

4.2.4.6 ENTITY nrf_conversion_based_unit

An nrf_conversion_based_unit is a type of nrf_base_unit that specifies a unit that is defined through a
linear conversion relationship with respect to a reference unit. The unit conversion relationship is defined by
the following equation:

Yeonverted = factor - Xreference + offset

where:

Yconverted 18 the quantity expressed in the nrf_conversion_based_unit, and,

Xreference 18 the same quantity expressed in the reference unit.
The reference unit may be another nrf_conversion_based_unit or an nrf_extended si_unit. Ultimately
every nrf_conversion_based_unit is defined with respect to an nrf_extended si_unit.

EXAMPLE 1 An nrf_conversion_based_unit for inch is specified with the name 'inch', where the
reference unit is an nrf_extended si_unit with empty prefix " and name 'metre’', the factor = 1.0/0.0254 and
the offset = 0.0.

EXAMPLE 2 An nrf_conversion_based unit for degree Fahrenheit is specified with the name =
'degree Fahrenheit', where the reference unit is an nrf_extended si_unit for 'kelvin', the factor = 1.8 and
the offset = -459.67.

Express specification:

ENTITY nrf conversion based unit
SUBTYPE OF (nrf base unit);

reference unit : nrf base unit;
factor : REAL;
offset : REAL;

DERIVE

SELF\nrf any unit.quantity category : nrf primary physical gquantity category :=
reference unit.quantity category;
WHERE
has no circular reference unit dependency:
nrf verify no circular reference unit dependency (SELF) ;
END ENTITY;

Attribute definitions:

Copyright ©1995-2016 European Space Agency page 43

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

— reference_unit specifies the unit to be used as the reference for the definition of the conversion
based unit.

— factor specifies the multiplication factor for the unit conversion relationship.
— offset specifies the offset for the unit conversion relationship.

— quantity_category is redeclared and derived to be the same as the quantity category of the
reference unit.

Formal propositions:

— has_no_circular_reference unit_dependency: The chain of reference unit dependencies shall not be
circular.

4.2.4.7 FUNCTION nrf_verify no_circular_reference unit dependency

The function nrf_verify_no_circular_reference_unit_dependency verifies that the chain of reference unit
dependencies is not circular. The function returns TRUE when no circular dependency exists and FALSE
otherwise.

Express specification:

FUNCTION nrf verify no_circular reference unit_dependency (
a _conversion based unit : nrf conversion based unit) : BOOLEAN;
LOCAL
the reference unit : nrf base unit;
END LOCAL;
the reference unit := a conversion based unit.reference unit;
REPEAT WHILE 'NRF ARM.NRF CONVERSION BASED UNIT' IN TYPEOF (the reference unit);
IF the reference unit :=: a conversion based unit THEN
RETURN (FALSE) ;
END IF;
the reference unit := the reference unit.reference unit;
END REPEAT;
RETURN (TRUE) ;
END FUNCTION;

Argument definitions:

— a_conversion_based unit specifies an nrf conversion_based unit to be verified.

4.2.4.8 ENTITY nrf_context_dependent_unit

An nrf context dependent unit is a type of nrf_any_unit which is not related to the system of units
defined in this standard, i.e. such a unit is not ultimately related to a combination of the seven SI base units.

EXAMPLE 1 The number of parts in an assembly is a physical quantity that may be measured in a unit
called "component". Such a unit cannot be related to an SI unit.

EXAMPLE 2 Also conventional scales, such as the Beaufort scale, Richter scale and colour intensity
scales, and units for quantities expressed as the results of conventional tests (as quoted above from
ISO 31-0), can be captured in the form of nrf_context dependent unit instances, e.g. with name
"Beaufort Scale", "Richter Scale", etc.

Express specification:

Copyright ©1995-2016 European Space Agency page 44

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

ENTITY nrf context dependent unit
SUBTYPE OF (nrf any unit);
END ENTITY;

4.2.4.9 ENTITY nrf_derived_unit

An nrf_derived_unit is a type of nrf any unit which specifies a unit defined by an expression of other base
units, possibly raised to an exponent.

EXAMPLE The unit "newton per square millimetre" is a derived unit which would be defined using an
nrf_derived unit element referencing an nrf_extended si_unit for "newton" with an exponent equal to 1.0
and an nrf_derived unit_element referencing an nrf_extended si_unit for "milli" "metre" with an exponent
equal to —2.0.

Express specification:

ENTITY nrf derived unit
SUBTYPE OF (nrf any unit);
elements : LIST [1:?] OF nrf derived unit element;
DERIVE
SELF\nrf any unit.symbol : nrf unit symbol identifier :=
nrf derive derived unit symbol (SELF) ;
WHERE
has valid elements: (SIZEOF (elements) > 1) OR
((SIZEOF (elements) = 1) AND (elements([l].exponent <> 1.0));
has valid exponents: nrf verify dimensional exponents for derived unit (SELF) ;
END ENTITY;

Attribute definitions:

— elements specifies the expression of units with exponents that defines the derived unit.

— symbol is the derived string of symbols and exponents from the defining elements.

Formal propositions:

— has valid elements: The derived unit shall be defined by more than one nrf derived unit element
or it shall be defined by one nrf derived unit_element with an exponent not equal to one.

— has_valid_exponents: The dimensional exponents as specified in the quantity category of the
nrf_derived_unit shall be consistent with the dimensional exponents computed from its constituing
unit elements.

4.2.4.10 ENTITY nrf derived unit_element

An nrf_derived_unit_element is the combination of an nrf_any_unit with an exponent.

NOTE This entity is used to represent an element of an nrf derived unit.

Express specification:

ENTITY nrf derived unit element;
unit : nrf base unit;
exponent : REAL;

END_ENTITY;

Copyright ©1995-2016 European Space Agency page 45

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

Attribute definitions:

— unit specifies the nrf_base unit that is the unit of the element.

— exponent specifies the power that is applied to the unit attribute.
4.2.4.11 FUNCTION nrf verify dimensional exponents

The convenience function nrf_verify_dimensional_exponents verifies that the exponents of an

nrf physical quantity category are equal to a given set of seven SI dimensional exponent parameters. The

function returns TRUE when all corresponding dimensional exponents are equal and returns FALSE
otherwise.

Express specification:

FUNCTION nrf verify dimensional_ exponents (
a pgc : nrf physical quantity category;
length exponent : REAL;
mass_ exponent : REAL;
time exponent : REAL;
electric current exponent : REAL;
thermodynamic temperature exponent : REAL;
amount of substance exponent : REAL;
luminous_intensity exponent : REAL) : BOOLEAN;

IF (a_pgc.length exponent <> length exponent)THEN
RETURN (FALSE) ;

END IF;

IF (a_pgc.mass_exponent <> mass exponent) THEN
RETURN (FALSE) ;

END IF;

IF (a_pgc.time exponent <> time exponent) THEN
RETURN (FALSE) ;

END IF;

IF (a_pgc.electric current exponent <> electric current exponent) THEN
RETURN (FALSE) ;

END IF;

IF (a_pgc.thermodynamic temperature exponent <>

thermodynamic temperature exponent) THEN

RETURN (FALSE) ;

END IF;

IF (a_pgc.amount of substance exponent <> amount of substance exponent) THEN
RETURN (FALSE) ;

END IF;

IF (a_pgc.luminous_intensity exponent <> luminous intensity exponent) THEN
RETURN (FALSE) ;

END IF;

RETURN (TRUE) ;

END FUNCTION;

Argument definitions:

— a_pqc specifies the nrf_physical quantity category for which the dimensional exponent values need

to be verified
— length_exponent specifies the required length exponent value
— mass_exponent specifies the required mass exponent value
— time exponent specifies the required time exponent value

— electric_current_exponent specifies the required electric current exponent value

Copyright ©1995-2016 European Space Agency

page 46

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

— thermodynamic_temperature _exponent specifies the required thermodynamic temperature exponent
value

— amount_of substance exponent specifies the required amount of substance exponent value

— luminous_intensity exponent specifies the required luminous intensity exponent value
4.2.4.12 FUNCTION nrf_verify_equal_dimensional_exponents_for_quantity _categories

The convenience function nrf _verify_equal dimensional _exponents for quantity categories verifies
that the dimensional exponents for two nrf physical quantity category instances are equal. The function
returns TRUE when all corresponding dimensional exponents are equal and returns FALSE otherwise.

Express specification:

FUNCTION nrf verify equal dimensional_ exponents_for quantity categories (
a pgcl : nrf physical quantity category;
a pgc2 : nrf physical quantity category) : BOOLEAN;

IF (a_pgcl.length exponent <>
a pgc2.length exponent) THEN
RETURN (FALSE) ;
END IF;
IF (a_pgcl.mass exponent <>
a pgc2.mass_exponent) THEN
RETURN (FALSE) ;
END IF;
IF (a_pgcl.time exponent <>
a pgc2.time exponent) THEN
RETURN (FALSE) ;
END IF;
IF (a_pgcl.electric current exponent <>
a pgc2.electric current exponent) THEN
RETURN (FALSE) ;
END IF;
IF (a_pqgcl.thermodynamic temperature exponent <>
a pgc2.thermodynamic temperature exponent) THEN
RETURN (FALSE) ;
END IF;
IF (a_pgcl.amount of substance exponent <>
a pgc2.amount of substance exponent) THEN
RETURN (FALSE) ;
END IF;
IF (a_pgcl.luminous intensity exponent <>
a pgc2.luminous intensity exponent) THEN
RETURN (FALSE) ;
END IF;
RETURN (TRUE) ;
END FUNCTION;

Argument definitions:

— a_pqcl specifies the first nrf_physical quantity_category for which the dimensional exponents need
to be verified

— a_pqc2 specifies the second nrf_physical quantity category for which the dimensional exponents
need to be verified

Copyright ©1995-2016 European Space Agency page 47

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4.2.4.13 FUNCTION nrf _verify base name and_exponents for extended si_ unit

The function nrf_verify_base name_and_exponents for _extended_si_ unit verifies whether a valid base

name and the correct dimensional exponents are specified for a given (extended) SI unit. The function

returns TRUE if this is the case and FALSE otherwise.

Express specification:

an_extended si unit : nrf extended si unit)
LOCAL

ppac : nrf primary physical gquantity category;

END LOCAL;
ppgc := an_extended si unit.quantity category;

CASE an extended si unit.base name OF

'one' : RETURN (nrf verify dimensional

FUNCTION nrf verify base name_and exponents_for extended si_ unit(
BOOLEAN;

exponents (ppgc,

6.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0));

'metre’ : RETURN (nrf verify dimensional

exponents (ppgc,

1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0));

'gram' : RETURN (nrf verify dimensional

exponents (ppgc,

6.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0));

'second’ : RETURN (nrf verify dimensional

exponents (ppgc,

6.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0));

'ampere' : RETURN (nrf verify dimensional

exponents (ppgc,

6.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0));

'kelvin' : RETURN (nrf verify dimensional

exponents (ppgc,

6.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0));

'mole’ : RETURN (nrf verify dimensional

exponents (ppgc,

6.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0));

'candela' : RETURN (nrf verify dimensional

exponents (ppgc,

6.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0));

'radian' : RETURN (nrf verify dimensional

exponents (ppgc,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0));
'steradian' g

RETURN (nrf verify dimensional

exponents (ppgc,

6.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0));

'hertz' : RETURN (nrf verify dimensional

exponents (ppgc,

0.0, 0,0,=1,0, 0,0, 0,0, ©-0, 0-0)) s

'newton' : RETURN (nrf verify dimensional

exponents (ppgc,

1,0, 1,0,=2,0, 0,0, 0,0, ©.0, 0-0)) s

exponents (ppgc,

'pascal'’ : RETURN (nrf verify dimensional
=1,0, 1.0,=2.0, 0.0, 0.0, 0.0, ©.0))¢
'joule' : RETURN (nrf verify dimensional

exponents (ppgc,

2,0, 1,0,=2,0, 0.0, 0.0, .0, 0-0))¢

'watt' : RETURN (nrf verify dimensional

exponents (ppgc,

2,0, 1,0,=3,0, 0.0, 0.0, 0.0, 0-0))¢

'coulomb' : RETURN (nrf verify dimensional

exponents (ppgc,

6.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0));

exponents (ppgc,

'volt' : RETURN (nrf verify dimensional
2.0, 1,0,=3,0,=-1.0, 0.0, ©.,0, 0.0))5
'farad' : RETURN (nrf verify dimensional

exponents (ppgc,

=2.,0,=1.0, 4,0, 2,0, 0.0, 0.0, ©-0))¢s

'ohm' : RETURN (nrf verify dimensional

exponents (ppgc,

2,0, 1,0,=3,0,=2.0, 0.0, 0.0, 0-0))¢

'siemens'’ : RETURN (nrf verify dimensional

exponents (ppgc,

=2.0,=1.0, 3.0, 2,0, 0.0, 0,0, ©-0))¢s

'weber' : RETURN (nrf verify dimensional

exponents (ppgc,

2,0, 1,0,=2,0,=1.0, 0.0, 0.0, 0-0))¢

'tesla’ : RETURN (nrf verify dimensional

exponents (ppgc,

0.0, 1,0,=2:0,=1,0, 0,0, 0.0, 0-0)) s

'henry' : RETURN (nrf verify dimensional

exponents (ppgc,

2,0, 1,0,=2,0,=2.0, 0.0, 0.0, 0-0))¢

Copyright ©1995-2016 European Space Agency

page 48

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

'degree Celsius' : RETURN (nrf verify dimensional

exponents (ppgc,

0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0));
'lumen'’ : RETURN (nrf verify dimensional

exponents (ppgc,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0));
'lux' : RETURN (nrf verify dimensional

exponents (ppgc,

-2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0));
'becquerel’ : RETURN (nrf verify dimensional

exponents (ppgc,

0.0, 0.0,-1.0, 0.0, 0.0, 0.0, 0.0));
'gray' : RETURN (nrf verify dimensional

exponents (ppgc,

2.0, 0.0,-2.0, 0.0, 0.0, 0.0, 0.0));
'sievert' : RETURN (nrf verify dimensional

exponents (ppgc,

2.0, 0.0,-2.0, 0.0, 0.0, 0.0, 0.0));
'bit! : RETURN (nrf verify dimensional

exponents (ppgc,

0.0, 0.0,0.0, 0.0, 0.0, 0.0, 0.0));
'byte' : RETURN (nrf verify dimensional exponents (ppgc,
0.0, 0.0,0.0, 0.0, 0.0, 0.0, 0.0));
OTHERWISE RETURN (FALSE) ;
END CASE;
END FUNCTION;

Argument definitions:

— an_extended_si_unit specifies the nrf_extended si unit to be verified.

4.2.4.14 FUNCTION nrf _derive _extended_si_symbol

The function nrf_derive _extended_si_symbol returns the symbol string for a given SI unit by concatenatig
the SI prefix symbol and SI base name symbol.

Express specification:

FUNCTION nrf derive_ extended si_symbol (
an_extended si unit : nrf extended si unit) : nrf unit symbol identifier;
LOCAL
symbol : STRING := '';
result : nrf unit symbol identifier;
END LOCAL;
CASE an extended si unit.prefix OF
' : symbol := '';
'yotta' : symbol := 'Y';
'zetta' : symbol := 'Z';
'exa' : symbol := 'E';
'peta’ : symbol := 'P';
'tera' : symbol := 'T';
'giga' : symbol := 'G';
'mega’ : symbol := 'M';
'kilo! : symbol := 'k';
'hecto' : symbol := 'h';
'deca' : symbol := 'da';
'deci' : symbol := 'd';
'centi' : symbol := 'c';
'milli'’ : symbol := 'm';
'micro’ : symbol := 'micro';
'nano’ : symbol := 'n';
'pico’ : symbol := 'p';
'femto' : symbol := 'f';
'atto!' : symbol := 'a';
'zepto' : symbol := 'z';
'yocto' : symbol := 'y';
'exbi' : symbol := 'Ei';
'pebi’ : symbol := 'Pi';

Copyright ©1995-2016 European Space Agency page 49

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

'tebi! symbol := 'Ti';
'gibi' symbol := 'Gi';
'mebi’ symbol := 'Mi';
'kibi' symbol := 'Ki';
OTHERWISE symbol "BV g

END CASE;

CASE an extended si unit.base name OF
'one' : symbol := '-'";
'metre’ symbol := symbol + 'm';
'gram' symbol := symbol + 'g';
'second’ symbol := symbol + 's';
'ampere' symbol := symbol + 'A';
'kelvin' symbol := symbol + 'K';
'mole'’ symbol := symbol + 'mol';
'candela’ symbol := symbol + 'cd';
'radian' symbol := symbol + 'rad';
'steradian' symbol := symbol + 'sr';
'hertz' symbol := symbol + 'Hz';
'newton' symbol := symbol + 'N';
'pascal'’ symbol := symbol + 'Pa';
'Jjoule' symbol := symbol + 'J';
'watt' symbol := symbol + 'W';
'coulomb’ symbol := symbol + 'C';
'volt' symbol := symbol + 'V';
'farad' symbol := symbol + 'F';
'ohm' symbol := symbol + 'Ohm';
'siemens' symbol := symbol + 'S';
'weber' symbol := symbol + 'Wb';
'tesla' symbol := symbol + 'T';
'henry' symbol := symbol + 'H';
'degree Celsius' symbol := symbol + 'degC';
'lumen'’' symbol := symbol + 'Im';
'lux' symbol := symbol + 'lux';
'becquerel’ symbol := symbol + 'Bqg';
'gray' symbol := symbol + 'Gy';
'sievert' symbol := symbol + 'Sv';
'bit! symbol := symbol + 'b';
'byte' symbol := symbol + 'B';
OTHERWISE symbol := symbol + '?';

END CASE;

result := symbol;

RETURN (result) ;

END_ FUNCTION;

Argument definitions:

— an_extended_si_unit specifies the (extended) SI unit for which to derive the symbol
4.2.4.15 FUNCTION nrf_derive derived unit _symbol

The nrf_derive_derived_unit_symbol function returns a concatenated symbol string for the expression of
unit and exponent elements in a given nrf_derived unit.

Express specification:

FUNCTION nrf derive derived unit_symbol (
a derived unit nrf derived unit)
LOCAL
i : INTEGER;
numerator symbol
n_numerator symbols

nrf unit symbol identifier;

STRING := '';
INTEGER := 0;

Copyright ©1995-2016 European Space Agency

page 50

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

denominator symbol STRING := '';
n_denominator symbols INTEGER := 0;
exponent string STRING;
format exponent string
abs exponent REAL;
result nrf unit symbol identifier;
is nested derived unit LOGICAL;

END LOCAL;

REPEAT i := LOINDEX (a derived unit.elements)
abs exponent :=
IF

STRING;

ABS (a_derived unit.elements[i].exponent);
(abs_exponent = 1.0) THEN

exponent string := '';

ELSE
exponent string := '*';
CASE abs exponent OF

2.0: exponent string exponent string + '2';

3.0: exponent string exponent string + '3';

4.0: exponent string exponent string + '4';

5.0: exponent string exponent string + '5';

6.0: exponent string exponent string + '6';

7.0: exponent string exponent string + '7';

8.0: exponent string exponent string + '8';

9.0: exponent string := exponent string + '9';
1.0/2.0: exponent string := exponent string + '(1/2)°';
1.0/3.0: exponent string exponent string + '(1/3)"';
1.0/4.0: exponent string exponent string + '(1/4)"';
1.0/5.0: exponent string exponent string + '(1/5)"';
1.0/6.0: exponent string exponent string + '(1/6)"';
1.0/7.0: exponent string exponent string + '(1/7)"';
1.0/8.0: exponent string exponent string + '(1/8)"';
1.0/9.0: exponent string exponent string + '(1/9)';
OTHERWISE:

BEGIN
format exponent string := FORMAT (abs exponent, '+5.2F');
exponent string := exponent string +
format exponent string[2:LENGTH (format exponent string)];
END;
END CASE;
END IF;

is nested derived unit :=
'"NRF_ARM.NRF DERIVED UNIT' IN TYPEOF (a_derived unit.elements([i]);
(a_derived unit.elements[i].exponent >= 0.0) THEN
n numerator symbols := n numerator symbols + 1;
IF n numerator symbols > 1 THEN
numerator symbol := numerator symbol + '.';
END IF;
IF is nested derived unit THEN
numerator symbol := numerator symbol +
'('" + a derived unit.elements[i].unit.symbol + ')' + exponent string;
ELSE
numerator symbol := numerator symbol +
a derived unit.elements[i].unit.symbol + exponent string;
END IF;
ELSE
n_denominator symbols := n denominator symbols + 1;
IF n denominator symbols > 1 THEN
denominator symbol := denominator symbol + '.';
END IF;
IF is nested derived unit THEN
denominator symbol := denominator symbol +
'(' + a derived unit.elements[i].unit.symbol + ')' + exponent string;
ELSE
denominator symbol := denominator symbol +
a derived unit.elements[i].unit.symbol + exponent string;

IF

TO HIINDEX (a derived unit.elements);

Copyright ©1995-2016 European Space Agency

page 51

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

END IF;
END IF;

END REPEAT;

IF n denominator symbols = 0 THEN
result := numerator symbol;

ELSE
IF n numerator symbols = 0 THEN

IF n denominator symbols = 1 THEN

result := denominator symbol + '~-1'";
ELSE
result := ' (' + denominator symbol + ')"*-1";
END IF;
ELSE
IF n denominator symbols = 1 THEN
result := numerator symbol + '/' + denominator symbol;
ELSE
result := numerator symbol + /(" 4+ denominator symbol + ')';
END IF;
END IF;
END IF;

RETURN (result) ;
END_ FUNCTION;

Argument definitions:

— a_derived_unit specifies the name of the derived unit
4.2.4.16 FUNCTION nrf _verify _dimensional exponents for derived unit

The function nrf_verify_dimensional_exponents_for_derived_unit verifies that the dimensional exponents
as specified in the quantity category of an nrf derived unit are consistent with the dimensional exponents
computed from its constituing unit elements.

Express specification:

FUNCTION nrf verify dimensional_ exponents_ for derived unit(

a derived unit : nrf derived unit) : BOOLEAN;
LOCAL
length exponent : REAL := 0.0;
mass_exponent : REAL := 0.0;
time exponent : REAL := 0.0;
electric current exponent : REAL := 0.0;
thermodynamic temperature exponent : REAL := 0.0;
amount of substance exponent : REAL := 0.0;
luminous_intensity exponent : REAL := 0.0;
element gc : nrf primary physical quantity category;
element exp : REAL;
END LOCAL;
REPEAT i := 1 TO SIZEOF (a derived unit.elements);
element gc := a derived unit.elements[i].unit.quantity category;
element exp := a derived unit.elements[i].exponent;

length exponent :=

length exponent +

element gc.length exponent * element exp;
mass_exponent :=

mass_exponent +

element gc.mass exponent * element exp;
time exponent :=

time exponent +

element gc.time exponent * element exp;
electric current exponent

Copyright ©1995-2016 European Space Agency page 52

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

electric current exponent +
element gc.electric current exponent * element exp;
thermodynamic temperature exponent :=
thermodynamic temperature exponent +
element gc.thermodynamic temperature exponent * element exp;
amount of substance exponent :=
amount of substance exponent +
element gc.amount of substance exponent * element exp;
luminous_intensity exponent :=
luminous_intensity exponent +
element gc.luminous intensity exponent * element exp;
END_REPEAT;
RETURN (nrf verify dimensional exponents (
a derived unit.quantity category,
length exponent,
mass_exponent,
time exponent,
electric current exponent,
thermodynamic temperature exponent,
amount of substance exponent,
luminous_intensity exponent));

END

FUNCTION;

Argument definitions:

— a_derived_unit specifies the nrf derived unit to be verified.

4.2.4.17 FUNCTION nrf _derive extended_si_prefix_factor

The nrf_derive_extended_si_prefix_factor function returns the decimal multiplication factor for a given SI

or binary prefix string.

Express specification:

FUNCTION nrf derive extended si prefix factor(
an_extended si prefix : nrf label)

LOCAL
factor : REAL;

END LOCAL;

CASE an extended si prefix OF
'yotta' factor := 1.0E24;
'zetta' factor := 1.0E21;
'exa' factor := 1.0E18;
'peta’ factor := 1.0E15;
'tera' factor := 1.0E12;
'giga' factor := 1.0E9;
'mega’ factor := 1.0E06;
'kilo! factor := 1000.0;
'hecto' factor := 100.0;
'deca' factor := 10.0;

' factor := 1.0;
'deci' factor := 0.1;
'centi' factor := 0.01;
'milli'’ factor := 0.001;
'micro’ factor := 1.0E-06;
'nano’ factor := 1.0E-09;
'pico’ factor := 1.0E-12;
'femto' factor := 1.0E-15;
'atto! factor := 1.0E-18;
'zepto! factor := 1.0E-21;
'yocto! factor := 1.0E-24;

Copyright ©1995-2016 European Space Agency

page 53

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

'exbi' : factor := 2.0**60;
'pebi! : factor := 2.0**50;
'tebi' : factor := 2.0**40;
'gibi' : factor := 2.0**30;
'mebi’ : factor := 2.0**20;
'kibi' : factor := 2.0**10;
OTHERWISE : factor := 1.0;

END CASE;

RETURN (factor) ;

END_ FUNCTION;

Argument definitions:

— an_extended_si_prefix specifies the SI or binary prefix for which the multiplication factor needs to
be returned

4.2.4.18 TYPE nrf uncertainty margins_type

The nrf_uncertainty _margins_type type specifies an enumeration of the possible ways to specify
uncertainty margins for a physical quantity.

Express specification:

TYPE nrf uncertainty margins_type = ENUMERATION OF (
SYMMETRIC ABSOLUTE,
SYMMETRIC PERCENTAGE,
ASYMMETRIC ABSOLUTE,
ASYMMETRIC PERCENTAGE) ;
END TYPE;

Enumeration value definitions:

— SYMMETRIC ABSOLUTE specifies that the uncertainty is defined by one positive absolute
symmetrical margin value. In human readable notation a corresponding quantity value would be
written as follows:

xty
where: x is the best estimated value and y the uncertainty margin value.

— SYMMETRIC PERCENTAGE specifies that the uncertainty margin is defined by one relative
symmetrical margin percentage. In human readable notation a corresponding quantity value would
be written as follows:

xxy%
where: x is the best estimated value and y the uncertainty margin percentage.

— ASYMMETRIC ABSOLUTE specifies that the uncertainty margins are defined by a positive upper
absolute margin value and a negative lower absolute margin value. In human readable notation a
corresponding quantity value would be written as follows:

TYupper
X °p “Viower

where: x is the best estimated value and yupper and yiower are the upper and lower margin values.

— ASYMMETRIC PERCENTAGE specifies that the uncertainty margins are defined by a positive
upper margin percentage and a negative lower margin percentage. In human readable notation a
corresponding quantity value would be written as follows:

Yupper %
X PP —¥ lower %

where: x is the best estimated value and yypper and yiower are the upper and lower margin
percentages.

Copyright ©1995-2016 European Space Agency page 54

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4.2.4.19 ENTITY nrf_uncertainty_probability distribution

An nrf_uncertainty_probability_distribution specifies a probability density distribution function for the
uncertainty in values for a quantity and how to interpret the uncertainty margin(s).

EXAMPLE An example of an nrf_uncertainty_probability_distribution is the normal distribution with
name "Normal", description "Normal or Gaussian probability density distribution, see e.g.
http://en.wikipedia.org/wiki/Normal Distribution. The best estimated value is the mean and the margin
value is the standard deviation.". The valid uncertainty margins types would contain

SYMMETRIC ABSOLUTE and SYMMETRIC PERCENTAGE.

Express specification:

ENTITY nrf uncertainty probability distribution;

name : nrf non blank label;

description : nrf text;

valid uncertainty margins types : SET OF nrf uncertainty margins type;
UNIQUE

has unique name: name;
END ENTITY;

Attribute definitions:

— name specifies the name of a probability density distribution function.
— description specifies a textual description of the distribution.

— valid_uncertainty margins_types specifies the applicable uncertainty margin types for quantities
adhering to the distribution.

Formal propositions:

— has_unique_name: The name shall be unique in the dataset.
4.2.4.20 ENTITY nrf_uncertainty_specification_method

An nrf_uncertainty_specification_method specifies the way in which uncertainty for a physical quantity is
handled.

Express specification:

ENTITY nrf uncertainty specification method;

margins : nrf uncertainty margins type;

distribution : OPTIONAL nrf uncertainty probability distribution;
UNIQUE

has unique tuple margins distribution: margins, distribution;
END ENTITY;

Attribute definitions:

— margins specifies what combination of absolute or percentage, and symmetric or asymmetric,
margin values apply.

— distribution optionally specifies what probability distribution applies to the uncertainty.

Formal propositions:

Copyright ©1995-2016 European Space Agency page 55

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

— has_unique tuple margins_distribution: The tuple (margins, distribution) shall be unique in the
dataset.

4.2.4.21 ENTITY nrf_physical_quantity_category

An nrf_physical_quantity category is an abstract supertype that provides a generic mechanism for
referencing nrf basic_physical quantity category and nrf qualified physical quantity category instances.
A physical quantity category captures the essential common characteristics of a collection of scalar physical
quantities of the same kind. It specifies the physical dimension of a quantity through dimensional exponents
for each of the seven base quantities of the SI unit system as defined in [ISO 31]. All physical quantities are
founded on these seven base quantities. For dimensionless quantities and for quantities that cannot be related
to the SI quantities and units, all seven dimensional exponents shall be set to zero. In addition it is possible to
specify whether and in what way uncertainty in the values for a given quantity category shall be handled.

Express specification:

ENTITY nrf physical quantity category
ABSTRACT SUPERTYPE OF (ONEOF (
nrf basic physical quantity category,
nrf qualified physical gquantity category));
name : nrf non blank label;
symbol : nrf non blank label;
description : nrf text;
length exponent : REAL;
mass_exponent : REAL;
time exponent : REAL;
electric current exponent : REAL;
thermodynamic temperature exponent : REAL;
amount of substance exponent : REAL;
luminous_intensity exponent : REAL;
UNIQUE
has unique name: name;
END ENTITY;

Attribute definitions:

— name specifies the human-interpretable name of an nrf_physical_quantity category.

— symbol specifies the alternative short name of an nrf_physical_quantity category, which can be
used to identify it when brevity is needed, as for example in a mathematical equation, a table
heading or a programming language.

— description specifies the textual description of an nrf_physical quantity category.
— length_exponent specifies the power of the length dimension of the quantity category.
— mass_exponent specifies the power of the mass dimension of the quantity category.
— time_exponent specifies the power of the time dimension of the quantity category.

— electric_current_exponent specifies the power of the electric current dimension of the quantity
category.

— thermodynamic_temperature _exponent specifies the power of the thermodynamic temperature
dimension of the quantity category.

— amount_of substance exponent specifies the power of the amount of substance dimension of the
quantity category.

— luminous_intensity exponent specifies the power of the luminous intensity dimension of the
quantity category.

Copyright ©1995-2016 European Space Agency page 56

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

Formal propositions:

— has_unique name: The name shall be unique in the dataset.
4.2.4.22 ENTITY nrf_basic_physical _quantity_category

An nrf_basic_physical_quantity_category specifies an abstract supertype that provides a generic

mechanism to reference an nrf primary physical quantity category or an
nrf_secondary physical quantity category. This is needed to enable the definition of

nrf_qualified physical quantity category instances for both primary and secondary physical quantity
categories.

Express specification:

ENTITY nrf basic_physical_ quantity category
ABSTRACT SUPERTYPE OF (ONEOF (
nrf primary physical quantity category,
nrf secondary physical quantity category))
SUBTYPE OF (nrf physical quantity category);
END ENTITY;

4.2.4.23 ENTITY nrf_primary_physical_quantity category

An nrf_primary_physical_quantity_category is a type of nrf basic_physical quantity category that
specifies a primary scalar physical quantity category. The distinction between a primary and a secondary
physical quantity category is that in case of alternative names for a specific quantity category the primary
category is the one with the more generic, more frequently used name and the secondary category is the one
with the more specialized, less frequently used name.

EXAMPLE 1 Examples of primary physical quantity categories are the seven SI base quantities: length,
mass, time, electric current , thermodynamic temperature, amount of substance and luminous intensity, and
the 21 SI derived quantities with special names: energy, power, force, etc.

EXAMPLE 2 Examples of secondary physical quantity categories that are associated with the primary
category length are: diameter, radius, distance, width, depth and wavelength.

Express specification:

ENTITY nrf primary physical quantity category
SUBTYPE OF (nrf basic physical quantity category):;
END ENTITY;

4.2.4.24 ENTITY nrf_secondary_physical_quantity_category

An nrf secondary physical quantity category is a type of nrf_basic_physical quantity category that
specifies an alternative scalar physical quantity category of the same kind and associated with an

nrf primary physical quantity category. The secondary quantity category is a less frequently used name or
a specialization of the primary category. A secondary quantity category always has exactly the same physical
dimensions as its associated primary category.

EXAMPLE Examples of secondary physical quantity categories that are associated with the primary
category power are: heat and dissipation.

Copyright ©1995-2016 European Space Agency page 57

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

Express specification:

ENTITY nrf secondary physical quantity category
SUBTYPE OF (nrf basic physical quantity category);
primary category : nrf primary physical quantity category;
DERIVE
SELF\nrf physical quantity category.length exponent : REAL
:= primary category.length exponent;
SELF\nrf physical quantity category.mass exponent : REAL
:= primary category.mass_exponent;
SELF\nrf physical quantity category.time exponent : REAL
:= primary category.time exponent;
SELF\nrf physical quantity category.electric current exponent : REAL
:= primary category.electric current exponent;
SELF\nrf physical quantity category.thermodynamic temperature exponent : REAL
:= primary category.thermodynamic temperature exponent;
SELF\nrf physical quantity category.amount of substance exponent : REAL
:= primary category.amount of substance exponent;
SELF\nrf physical quantity category.luminous_intensity exponent : REAL
:= primary category.luminous_intensity exponent;
END ENTITY;

Attribute definitions:

— primary_category specifies the associated nrf_primary_physical quantity_category.

— length_exponent specifies the power of the length dimension of the quantity category, which is by
definition equal to that of the primary_category.

— mass_exponent specifies the power of the mass dimension of the quantity category, which is by
definition equal to that of the primary_category.

— time exponent specifies the power of the time dimension of the quantity category, which is by
definition equal to that of the primary category.

— electric_current_exponent specifies the power of the electric current dimension of the quantity
category, which is by definition equal to that of the primary_category.

— thermodynamic_temperature exponent specifies the power of the thermodynamic temperature
dimension of the quantity category, which is by definition the same as that of the primary_category.

— amount_of substance exponent specifies the power of the amount of substance dimension of the
quantity category, which is by definition equal to that of the primary_category.

— luminous_intensity exponent specifies the power of the luminous intensity dimension of the
quantity category, which is by definition equal to that of the primary_category.

4.2.4.25 ENTITY nrf_qualified_physical _quantity category

An nrf_qualified_physical _quantity category is a type of nrf_physical quantity category that specifies a
qualified primary or secondary physical quantity category. Such a quantity is qualified by attaching one or
more quantity qualifiers that specialize the usage of the quantity category.

EXAMPLE 1 Examples of qualified primary physical quantity categories are: minimum length, switch_on
temperature and maximum power.

EXAMPLE 2 Examples of qualified secondary physical quantity categories are: maximum width and
lower_limit dissipation.

Express specification:

Copyright ©1995-2016 European Space Agency page 58

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

ENTITY nrf qualified physical quantity category
SUBTYPE OF (nrf physical quantity category);
basic category : nrf basic physical quantity category;
qualifiers : LIST [1l:?] OF UNIQUE nrf quantity qualifier;
DERIVE
SELF\nrf physical quantity category.name : nrf non blank label
:= nrf get qualified quantity name (SELF) ;
SELF\nrf physical quantity category.symbol : nrf non blank label
:= nrf get qualified quantity symbol (SELF) ;
SELF\nrf physical quantity category.description : nrf text
:= nrf get qualified quantity description (SELF) ;
SELF\nrf physical quantity category.length exponent : REAL
:= basic_category.length exponent;
SELF\nrf physical quantity category.mass_ exponent : REAL
:= basic category.mass_exponent;
SELF\nrf physical quantity category.time exponent : REAL
:= basic category.time exponent;
SELF\nrf physical quantity category.electric current exponent : REAL
:= basic category.electric current exponent;
SELF\nrf physical quantity category.thermodynamic_ temperature exponent : REAL
:= basic_category.thermodynamic temperature exponent;
SELF\nrf physical quantity category.amount of substance exponent : REAL
:= basic_category.amount of substance exponent;
SELF\nrf physical quantity category.luminous intensity exponent : REAL
:= basic_category.luminous intensity exponent;
END ENTITY;

Attribute definitions:

— basic_category specifies the associated nrf_basic_physical quantity category.

— name is the derived fully qualified name of an nrf_qualified_physical quantity category, that
consists of the concatenation of the names of the qualifiers followed by the name of the
basic_category, joined by underscores.

— symbol is the derived fully qualified symbol of an nrf_qualified_physical quantity category, that
consists of the symbol of the basic_category followed by the symbols of the qualifiers in reverse
order, joined by underscores, thereby mimicing mathematical subscript notation.

— description is the derived fully qualified description of an
nrf_qualified_physical_quantity_category, that consists of the description of the basic_category
followed by the descriptions of the qualifiers.

— length exponent specifies the power of the length dimension of the quantity category, which is by
definition equal to that of the basic_category.

— mass_exponent specifies the power of the mass dimension of the quantity category, which is by
definition equal to that of the basic_category.

— time_exponent specifies the power of the time dimension of the quantity category, which is by
definition equal to that of the basic_category.

— electric_current_exponent specifies the power of the electric current dimension of the quantity
category, which is by definition equal to that of the basic_category.

— thermodynamic_temperature exponent specifies the power of the thermodynamic temperature
dimension of the quantity category, which is by definition the same as that of the basic_category.

— amount_of substance exponent specifies the power of the amount of substance dimension of the
quantity category, which is by definition equal to that of the basic_category.

— luminous_intensity exponent specifies the power of the luminous intensity dimension of the
quantity category, which is by definition equal to that of the basic_category.

Copyright ©1995-2016 European Space Agency page 59

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4.2.4.26 ENTITY nrf_quantity qualifier

An nrf_quantity_qualifier specifies a qualification for an nrf_basic_physical quantity _category. One or
more qualifier names further specialize the meaning and usage of an

nrf primary physical quantity category or nrf secondary physical quantity category over its basic
meaning and usage.

EXAMPLE 1 Typical quantity qualifier names that could be used with many different primary and
secondary quantity categories are: minimum, maximum, average, mean, static, dynamic, lower_limit,
upper_limit, switch_on , switch_off, etc.

EXAMPLE 2 Quantity qualifier names that could be used with thermo-optical quantities like reflectance
are: solar, infra_red, specular and diffuse.

Express specification:

ENTITY nrf quantity qualifier;

name : nrf non blank label;
symbol : nrf non blank label;
description : nrf text;

UNIQUE

has_unique name: name;
END ENTITY;

Attribute definitions:

— name specifies the human-interpretable name of an nrf_quantity _qualifier.

— symbol specifies the alternative short name of an nrf_quantity qualifier, which can be used to
identify it when brevity is needed as for example in an equation, a table heading or a programming
language.

— description specifies the textual description of an nrf_quantity qualifier.

Formal propositions:

— has _unique name: The name shall be unique in the dataset.
4.2.4.27 ENTITY nrf_any_quantity_type

The nrf_any_quantity_type is an abstract supertype that provides a generic mechanism to reference an
nrf_any_scalar_quantity_type, an nrf_any_tensor_quantity type or any of their subtypes. A quantity type is
defined by a name, symbol, description and rank, and the datatype(s) used to store the quantity values. For
tensor quantity types it also specifies the dimensions and quantity types for each of the tensor's elements.
Physical quantity types may also specify an uncertainty method that captures how uncertainty margins and
uncertainty probability distribution are treated. The table below specifies the number of real values and the
number of integer values to be held for quantities typed by any of the possible quantity types. The possible
quantity types in the first column are the leaf subtypes of nrf_any_quantity_type.

quantity type uncertainty _method.margins [number_of real valuesinumber_of integer_value:
nrf real quantity type not specified 1 0
nrf real quantity type SYMMETRIC ABSOLUTE 2 0

Copyright ©1995-2016 European Space Agency page 60

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

quantity type

uncertainty _method.margins

number_of real values

number_of integer_value:

nrf real quantity type SYMMETRIC PERCENTAGE 2 0
nrf real quantity type ASYMMETRIC ABSOLUTE 3 0
nrf real quantity type ASYMMETRIC PERCENTAGE 3 0
nrf _integer quantity type not specified 0 1
nrf_integer quantity type SYMMETRIC ABSOLUTE 1 1
nrf_integer quantity type SYMMETRIC PERCENTAGE 1 1
nrf_integer_quantity_type ASYMMETRIC ABSOLUTE 2 1
nrf integer quantity type ASYMMETRIC PERCENTAGE 2 1
nrf_enumeration_quantity_type not applicable 0 1
nrf string quantity type not applicable 0 1

Copyright ©1995-2016 European Space Agency

page 61

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

quantity type uncertainty _method.margins [number_of real valuesijnumber_of integer_value:
nrf general tensor quantity type specified per element sum over all elements sum over all elements
nrf symmetric_matrix_quantity type specified per element sum over all elements sum over all elements
nrf anti symmetric_matrix_quantity_type specified per element sum over all elements sum over all elements

nn

EXAMPLE 1 Examples of scalar quantity types are "length" in "metre", "radius" in "millimetre",
"diameter" in "inch", "infra red emittance" in "one" (dimensionless), "static pressure" in "pascal”,
"upper_design temperature" in "degree Celsius".

EXAMPLE 2 Examples of tensor quantity types are "cartesian 3d velocity vector" and
"stiftness matrix".

Express specification:

ENTITY nrf any quantity type
ABSTRACT SUPERTYPE OF (ONEOF (
nrf any scalar quantity type,
nrf any tensor quantity type)):

name : nrf non blank label;
symbol : nrf non blank label;
description : nrf text;
rank : INTEGER;
number of real values : INTEGER;

number of integer values : INTEGER;
END ENTITY;

Attribute definitions:

— name specifies the human-interpretable name of an nrf_any_quantity_type.

— symbol specifies the alternative short name of an nrf_any_quantity _type, which can be used to
identify it when brevity is needed, as for example in a mathematical equation, a table heading or a
programming language.

— description specifies the textual description of an nrf_any_quantity type.

— rank specifies the number of dimensions of an nrf_any_quantity type. The rank is zero for a
scalar quantity type, one for a vector, two for a matrix, and three or higher for higher order tensors.

— number of real values specifies the total number of real values to be held for a quantity typed by
an nrf_any_quantity_type. See the table above for details. The number_of real values is needed
for housekeeping concerned with the indexing in the lists of real values in nrf datacube and
nrf_any_quantity value prescription instances.

— number of integer values specifies the total number of integer values to be held for a quantity
typed by an nrf_any_quantity type. See the table above for details. The
number of integer values is needed for housekeeping concerned with the indexing in the lists of
integer values in nrf datacube and nrf any_quantity value prescription instances. Integer values
are also used as indices to point to actual enumeration and string values for quantities of
nrf_enumeration _quantity type and nrf string_quantity type.

Copyright ©1995-2016 European Space Agency page 62

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4.2.4.28 ENTITY nrf_any_scalar_quantity type

The nrf_any_scalar_quantity _type is an abstract supertype that provides a generic mechanism to reference
an nrf physical quantity type, an nrf_string quantity_type or an nrf enumeration_quantity type and
defines the common attributes of all scalar quantity types.

Express specification:

ENTITY nrf any scalar quantity_ type
ABSTRACT SUPERTYPE OF (ONEOF (
nrf physical gquantity type,
nrf string quantity type,
nrf enumeration quantity type))
SUBTYPE OF (nrf any quantity type);
DERIVE
SELF\nrf any quantity type.rank : INTEGER := O;
END ENTITY;

Attribute definitions:

— rank is derived to be always zero.
4.2.4.29 ENTITY nrf_physical_quantity _type

The nrf_physical quantity type is an abstract supertype that provides a generic mechanism to reference an
nrf real quantity type or an nrf_integer quantity type and defines the common attributes of all physical
quantity types.

Express specification:

ENTITY nrf physical quantity type
ABSTRACT SUPERTYPE OF (ONEOF (
nrf real guantity type,
nrf integer gquantity type))
SUBTYPE OF (nrf any scalar quantity type);

quantity category : nrf physical quantity category;
unit : nrf any unit;
uncertainty method : OPTIONAL nrf uncertainty specification method;
DERIVE
SELF\nrf any quantity type.name : nrf non blank label := quantity category.name;
SELF\nrf any quantity type.symbol : nrf non blank label := quantity category.symbol;
SELF\nrf any quantity type.description : nrf text := quantity category.description;
UNIQUE

has unique tuple of name unit uncertainty method: name, unit, uncertainty method;
WHERE
has same dimensional exponents as unit:
nrf verify equal dimensional exponents for quantity categories(quantity category,
unit.quantity category);
END ENTITY;

Attribute definitions:

— quantity category specifies the nrf physical quantity category to which this
nrf_physical_quantity_type belongs.

— unit specifies the (physical) unit in which values for an nrf_physical_quantity_type are defined.
Where applicable an explicit 'dimensionless' unit shall be specified.

Copyright ©1995-2016 European Space Agency page 63

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

— uncertainty_method optionally specifies how uncertainties in the values of quantities for an
nrf_physical _quantity type are expressed. Leaving the uncertainty method unset implies that no
uncertainty for the quantity values is taken into account, therefore only single quantity values will
be provided.

— name is derived to be the name of the associated quantity category.
— symbol is derived to be the symbol of the associated quantity category.

— description is derived to be the description of the associated quantity category.

Formal propositions:

— has_unique tuple of name unit uncertainty method: The tuple (name, unit, uncertainty method)
shall be unique.

— has same dimensional exponents_as unit: The physical quantity type and its unit shall have the
same dimensional exponents.

4.2.4.30 ENTITY nrf_real _quantity_type

An nrf_real_quantity type is a type of nrf_physical quantity_type that specifies a real valued quantity
type, i.e. a physical quantity type that captures a magnitude. Optionally a lower bound or an upper bound for
a valid range of values may be specified. The number of real values to be held for an

nrf real quantity type depends on the specified uncertainty method attribute, as shown in the table in the
specification for nrf_any_quantity_type.

Express specification:

ENTITY nrf real quantity type
SUBTYPE OF (nrf physical quantity type);
lower bound : OPTIONAL REAL;
lower bound inclusive : BOOLEAN;

upper bound : OPTIONAL REAL;
upper bound inclusive : BOOLEAN;
DERIVE

SELF\nrf any quantity type.number of real values : INTEGER :=
nrf get number of real values for real quantity type (SELF) ;
SELF\nrf any quantity type.number of integer values : INTEGER := 0;
WHERE
has valid bounds: (NOT EXISTS (lower bound)) OR (NOT EXISTS (upper bound)) OR
(EXISTS (lower bound) AND EXISTS (upper bound) AND (lower bound <= upper bound)) ;
END ENTITY;

Attribute definitions:

— lower_bound optionally specifies a lower bound for valid quantity values for an
nrf real quantity type.

— lower bound inclusive specifies whether the lower bound itself is included or excluded from the
valid value range.

— upper_bound optionally specifies an upper bound for valid quantity values for an
nrf real quantity type.

— upper_bound _inclusive specifies whether the upper bound itself is included or excluded from the
valid value range.

— number_of real values is derived to be the number of real quantity values to be held for an
nrf_real_quantity_type in the real values list of nrf_datacube or

Copyright ©1995-2016 European Space Agency page 64

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

nrf any quantity value prescription instances depending on the actual uncertainty method. It may
be 1,2 or 3.

— number_of integer values is derived to be the number of integer quantity values to be held for an
nrf_real_quantity_type in the integer values list of nrf_datacube or
nrf_any_quantity_value prescription instances depending on the actual uncertainty method. It is
always zero.

Formal propositions:

— has valid bounds: If both lower bound and upper bound are specified then the lower bound shall
be less than or equal to the upper_bound.

4.2.4.31 ENTITY nrf _integer quantity type

An nrf_integer_quantity_type is a type of nrf physical quantity type that specifies an integer valued
quantity type, i.e. a physical quantity type that captures a multitude. Optionally a lower bound or an upper
bound for a valid range of values may be specified. The number of integer and real values to be held for an
nrf_integer quantity type depends on the specified uncertainty method attribute, as shown in the table in
the specification for nrf_any_quantity type.

Express specification:

ENTITY nrf integer quantity type
SUBTYPE OF (nrf physical quantity type);
lower bound : OPTIONAL INTEGER;
lower bound inclusive : BOOLEAN;

upper bound : OPTIONAL INTEGER;
upper bound inclusive : BOOLEAN;
DERIVE

SELF\nrf any quantity type.number of real values : INTEGER :=
nrf get number of real values for integer quantity type (SELF) ;
SELF\nrf any quantity type.number of integer values : INTEGER :=
WHERE
has valid bounds: (NOT EXISTS (lower bound)) OR (NOT EXISTS (upper bound)) OR
(EXISTS (lower bound) AND EXISTS (upper bound) AND (lower bound <= upper bound)) ;
END ENTITY;

1;

Attribute definitions:

— lower_bound optionally specifies a lower bound for valid quantity values for an
nrf_integer_quantity type.

— lower_bound inclusive specifies whether the lower bound itself is included or excluded from the
valid value range.

— upper_bound optionally specifies an upper bound for valid quantity values for an
nrf_integer_quantity_type.

— upper_bound inclusive specifies whether the upper bound itself is included or excluded from the
valid value range.

— number of real values is derived to be the number of real quantity values to be held for an
nrf_integer_quantity_type in the real values list of nrf datacube or

nrf_any quantity value prescription instances depending on the actual uncertainty method. It may
be 0, 1 or 2.

— number_of integer values is derived to be the number of integer quantity values to be held for an
nrf_integer quantity type in the integer values list of nrf_datacube or

Copyright ©1995-2016 European Space Agency page 65

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

nrf any quantity value prescription instances depending on the actual uncertainty method. It is
always one.

Formal propositions:

— has_valid bounds: If both lower bound and upper_bound are specified then the lower bound shall
be less than or equal to the upper_bound.

4.2.4.32 ENTITY nrf_string_quantity _type

An nrf_string_quantity_type is an nrf_any scalar_quantity_type that specifies a non-physical quantity type
whose value is an index that denotes a position in a defined list of string values. The index is an integer value
in the range from one to the total number of defined string values.

EXAMPLE An example of an nrf_string_ quantity type is 'location_area' with values: 1 for '"Amsterdam’,
2 for 'Paris', 3 for 'London', 4 for 'Europe’, 5 for 'Antarctica'.

Express specification:

ENTITY nrf string quantity type
SUBTYPE OF (nrf any scalar quantity type);
string values : LIST OF STRING;

DERIVE
SELF\nrf any quantity type.number of real values : INTEGER := 0;
SELF\nrf any quantity type.number of integer values : INTEGER := 1;
END ENTITY;

Attribute definitions:

— string_values specifies the list of zero or more string values defined for an
nrf_string_quantity_type.

— number of real values specifies the total number of real quantity values to be held in an
nrf_string_quantity_type, which is always zero.

— number of integer values specifies the total number of integer quantity values to be held in an
nrf_string_quantity type, which is always one.

4.2.4.33 ENTITY nrf_enumeration_quantity type

An nrf_enumeration_quantity type is an nrf any scalar_quantity_type that specifies a non-physical
quantity type whose value is an index that denotes a position in a defined list of enumeration string values
and descriptions. The index is an integer value in the range from one to the total number of defined
enumeration_items.

EXAMPLE An nrf_enumeration_quantity_type may be used to represent the quantity
'operational _mode' of a system with enumeration values: 'switched-off', 'hibernating', 'stand-by"',
'operational'.

Express specification:

ENTITY nrf enumeration quantity_ type
SUBTYPE OF (nrf any scalar quantity type);
enumeration items : LIST OF nrf enumeration item;
DERIVE

Copyright ©1995-2016 European Space Agency page 66

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

SELF\nrf any quantity type.number of real values : INTEGER := 0;
SELF\nrf any quantity type.number of integer values : INTEGER := 1;
WHERE

has unique enumeration names: nrf verify unique names in enumeration item list (SELF)
END ENTITY;

Attribute definitions:

— enumeration_items specifies the list of valid enumeration string values with description, for an
nrf_enumeration_quantity type.

— number_of real values specifies the total number of real quantity values to be held in an
nrf_enumeration_quantity type, which is always zero.

— number of integer values specifies the total number of integer quantity values to be held in an
nrf_enumeration_quantity type, which is always one.

Formal propositions:

— has_unique enumeration_names: The names of the enumeration_items shall be unique.
4.2.4.34 ENTITY nrf_enumeration_item

An nrf_enumeration_item specifies an enumeration item entry for the enumeration_items list of an
nrf_enumeration_quantity_type. It consists of a (typically) short name and a more extensive textual
description.

Express specification:

ENTITY nrf enumeration_ item;
name : nrf label;
description : nrf text;

END ENTITY;

Attribute definitions:

— name specifies the name (i.e. the string value) of the enumeration item.

— description specifies the textual description of the enumeration item. This may be the explanation or
definition of its usage or it may be the empty string if the name is self-explanatory.

4.2.4.35 FUNCTION nrf_verify_unique_names_in_enumeration_item_list

The function nrf_verify_unique names_in_enumeration_item_list verifies that the nrf_enumeration_item
instances in the enumeration_items of an nrf enumeration quantity_type all have a unique name. The
function returns TRUE if this is the case, and FALSE otherwise.

Express specification:

FUNCTION nrf verify unique names_in enumeration item list(
egqt : nrf enumeration quantity type) : BOOLEAN;
LOCAL
name list : LIST OF nrf label := [];
END LOCAL;
REPEAT i:=1 TO SIZEOF (egt.enumeration items);
name list := name list + eqt.enumeration items[i].name;

Copyright ©1995-2016 European Space Agency page 67

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

END REPEAT;
IF VALUE UNIQUE (name list) THEN
RETURN (TRUE) ;
ELSE
RETURN (FALSE) ;
END IF;
END_FUNCTION;

Argument definitions:

— eil specifies the candidate list of nrf _enumeration_item to be verified.

4.2.4.36 ENTITY nrf _tensor_characteristic

An nrf tensor characteristics specifies a characteristic of a tensor quantity type.

EXAMPLE Examples of names of tensor characteristics are: 'vector', 'matrix', 'covariant', 'contravariant',
'mixed', 'affine', 'complete symmetric', 'Jacobian', 'cartesian'.

Express specification:

ENTITY nrf tensor_ characteristic;

name : nrf non blank label;
description : nrf text;
UNIQUE

has_unique name: name;
END ENTITY;

Formal propositions:

— has_unique name: The name shall be unique in the dataset.
4.2.4.37 ENTITY nrf_tensor_element

An nrf_tensor_element specifies the name and quantity type of an element of an
nrf_any tensor quantity type.

Express specification:

ENTITY nrf tensor_element;

name : nrf non blank label;

quantity type : nrf any scalar quantity type;
END ENTITY;

Attribute definitions:

— name specifies the name for the tensor element.

— quantity type specifies the scalar quantity type for the tensor element.
4.2.4.38 ENTITY nrf_any_tensor_quantity type

An nrf_any_tensor_quantity_type is an abstract supertype that provides a generic mechanism to reference
an nrf_general tensor quantity type, an nrf symmetric_matrix_quantity type or an
nrf anti_symmetric_matrix_quantity type. A tensor quantity type specifies a compound quantity type

Copyright ©1995-2016 European Space Agency page 68

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

containing multiple scalar quantity elements, possibly in more than one dimension. A tensor has a rank
which defines the number of dimensions. A tensor of rank one is usually called a vector and a tensor of rank
two is usually called a matrix. Tensors of rank three or higher are called higher order tensors. The tensor's
elements are accessed using an index. The index tuple has as many elements as the tensor has dimensions.

The tensor's quantity values are stored in row-major order in the real _values and/or integer values list

attributes of nrf_datacube, nrf tensor quantity value prescription or nrf state list instances. The storage

order of quantity values of a tensor in the real_values and/or integer values of an nrf_datacube or

nrf_any quantity value prescription) is a flat concatenation of element values with the index of the first
dimension varying slowest and the index of last dimension varying fastest, i.e. row-major order, the same as

the storage convention for multi-dimensional arrays in the C programming language.

NOTE In this protocol the concept of tensor is taken beyond its strict mathematical definition in the sense
that its elements may be non-physical quantities: enumeration or string quantities as described earlier. The
nrf _any tensor quantity type enables the definition in a STEP-NRF dictionary of compound quantity

types similar to record datatypes with named fields as commonly used in data processing systems.

Express specification:

ENTITY nrf any tensor quantity type
ABSTRACT SUPERTYPE OF (ONEOF (
nrf general tensor quantity type,
nrf symmetric matrix quantity type,
nrf anti symmetric matrix quantity type))
SUBTYPE OF (nrf any gquantity type);

characteristics : LIST [0:?] OF UNIQUE nrf tensor characteristic;
dimensions : LIST [1:?] OF nrf positive integer;
elements : LIST [1:?] OF nrf tensor element;
DERIVE
SELF\nrf any quantity type.rank : INTEGER := SIZEOF (dimensions) ;

SELF\nrf any quantity type.number of real values : INTEGER :=
nrf get number of real values in any tensor (SELF) ;
SELF\nrf any quantity type.number of integer values : INTEGER :=
nrf get number of integer values in any tensor (SELF) ;
WHERE
has valid number of elements: (SIZEOF (elements) = 1) OR

END ENTITY;

(SIZEOF (elements) = nrf get required number of elements in any tensor (SELF)) ;

Attribute definitions:

— characteristics specifies zero or more textually defined characteristics of an
nrf tensor quantity category.

dimensions specifies both the number of dimensions of the tensor quantity type as well as the
number of elements for each dimension.

elements specifies the scalar quantity type elements that the tensor quantity type comprises. It is
allowed to specify only one element: in this special case all elements of the tensor are defined to
have the same scalar quantity type, otherwise an explicit list of nrf_tensor_element must be given
for all elements of the tensor. Through the definitions nrf tensor_element instances optionally a
name can be assigned to each element.

rank is derived to be equal to the number of dimensions of the tensor quantity type.

number of real values is derived to be the total number of concatenated real values required by all
quantity types specified in elements.

number of integer values is derived to be the total number of concatenated integer values required
by all quantity types specified in elements.

Copyright ©1995-2016 European Space Agency page 69

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

Formal propositions:

— has_valid number _of elements: The number of elements shall be one or the required number of
elements for the specific tensor quantity type.

4.2.4.39 ENTITY nrf general_tensor_quantity type

An nrf_general_tensor_quantity_type is a type of nrf any tensor quantity_type that specifies a quantity
type that is general tensor of any rank. The storage order of quantity values for an
nrf_general_tensor_quantity type (in the real values and/or integer _values of an nrf datacube or
nrf_any_quantity value prescription) is a flat concatenation of element values with the index of the first
dimension varying slowest and the index of last dimension varying fastest, i.e. row-major order, the same as
the storage convention for multi-dimensional arrays in the C programming language.

Express specification:

ENTITY nrf general tensor quantity type
SUBTYPE OF (nrf any tensor quantity type);
END ENTITY;

4.2.4.40 ENTITY nrf_symmetric_matrix_quantity_type

An nrf_symmetric_matrix_quantity type is a type of nrf_any tensor_quantity type that specifies a
quantity type that is a symmetric square matrix, i.e. a tensor of rank 2. For the elements of a symmetric
square matrix A the following relation holds: ajj = aji. In order to reduce storage space only the elements and
values on the diagonal and in the upper triangle of the matrix will be defined. An NxN symmetric matrix
holds N(N+1)/2 non-redundant elements. The storage order of the quantity values for an

nrf symmetric_matrix_quantity type (in the real values and/or integer values of an nrf_datacube,
nrf_tensor_quantity value prescription or nrf state list) is the upper triangle of the matrix, i.e. a flat
concatenation of the first full row, followed by the element values from the diagonal element to the last
column of all subsequent rows, therefore ending with the last diagonal element value.

Express specification:

ENTITY nrf symmetric matrix quantity type
SUBTYPE OF (nrf any tensor quantity type);

WHERE
is_rank two: SELF\nrf any tensor quantity type.rank = 2;
is square matrix: dimensions[1l] = dimensions[2];

END ENTITY;

Formal propositions:

— is_rank two: The rank shall be two.

— is_square_matrix: The first and second dimension shall be equal, i.e. it shall be a square matrix.
4.2.4.41 ENTITY nrf_anti_symmetric_matrix_quantity type

An nrf_anti_symmetric_matrix_quantity type is a type of nrf_any_tensor quantity type that specifies a
quantity type that is an anti-symmetric square matrix, i.e. a tensor of rank 2. For the elements of an anti-
symmetric square matrix A the following relation holds: aj; = —aj; . In order to reduce storage space only the
elements and values on the diagonal and in the upper triangle of the matrix will be defined. An NxN anti-

Copyright ©1995-2016 European Space Agency page 70

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

symmetric matrix holds N(N+1)/2 non-redundant elements. The storage order of real or integer values for an
nrf symmetric_matrix quantity type (in the real_values and/or integer values of an nrf datacube or
nrf_any quantity value prescription) is a flat concatenation of the first full row, followed by the element
values from the diagonal element to the last column of all subsequent rows, therefore ending with the last
diagonal element value.

Express specification:

ENTITY nrf anti symmetric_matrix quantity_ type
SUBTYPE OF (nrf any tensor quantity type);

WHERE
is rank two: SELF\nrf any tensor quantity type.rank = 2;
is square matrix: dimensions[l] = dimensions[2];

END ENTITY;

Formal propositions:

— is_rank two: The rank shall be two.

— is_square_matrix: The first and second dimension shall be equal, i.e. it shall be a square matrix.
4.2.4.42 FUNCTION nrf_get qualified quantity name

The function nrf_get qualified_quantity name derives the fully qualified name for an
nrf_qualified physical quantity category. The fully qualified name is the concatenation of the names of the
qualifiers and the name of the basic_category, joined with underscore characters.

Express specification:

FUNCTION nrf get qualified quantity name (
gpgc : nrf qualified physical quantity category) : nrf non blank label;
LOCAL
qualified name : STRING := '';
END LOCAL;
REPEAT i1 := 1 TO SIZEOF (gpgc.qualifiers);
IF 1 = 1 THEN
qualified name := gpgc.qualifiers[i].name;
ELSE
qualified name :
END IF;
END REPEAT;
qualified name := qualified name + ' ' + gpgc.basic_category.name;
RETURN (qualified name) ;
END FUNCTION;

qualified name + ' ' + gpgc.qualifiers[i].name;

Argument definitions:

— qpqc specifies the nrf_qualified physical quantity category for which the fully qualified name
shall be returned.

4.2.4.43 FUNCTION nrf_get_qualified_quantity_symbol

The function nrf_get qualified quantity symbol derives the fully qualified symbol of an
nrf_qualified physical quantity category. The fully qualified symbol is the concatenation of the symbol of
the quantity category and the symbols of the qualifiers in reverse order, joined with underscore characters.

Copyright ©1995-2016 European Space Agency page 71

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

Express specification:

FUNCTION nrf get qualified quantity_ symbol (
gpgc : nrf qualified physical quantity category) : nrf non blank label;
LOCAL
qualified symbol : nrf non blank label;
END LOCAL;
qualified symbol := gpgc.basic category.symbol;
REPEAT i := SIZEOF (gpgc.qualifiers) TO 1 BY -1;
qualified symbol := qualified symbol + ' ' + gpgc.qualifiers([i].symbol;
END REPEAT;
RETURN (qualified symbol) ;
END FUNCTION;

Argument definitions:

— qt specifies the nrf _any_quantity type for which the fully qualified symbol shall be returned.
4.2.4.44 FUNCTION nrf_get_qualified_quantity_description

The function nrf_get qualified quantity description derives the fully qualified description for an
nrf_qualified physical quantity category. The fully qualified description consists of the description of the
basic_category, followed by the text " -- qualified by:" and then the names and descriptions of each of the
qualifiers separated by semicolons.

Express specification:

FUNCTION nrf get qualified quantity description(
gpgc : nrf gqualified physical quantity category) : nrf text;
LOCAL
qualified description : STRING := '';
END LOCAL;
qualified description := gpgc.basic category.description + ' -- qualified by:';
REPEAT i := 1 TO SIZEOF (gpgc.qualifiers);
qualified description := qualified description
+ ' ' + gpgc.qualifiers[i].name
+ ' - ' + gpgc.qualifiers[i].description + ';';
END REPEAT;
RETURN (qualified description);
END FUNCTION;

Argument definitions:

— gpqc specifies the nrf_qualified physical quantity category for which the fully qualified
description shall be returned.

4.2.4.45 FUNCTION nrf _get_required_number_of elements_in_any_tensor

The function nrf_get required_number_of elements_in_any_tensor yields the required number of
elements for an nrf any tensor_ quantity type.

Express specification:

FUNCTION nrf get required number of elements_in_any tensor (
atgt : nrf any tensor quantity type): INTEGER;
LOCAL
number of elements : INTEGER := 1;

Copyright ©1995-2016 European Space Agency page 72

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

END LOCAL;
IF 'NRF _ARM.NRF GENERAL TENSOR QUANTITY TYPE'
IF SIZEOF (atgt.elements) = 1 THEN
REPEAT i1 := 1 TO SIZEOF (atgt.dimensions);
number of elements := number of elements * atqgt.dimensions([i];
END REPEAT;
ELSE
number of elements :=
END IF;
ELSE
-- atqgt is an nrf symmetric matrix gquantity type
-- or an nrf anti symmetric matrix gquantity type
number of elements := atgt.dimensions[l] * (atgt.dimensions[1]
END IF;
RETURN (number of elements);
END FUNCTION;

IN TYPEOF (atgt) THEN

SIZEOF (atgt.elements) ;

+ 1) DIV 2;

Argument definitions:

— atqt specifies the nrf any tensor quantity type for which to yield the required number of elements.

4.2.4.46 FUNCTION nrf _get number_of real values for real quantity type

The function nrf_get number_of real values for real quantity type computes and returns the number
of real values required for a given nrf real quantity type.

Express specification:

FUNCTION nrf get number of real values_for_ real quantity type (
qt nrf real quantity type): INTEGER;
LOCAL
number of real values
END LOCAL;
IF EXISTS(gt.uncertainty method) THEN
CASE gt.uncertainty method.margins OF
type.SYMMETRIC ABSOLUTE:

INTEGER;

nrf uncertainty margins

number of real values := 2;
nrf uncertainty margins type.SYMMETRIC PERCENTAGE:
number of real values := 2;
nrf uncertainty margins type.ASYMMETRIC ABSOLUTE:
number of real values := 3;
nrf uncertainty margins type.ASYMMETRIC PERCENTAGE:
number of real values := 3;
END CASE;
ELSE
number of real values := 1;
END IF;

RETURN (number of real values);
END FUNCTION;

Argument definitions:

— gt specifies the nrf_real quantity type for which the number of real values must be computed.
4.2.4.47 FUNCTION nrf_get_number_of real_values_for_integer_quantity_type

The function nrf_get number of real values for integer quantity type computes and returns the
number of real values required for a given nrf_integer quantity_type.

Copyright ©1995-2016 European Space Agency page 73

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

Express specification:

FUNCTION nrf get number of real values_for_ integer quantity type (

gt : nrf integer quantity type): INTEGER;

LOCAL
number of real values : INTEGER;

END LOCAL;

IF EXISTS(qt.uncertaintyimethod) THEN
CASE gt.uncertainty method.margins OF

nrf uncertainty margins type.SYMMETRIC ABSOLUTE:

number of real values := 1;
nrf uncertainty margins type.SYMMETRIC PERCENTAGE:
number of real values := 1;
nrf uncertainty margins type.ASYMMETRIC ABSOLUTE:
number of real values := 2;
nrf uncertainty margins type.ASYMMETRIC PERCENTAGE:
number of real values := 2;
END CASE;
ELSE
number of real values := 0;
END IF;

RETURN (number of real values);
END FUNCTION;

Argument definitions:

— qt specifies the nrf _integer quantity type for which the number of real values must be computed.

4.2.4.48 FUNCTION nrf_get_ number_of real_values_in_any_tensor

The function nrf_get number of real values in_any tensor computes and returns the total number of
real values for the elements that have been specified for an nrf_any_tensor quantity type.

Express specification:

FUNCTION nrf get number of real values_in any tensor(
atgt : nrf any tensor quantity type): INTEGER;

LOCAL

total number of real values : INTEGER := 0;
END LOCAL;
IF SIZEOF (atgt.elements) = 1 THEN

total number of real values :=
nrf get required number of elements in any tensor (atgt) *
atgt.elements[1l].quantity type.number of real values;

ELSE
REPEAT i := 1 TO SIZEOF (atgt.elements) ;
total number of real values := total number of real values +
atgt.elements[i].quantity type.number of real values;
END REPEAT;
END IF;
RETURN (total number of real values);
END FUNCTION;

Argument definitions:

— atqt specifies the nrf_any_tensor quantity type for which the number of real values must be
computed.

Copyright ©1995-2016 European Space Agency page 74

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4.2.4.49 FUNCTION nrf_get number_of integer values in_any tensor

The function nrf_get_number_of _integer_values_in_any_tensor computes and returns the total number of
integer values for the elements that have been specified for an nrf_any tensor quantity type.

Express specification:

FUNCTION nrf get number of integer values_in any tensor(
atgt : nrf any tensor quantity type): INTEGER;

LOCAL

total number of integer values : INTEGER := 0;
END LOCAL;
IF SIZEOF (atgt.elements) = 1 THEN

total number of integer values :=
nrf get required number of elements in any tensor (atgt) *
atgt.elements[1l].quantity type.number of integer values;

ELSE
REPEAT i := 1 TO SIZEOF (atgt.elements) ;
total number of integer values := total number of integer values +
atgt.elements[i] .quantity type.number of integer values;
END REPEAT;
END IF;

RETURN (total number of integer values);
END FUNCTION;

Argument definitions:

— atqt specifies the nrf_any_tensor_quantity type for which the number of integer values must be
computed.

4.2.4.50 ENTITY nrf_quantity_type_list

An nrf_quantity type list specifies an ordered list of references to nrf_any_quantity type instances. It can
be used as the quantity type basis of an nrf_datacube.

Express specification:

ENTITY nrf quantity type list;

id : nrf identifier;

name : nrf label;

description : nrf text;

quantity types : LIST [1:?] OF UNIQUE nrf any quantity type;
DERIVE

number of real values : INTEGER :=
nrf derive number of real values in quantity type list (SELF);
number of integer values : INTEGER :=
nrf derive number of integer values in gquantity type list (SELF);
END ENTITY;

Attribute definitions:

— id specifies the identifier of an instance of nrf_quantity type list.

— name specifies the human-interpretable name of an instance of nrf_quantity_type_list.
— description specifies the textual description of an instance of nrf_quantity type_list.
— quantity_types specifies the list of quantity types.

— number of values specifies the total number of required values for the quantity types.

Copyright ©1995-2016 European Space Agency page 75

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4.2.4.51 FUNCTION nrf_derive number of real values in_quantity type list

The function nrf_derive number_of real values in_quantity type list computes and returns the total
number of required real values for the list of quantity types defined in an nrf _quantity type_list.

Express specification:

FUNCTION nrf derive number of real values_in quantity type list(
gtl : nrf gquantity type list) : INTEGER;
LOCAL
n : INTEGER := 0;
END LOCAL;
REPEAT i := 1 TO SIZEOF (gtl.quantity types);
n :=n + gtl.quantity types[i].number of real values;
END REPEAT;
RETURN (n) ;
END FUNCTION;

Argument definitions:

— qtl specifies the nrf quantity type list for which the total number of real values has to be
computed.

4.2.4.52 FUNCTION nrf_derive_number_of integer_values_in_quantity_type_list

The function nrf_derive number of integer values in_quantity type list computes and returns the total
number of required integer values for the list of quantity types defined in an nrf_quantity type list.

Express specification:

FUNCTION nrf derive number of integer values_in quantity type list(
gtl : nrf gquantity type list) : INTEGER;
LOCAL
n : INTEGER := 0;
END LOCAL;
REPEAT i := 1 TO SIZEOF (gtl.quantity types);
n :=n + gtl.quantity types[i].number of integer values;
END REPEAT;
RETURN (n) ;
END FUNCTION;

Argument definitions:

— qtl specifies the nrf _quantity type list for which the total number of integer values has to be
computed.

4.2.5 NRF Date and time UoF

The date_and_time UoF specifies various representations for calendar date and time of day.
NOTE The objects defined in this UoF are defined to map one-to-one with those in the date time schema

of ISO 10303-41. The ISO 10303-41 date time schema objects ordinal date, day of week and
week of year are out of scope.

Copyright ©1995-2016 European Space Agency page 76

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4.2.5.1 TYPE nrf _ahead or_behind

The ahead or_behind type is used to specify whether a given time is ahead of or behind coordinated
universal time.

NOTE Coordinated Universal Time (UTC) is the international time standard. It is the current term for what
was commonly referred to as Greenwich Meridian Time (GMT). Zero (0) hours UTC is midnight in
Greenwich England, which lies on the zero longitudinal meridian. Coordinated universal time is based on a
24 hour clock; therefore, afternoon hours such as 4 PM are expressed as 16:00 UTC (sixteen hours, zero
minutes).

Express specification:

TYPE nrf_ahead_or_behind = ENUMERATION OF (
AHEAD,
EXACT,
BEHIND) ;

END TYPE;

4.2.5.2 TYPE nrf_year_number

A year number is the year as defined in the Gregorian calendar. The year number shall be completely and
explicitly specified using as many digits as necessary to unambiguously convey the century and year within
the century. Truncated year numbers shall not be used.

NOTE ISO 8601:1988 defines the Gregorian calendar.

EXAMPLE The year number corresponding to the first manned landing on the moon is 1969 (not 69).

Express specification:

TYPE nrf year number = INTEGER;
END TYPE;

4.2.5.3 TYPE nrf month_in_year_number

An nrf_month_in_year_number specifies the position of the specified month in a year as defined in
ISO 8601 (subclause 5.2.1).

NOTE January is month number 1, February is month number 2, March is month number 3, April is month
number 4, May is month number 5, June is month number 6, July is month number 7, August is month
number 8, September is month number 9, October is month number 10, November is month number 11, and
December is month number 12.

Express specification:

TYPE nrf month in year number = INTEGER;
WHERE

is valid month number: { 1 <= SELF <= 12 };
END TYPE;

Formal propositions:

— is_valid_month_number: The value of the integer shall be between 1 and 12.

Copyright ©1995-2016 European Space Agency page 77

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4.2.5.4 TYPE nrf day in_month number

An nrf_day_in_month_number specifies the position of the specified day in a month.

Express specification:

TYPE nrf day in month_number = INTEGER;
WHERE

is valid day in month number: {1 <= SELF <= 31};
END TYPE;

Formal propositions:

— is_valid _day in_month number: The value of the integer shall be between 1 and 31.
4.2.5.5 TYPE nrf _hour_in_day

An nrf_hour_in_day specifies the hour element of a specified time on a 24 hour clock. Midnight shall be
represented by the value zero.

EXAMPLE The hour in_day corresponding to 3 o'clock in the afternoon is 15.

NOTE Although ISO 8601 allows two representations for midnight, 0000 and 2400, this part of ISO 10303
restricts the representation to the first value.

Express specification:

TYPE nrf hour_ in day = INTEGER;
WHERE

is valid hour in day: {0 <= SELF < 24};
END TYPE;

Formal propositions:

— is_valid_hour_in_day: The value of the integer shall be between 0 and 23.
4.2.5.6 TYPE nrf_minute_in_hour

An nrf minute in_hour specifies the minute element of a specified time.

Express specification:

TYPE nrf minute in hour = INTEGER;
WHERE

is valid minute in hour: {0 <= SELF < 60};
END TYPE;

Formal propositions:

— is_valid_minute_in_hour: The value of the integer shall be between 0 and 59.

Copyright ©1995-2016 European Space Agency page 78

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4.2.5.7 TYPE nrf second_in_minute

An nrf_second_in_minute specifies the second element of a specified time.

Express specification:

TYPE nrf second in minute = REAL;
WHERE

is_valid second_in minute: {0.0 <= SELF <= 60.0};
END TYPE;

Formal propositions:

— is_valid_second in_minute: The value of the real number shall be between 0.0 to 60.0.
NOTE A value of 60 allows for leap seconds.
NOTE The mean solar time is determined by the rotation of the earth. Leap seconds are added as required,

usually in the middle or at the end of a year, and ensure that the legal time does not differ from the
nonuniform mean solar time by more than one second, in spite of the variations of the earth rotation.

4.2.5.8 ENTITY nrf _calendar_date

An nrf_calendar_date specifies a type of date defined as a day in a month of a year.

Express specification:

ENTITY nrf calendar_ date;

year component : nrf year number;

month component : nrf month in year number;

day component : nrf day in month number;
WHERE

is valid calendar date: nrf verify calendar date (SELF);
END ENTITY;

Attribute definitions:

— year_component specifies the year in which the date occurs.
— month_component specifies the month element of the date.

— day_component specifies the day element of the date.

Formal propositions:

— 1is_valid_calendar date: The entity shall define a valid nrf_calendar_date.
4.2.5.9 ENTITY nrf_coordinated universal time offset

A nrf_coordinated_universal_time_offset specifies the oriented offset (specified in hours and possibly
minutes) from the coordinated universal time. The offset value shall be positive.

NOTE Coordinated Universal Time (UTC) is the international time standard. It is the current term for what

was commonly referred to as Greenwich Meridian Time (GMT). Zero (0) hours UTC is midnight in
Greenwich England, which lies on the zero longitudinal meridian. Coordinated universal time is based on a

Copyright ©1995-2016 European Space Agency page 79

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

24 hour clock; therefore, afternoon hours such as 4 pm are expressed as 16:00 UTC (sixteen hours, zero
minutes).

NOTE An nrf_coordinated_universal_time_offset is used to relate a time to coordinated universal time
by an offset (specified in hours and minutes) and a direction.

Express specification:

ENTITY nrf coordinated universal time offset;

hour offset : nrf hour in day;

minute offset : OPTIONAL nrf minute in hour;

sense : nrf ahead or behind;
DERIVE

actual minute offset: INTEGER := NVL (minute offset, 0);
WHERE

has valid actual minute offset: { 0 <= actual minute offset <= 59 };
has valid offsets: NOT (
((hour offset <> 0) OR (actual minute offset <>0))
AND (sense = exact));
END ENTITY;

Attribute definitions:

— hour offset specifies the number of hours by which a time is offset from coordinated universal time.

— minute_offset optionally specifies the number of minutes by which a time is offset from coordinated
universal time.

— sense specifies the direction of the offset.

— actual minute offset specifies the value of the number of minutes offset used to compute the
nrf_coordinated_universal_time_offset, cither the value of nrf minute offset or 0.

Formal propositions:

— has valid actual minute offset: The actual minute offset shall be a positive number, less than or
equal to 59.

— has_valid offsets: If the value of sense specifies that there is no offset from the Coordinated
Universal time, hour offset and actual minute offset shall both be equal to zero. If either
hour_offset or actual minute offset is different from zero, the value of sense shall specify that there
is an offset, either ahead or behind, from the Coordinated Universal time.

4.2.5.10 ENTITY nrf_local_time

An nrf_local_time specifies a moment in time on a 24-hour clock by hour, minute, and second. The instance
is expressed in the local time zone and the offset with the coordinate universal time shall be specified.

NOTE This construct is used to represent a moment in (wall clock) time whereas an nrf real quantity type
for a quantity category 'time' is used to represent an amount of time (on some relative time scale).

EXAMPLE 15:00 hours is a moment in time whereas 15 hours is an amount of time.

Express specification:

ENTITY nrf local time;
hour component : nrf hour in day;
minute component : OPTIONAL nrf minute in hour;

Copyright ©1995-2016 European Space Agency page 80

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

second component : OPTIONAL nrf second in minute;

zone : nrf coordinated universal time offset;
WHERE

is valid local time: nrf verify time (SELF);
END ENTITY;

Attribute definitions:

— hour_component specifies the number of hours
— minute_component optionally specifies the number of minutes
— second_component optionally specifies the number of seconds

— zone specifies the offset of the local time zone to the coordinated universal time.

Formal propositions:

— is_valid_local_time: The entity shall define a valid time.
4.2.5.11 ENTITY nrf_date_and_time

A date and time specifies a moment in time on a particular day.

Express specification:

ENTITY nrf date and time;
date component : nrf calendar date;
time component : nrf local time;
END ENTITY;

Attribute definitions:

— date_component specifies the date element of the date time combination.

— time_component specifies the time element of the date time combination.
4.2.5.12 FUNCTION nrf _verify calendar_date

The nrf_verify_calendar_date function determines whether the components of an nrf_calendar_date
indicate a valid date. If the nrf_calendar_date is valid, the function returns TRUE. Otherwise it returns
FALSE.

Express specification:

FUNCTION nrf verify calendar_ date(date : nrf calendar date) : LOGICAL;
CASE date.month component OF
1 : RETURN({ 1 <= date.day component <= 31 });

2 : BEGIN
IF (nrf verify leap year (date.year component)) THEN
RETURN ({ 1 <= date.day component <= 29 });
ELSE
RETURN ({ 1 <= date.day component <= 28 });
END IF;
END;

3 : RETURN({ 1 <= date.day component <= 31 });
: RETURN ({ 1 <= date.day component <= 30 });
5 : RETURN({ 1 <= date.day component <= 31 });

[IsN

Copyright ©1995-2016 European Space Agency

page 81

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

6 : RETURN({ 1 <= date.day component <= 30 });
7 : RETURN({ 1 <= date.day component <= 31 });
8 : RETURN({ 1 <= date.day component <= 31 });
9 : RETURN({ 1 <= date.day component <= 30 });
10: RETURN({ 1 <= date.day component <= 31 });
11: RETURN({ 1 <= date.day component <= 30 });
12: RETURN({ 1 <= date.day component <= 31 });

END CASE;

RETURN (FALSE) ;

END FUNCTION; -- nrf verify calendar date

Argument definitions:

— date specifies the candidate nrf_calendar_date that is to be verified.

4.2.5.13 FUNCTION nrf _verify_time

The nrf_verify_time function determines whether a candidate nrf local time has a minute _component if it

has a second _component. It returns FALSE if the condition is not met. Otherwise it returns TRUE.

Express specification:

FUNCTION nrf verify time(a time: nrf local time) : BOOLEAN;
IF EXISTS(a_time.second component) THEN
RETURN (EXISTS (a_time.minute component)) ;
ELSE
RETURN (TRUE) ;
END IF;
END FUNCTION;

Argument definitions:

— a_time specifies the candidate nrf local_time that is to be verified.

4.2.5.14 FUNCTION nrf_verify leap_year

The leap year function determines whether a given year is a leap year or not according to the Gregorian

calendar algorithm. It returns TRUE if the year is a leap year. Otherwise, it returns FALSE.

Express specification:

FUNCTION nrf verify leap year (year : nrf year number) : BOOLEAN;
IF ((((year MOD 4) = 0) AND ((year MOD 100) <> 0)) OR ((year MOD 400) = 0))
RETURN (TRUE) ;
ELSE
RETURN (FALSE) ;
END IF;
END FUNCTION;

THEN

Argument definitions:

— year specifies the candidate nrf year number that is being verified.

Copyright ©1995-2016 European Space Agency

page 82

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4.2.6 NRF Parametrics UoF

The nrf_parametrics UoF collects all application objects that enable the specification of named variables,
mathematical expressions and functions.

4.2.6.1 TYPE nrf algorithmic_expression

An nrf_algorithmic_expression specifies a string that holds an algorithmic expression in the syntax of a
given nrf_algorithmic_language.

Express specification:

TYPE nrf algorithmic_expression = STRING;
END TYPE;

4.2.6.2 TYPE nrf algorithmic_statement

An nrf_algorithmic_statement specifies a string that holds an algorithmic statement in the syntax of a given
nrf_algorithmic_language.

Express specification:

TYPE nrf algorithmic_statement = STRING;
END TYPE;

4.2.6.3 ENTITY nrf algorithmic language

An nrf_algorithmic_language specifies the name and description of a programming or scripting language
that can be used to define the expressions for an nrf real quantity value expression, an

nrf_integer _quantity_value_expression, an nrf_string_quantity_value expression, an
nrf_enumeration_quantity_value_expression or an nrf_tensor_quantity value expression, and the statements
for an nrf_model function instances.

Express specification:

ENTITY nrf_algorithmic_ language;

name : nrf label;

version : nrf label;

description : nrf text;

specification uri : OPTIONAL nrf uniform resource identifier;
UNIQUE

has unique name: name;
END ENTITY;

Attribute definitions:

— name specifies the human-interpretable name of an nrf_algorithmic_language.
— version specifies the name of the version of an nrf_algorithmic language.
— description specifies the textual description of an nrf_algorithmic_language.

— specification_uri optionally specifies a URI that uniquely identifies the formal specification or
standard for the algorithmic language.

Copyright ©1995-2016 European Space Agency page 83

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

Formal propositions:

— has_unique name: The name shall be unique in the dataset.
4.2.6.4 ENTITY nrf_variable

An nrf_variable specifies a named variable that can be referenced in expressions or algorithmic statements.
Optionally its value may be prescribed. If a value is prescribed then the variable is considered to be a bound
or independent variable, otherwise it is considered an unbound or dependent variable. The name space (or
scope) of an nrf_variable is the nrf network model, nrf case or nrf model function to which it is
associated.

Express specification:

ENTITY nrf variable

SUPERTYPE OF (ONEOF (nrf formal parameter));

id : nrf identifier;

description : nrf text;

quantity type : nrf any quantity type;

prescription : OPTIONAL nrf any quantity value prescription;
WHERE

has valid quantity type:

(NOT EXISTS (prescription)) XOR (quantity type :=: prescription.quantity type);

END ENTITY;

Attribute definitions:

— id specifies the identifier by which the variable is known.
— description specifies a textual description of the intent or usage of the variable.
— quantity type specifies the quantity type of the variable.

— prescription optionally specifies the prescribed value of the variable.

Formal propositions:

— has_valid_quantity type: If the prescription exists its quantity type shall be the same as the
quantity type of the nrf_variable.

4.2.6.5 ENTITY nrf_model_constraint

An nrf _model constraint specifies a constraint for an nrf_network model in the form of a mathematical
equation. The equation shall use variable names that have been declared through the variables attribute of the
relevant nrf_network model. These constraint declarations can be used to specify non-causal mathematical
models.

Express specification:

ENTITY nrf model constraint;
id : nrf identifier;
description : nrf text;
language : nrf algorithmic language;
constraint : nrf algorithmic expression;
independent variables : LIST OF nrf variable;
creator tool : OPTIONAL nrf tool or facility;
END ENTITY;

Copyright ©1995-2016 European Space Agency page 84

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

Attribute definitions:

— 1id specifies the identifier of the constraint.
— description specifies the textual description of the constraint.

— language specifies the nrf_algorithmic language in which the mathematical equation expressing the
constraint is formulated.

— constraint specifies the mathematical equation that formulates the constraint in a syntax that
conforms to the given language.

— independent_variables specifies the independent variables in the constraint as appropriate.

— creator_tool optionally specifies the tool that was used in the creation of the constraint.
4.2.6.6 TYPE nrf formal_parameter_in_out

An nrf_formal_parameter_in_out specifies the three possibilities for the usage of an nrf_formal parameter
in an nrf_any_function: INPUT ONLY, OUTPUT_ONLY or INPUT_OUTPUT.

Express specification:

TYPE nrf formal parameter_ in out = ENUMERATION OF (
INPUT ONLY,
OUTPUT_ ONLY,
INPUT OUTPUT) ;

END TYPE;

4.2.6.7 ENTITY nrf_formal_parameter

An nrf_formal_parameter specifies a formal parameter for use in the signature of an nrf model function.
If its prescription is specified (see nrf_variable), it is the default value of the parameter.

Express specification:

ENTITY nrf formal parameter

SUBTYPE OF (nrf wvariable);

in out : nrf formal parameter in out;
END ENTITY;

Attribute definitions:

— in_out specifies whether an nrf_formal_parameter is an INPUT ONLY, OUTPUT ONLY or
INPUT OUTPUT parameter. The value of an nrf_formal_parameter can always be changed
inside the body of a nrf model function, but such a change of value is only reflected back to the
point of invocation when the in_out attribute of the parameter is set to OUTPUT ONLY or
INPUT OUTPUT.

4.2.6.8 ENTITY nrf_model_function

An nrf_model_function specifies a function signature and an executable function body. The body is defined
by a list of statements conforming to a given algorithmic language. An nrf_model_function typically
specifies user-defined logic that is part of an nrf _network model.

Express specification:

Copyright ©1995-2016 European Space Agency page 85

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

ENTITY nrf model function;
id : nrf identifier;
description : nrf text;
formal parameters : LIST OF nrf formal parameter;
result quantity type : OPTIONAL nrf any quantity type;
language : nrf algorithmic language;
statements : LIST OF nrf algorithmic statement;
creator tool : OPTIONAL nrf tool or facility;

END ENTITY;

Attribute definitions:

— id specifies the identifier of the nrf_model_function.
— description specifies the textual description of the nrf_model function.

— formal parameters specifies the list of formal function parameters. The prescription of any
nrf formal parameter may be used to specify a default value.

— result_quantity type specifies the quantity type of the result to be returned by the
nrf_model_function.

— language specifies the nrf_algorithmic language in which the body of the nrf_model function is
expressed.

— statements specifies the list of statements that constitute the body of the function in a syntax that
conforms to the given language.

— creator_tool optionally specifies the tool that was used in the creation of the nrf_model function.
4.2.6.9 ENTITY nrf_any_quantity_value_prescription

An nrf_any_quantity_value_prescription is an abstract supertype that provides a generic mechanism to
reference quantity value prescriptions for each of the defined quantity types.

Express specification:

ENTITY nrf any quantity value prescription
ABSTRACT SUPERTYPE OF (ONEOF (
nrf real quantity value prescription,
nrf integer quantity value prescription,
nrf string quantity value prescription,
nrf enumeration quantity value prescription,
nrf tensor quantity value prescription));
quantity type : nrf any quantity type;
real values : LIST OF REAL;
integer values : LIST OF INTEGER;
WHERE
has correct number of real values:
SIZEOF (real values) = quantity type.number of real values;
has correct number of integer values:
SIZEOF (integer values) = quantity type.number of integer values;
END ENTITY;

Attribute definitions:

— quantity_type specifies the quantity type of the prescription.

— real_values specifies the literal real values for the quantity type. For a literal subtype it specifies the
final values, but for an expression subtype it specifies the evaluated default values for the
expression. The ordering in real values is the same as for the real_values attribute of nrf datacube.

Copyright ©1995-2016 European Space Agency page 86

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

— integer values specifies the literal integer values for the quantity_type. For a literal subtype it
specifies the final values, but for an expression subtype it specifies the evaluated default values for
the expression. The ordering in integer values is the same as for the integer values attribute of
nrf datacube.

Formal propositions:

— has_correct number of real values: The number of real values shall be as required for the
quantity_type.

— has correct number of integer values: The number of integer values shall be as required for the
quantity_type.

4.2.6.10 ENTITY nrf real quantity value prescription

An nrf_real_quantity_value_prescription is a type of nrf_any_ quantity value prescription for an

nrf real quantity type. It is an abstract supertype that provides a generic mechanism to reference an

nrf real quantity literal, an nrf real quantity expression, an

nrf real univariate power series_polynomial expression or an nrf real interpolation_table expression.

Express specification:

ENTITY nrf real quantity value_prescription
ABSTRACT SUPERTYPE OF (ONEOF (
nrf real quantity value literal,
nrf real gquantity value expression,
nrf real univariate power series polynomial expression,
nrf real interpolation table expression))
SUBTYPE OF (nrf any quantity value prescription);
SELF\nrf any quantity value prescription.quantity type :
nrf real gquantity type;
DERIVE
val : REAL := real values[l];
END ENTITY;

Attribute definitions:

— val is derived to be the first real value for the quantity type, i.c. the best estimated value if
quantity type has an associated uncertainty method. For an nrf real quantity value literal it
specifies the final value, for the other subtypes it specifies the evaluated default value for the
expression.

4.2.6.11 ENTITY nrf_real_quantity_value_literal

An nrf_real_quantity value_literal is a type of nrf real quantity value prescription that specifies a literal
real value for an nrf_real quantity type.

Express specification:

ENTITY nrf real quantity value literal
SUBTYPE OF (nrf real quantity value prescription);
END ENTITY;

Copyright ©1995-2016 European Space Agency page 87

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4.2.6.12 ENTITY nrf real quantity value expression

An nrf_real_quantity value_expression is a type of nrf_real quantity value prescription that specifies the
prescription of a value for an nrf real quantity type through an expression conforming to a given
algorithmic language. The expression may reference one or more nrf_variable instances through their id.

EXAMPLE Typical use of an nrf quantity value expression would be the specification of a temperature
dependent material property like thermal conductivity for a material.

Express specification:

ENTITY nrf real quantity value expression
SUBTYPE OF (nrf real quantity value prescription);
language : nrf algorithmic language;
expression : nrf algorithmic expression;
creator tool : OPTIONAL nrf tool or facility;

END ENTITY;

Attribute definitions:

— language specifies the nrf algorithmic_language in which the expression is expressed.

— expression specifies an algorithmic expression in a syntax that conforms to the algorithmic
language specified in the language attribute.

— creator_tool optionally specifies the tool that was used in the creation of the expression.
4.2.6.13 ENTITY nrf_real univariate_power_series_polynomial expression

An nrf_real_univariate_power_series_polynomial_expression is a type of nrf quantity value expression
that specifies a prescription by defining a univariate polynomial expression by a power series of a specified
degree with real coefficients. Such a polynomial of degree N is defined by the following equation:

N-1 N

2
f(x) =ap+ a1z + asx +asr® 4+ - +ay_1x +ayz
where « is the independent parameter and the ¢; are the coefficients.

Express specification:

ENTITY nrf real univariate_ power_ series polynomial expression

SUBTYPE OF (nrf real quantity value prescription);

id : nrf identifier;

description : nrf text;

independent parameter : nrf variable;

degree : nrf positive integer;

coefficients : LIST [1:?] OF REAL;
WHERE

number of coefficients matches degree: SIZEOF (coefficients) = degree + 1;
END ENTITY;

Attribute definitions:

— 1id specifies the identifier by which the expression is known.
— description specifies a textual description of the polynomial expression.

— independent parameter specifies the independent parameter for the polynomial expression.

Copyright ©1995-2016 European Space Agency page 88

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

— degree specifies the degree N of the polynomial function.

— coefficients specifies the list of N+1 coefficients of the polynomial function.

Formal propositions:

— number of coefficients matches degree: The number of coefficients shall be one more than the
degree.

4.2.6.14 TYPE nrf _interpolation_type

An nrf_interpolation_type specifies one of the following interpolation procedures: polynomial, linear/
logarithmic

Express specification:

TYPE nrf interpolation_ type = ENUMERATION OF (
POLYNOMIAL,
LINEAR LOGARITHMIC,
LOGARITHMIC LINEAR,
LOGARITHMIC LOGARITHMIC) ;
END TYPE;

4.2.6.15 ENTITY nrf real interpolation_table expression

An nrf_real_interpolation_table expression is a type of nrf quantity value expression that specifies a
prescription defined by an interpolation table containing the dependent values for all combinations of one or
more discrete bases of independent parameters, and an interpolation method definition.

Express specification:

ENTITY nrf real interpolation_ table expression
SUPERTYPE OF (ONEOF (nrf cyclic real interpolation table expression))
SUBTYPE OF (nrf real quantity value prescription);
independent parameters : LIST [1:?] OF nrf variable;

interpolation type : nrf interpolation type;

interpolation degree : nrf positive integer;

interpolation table : nrf real lookup table;
WHERE

has correct number of independent parameters:
SIZEOF (independent parameters) =
SIZEOF (interpolation table.independent quantity types):;

has valid interpolation degree:
(interpolation type = POLYNOMIAL) OR (interpolation degree = 1);

interpolation table has correct dependent quantity type:
SELF\nrf real quantity value prescription.quantity type :=:
interpolation table.dependent quantity type;

interpolation table has correct independent quantity types:
nrf verify independent quantity types (SELF) ;

END ENTITY;

Attribute definitions:

— independent_parameters specifies the list of actual independent variable references to be used.
— interpolation_type specifies the type of interpolation to be performed.

— interpolation_degree specifies which degree of interpolation shall be performed.

Copyright ©1995-2016 European Space Agency page 89

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

— interpolation_table specifies the nrf real lookup table that contains the values for the interpolation.

Formal propositions:

— has_correct number of independent parameters: The number of independent_parameters shall be
equal to the number of independent quantity types in the associated interpolation_table.

— has_valid_interpolation_degree: If the interpolation_type is POLYNOMIAL any
interpolation_degree is permitted, if the interpolation_type is not POLYNOMIAL the
interpolation_degree shall be one.

— interpolation_table has correct dependent quantity type: The resulting quantity type of the
expression shall be the same as the quantity type of the dependent values in the interpolation_table.

— interpolation_table has correct independent quantity types: The quantity types of the
independent parameters shall be the same as the independent quantity types of the associated
interpolation_table.

4.2.6.16 ENTITY nrf _cyclic_real interpolation_table expression

An nrf_cyclic_real_interpolation_table_expression is a type of nrf_real interpolation_table_ expression
that specifies a prescription defined by an interpolation table containing the dependent values for a single
discrete basis of an independent parameter and a cyclic interpolation method.

Express specification:

ENTITY nrf cyclic_real interpolation_ table_ expression

SUBTYPE OF (nrf real interpolation table expression);

period : REAL;
WHERE

has one independent parameter: SIZEOF (independent parameters) = 1;
END ENTITY;

Attribute definitions:

— period specifies the period for the cyclic interpolation. Its quantity type is by definition the same as
that of the first independent_quantity types of the referenced interpolation_table.

Formal propositions:

— has_one_independent_parameter: There shall be only one indepent parameter.
4.2.6.17 FUNCTION nrf_verify_independent_quantity_types

The function nrf_verify independent quantity types verifies that the quantity types of
independent parameters of an nrf real interpolation_table expression and the independent quantity types
of the associated interpolation_table are the same.

Express specification:

FUNCTION nrf verify independent quantity types (
rite : nrf real interpolation table expression) : BOOLEAN;
REPEAT i := 1 TO SIZEOF (rite.independent parameters);
IF rite.independent parameters[i].quantity type :<>:
rite.interpolation table.independent quantity types([i] THEN
RETURN (FALSE) ;

Copyright ©1995-2016 European Space Agency page 90

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

END IF;
END REPEAT;
RETURN (TRUE) ;

END_FUNCTION;

Argument definitions:

— rite specifies the candidate nrf real interpolation table expression to be verified.

4.2.6.18 ENTITY nrf real lookup table

An nrf_real_lookup_table specifies a multi-dimensional mathematical space with discrete bases of
independent quantity values that span a grid, and discrete sampled dependent quantity values at all grid
points. It can be used to define an interpolation table.

Express specification:

ENTITY nrf real lookup_table;
id : nrf identifier;
description : nrf text;
independent quantity types : LIST [1:?] OF nrf real quantity type;
dependent quantity type : nrf real guantity type;
independent values : LIST [1:?] OF LIST [1:?] OF REAL;
dependent values : LIST [1:?] OF REAL;
WHERE
has correct number of independent quantities:
SIZEOF (independent quantity types) = SIZEOF (independent values) ;
has correct number of dependent quantities:
nrf verify number of dependent values in real lookup table (SELF) ;
END ENTITY;

Attribute definitions:

— id specifies the identifier by which the dataspace is known.
— description specifies a textual description of the dataspace.

— independent_quantity types specifies the list of independent quantity types for each of the bases of
the dataspace.

— dependent_quantity type specifies the quantity type of the dependent values in the dataspace.

— independent_values specifies the nested lists of discrete values that define each of the bases of the
dataspace.

— dependent_values specifies the list of dependent values that populate the lookup table. The ordering
of the values in dependent_values follows the ordering of the independent_values, in other words
the index for the first basis of independent_values varies slowest and the index for the last basis of
independent_values varies fastest.

EXAMPLE The code example below shows a possible implementation in EXPRESS to compute the index
in the flat list of dependent values from a given set of independent_values indices:

FUNCTION nrf get real lookup value index(
rlt : nrf real lookup table;

indices : LIST OF INTEGER) : INTEGER;
LOCAL

j : INTEGER;
END_ TLOCAL;

IF SIZEOF (rlt.independent values) <> SIZEOF (indices) THEN

Copyright ©1995-2016 European Space Agency page 91

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

RETURN (?) ;
END IF;
Jj = 0;
REPEAT i1 := 1 TO (SIZEOF (indices) - 1);
j := (J + (indices[i] - 1)) * SIZEOF (rlt.independent values[i+1]);
END REPEAT;
j := Jj + indices[SIZEOF (indices)];
RETURN (J) ;
END FUNCTION;

Formal propositions:

— has_correct number of independent quantities: The number of independent quantity types shall

be the same as the number of independent values lists.

— has_correct number of dependent quantities: The number of dependent values shall match the

product of the numbers of independent values along each of the dataspace's bases.

4.2.6.19 FUNCTION nrf _verify number_of dependent_values_in_real lookup_table

The function nrf_verify_number_of dependent_values_in_real lookup_table verifies that the number of

dependent values for an nrf real lookup table is correct.

Express specification:

FUNCTION nrf verify number of dependent values_in real lookup_table (
rlt : nrf real lookup table) : BOOLEAN;
LOCAL
required number of dependent values : INTEGER := 1;
END LOCAL;
REPEAT i := 1 TO SIZEOF (rlt.independent values);
required number of dependent values :=
required number of dependent values * SIZEOF (rlt.independent values[i]);
END REPEAT;
IF SIZEOF (rlt.dependent values) <> required number of dependent values THEN
RETURN (FALSE) ;
END IF;
RETURN (TRUE) ;
END_FUNCTION;

Argument definitions:

— rlt specifies the candidate nrf real lookup_table to be verified.

4.2.6.20 ENTITY nrf_integer_quantity_value_prescription

An nrf_integer quantity value_ prescription is a type of nrf_any_ quantity value prescription for an
nrf_integer quantity_type. It is an abstract supertype that provides a generic mechanism to reference an

nrf_integer quantity literal or an nrf integer quantity expression.

Express specification:

ENTITY nrf integer quantity value_ prescription
ABSTRACT SUPERTYPE OF (ONEOF (
nrf integer gquantity wvalue literal,
nrf integer quantity value expression))
SUBTYPE OF (nrf any quantity value prescription);

Copyright ©1995-2016 European Space Agency

page 92

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

SELF\nrf any quantity value prescription.quantity type : nrf integer quantity type;
DERIVE

val : INTEGER := integer values[1];
END ENTITY;

Attribute definitions:

— val is derived to be the first integer value for the quantity type, i.e. the best estimated value if
quantity type has an associated uncertainty method. For an nrf_integer quantity value literal it
specifies the final value, for the nrf integer quantity value expression subtype it specifies the
evaluated default value for the expression.

4.2.6.21 ENTITY nrf _integer quantity value literal

An nrf_integer_quantity_value_literal is a type of nrf_integer quantity value_prescription that specifies a
literal integer value for an nrf_integer quantity type.

Express specification:

ENTITY nrf integer quantity value literal
SUBTYPE OF (nrf integer quantity wvalue prescription);
END ENTITY;

4.2.6.22 ENTITY nrf_integer_quantity_value_expression

An nrf_integer_quantity_value_expression is a type of nrf_integer quantity_value_prescription that
specifies the prescription of a value for an nrf_integer_quantity_type through an expression conforming to a
given algorithmic language. The expression may reference one or more nrf_variable instances through their
id.

Express specification:

ENTITY nrf integer quantity value_ expression
SUBTYPE OF (nrf integer quantity wvalue prescription);

language : nrf algorithmic language;

expression : nrf algorithmic expression;

creator tool : OPTIONAL nrf tool or facility;
END ENTITY;

Attribute definitions:

— language specifies the nrf_algorithmic language in which the expression is expressed.

— expression specifies an algorithmic expression in a syntax that conforms to the algorithmic
language specified in the language attribute.

— creator_tool optionally specifies the tool that was used in the creation of the expression.
4.2.6.23 ENTITY nrf_string_quantity value prescription

An nrf_string_quantity value prescription is a type of nrf_any quantity value_prescription for an
nrf string_quantity _type. It is an abstract supertype that provides a generic mechanism to reference an
nrf_string_quantity literal or an nrf_string_quantity expression.

Express specification:

Copyright ©1995-2016 European Space Agency page 93

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

ENTITY nrf string quantity value prescription
ABSTRACT SUPERTYPE OF (ONEOF (
nrf string gquantity value literal,
nrf string gquantity value expression))
SUBTYPE OF (nrf any quantity value prescription);
SELF\nrf any quantity value prescription.quantity type : nrf string quantity type;
DERIVE
val : INTEGER := integer values[1];
END ENTITY;

Attribute definitions:

— val is derived to be the literal index into the string_values list of the quantity type. For an
nrf string quantity value literal it specifies the final value, for an
nrf string_quantity value expression it specifies the evaluated default value for the expression.

4.2.6.24 ENTITY nrf _string_quantity value_literal

An nrf_string_quantity _value_literal is a type of nrf_string_quantity value prescription that specifies a
literal string value for an nrf string_quantity type.

Express specification:

ENTITY nrf string quantity value literal
SUBTYPE OF (nrf string gquantity value prescription);
END ENTITY;

4.2.6.25 ENTITY nrf_string_quantity _value_expression

An nrf_string_quantity_value_expression is a type of nrf_string_quantity value prescription that specifies

the prescription of a value for an nrf_string_quantity_type through an expression conforming to a given
algorithmic language. The expression may reference one or more nrf_variable instances through their id.

Express specification:

ENTITY nrf string quantity value expression
SUBTYPE OF (nrf string gquantity value prescription);

language : nrf algorithmic language;

expression : nrf algorithmic expression;

creator tool : OPTIONAL nrf tool or facility;
END ENTITY;

Attribute definitions:

— language specifies the nrf_algorithmic language in which the expression is expressed.

— expression specifies an algorithmic expression in a syntax that conforms to the algorithmic
language specified in the language attribute.

— creator_tool optionally specifies the tool that was used in the creation of the expression.

Copyright ©1995-2016 European Space Agency page 94

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4.2.6.26 ENTITY nrf _enumeration_quantity value prescription

An nrf_enumeration_quantity value_prescription is a type of nrf_any_quantity_value prescription for an
nrf _enumeration_quantity_type. It is an abstract supertype that provides a generic mechanism to reference an

nrf enumeration_quantity literal or an nrf enumeration_quantity expression.

Express specification:

ENTITY nrf enumeration quantity value_prescription
ABSTRACT SUPERTYPE OF (ONEOF (
nrf enumeration quantity value literal,
nrf enumeration quantity value expression))
SUBTYPE OF (nrf any quantity value prescription);

SELF\nrf any quantity value prescription.quantity type : nrf enumeration quantity ty

pe;

DERIVE
val : INTEGER := integer values[1l];
END ENTITY;

Attribute definitions:

— val is derived to be the literal index into the enumeration_items list of the quantity type. For an
nrf_enumeration_quantity_value_literal it specifies the final value, for an
nrf_enumeration_quantity_value_expression it specifies the evaluated default value for the
expression.

4.2.6.27 ENTITY nrf_enumeration_quantity_value_literal

An nrf _enumeration_quantity value literal is a type of nrf_enumeration quantity value prescription that

specifies a literal enumeration value for an nrf _enumeration _quantity_type.

Express specification:

ENTITY nrf enumeration quantity value literal
SUBTYPE OF (nrf enumeration quantity value prescription);
END ENTITY;

4.2.6.28 ENTITY nrf_enumeration_quantity_value_expression

An nrf_enumeration_quantity value expression is a type of

nrf_enumeration_quantity value prescription that specifies the prescription of a value for an

nrf enumeration_quantity_type through an expression conforming to a given algorithmic language. The
expression may reference one or more nrf_variable instances through their id.

Express specification:

ENTITY nrf enumeration quantity value_ expression
SUBTYPE OF (nrf enumeration quantity value prescription);
language : nrf algorithmic language;
expression : nrf algorithmic expression;
creator tool : OPTIONAL nrf tool or facility;
END ENTITY;

Attribute definitions:

Copyright ©1995-2016 European Space Agency page 95

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

— language specifies the nrf algorithmic_language in which the expression is expressed.

— expression specifies an algorithmic expression in a syntax that conforms to the algorithmic
language specified in the language attribute.

— creator_tool optionally specifies the tool that was used in the creation of the expression.
4.2.6.29 ENTITY nrf_tensor_quantity_value_prescription

An nrf_tensor_quantity value prescription is a type of nrf_any_quantity value prescription for an
nrf_any tensor_quantity type. It is an abstract supertype that provides a generic mechanism to reference an
nrf any tensor quantity literal or an nrf any tensor quantity expression.

Express specification:

ENTITY nrf tensor quantity value prescription
ABSTRACT SUPERTYPE OF (ONEOF (
nrf tensor quantity value literal,
nrf tensor quantity value expression))

SUBTYPE OF (nrf any quantity value prescription);
SELF\nrf any quantity value prescription.quantity type
nrf any tensor quantity type;
END ENTITY;

4.2.6.30 ENTITY nrf_tensor_quantity_value_literal

An nrf_tensor_quantity _value_literal is a type of nrf tensor quantity value prescription that specifies
literal values for an nrf any tensor_quantity_type.

Express specification:

ENTITY nrf tensor quantity value literal
SUBTYPE OF (nrf tensor quantity value prescription);
END ENTITY;

4.2.6.31 ENTITY nrf_tensor_quantity_value_expression

An nrf_tensor_quantity value_expression is a type of nrf tensor_quantity value prescription that
specifies the prescription of the values for an nrf any tensor quantity type through an expression
conforming to a given algorithmic language. The expression may reference one or more nrf_variable
instances through their id.

Express specification:

ENTITY nrf tensor_ quantity value_expression
SUBTYPE OF (nrf tensor quantity value prescription);
language : nrf algorithmic language;
expression : nrf algorithmic expression;
creator tool : OPTIONAL nrf label;
END ENTITY;

Attribute definitions:

— language specifies the nrf algorithmic_language in which the expression is expressed.

Copyright ©1995-2016 European Space Agency page 96

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

— expression specifies an algorithmic expression in a syntax that conforms to the algorithmic
language specified in the language attribute.

— creator_tool optionally specifies the tool that was used in the creation of the expression.
4.2.6.32 ENTITY nrf_quantity value prescription_for item

An nrf_quantity_value_prescription_for_item specifies an nrf any quantity value prescription for a
given nrf_observable item. It is used to prescribe the value for a quantity type that is associated with an
nrf observable_item. It can therefore be used in parametric model definitions.

Express specification:

ENTITY nrf quantity value prescription_for item;

item : nrf observable item;

prescription : nrf any quantity value prescription;
END ENTITY;

Attribute definitions:

— item specifies the nrf_observable item for which the prescription is defined.

— prescription specifies the nrf any quantity value prescription.

4.2.7 NRF Network model representation UoF

The nrf_network model representation UoF collects the definitions needed for a generic representation of
engineering objects as a hierarchical structure of models containing a network of discrete nodes and
relationships between these nodes.

4.2.7.1 ENTITY nrf_observable_item

An nrf_observable_item is an abstract supertype that provides a generic mechanism to reference a subtype
item for which a quantity can be observed. This is a lightweight entity without any name or other attributes
so that it can be used in applications where there is a very large number of observable items.

Express specification:

ENTITY nrf observable item
ABSTRACT SUPERTYPE OF (ONEOF (
nrf named observable item,
nrf observable item relationship(*,
mgm face*)));
END ENTITY;

4.2.7.2 ENTITY nrf_observable_item_relationship

An nrf_observable_item_relationship is an abstract supertype that provides a generic mechanism to
reference a subtype relationship between two or more instances of nrf_observable item for which a quantity
can be observed.

Express specification:

Copyright ©1995-2016 European Space Agency page 97

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

ENTITY nrf observable item relationship
(*ABSTRACT SUPERTYPE OF (ONEOF (mgm face pair))?*)
SUBTYPE OF (nrf observable item);
items : LIST [2:?] OF nrf observable item;

END ENTITY;

4.2.7.3 ENTITY nrf_named_observable_item_class

An nrf_named_observable_item_class is a specification of a class of nrf named observable item
instances.

The attribute name specifies the unique class name. It shall be defined in an external resource and is
dependent on the analysis, simulation, test or operation discipline.

EXAMPLE 1 An nrf network model representing a thermal network model may be identified by an
nrf named_observable_item_class with name 'thermal network model'.

EXAMPLE 2 An nrf network node_relationship representing a TRI3 structural finite element may be
identified by an nrf named_observable item_class with name 'structural finite element tri3'.

Express specification:

ENTITY nrf named observable_item class
SUPERTYPE OF (ONEOF (
nrf network model class,
nrf network node class,
nrf network node relationship class,
nrf material class,
nrf named observable item group class (*,

sma celestial body class*)));
name : nrf non blank label;
description : nrf text;
security class : OPTIONAL nrf security classification level;
UNIQUE

has_unique name: name;
END ENTITY;

Attribute definitions:

— name specifies the human-interpretable name of an instance of
nrf_named_observable_item_class.

— description specifies the textual description of an instance of nrf named_observable _item_class.

— security_class optionally specifies the security class for access to the data associated to the
nrf named_observable_item_class

Formal propositions:

— has_unique name: name shall be unique for all nrf named_observable_item_class instances in
the dataset.

Copyright ©1995-2016 European Space Agency page 98

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4.2.7.4 ENTITY nrf_named_observable item

An nrf_named_observable_item is a type of nrf_observable_item with an individual identifier, name,
description, classification and security class. It is also a supertype that specializes into nrf _network model,
nrf_network node, nrf_network node_relationship, nrf_material and nrf_named_observable_item_group.

EXAMPLE A surface material can be represented as an nrf_named_observable_item, which has optical
properties.

EXAMPLE A thermal network node can be represented as an nrf named_observable item with an
observed temperature.

Express specification:

nrf

ENTITY nrf named observable_ item
SUPERTYPE OF (ONEOF (

network model,

nrf

network node,

nrf

network node relationship,

nrf
nrf

material,

named observable item group (*,

sma

celestial body*)))

SUBTYPE OF (nrf observable item);

id nrf identifier;

name : nrf label;

description : nrf text;

item class : nrf named observable item class;

security class : OPTIONAL nrf security classification level;

END ENTITY;

Attribute definitions:

id specifies the identifier of an nrf_named_observable_item.

name specifies the human-interpretable name of an nrf named_observable item.

description specifies the textual description of an nrf _named_observable_item.

item_class specifies the nrf named observable item_class of which an
nrf_named_observable_item is a member.

security_class specifies the security class for access to the data associated to the
nrf named_observable_item.

4.2.7.5 ENTITY nrf_observable_item_list

An nrf_observable_item_list represents a list of nrf observable item instances. Such a list can be used as
an item basis for an nrf_datacube.

Express specification:

ENTITY nrf observable item list
SUPERTYPE OF (ONEOF (nrf named observable item list));

id nrf identifier;

name : nrf label;

description : nrf text;

security class : OPTIONAL nrf security classification level;
items LIST [1:?] OF UNIQUE nrf observable item;

END ENTITY;

Copyright ©1995-2016 European Space Agency

page 99

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

Attribute definitions:

— 1id specifies the identifier of an instance of an nrf_observable_item_list.
— name specifies the human-interpretable name of an instance of nrf_observable_item_list.
— description specifies the textual description of an instance of nrf_observable item_list.

— security_class optionally specifies the security class for access to the data associated to the
nrf_observable_item_list

— items specifies the list of nrf_observable item instances

4.2.7.6 ENTITY nrf named_observable_item_list

An nrf_named_observable_item_list is a type of nrf observable_item_list that specifies a list of
nrf named observable item instances. Such a list can be used as an item basis for an nrf_datacube.

Express specification:

ENTITY nrf named observable item list
SUBTYPE OF (nrf observable item list);
SELF\nrf observable item list.items : LIST [1:?] OF UNIQUE nrf named observable item
WHERE
items have unique identifiers:
nrf verify unique identifiers(items);
END ENTITY;

Attribute definitions:

— items specifies the list of nrf named observable item instances.

Formal propositions:

— items_have unique identifiers: All items shall have a unique id.
4.2.7.7 ENTITY nrf_named_observable_item_group_class

An nrf_named_observable_item_group_class specifies a class of nrf named observable item group
instances, that is a named category of nrf named observable item_group instances that share common
characteristics and behaviour. The name of the class shall be defined in an external dictionary and is
dependent on the analysis, simulation, test or operation discipline.

EXAMPLE An nrf named_observable item_group class with name

'thermal network node group class' and as valid_item_classes a reference to an nrf _network node class
with name 'thermal network node class' can be defined to specify arbitrary groups of thermal network
nodes for e.g. post-processing purposes.

Express specification:

ENTITY nrf named observable_ item group class
SUBTYPE OF (nrf named observable item class);
valid item classes : SET OF nrf named observable item class;
END ENTITY;

Attribute definitions:

Copyright ©1995-2016 European Space Agency page 100

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

— valid_item_classes specifies the set of nrf named observable item_class instances that define the
kind of nrf named observable_item instances that may be contained in an

nrf named observable item group.

4.2.7.8 ENTITY nrf_named_observable item_group

An nrf_named_observable_item_group specifies a group of nrf named observable_item instances defined
within the scope of an nrf_network model. Such a group can be used for any purpose in which is it useful to
identify or treat a collection of named observable items together. Since an
nrf_named_observable_item_group is itself an nrf named observable item the specification of groups of
groups is possible.

EXAMPLE Some typical applications for named groups of observable items are: treating a groups of
analysis model nodes together for post-processing purposes or treating groups of geometric shapes together
for interactive viewing purposes.

Express specification:

ENTITY nrf named observable_ item group
SUBTYPE OF (nrf named observable item);

SELF\nrf named observable item.item class : nrf named observable item group class;
items : LIST OF UNIQUE nrf named observable item;
INVERSE
containing model : nrf network model FOR groups;
UNIQUE
has unique id within containing model: containing model, id;
WHERE

items_have valid item class:
SIZEOF (QUERY (item <* items | item.item class IN item class.valid item classes)) =
SIZEOF (items) ;

items_belong to containing model:
nrf verify named observable items in model tree (SELF);

item group tree is acyclic:
nrf verify acyclic item group tree (SELF, [SELF]);

END ENTITY;

Attribute definitions:

— item_class specifies the nrf named observable item_group class of which this group is a member.
— items specifies the list of nrf named observable item instances that together form the group.

— containing_model specifies the nrf_network model for which this group is defined.

Formal propositions:

— has_unique_id_ within_containing_model: the id shall be unique within the nrf_network model that
contains the nrf named_observable item_group.

— items_have valid item class: All items in the group have an item_class that is present in the
valid item_classes of the group's own item_class.

— items_belong to containing model: all items shall belong to containing model or its submodel tree

— item_group_tree_is_acyclic: the item groups form an acyclic tree, in other words there shall be no
circular group references.

Copyright ©1995-2016 European Space Agency page 101

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4.2.7.9 ENTITY nrf network model class

An nrf_network_model_class is a specification of a class of nrf_network _model instances, that is a named
category of nrf network model instances that share common characteristics and behaviour. The name of the
class shall be defined in an external dictionary and is dependent on the analysis, simulation, test or operation
discipline.

EXAMPLE An nrf network model representing a thermal network model can have a class with name
'thermal network model class'.

EXAMPLE An nrf network model representing a structural finite element model can have a class with
name 'structural_finite element model class'.

Express specification:

ENTITY nrf network model class

SUBTYPE OF (nrf named observable item class);

valid node classes : SET OF nrf network node class;

valid node relationship classes : SET OF nrf network node relationship class;
END_ ENTITY;

Attribute definitions:

— valid node_classes specifies the nrf network node class instances that are allowed to be used by
the nrf_network node instances referenced by an nrf_network model instance using an
nrf_network_model_class.

— valid _node_relationship classes specifies the nrf_network node relationship_class instances that
are allowed to be used by the nrf network node_relationship instances referenced by an
nrf network model instance using an nrf_network model_class.

4.2.7.10 ENTITY nrf_network_model

An nrf_network_model specifies the representation of a product, and possibly of its environment, in the
form of a network topology. The model is intended for use in analysis, simulation, test or operation activities.
It provides a generic hierarchical decomposition structure of identified discrete observable items and the
relationships between them. Any number of properties can be associated to any item in this structure, such
as: (1) characteristic properties — for example material properties; (2) intrinsic properties — for example
dimensions or mass; (3) predicted properties — for example analysis results; (4) assigned properties — for
example settings for test parameters; (5) observed properties — for example sensor readings obtained in a test
or in operation; (6) derived properties — for example statistics derived from sensor readings or analysis
results. Through an nrf model represents product relationship it is possible to express the association
between an nrf product definition that identifies a product (or part of a product) and the

nrf_network model that represents it.

EXAMPLE 1 A finite difference / lumped parameter thermal network model could be an

nrf network model with thermal network nodes represented by nrf network node instances and thermal
network conductors represented by nrf network node relationship instances. There would be an

nrf network node_relationship class for each supported conductor type, such as linear conductor,
radiative coupling, one way linear conductor, etc.

EXAMPLE 2 A structural finite element model could be an nrf_network model with the finite element
nodes represented by nrf_network node instances and finite elements themselves represented by

Copyright ©1995-2016 European Space Agency page 102

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

nrf _network node relationship instances. There would be an nrf network node relationship class for each
supported finite element type, such as TRI3, QUADA, etc.

EXAMPLE 3 A test article could be represented by an nrf network model with the sensors or channels
represented by nrf network node instances. There would be an nrf network node class for each supported
class of sensor, such as strain gauge, electrical current meter, thermistor, etc.

Express specification:

ENTITY nrf network model
(*SUPERTYPE OF (ONEOF (mgm meshed geometric model)) *)
SUBTYPE OF (nrf named observable item);

SELF\nrf named observable item.item_class : nrf network model class;
base model id : OPTIONAL nrf identifier;
nodes : LIST OF UNIQUE nrf network node;
node relationships : LIST OF UNIQUE nrf network node relationship;
submodels : LIST OF UNIQUE nrf network model;
groups : LIST OF UNIQUE nrf named observable item group;
functions : LIST OF UNIQUE nrf model function;
initializations : LIST OF UNIQUE nrf datacube;
variables : LIST OF UNIQUE nrf variable;
prescriptions : LIST OF UNIQUE
nrf quantity value prescription for item;
constraints : LIST OF UNIQUE nrf model constraint;
materials : LIST OF UNIQUE nrf material;
material property environment list : OPTIONAL nrf state list;
material properties : LIST OF LIST OF LIST OF UNIQUE
nrf any quantity value prescription;
INVERSE
containing model : SET [0:1] OF nrf network model FOR submodels;
UNIQUE

has unique id within containing model: containing model, id, item class;
WHERE

has same item class as containing model:

nrf verify same item class as containing model (SELF) ;
nodes_have valid node classes:

nrf verify nodes in network model (SELF) ;
node relationships have valid node relationship classes:

nrf verify node relationships in network model (SELF) ;
submodel tree is acyclic:

nrf verify acyclic network model tree (SELF, [SELF]);
nodes_referenced in relationships are in model tree:

nrf verify nodes referenced in relationships (SELF) ;
has complete list of material properties:

nrf verify complete list of material properties (SELF);
material property environment quantity type is scalar:

(NOT EXISTS (material property environment list)) OR

('NRF_ARM.NRF ANY SCALAR QUANTITY TYPE'

IN TYPEOF (material property environment list.quantity type));

has same material property environment as containing model:

nrf verify same material property environment as containing model (SELF) ;

END ENTITY;

Attribute definitions:

— item_class specifies the nrf network model class identifying the class of an nrf_network_model.

— base_model id optionally specifies the identifier of a common base model from which an
nrf _network model instance is derived. It can be used by receiving processors to reconstruct the
master definition of an nrf_network model from multiple nrf_network model occurrences (with
the same base _model id) that share a common definition.

Copyright ©1995-2016 European Space Agency page 103

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

— nodes specifies the list of nodes that are part of an nrf_network_model. The nodes are represented
by nrf_network node instances.

— node_relationships specifies the list of node- relationships that are part of an nrf_network_model.
The node-relationships are represented by nrf_network node_relationship instances

— submodels specifies the list of submodels that are part of an nrf network model. The submodels
themselves are other nrf_network model instances. Through this composition relationship a
hierarchical model/submodel tree can be created — a parent model is the "whole" and its submodels
are the "parts". The purpose of such a model/submodel tree is to support a hierarchical, modular
breakdown for nrf network models.

— groups specifies named observable item groups of items that are part of the model. See a more
elaborate definition in nrf named observable item group.

— functions specifies a list of user-defined functions that are part of a (analysis or simulation) model
specification. This functions may be called in expressions defined in prescriptions and in the
execution script that governs execution of a case (see nrf_case) for the model.

— initializations specifies a list of nrf_datacube instances that assign values to quantity types for items
that are part of the model. This is in particular appropriate and efficient for the bulk of the literal
assignments. These datacubes shall only know one state: the ' initial' state.

— variables specifies a list of named variables that may be used in the case, in particular inside
expressions defined in prescriptions.

— prescriptions specifies a list of value prescriptions for quantities of items that are part of the model,
including the definition of boundary conditions.

— constraints specifies a list of user-defined constraints that are part of a (analysis or simulation)
model specification.

— materials specifies the materials defined for an nrf_network model.

— material property environment list optionally specifies the list of material property environments
for which material properties can be defined. Each state in the associated nrf state list represents a
discrete environment for which a collection of material property values are defined.

— material_properties specifies a nested list of nrf_any quantity value prescription instances that
define the properties for each of the materials for each of the material property environments. In
other words the outer list loops over the material property environments, the middle list loops over
the materials, and the inner list loops over the quantity value prescriptions.

— containing_model specifies the nrf_network_model of which this nrf_network_model is a
submodel, if any.

Formal propositions:

— has_unique id within_containing_model: The combination of id and item_class shall be unique
within the nrf_network_model that contains this nrf_network model as a submodel, in other
words submodels of the same kind shall have unique identifiers. Be aware that proposition
has same item class as_containing_model below requires that all submodels are of the same
item_class. The end result is that only root models can have duplicate identifiers for models of
different item_class.

— has_same _item class_as_containing model: The item_class shall be the same as the one of the
containing_model, effectively asserting that all models in a submodel tree have the same item_class.

— nodes have valid node classes: The nrf network node_class of all the nrf network nodes in
nodes shall be one of the nrf network node class instances specified by model class through
valid node classes.

Copyright ©1995-2016 European Space Agency page 104

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

— node_relationships_have valid node relationship_classes: The nrf network node_relationship
class of all the nrf_network node-relationships in node_relationships shall be one of the
nrf network node relationship class instances specified by the model class through
valid_node relationship_classes.

— submodel tree is acyclic: The submodel tree shall form an acyclic graph, that is it shall not contain
any circular nrf_network_model references.

— nodes referenced in_relationships are in model tree: The submodels referenced through a
nrf submodel node reference shall be in the submodel tree of an nrf _network model.

— has_complete_list of material properties: The material properties shall specify a complete list.
This implies the following: (a) The material property environment list either does not exist and the
material_properties list is empty or the size of the outer list of material properties shall be equal to
the number of states (that represent discrete environments) defined in the
material property environment_list; (b) The size of each of the second level lists of
material properties shall be equal to the number of materials; (c) Material properties shall be
specified in material properties for each of the required quantity type names of the item_class of
each material in materials.

— material property environment quantity type is scalar: If it exists the quantity type of the
material property environment list shall be a scalar quantity type.

— has _same material property environment as containing model: The
material property environment list shall be the same as the one in its containing_model,
effectively asserting that all models in a submodel tree use the same
material property environment list.

4.2.7.11 FUNCTION nrf _verify named_observable items in_model tree

The function nrf_verify_named_observable_items_in_model_tree verifies that all items in an
nrf_named observable _item_group belong to the containing_model of the group. The function returns
TRUE when this is the case and FALSE otherwise.

Express specification:

FUNCTION nrf verify named observable_items_in model_tree (
noig : nrf named observable item group) : BOOLEAN;
REPEAT i1 := 1 TO SIZEOF (noig.items) ;

IF NOT (nrf verify item in model tree(
noig.items[i], noig.containing model)) THEN
RETURN (FALSE) ;
END IF;
END REPEAT;
RETURN (TRUE) ;
END FUNCTION;

Argument definitions:

— noig specifies the nrf named observable item group that is to be verified.
4.2.7.12 FUNCTION nrf _verify_acyclic_item_group _tree

The function nrf_verify_acyclic_item_group _tree recursively verifies that the possible hierarchical
specification of groups in an nrf named_observable item_group form an acyclic graph, in other words there
are no circular references. The function returns TRUE when this is the case and FALSE otherwise.

Copyright ©1995-2016 European Space Agency page 105

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

Express specification:

FUNCTION nrf verify acyclic_item group_tree (
noig : nrf named observable item group;
supergroups : LIST OF nrf named observable item group) : BOOLEAN;
REPEAT i := 1 TO SIZEOF (noig.items) ;
IF 'NRF _ARM.NRF NAMED OBSERVABLE ITEM GROUP' IN TYPEOF (noig.items[i]) THEN
IF noig.items[i] IN supergroups THEN
RETURN (FALSE) ;
END IF;
IF NOT nrf verify acyclic_item group_ tree (
noig.items[i], supergroups + noig.items[i]) THEN
RETURN (FALSE) ;
END IF;
END IF;
END REPEAT;
RETURN (TRUE) ;
END FUNCTION;

Argument definitions:

— noig specifies the nrf_named observable item_group that is to be verified.

— supergroups specifies the list of nrf named observable item group instances that are at the level of
noig or higher up the tree.

4.2.7.13 FUNCTION nrf_verify_nodes_in_network_model

The function nrf_verify_nodes_in_network_model verifies that all nrf network node instances specified
in an nrf_network model belong to a valid nrf_network model class. The function returns TRUE when this
is the case and FALSE otherwise.

Each nrf_network node has an associated nrf network node class. Each nrf network model has an
associated nrf_network model class, that specifies the valid node classes through its valid node classes
attribute.

Express specification:

FUNCTION nrf verify nodes_in network model (

a model : nrf network model) : BOOLEAN;
LOCAL
node : nrf network node;
END LOCAL;
REPEAT i := 1 TO SIZEOF (a_model.nodes) ;
node := a model.nodes[i];

IF NOT (node.item class IN a model.item class.valid node classes) THEN
RETURN (FALSE) ;
END IF;
END REPEAT;
RETURN (TRUE) ;
END FUNCTION;

Argument definitions:

— a_model specifies the candidate nrf network model that is to be verified.

Copyright ©1995-2016 European Space Agency page 106

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4.2.7.14 FUNCTION nrf _verify node_relationships_in_network model

The function nrf_verify_node_relationships_in_network model verifies that all

nrf network node_relationship instances specified in an nrf network model belong to a valid
nrf_network model relationship_class. The function returns TRUE when this is the case and FALSE
otherwise.

Each nrf network node relationship has an associated nrf _network node relationship class. Each
nrf_network model has an associated nrf_network model class, that specifies the valid node relationship
classes through its valid node relationship classes attribute.

Express specification:

FUNCTION nrf verify node relationships_in network model (
a model : nrf network model): BOOLEAN;

LOCAL
node relationship : nrf network node relationship;
model class : nrf network model class;

END LOCAL;

model class := a model.item class;

REPEAT i := 1 TO SIZEOF (a_model.node relationships);
node relationship := a model.node relationships[i];

IF NOT (node relationship.item class
IN model class.valid node relationship classes) THEN
RETURN (FALSE) ;
END_IF;
END REPEAT;
RETURN (TRUE) ;
END FUNCTION;

Argument definitions:

— a_model specifies the candidate nrf network model that is to be verified.

4.2.7.15 FUNCTION nrf _verify_acyclic_network_model_tree

The function nrf _verify_acyclic network model tree verifies that there is no circular reference in the
submodel tree of a nrf network model. In other words, the submodel tree forms an acyclic graph. The
function returns TRUE if this is the case and FALSE otherwise.

Express specification:

FUNCTION nrf verify acyclic network model_ tree (
a model: nrf network model;
supermodels : LIST OF nrf network model) : BOOLEAN;

REPEAT i := 1 TO SIZEOF (a_model.submodels) ;
IF (a_model.submodels[i] IN supermodels) THEN
RETURN (FALSE) ;
END IF;
IF NOT nrf verify acyclic network model_ tree (
a model.submodels[i], supermodels + a model.submodels) THEN
RETURN (FALSE) ;
END IF;
END REPEAT;
RETURN (TRUE) ;
END FUNCTION;

Copyright ©1995-2016 European Space Agency page 107

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

Argument definitions:

— a_model specifies the candidate nrf network model that is to be verified.

— supermodels specifies the list of nrf network model instances that occur at the same or higher level

as a_model.

4.2.7.16 FUNCTION nrf _verify nodes referenced in_relationships

The function nrf_verify_nodes_referenced_in_relationships verifies that all node_relationships in an
nrf network model only reference nodes that are part of the model itself or one of its submodels. The

function returns TRUE if this is the case and FALSE otherwise.

Express specification:

FUNCTION nrf verify nodes_referenced in relationships (
a model : nrf network model): BOOLEAN;

LOCAL
node : nrf network node;
relationship : nrf network node relationship;

END LOCAL;

REPEAT i := 1 TO SIZEOF (a model.node relationships);
relationship := a model.node relationships[i];
REPEAT j := 1 TO SIZEOF (relationship.related nodes);

node := relationship.related nodes[]];
IF (NOT (node IN a model.nodes)) THEN

RETURN (FALSE) ;
END IF;
END IF;
END REPEAT;
END REPEAT;
RETURN (TRUE) ;
END FUNCTION;

IF (NOT (nrf verify node in submodel tree(a model, node))) THEN

Argument definitions:

— a_model specifies the candidate nrf network model that is to be verified.

4.2.7.17 FUNCTION nrf_verify node_in_submodel _tree

The FUNCTION nrf_verify_node_in_submodel _tree verifies that an nrf_network node is defined in one

of the submodels of an nrf_network model. The FUNCTION returns TRUE if the submodel is found in the

submodel tree of the model. Otherwise it returns FALSE.

Express specification:

FUNCTION nrf verify node_in submodel tree (
a model: nrf network model;
a node : nrf network node): BOOLEAN;

LOCAL
submodel : nrf network model;

END LOCAL;

REPEAT i := 1 TO SIZEOF (a_model.submodels) ;
submodel := a model.submodels[i];

IF (a node IN submodel.nodes) THEN
RETURN (TRUE) ;
ELSE

Copyright ©1995-2016 European Space Agency

page 108

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

IF (nrf_verify node_in_ submodel_tree (submodel, a node)) THEN
RETURN (TRUE) ;
END_IF;
END_IF;
END REPEAT;
RETURN (FALSE) ;
END FUNCTION;

Argument definitions:

— a_model specifies the candidate nrf network model that is to be verified.

— a_node specifies the candidate nrf network node that is to be found in the submodel tree of
a_model.

4.2.7.18 FUNCTION nrf verify_complete_list of material_properties

The function nrf_verify_complete_list of material properties verifies that the materials, the
material property environment list and the material properties of a given nrf_network model together

specify a complete list of material properties or none at all. The function returns TRUE when this is the case
and FALSE otherwise.

Express specification:

FUNCTION nrf verify complete list of material properties (
a model : nrf network model) : BOOLEAN;
LOCAL
required gt names : LIST OF nrf non blank label;
found : BOOLEAN;
END LOCAL;

IF NOT EXISTS(a model.material property environment list) THEN
IF SIZEOF (a_model.material properties) = 0 THEN
RETURN (TRUE) ;
ELSE
RETURN (FALSE) ;
END_IF;
END_IF;

IF a model.material property environment list.number of states <>
SIZEOF (a_model.material properties) THEN
RETURN (FALSE) ;
END IF;

REPEAT i mat := 1 TO SIZEOF (a_model.materials);
required gt names :=
a model.materials[i mat].item class.all required quantity type names;
REPEAT i mpe := 1 TO SIZEOF (a_model.material properties);
IF SIZEOF (a_model.material properties[i mpe]) <> SIZEOF (a model.materials) THEN
RETURN (FALSE) ;
END_IF;
IF SIZEOF (a_model.material properties([i mpe] [i mat]) <>
SIZEOF (required gt names) THEN
RETURN (FALSE) ;

END_IF;
REPEAT i rgtn := 1 TO SIZEOF (required gt names);
found := FALSE;
REPEAT i prop := 1 TO SIZEOF (a model.material properties[i mpe] [i mat])

WHILE NOT found;
IF required gt names[i rgtn] =
a model.material properties[i mpe] [i mat] [i prop].quantity type.name THE]

Copyright ©1995-2016 European Space Agency page 109

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

found := TRUE;
END IF;
END REPEAT;
IF NOT found THEN
RETURN (FALSE) ;
END IF;
END REPEAT;
END REPEAT;
END REPEAT;

RETURN (TRUE) ;
END FUNCTION;

Argument definitions:

— a_model specifies the nrf _network model for which the material properties list is to be verified.

4.2.7.19 FUNCTION nrf _verify same material property environment as containing model

The function nrf_verify_same_material_property_environment_as_containing_model verifies that an
nrf_network model uses the same material property environment_list as its containing_model, if this exists.
The function returns TRUE when this is the case and FALSE otherwise.

Express specification:

FUNCTION nrf verify same material property environment_as containing model (
a model : nrf network model) : BOOLEAN;

IF SIZEOF (a_model.containing model) = 1 THEN
IF EXISTS(a model.material property environment list) THEN
IF EXISTS(a model.containing model[l].material property environment list) THEN
IF a model.containing model[l].material property environment list :<>:
a model.material property environment list THEN
RETURN (FALSE) ;
END IF;
ELSE
RETURN (FALSE) ;
END IF;
ELSE
IF EXISTS(a model.containing model[l].material property environment list) THEN
RETURN (FALSE) ;
END IF;
END IF;
END IF;

RETURN (TRUE) ;
END FUNCTION;

Argument definitions:

— a_model specifies the nrf _network model to be verified.
4.2.7.20 FUNCTION nrf_verify_same_item_class_as containing_model

The function nrf_verify_same_item_class_as_containing_model verifies that an nrf network model uses
the same item_class as its containing_model, if this exists. The function returns TRUE when this is the case
and FALSE otherwise.

Copyright ©1995-2016 European Space Agency page 110

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

Express specification:

FUNCTION nrf verify same item class_as_containing model (
a model : nrf network model) : BOOLEAN;

IF SIZEOF (a_model.containing model) = 1 THEN
IF a model.containing model[l].item class :<>:
a model.item class THEN
RETURN (FALSE) ;
END IF;
END IF;

RETURN (TRUE) ;
END FUNCTION;

Argument definitions:

— a_model specifies the nrf _network model to be verified.

4.2.7.21 ENTITY nrf_network_node_class

An nrf _network node_class is a specification of a class of nrf_network node instances, that is: a named
category of nodes which share common characteristics and behaviour.

Express specification:

ENTITY nrf network node_class
SUBTYPE OF (nrf named observable item class);
END ENTITY;

4.2.7.22 ENTITY nrf_network node

An nrf _network node is a type of nrf named observable item that specifies an atomic item of
discretization in an nrf_network model. An nrf_network node is a vertex in the network topology of an
nrf network model. The node is used to represent a physical object or parts thereof. An nrf network node
serves as an item for which a quantity can be observed.

Express specification:

ENTITY nrf network node
(*SUPERTYPE OF (ONEOF (mgm any meshed geometric item)) *)
SUBTYPE OF (nrf named observable item);

SELF\nrf named observable item.item class : nrf network node class;
INVERSE

containing model : nrf network model FOR nodes;
UNIQUE

has unique id within containing model: containing model, id;
END ENTITY;

Attribute definitions:

— item_class specifies the nrf network node_class identifiying the class of an nrf_network node

— containing_model specifies the nrf network model that contains an nrf network_node.

Formal propositions:

Copyright ©1995-2016 European Space Agency page 111

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

— has_unique id within_containing_model: the id shall be unique within the nrf_network model that
contains the nrf_network node.

4.2.7.23 ENTITY nrf_network node_relationship_class

An nrf_network_node_relationship_class is a specification of a class of nrf_network node relationship
instances, that is: a named category of nrf network node relationship instances which share common
characteristics and behaviour.

Express specification:

ENTITY nrf network node_relationship class
SUBTYPE OF (nrf named observable item class);
END ENTITY;

4.2.7.24 ENTITY nrf_network_node_relationship

An nrf_network_node_relationship is a type of nrf named observable item that specifies a relationship
between two or more nrf network node instances of an nrf network model. An
nrf_network_node_relationship defines one or more edges in the network topology of an

nrf_network model. The nrf_network node_relationship is an item for which a quantity can be observed.

EXAMPLE Examples of such relationships are: the thermal radiative exchange factors between two
thermal-radiative faces; the linear conductors, radiative couplings and mass flow links between two thermal
network nodes; a finite element defined as a relationship between its vertex nodes.

Express specification:

ENTITY nrf network node_relationship
SUBTYPE OF (nrf named observable item);

SELF\nrf named observable item.item class : nrf network node relationship class;
related nodes : LIST [2:?] OF nrf network node;

INVERSE
containing model : nrf network model FOR node relationships;

UNIQUE

has unique id within containing model: containing model, id;
END ENTITY;

Attribute definitions:

— item_class specifies the nrf network node relationship_class identifiying the class of an
nrf_network_node_relationship.

— related nodes specifies the nrf_network node instances that are related in an
nrf network node relationship. The significance of the order in which the nodes appear in the
list depends on the given item_class and is defined in the

— containing_model specifies the nrf network model that contains an
nrf_network_node_relationship.

NOTE One of the WHERE rules of the nrf_network model guarantees that all nrf network node instances
that are referenced in nodes are part of the model that contains an nrf_network_node_relationship or one
of its submodels. In other words an nrf network node_relationship may only reference nodes downwards
in its model/submodel tree, and may not reference any nodes upwards in its parent model tree.

Copyright ©1995-2016 European Space Agency page 112

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

Formal propositions:

— has_unique id within_containing_model: the id shall be unique within nrf_network model that
contains the nrf_network node_relationship.

4.2.7.25 ENTITY nrf_model_represents_product_relationship

An nrf_model_represents_product_relationship is a relationship between an nrf_network model and an
nrf_product definition that identifies the product (or part of a product) that is represented by the model
representation.

Express specification:

ENTITY nrf model represents_product relationship;
model_representation : nrf network model;
represented product : nrf product definition;

END ENTITY;

Attribute definitions:

— model representation specifies the nrf network model representing a product.

— represented _product specifies the nrf_product definition defining a product.

4.2.8 NRF Cases, runs and results UoF

This UoF collects the application objects needed for the identification and definition of analysis, simulation,
test or operation cases and runs and the results data they produce.

The results data are stored as properties of observable items for a certain state of a system that is being
observed. As defined in UoF nrf network model, observable items can be structured in network model
topologies to represent a system. The leading principle is that all properties can be captured in a so-called
datacube, which is a mathematical space that has the following three dimensions: an observable item basis, a
quantity type basis, and a state basis.

A property of an observable item is then defined as the value for a given quantity type and a given (discrete)
state of the system. As defined in UoF nrf _quantities and units, quantity types can be scalars, vectors or
higher order tensors.

4.2.8.1 ENTITY nrf _root

An nrf_root specifies the central entry of a Network-model Results Format dataset. It collects global meta-
data and the references to all top level instances that are the starting points to navigate the dataset. There is
only one nrf_root instance in a dataset (see RULE nrf root is_singleton).

Express specification:

ENTITY nrf root;
id : nrf identifier;
name : nrf label;
description : nrf text;
project : nrf organizational project;
schema uri : nrf uniform resource identifier;
dictionary uri list : LIST OF nrf uniform resource identifier;

Copyright ©1995-2016 European Space Agency page 113

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

conformance class
creation date and time

last modification date and time
contact person organization
approvals

security class
undefined real sentinel

positive infinity real sentinel
negative infinity real sentinel
undefined integer sentinel
positive infinity integer sentinel
negative infinity integer sentinel
root models

nrf positive integer;

nrf date and time ;

: OPTIONAL nrf date and time;

nrf person and organization;

: OPTIONAL nrf security classification level;
: REAL;
: REAL;
: REAL;

LIST OF nrf approval;

INTEGER;
INTEGER;
INTEGER;
LIST OF UNIQUE nrf network model;

root cases LIST OF UNIQUE nrf case;

WHERE
has valid root case models:
SIZEOF (root cases) = SIZEOF (QUERY (a case <* root cases |

a case.for model IN root models));
END_ENTITY;

Attribute definitions:

— id specifies the identifier of an instance of nrf_root.

— name specifies the human-interpretable name of an instance of nrf_root.

— description specifies the textual description of an instance of nrf_root.

— project specifies a project to which an nrf_root pertains.

— schema uri specifies the URI of the EXPRESS schema that was used to create the dataset

— dictionary_uri_list specifies the URI(s) of the NRF dictionaries that were used to create the dataset.
Typically one standard dictionary is used, which is identified by the first URI in the list. The
standard dictionary can be extended by additional predefined instances. The extended dictionary
would be identified by the second URI in the list and so forth. Each extended dictionary contains a
full copy of the instances of its base dictionary. This list can be used to trace the origins of the
current dictionary.

— conformance class specifies the conformance class identifier as defined in clause 5
— creation_date _and_time specifies the date and time of creation of the dataset

— last_modification_date and time optionally specifies the date and time of last modification of the
dataset

— contact_person_organization specifies the contact person and organization that created the dataset
— approvals specifies the nrf_approval instances applicable to the dataset

— security class optionally specifies security class for the information in the dataset

— undefined real sentinel specifies the value representing the undefined real value in the dataset

— positive_infinity real sentinel specifies the value representing the positive infinite real in the
dataset

— negative_infinity real sentinel specifies the value representing the negative infinite real in the
dataset

— undefined_integer sentinel specifies the value representing undefined integer value in the dataset

— positive_infinity integer sentinel specifies the value representing the positive infinite integer in the
dataset

— negative infinity integer sentinel specifies the value representing the negative infinite integer in
the dataset

Copyright ©1995-2016 European Space Agency page 114

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

— root_models specifies the root models in the dataset.

— root_cases specifies the root cases for the nrf_network model instances in root_models.

Formal propositions:

— has valid root case models: Each nrf network model used by any of the nrf case instances in
root_cases must be a root model, in other words such a model must be registered in root_models.

4.2.8.2 ENTITY nrf_case

An nrf _case specifies the identification, description and definition of an analysis, simulation, test or
operation case for a given nrf_network model. It may specify one or more initializations, variables,
prescriptions, named events and named intervals. An nrf case may be decomposed into a sequence of one or
more subcases. The named events may be used to provide sequencing and synchronization points in the
timeline of a case.

NOTE In existing engineering analysis or simulation tools the distinction between what belongs to model
and what belongs to case is often not so clear, there is often a grey area of overlap, or the distinction is
simply not made and everything is called model. This is not considered a problem since on export a STEP-
NRF processor can map the ensemble of nrf network model and nrf _case to as many of such integrated
models as there are nrf network model and nrf_case combinations and on import a STEP-NRF processor
can map such an integrated model to a comprehensive nrf network model and a single relatively empty
nrf_case.

Express specification:

ENTITY nrf case
(*SUPERTYPE OF (ONEOF (sma space mission case))*);

id : nrf identifier;
name : nrf label;
description : nrf text;
base case id : OPTIONAL nrf identifier;
for_model : nrf network model;
state quantity type : nrf any scalar quantity type;
initializations : LIST OF UNIQUE nrf datacube;
variables : LIST OF UNIQUE nrf variable;
prescriptions : LIST OF UNIQUE nrf quantity value prescription for item;
constraints : LIST OF UNIQUE nrf model constraint;
events : LIST OF UNIQUE nrf case event;
intervals : LIST OF UNIQUE nrf case interval;
subcases : LIST OF UNIQUE nrf_case;

INVERSE
runs : SET OF nrf run FOR for case;

UNIQUE
has unique id for model: for model, id;

WHERE

has valid items in initializations:

nrf verify initializations (SELF) ;
subcases reference same model:

SIZEOF (QUERY (sc <* subcases | sc.for model :=: for model)) = SIZEOF (subcases);
case tree is acyclic:

nrf verify acyclic case tree(SELF, [SELF]);
events have unique identifiers:

nrf verify unique identifiers (events);
intervals have unique identifiers:

nrf verify unique identifiers(intervals);

END ENTITY;

Copyright ©1995-2016 European Space Agency page 115

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

Attribute definitions:

— 1id specifies the identifier of an instance of nrf_case.
— name specifies the human-interpretable name of an instance of nrf_case.
— description specifies the textual description of an instance of nrf case.

— base case_id optionally specifies the identifier of a common base case from which an nrf case
instance is derived. It can be used by receiving processors to reconstruct the master definition of an
nrf_case from multiple nrf_case occurrences (with the same base case id) that share a common
definition.

— for_model specifies the nrf_network model for which an nrf_case is defined.

— state_quantity type specifies the default quantity type that is used to identify discrete states during a
run of the case, typically this would be a 'time' or 'frequence' quantity type.

— 1initializations specifies a list of nrf_datacube instances that assign values to quantity types for items
that are part of the model that is associated with the case (through attribute for model). This is in
particular appropriate and efficient for the bulk of the literal assignments. These initializations may
override initializations from the nrf network model associated through for model.

— variables specifies a list of named variables that may be used in the case, in particular inside
expressions defined in prescriptions. These variables may override variables from the
nrf network model associated through for model.

— prescriptions specifies a list of value prescriptions for quantities of items that are part of the model
associated with the case (through attribute for model), including the definition of boundary
conditions. These prescriptions may override prescriptions from the nrf_network model associated
through for model.

— constraints specifies a list of user-defined constraints that are part of a (analysis or simulation)
model specification. These contraints may override constraints from the nrf_network model
associated through for_model.

— events specifies the list of named events defined for the case. If the list contains only one event it
shall be considered the start event. If the list contains two or more events the first event shall be the
start event and the last event shall be the end event.

— intervals specifies the list of named intervals defined for the case.

— subcases specifies a sequence of next lower level nrf_case instances that constitute the current
nrf_case. Synchronization between case and subcases can be specified by referencing common
nrf _event instances.

— runs specifies a set of nrf run instances containing information produced during the execution of an
nrf_case.

Formal propositions:

— has_unique_id_for model: The id shall be unique for the associated nrf network model.

— has valid items_in_initializations: All nrf observable items referenced in the item_basis of the
nrf_datacube instances referenced in initializations shall belong to the model/submodel tree defined
by for_model.

— subcases_reference_same model: All subcases shall reference the same nrf network model as the
parent nrf_case.

— case_tree_is_acyclic: The subcase tree shall form an acyclic graph, that is it shall not contain any
circular nrf_case references.

— events_have unique_identifiers: The identifiers of the events shall be unique.

Copyright ©1995-2016 European Space Agency page 116

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

— intervals_have unique identifiers: The identifiers of the intervals shall be unique.
4.2.8.3 ENTITY nrf_case_event

An nrf_case_event specifies an identified event for use in an nrf_case. Such events are used to provide
sequencing and synchronization points in the timeline for possible subcases associated with an nrf case.

Express specification:

ENTITY nrf case_event;

id : nrf identifier;

name : nrf label;

description : nrf text;

state : OPTIONAL nrf any quantity value prescription;

END ENTITY;

Attribute definitions:

— 1id specifies the identifier of an instance of nrf case_event.
— name specifies the human-interpretable name of an instance of nrf_case_event.
— description specifies the textual description of an instance of nrf_case_event.

— state optionally specifies a state quantity value at which the event occurs
4.2.8.4 ENTITY nrf_case_interval

An nrf _case_interval specifies an identified interval for use in an nrf case. Such intervals are used to
provide identification of the time interval between two events.

Express specification:

ENTITY nrf case_interval;
id : nrf identifier;
name : nrf label;
description : nrf text;
start event : nrf case event;
end event : nrf case event;
END ENTITY;

Attribute definitions:

— 1id specifies the identifier of an instance of nrf_case_interval.

— name specifies the human-interpretable name of an instance of nrf _case_interval.
— description specifies the textual description of an instance of nrf_case_interval.
— start_event specifies the nrf_case event at which the interval starts.

— end_event specifies the nrf _case event at which the interval ends.
4.2.8.5 ENTITY nrf_run

An nrf_run specifies a container holding the meta-data and results of an executed analysis, simulation, test
or operation run. It also references the nrf case with its associated nrf_network model that was used to
execute the run.

Copyright ©1995-2016 European Space Agency page 117

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

NOTE It is desirable to create globally unique identifiers for runs, so that run results can always be
distinguished and traced. A practical scheme to achieve this without the need to resort to a central run id
issuing mechanism would be to assign a string in the following format ‘hostname.yyyy-mm- ddThh:mm:ss.
sssZ', i.e. the hostname of the machine on which the run was produced concatenated with the start date-and-
timestamp in milliseconds in ISO 8601 UTC format.

Express specification:

ENTITY nrf_run;
id : nrf identifier;
name : nrf label;
description : nrf text;
for case : nrf case;
start timestamp : nrf date and time;
end timestamp : OPTIONAL nrf date and time;
creator tool or facility : nrf tool or facility;
input run identifiers : LIST OF nrf identifier;
results : LIST OF nrf datacube;
UNIQUE
has unique id: id;
END ENTITY;

Attribute definitions:

— id specifies the identifier of an instance of nrf_run.

— name specifies the human-interpretable name of an instance of nrf_run.

— description specifies the textual description of an instance of nrf _run.

— for_case specifies the nrf_case for which the run was executed.

— start_timestamp specifies the date and time at which the execution of the run started.

— end_timestamp optionally specifies the date and time at which the execution of the run completed.
— creator_tool_or_facility specifies the tool or facility that was used to execute the run.

— input_run_identifiers specifies a list of id's of nrf_run instances that were used to produce the run.
This allows for trace- back to preceeding runs (and their associated models and cases) without the
need to keep all intermediate nrf_run instances. The identifiers should be ordered chronologically
in order of creation, the oldest first.

— results specifies a list of nrf_datacube instances that hold the results produced in the run.

Formal propositions:

— has_unique_id: The id shall be unique in the exchange dataset.
4.2.8.6 TYPE nrf_quantity sequencing_type

An nrf_quantity_sequencing_type specifies four mutually exclusive sequencing constraints for a quantity
value list:

strictly decreasing values, that is x;+7 < xi,

monotonic decreasing values, that is xj+7 < x;,

monotonic increasing values, that is x;j+7 > x;,

strictly increasing values, that is xj+7 > x;.

Express specification:

Copyright ©1995-2016 European Space Agency page 118

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

TYPE nrf quantity sequencing type = ENUMERATION OF (
STRICTLY DECREASING,
MONOTONIC DECREASING,
MONOTONIC INCREASING,
STRICTLY INCREASING) ;
END TYPE;

4.2.8.7 ENTITY nrf_state list

An nrf_state_list specifies the quantity type and the quantity values that identify each of the known discrete
states of a system that is represented by a collection of observable items.

EXAMPLE For an analysis run where results are stored at certain sample points in time, the state
quantity _type would be an nrf real quantity type for time, ¢.g. qualified as mission elapsed_time, the
quantity _sequencing would be STRICTLY INCREASING and the real values would contain the sample
time values in the unit specified in the nrf real quantity type for mission elapsed_time.

Express specification:

ENTITY nrf state_list;

quantity type : nrf any quantity type;
quantity sequencing : OPTIONAL nrf gquantity sequencing type;
real values : LIST OF REAL;
integerivalues : LIST OF INTEGER;
DERIVE
number of states : INTEGER := nrf derive number of states in state 1list (SELF);
WHERE
has correct number of real values:
SIZEOF (real values) = number of states * quantity type.number of real values;
has correct number of integer values:
SIZEOF (integer values) = number of states * quantity type.number of integer values

has valid quantity type for sequencing type:
(NOT EXISTS (quantity sequencing)) OR
(EXISTS (quantity sequencing) AND
("NRF_ARM.NRF PHYSICAL QUANTITY TYPE' IN TYPEOF (quantity type))):;
has valid state value sequencing:
nrf verify state value sequencing (SELF) ;
END ENTITY;

Attribute definitions:

— quantity type specifies the quantity type used to identify the state of the system.
quantity sequencing optionally specifies a sequencing constraint for the state values.

— real_values specifies for each identified state the value(s) for the real valued elements of the
quantity type.

— integer_values specifies for each identified state the value(s) for the integer valued elements of the
quantity_type.

Formal propositions:

— has_correct number of real values: The number of real values shall be the product of the number
of states times and the required number of real values of the quantity type.

— has_correct number of integer values: The number of integer values shall be the product of the
number of states times and the required number of integer values of the quantity type.

Copyright ©1995-2016 European Space Agency page 119

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

— has_valid quantity type for sequencing type: The state quantity type shall be an
nrf physical quantity type when quantity sequencing is specified.

— has valid state value sequencing: The sequencing of the state values shall conform to
quantity sequencing, if that is specified.

4.2.8.8 TYPE nrf datacube order_type

An nrf_datacube_order_type specifies the order in which indices for each of the bases of an nrf_datacube
into the values attribute of an nrf datacube are applied. The slowest changing index is with the first basis, the
fastest changing index is with the last basis.

Express specification:

TYPE nrf datacube_order type = ENUMERATION OF (
STATES ITEMS QUANTITIES,
STATES QUANTITIES ITEMS,
ITEMS STATES QUANTITIES,
QUANTITIES STATES ITEMS,
ITEMS QUANTITIES STATES,
QUANTITIES ITEMS STATES);

END TYPE;

4.2.8.9 ENTITY nrf_datacube

An nrf_datacube specifies a structured collection of discrete quantity values. A datacube is a three
dimensional mathematical space for storing a potentially large amount of properties, where a property is
defined as a quantity value for a given quantity type for a given observable item in a given (discrete) state.
The three bases of the datacube are:

— abasis of quantity types;
— a basis of observable items;

— a basis of states.

Property positions in the datacube are identified by a tuple of indices, one index for each basis. If an actual
quantity type in the quantity basis is an nrf_any_tensor_quantity type, then such a property position will
comprise as many values as there are elements in the nrf_any_tensor_quantity_type. The actual quantity
values are stored in a flat list of values. The ordering in this flat list is determined by the value order
attribute. In order to cater for efficient storage of results data in different modes, all permutations of ordering
the three bases are supported, as defined in nrf datacube order_type.

NOTE The nrf_datacube structure is designed to be efficient for storing and accessing very large amounts
of structured results data. It is also designed to be mappable to an efficient implementation in any
programming language without any complicated adaptation. To accommodate the latter, the flat list of
values is split into a real and an integer list, in stead of having one LIST OF NUMBER, because the
EXPRESS concept of NUMBER cannot be mapped efficiently into typical programming languages.

Express specification:

ENTITY nrf datacube;
name : nrf label;
security class : OPTIONAL nrf security classification level;
value order : nrf datacube order type;
quantity basis : nrf quantity type list;

Copyright ©1995-2016 European Space Agency page 120

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

item basis : nrf observable item list;
state basis : nrf state list;
real values : LIST OF REAL;
integer_values : LIST OF INTEGER;
WHERE
has correct number of real values:
SIZEOF (real values) = quantity basis.number of real values

* SIZEOF (item basis.items) * state basis.number of states;
has correct number of integer values:
SIZEOF (integer values) = quantity basis.number of integer values
* SIZEOF (item basis.items) * state basis.number of states;
END ENTITY;

Attribute definitions:

— name specifies the human-interpretable name of an instance of an nrf_datacube

— security class optionally specifies an nrf security classification_level for an nrf_datacube

— value_order specifies the order of the values in an nrf_datacube subtype instance.

— quantity basis specifies the list of quantity types that define the quantity type basis of an
nrf_datacube.

— item_basis specifies the list of observable items that define the item basis of an nrf_datacube.

— state_basis specifies the state quantity type and the list of state values that define the state basis of
an nrf_datacube.

— real values specifies the literal values for each of the property positions in an nrf_datacube that
has a corresponding REAL value.

— integer values specifies the literal values for each of the property positions in an nrf_datacube that
has a corresponding INTEGER value.

Formal propositions:

— has_correct number of real values: The number of real values shall be equal to the product of the
number of real values in the quantity basis, the number of items in the item_basis and the number
of states in the state basis.

— has_correct number_of integer values: The number of integer values shall be equal to the product
of the number of integer values in the quantity basis, the number of items in the item_basis and the
number of states in the state_basis.

4.2.8.10 ENTITY nrf_derivation_procedure

An nrf _derivation_procedure specifies a named procedure that is used to derive one nrf_datacube from
another nrf data cube.

Express specification:

ENTITY nrf derivation_ procedure;
name : nrf label;

UNIQUE
has unique name: name;

END ENTITY;

Attribute definitions:

Copyright ©1995-2016 European Space Agency page 121

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

— name specifies the human-interpretable name of an instance of nrf_derivation_procedure.

Formal propositions:

— has_unique name: The name shall be unique in the exchange dataset.
4.2.8.11 ENTITY nrf_datacube_derivation_relationship

An nrf_datacube_derivation_relationship specifies a relationship between two nrf datacube instances
where one nrf datacube was derived from an original one through the application of an
nrf_derivation procedure.

Express specification:

ENTITY nrf datacube derivation_relationship;
original : nrf datacube;
derived : nrf datacube;
derivation procedure : nrf derivation procedure;
END ENTITY;

Attribute definitions:

— original specifies an nrf_datacube which is the source of the derivation relationship.
— derived specifies an nrf_datacube which is the result of the derivation relationship.

— derivation_procedure specifies a used defined procedure that was used to perform the derivation.
4.2.8.12 ENTITY nrf_network_model _nodes_mapping

An nrf_network_model_nodes_mapping specifies a mapping relation between the nodes of two

nrf network model instances: one being the source model and the other being the target model. Its typical
intended use is to map quantities between two related models, for example from a detailed to a course
analysis model of the same object, or, from an analysis model to a test article representation.

Express specification:

ENTITY nrf network model nodes mapping;

id : nrf identifier;

name : nrf label;

description : nrf text;

source model : nrf network model;

target model : nrf network model;

node mappings : LIST OF nrf network node mapping;

relative weights : BOOLEAN;

intended quantity types : LIST OF nrf any quantity type;
UNIQUE

has unique id for source model: source model, id;
WHERE

has valid source and target nodes: nrf verify nodes in mapping (SELF) ;
END ENTITY;

Attribute definitions:

— 1id specifies the identifier of an instance of nrf network model mapping.

— name specifies the human-interpretable name of an instance of nrf network model mapping.

Copyright ©1995-2016 European Space Agency page 122

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

— description specifies the textual description of an instance of nrf network model mapping.

— source_model specifies the nrf_network model that is the source for the mapping.

— target _model specifies the nrf network model that is the target for the mapping.

— node_mappings specifies the list of source to target node mappings including weighting factors.

— relative_weights specifies whether the weights in the node _mappings are relative or absolute. If
relative_weights is set to TRUE then the actual weights to be applied for each node mapping shall
be divided by the sum of all weights for a given node mapping. Otherwise if relative_weights is set
to FALSE then all weights for a given node mapping shall be applied as is.

— intended_quantity types specifies the list of quantity types for which this mapping is intended. This
list may be empty.

Formal propositions:

— has _unique id for source model: The combination of source_model and id shall be unique in the
exchange dataset.

— has valid source and target nodes: All source and target nodes in node mappings shall be part of
the source_model and target model respectively.

4.2.8.13 ENTITY nrf_network node_mapping

An nrf network node mapping specifies a mapping from one or more source nodes to a target node,
including a list of weighting factors for all source nodes. An nrf_network node mapping is always part of
an nrf_network model nodes_mapping.

Express specification:

ENTITY nrf network node mapping;

weights : LIST [1:?] OF REAL;

source nodes : LIST [1:?] OF nrf network node;

target node : nrf network node;
WHERE

number of weights and source nodes match: SIZEOF (weights) = SIZEOF (source nodes);
END ENTITY;

Attribute definitions:

— weights specifies the list of weighting factors for each of the source nodes.
— source_nodes specifies the list of one or more source nodes.

— target_nodes specifies the target node.

Formal propositions:

— number_of weights_and_source nodes_match: The number of weights shall be the same as the
number of source_nodes.

4.2.8.14 RULE nrf _root_is_singleton

The RULE nrf root_is_singleton verifies that the dataset contains only one single nrf root instance.

Express specification:

Copyright ©1995-2016 European Space Agency page 123

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

RULE nrf root_is_singleton FOR (nrf root);
WHERE

root is singleton: SIZEOF (nrf root) = 1;
END RULE;

4.2.8.15 FUNCTION nrf _verify_initializations

The function nrf_verify_initializations verifies that the nrf network node and
nrf_network node relationship instances referenced in the initializations of a given nrf _case are all part of
the submodel tree of the nrf_network model associated with the nrf_case. If this is the case the function
returns TRUE, otherwise it returns FALSE.

Express specification:

FUNCTION nrf verify initializations(a case : nrf case) : BOOLEAN;
REPEAT i := 1 TO SIZEOF (a case.initializations);
REPEAT j := 1 TO SIZEOF (a case.initializations[i].item basis.items);

IF NOT (nrf verify item in model tree(
a case.initializations[i].item basis.items[j],
a case.for model)) THEN
RETURN (FALSE) ;
END IF;
END REPEAT;
END REPEAT;
RETURN (TRUE) ;
END FUNCTION;

Argument definitions:

— a_case specifies the nrf_case for which the initializations shall be verified.
4.2.8.16 FUNCTION nrf _verify_unique_identifiers

The function nrf_verify_unique_identifiers verifies that the id attributes of the instances in a given list are
unique. It is a generic function that can be used on any list of instances of an ENTITY that has an attribute id
of TYPE STRING. If the id's are unique the function returns TRUE, otherwise it returns FALSE.

Express specification:

FUNCTION nrf verify unique_identifiers

a list : LIST OF GENERIC) : BOOLEAN;
LOCAL

id list : LIST OF STRING := [];
END LOCAL;
REPEAT i := 1 TO SIZEOF(a list);

id list := id list + a list[i].id;
END REPEAT;

IF NOT VALUE UNIQUE (id list) THEN
RETURN (FALSE) ;
END_IF;
RETURN (TRUE) ;
END_FUNCTION;

Argument definitions:

— a_list specifies the list of instances to be verified.

Copyright ©1995-2016 European Space Agency page 124

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4.2.8.17 FUNCTION nrf_verify item_in_model tree

The function nrf_verify_item_in_model_tree verifies that an nrf_observable_item is a valid constituent of
an nrf_network model. It returns FALSE if the given nrf_observable item is an nrf_network node or an
nrf network node_relationship and is not part of the submodel tree of the given nrf _network model.
Otherwise the function returns TRUE.

Express specification:

FUNCTION nrf verify item in model_tree (
an_item : nrf observable item;

a model : nrf network model) : BOOLEAN;
LOCAL

valid : BOOLEAN;
END LOCAL;

IF ('NRF_ARM.NRF NETWORK NODE' IN TYPEOF (an_item)) THEN
IF NOT (an_item IN a model.nodes) THEN

valid := FALSE;
REPEAT i := 1 TO SIZEOF (a _model.submodels) WHILE (NOT valid);
IF nrf verify item in model tree(an item, a model.submodels[i]) THEN
valid := TRUE;
END IF;
END REPEAT;

IF NOT valid THEN
RETURN (FALSE) ;
END IF;
END IF;
END IF;

IF ('NRF_ARM.NRF NETWORK NODE RELATIONSHIP' IN TYPEOF (an_item)) THEN
IF NOT (an_item IN a model.node relationships) THEN

valid := FALSE;
REPEAT i := 1 TO SIZEOF (a_model.submodels) WHILE (NOT valid);
IF nrf verify item in model tree(an item, a model.submodels[i]) THEN
valid := TRUE;
END IF;
END REPEAT;

IF NOT valid THEN
RETURN (FALSE) ;
END IF;
END IF;
END IF;

RETURN (TRUE) ;
END FUNCTION;

Argument definitions:

— an_item specifies the nrf_observable_item instance to be validated

— a_model specifies the nrf_network model that is the root of the submodel tree to which an_item
should belong

4.2.8.18 FUNCTION nrf _verify acyclic_case tree

The function nrf_verify_acyclic_case_tree verifies that there is no circular reference in the submodel tree of
an nrf_case. In other words, the submodel tree forms an acyclic graph. The FUNCTION returns TRUE if this
is the case and FALSE otherwise.

Copyright ©1995-2016 European Space Agency page 125

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

Express specification:

FUNCTION nrf verify acyclic_case_tree (
a_case : nrf case;
supercases : LIST [1l:?] OF UNIQUE nrf case) : BOOLEAN;

REPEAT i := 1 TO SIZEOF (a_case.subcases);
IF (a_case.subcases[i] IN supercases) THEN
RETURN (FALSE) ;
END IF;
IF NOT nrf verify acyclic_case_tree (
a case.subcases[i], supercases + a_ case.subcases) THEN
RETURN (FALSE) ;
END IF;
END REPEAT;
RETURN (TRUE) ;
END FUNCTION;

Argument definitions:

— a_case specifies the candidate nrf _case that is to be verified.

— supercases specifies the list of nrf_case instances that occur at the same or higher level as a_case.

4.2.8.19 FUNCTION nrf derive number_of states in_state list

The function nrf_derive number_of states in_state list computes and returns the number of states in an

nrf_state list.

Express specification:

FUNCTION nrf derive number of states_in state list(
sl : nrf state list) : INTEGER;
IF (sl.quantity type.number of real values > 0) THEN

END IF;
IF (sl.quantity type.number of integer values > 0) THEN

END IF;
RETURN (0) ;
END_FUNCTION;

RETURN (SIZEOF (sl.real values) / sl.quantity type.number of real values);

RETURN (SIZEOF (sl.integer values) / sl.quantity type.number of integer values);

Argument definitions:

— sl specifies the nrf_state list for which the number of states shall be computed.

4.2.8.20 FUNCTION nrf _verify_state_value_sequencing

The function nrf_verify_state_value_sequencing verifies the correct ordering of the values of an

nrf_state list according to its quantity_sequencing, if applicable. It returns TRUE if correct and FALSE

otherwise.

Express specification:

FUNCTION nrf verify state_value_ sequencing(
sl : nrf state list) : BOOLEAN;
LOCAL

Copyright ©1995-2016 European Space Agency

page 126

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

stride : INTEGER;
END LOCAL;

IF NOT EXISTS(sl.quantity sequencing) THEN
RETURN (TRUE) ;
END IF;

IF ('NRF_ARM.NRF REAL QUANTITY TYPE' IN TYPEOF (sl.quantity type)) THEN
stride := sl.quantity type.number of real values;
CASE sl.quantity sequencing OF
nrf quantity sequencing type.STRICTLY DECREASING:
REPEAT i := (1 + stride) TO SIZEOF (sl.real values) BY stride;
IF sl.real values[i] >= sl.real values[i-stride] THEN
RETURN (FALSE) ;
END IF;
END REPEAT;

nrf quantity sequencing type.MONOTONIC DECREASING:
REPEAT i := (1 + stride) TO SIZEOF (sl.real values) BY stride;
IF sl.real values[i] > sl.real values[i-stride] THEN
RETURN (FALSE) ;
END IF;
END REPEAT;

nrf quantity sequencing type.MONOTONIC INCREASING:
REPEAT i := (1 + stride) TO SIZEOF (sl.real values) BY stride;
IF sl.real values[i] < sl.real values[i-stride] THEN
RETURN (FALSE) ;
END IF;
END REPEAT;

nrf quantity sequencing type.STRICTLY INCREASING:
REPEAT i := (1 + stride) TO SIZEOF (sl.real values) BY stride;
IF sl.real values[i] <= sl.real values[i-stride] THEN
RETURN (FALSE) ;
END IF;
END REPEAT;
END CASE;

RETURN (TRUE) ;
END IF;

IF ('NRF_ARM.NRF INTEGER QUANTITY TYPE' IN TYPEOF (sl.quantity type)) THEN
stride := sl.quantity type.number of integer values;
CASE sl.quantity sequencing OF
nrf quantity sequencing type.STRICTLY DECREASING:
REPEAT i := (1 + stride) TO SIZEOF (sl.integer values) BY stride;
IF sl.integer values[i] >= sl.integer values[i-stride] THEN
RETURN (FALSE) ;
END IF;
END REPEAT;

nrf quantity sequencing type.MONOTONIC DECREASING:
REPEAT i := (1 + stride) TO SIZEOF (sl.integer values) BY stride;
IF sl.integer values[i] > sl.integer values[i-stride] THEN
RETURN (FALSE) ;
END IF;
END REPEAT;

nrf quantity sequencing type.MONOTONIC INCREASING:
REPEAT i := (1 + stride) TO SIZEOF (sl.integer values) BY stride;
IF sl.integer values[i] < sl.integer values[i-stride] THEN
RETURN (FALSE) ;
END IF;

Copyright ©1995-2016 European Space Agency page 127

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

END REPEAT;

nrf quantity sequencing type.STRICTLY INCREASING:
REPEAT i := (1 + stride) TO SIZEOF (sl.integer values) BY stride;
IF sl.integer values[i] <= sl.integer values[i-stride] THEN
RETURN (FALSE) ;
END IF;
END REPEAT;
END CASE;

RETURN (TRUE) ;
END IF;

RETURN (FALSE) ;

END FUNCTION;

Argument definitions:

— sl specifies the candidate nrf state list to be verified.

4.2.8.21 RULE nrf valid_values_in_datacubes

The RULE nrf_valid_values_in_datacubes verifies that all nrf_datacube instances contain valid quantity

values.

Express specification:

RULE nrf valid values_in datacubes FOR (nrf root, nrf datacube);
LOCAL

rule satisfied : LOGICAL := TRUE;
END LOCAL;
REPEAT i := 1 TO SIZEOF (nrf datacube) WHILE rule satisfied;
IF NOT nrf verify values in datacube (nrf root[l], nrf datacube[i]) THEN
rule satisfied := FALSE;
END IF;
END REPEAT;
WHERE
datacubes have valid values: rule satisfied;
END RULE;

4.2.8.22 FUNCTION nrf _verify values in_datacube

The function nrf_verify_values_in_datacube verifies that all values in a given datacube are valid for the
quantity type corresponding to the position in the real values or integer values list. The function returns

TRUE if this is the case, otherwise it returns FALSE.

NOTE The functions nrf verify values in_datacube and nrf verify values for quantity type also

provide examples for the implementation of algorithms to use an nrf datacube.

Express specification:

FUNCTION nrf verify values_in_ datacube (
root : nrf root;
dc : nrf datacube) : BOOLEAN;

LOCAL
n_states : INTEGER;

Copyright ©1995-2016 European Space Agency

page 128

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

n_items : INTEGER;
n _quantities : INTEGER;
real offset : INTEGER := 0;
integer offset : INTEGER := 0;
qt : nrf any quantity type;
END LOCAL;
n_ states := SIZEOF(dc.state_basis.real_values);
n items := SIZEOF (dc.item basis.items);
n _quantities := SIZEOF (dc.quantity basis.quantity types):;

CASE dc.value order OF

nrf datacube order type.STATES ITEMS QUANTITIES:

REPEAT i s := 1 TO n_states;
REPEAT i i := 1 TO n_items;
REPEAT i g := 1 TO n_quantities;
gt := dc.quantity basis.quantity types[i q];

IF NOT nrf verify values for gquantity type (
root, dc, real offset, integer offset, qt) THEN
RETURN (FALSE) ;

END IF;
real offset := real offset + gt.number of real values;
integer offset := integer offset + gt.number of integer values;

END REPEAT;
END REPEAT;
END REPEAT;

nrf datacube order type.STATES QUANTITIES ITEMS:
REPEAT i s := 1 TO n_states;
REPEAT i g := 1 TO n_quantities;
gt := dc.quantity basis.quantity types[i q];
REPEAT i i := 1 TO n_items;
IF NOT nrf verify values for quantity type (
root, dc, real offset, integer offset, qt) THEN
RETURN (FALSE) ;

END IF;
real offset := real offset + gt.number of real values;
integer offset := integer offset + gt.number of integer values;

END REPEAT;
END REPEAT;
END REPEAT;

nrf datacube order type.ITEMS STATES QUANTITIES:

REPEAT i i := 1 TO n_items;
REPEAT i s := 1 TO n_states;
REPEAT i g := 1 TO n_quantities;
gt := dc.quantity basis.quantity types[i q];

IF NOT nrf verify values for quantity type (
root, dc, real offset, integer offset, gqt) THEN
RETURN (FALSE) ;

END IF;
real offset := real offset + gt.number of real values;
integer offset := integer offset + gt.number of integer values;

END REPEAT;
END REPEAT;
END REPEAT;

nrf datacube order type.QUANTITIES STATES ITEMS:
REPEAT i g := 1 TO n_quantities;
gt := dc.quantity basis.quantity types[i q];
REPEAT i s := 1 TO n_states;
REPEAT i i := 1 TO n_items;
IF NOT nrf verify values for gquantity type (

Copyright ©1995-2016 European Space Agency page 129

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

root, dc, real offset, integer offset, qt) THEN
RETURN (FALSE) ;

END IF;
real offset := real offset + gt.number of real values;
integer offset := integer offset + gt.number of integer values;

END REPEAT;
END REPEAT;
END REPEAT;

nrf datacube order type.ITEMS QUANTITIES STATES:
REPEAT i i := 1 TO n_items;
REPEAT i g := 1 TO n_quantities;
gt := dc.quantity basis.quantity types[i q];
REPEAT i s := 1 TO n_states;
IF NOT nrf verify values for gquantity type (
root, dc, real offset, integer offset, qt) THEN
RETURN (FALSE) ;

END IF;
real offset := real offset + gt.number of real values;
integer offset := integer offset + gt.number of integer values;

END REPEAT;
END REPEAT;
END REPEAT;

nrf datacube order type.QUANTITIES ITEMS STATES:
REPEAT i g := 1 TO n_quantities;

gt := dc.quantity basis.quantity types[i q];

REPEAT i i := 1 TO n_items;
REPEAT i s := 1 TO n_states;
IF NOT nrf verify values for gquantity type (
root, dc, real offset, integer offset, qt) THEN
RETURN (FALSE) ;

END IF;
real offset := real offset + gt.number of real values;
integer offset := integer offset + gt.number of integer values;

END REPEAT;
END REPEAT;
END REPEAT;

END CASE;

RETURN (TRUE) ;
END FUNCTION;

Argument definitions:

— root specifies the nrf root instance.

— dc specifies the candidate nrf_datacube for which to verify the values.

4.2.8.23 FUNCTION nrf _verify_values for_quantity type

The function nrf_verify_values_for_quantity type verifies that the values for a quantity type in an

nrf_datacube are valid. It is verified that values are of the correct type, and, if applicable, within the specified
upper and lower bounds. When the actual parameter qt is an nrf_any_tensor_quantity type, the function is

called recursively for each of the tensor's elements.

Express specification:

FUNCTION nrf verify values for_ quantity type (
root : nrf root;

Copyright ©1995-2016 European Space Agency

page 130

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

dc : nrf datacube;
real offset : INTEGER;
integer offset : INTEGER;
qt : nrf any quantity type) : BOOLEAN;
LOCAL
typeof qt : SET OF STRING;
rval : REAL;
rval?2 : REAL;
ival : INTEGER;
quantity type code : INTEGER;
3 : INTEGER;
END LOCAL;
typeof gt := TYPEOF(gt);

IF ('NRF_ARM.NRF REAL QUANTITY TYPE' IN typeof gt) THEN
quantity type code := 1;
ELSE
IF ('NRF_ARM.NRF INTEGER QUANTITY TYPE' IN typeof gt) THEN
quantity type code := 2;
ELSE
IF ('NRF _ARM.NRF STRING QUANTITY TYPE' IN typeof gt) THEN
quantity type code := 3;
ELSE

quantity type code := 4;
ELSE

quantity type code := 5;

ELSE
RETURN (FALSE) ;

END IF;

END IF;
END IF;
END IF;
END IF;

CASE quantity type code OF

1: —— nrf real gquantity type
BEGIN
rval := dc.real_values[real_offset+l];
IF (rval = root.undefined real sentinel) OR
(rval = root.positive infinity real sentinel) OR
(rval = root.negative infinity real sentinel) THEN
RETURN (TRUE) ;
END IF;

IF EXISTS (gt.lower bound) THEN
IF (rval < gt.lower bound) THEN
RETURN (FALSE) ;
END IF;
IF (NOT (gt.lower bound inclusive)) AND
(rval = gt.lower bound) THEN
RETURN (FALSE) ;
END IF;
END IF;
IF EXISTS (gt.upper bound) THEN
IF (rval > gt.upper bound) THEN
RETURN (FALSE) ;
END IF;
IF (NOT (gt.upper bound inclusive)) AND (rval = gt.upper bound)
RETURN (FALSE) ;
END IF;

IF ('NRF_ARM.NRF ENUMERATION QUANTITY TYPE' IN typeof gt) THEN

IF ('NRF_ARM.NRF ANY TENSOR QUANTITY TYPE' IN typeof gt) THEN

THEN

Copyright ©1995-2016 European Space Agency

page 131

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

END IF;
END;
2: -- nrf integer quantity type
BEGIN
ival := dc.integer values[integer offset+1];
IF (ival = root.undefined integer sentinel) OR
(ival = root.positive infinity integer sentinel) OR
(ival = root.negative infinity integer sentinel) THEN
RETURN (TRUE) ;
END IF;

IF EXISTS (gt.lower bound) THEN
IF (ival < gt.lower bound) THEN
RETURN (FALSE) ;
END IF;
IF (NOT (gt.lower bound inclusive)) AND
(ival = gt.lower bound) THEN
RETURN (FALSE) ;
END IF;
END IF;
IF EXISTS (gt.upper bound) THEN
IF (ival > gt.upper bound) THEN
RETURN (FALSE) ;
END IF;
IF (NOT (gt.upper bound inclusive)) AND
(ival = gt.upper bound) THEN
RETURN (FALSE) ;
END IF;
END IF;
END;

3: -- nrf string quantity type
BEGIN
ival := dc.integer values[integer offset+1];
IF (ival < 1) OR (ival > SIZEOF (gt.string values)) THEN
RETURN (FALSE) ;

END IF;
END;
4: -- nrf enumeration quantity type
BEGIN
ival := dc.integer values[integer offset+1];

IF (ival < 1) OR (ival > SIZEOF (gt.enumeration items)) THEN
RETURN (FALSE) ;

END IF;
END;
5: -- nrf any tensor gquantity type
BEGIN
-- recursively verify the quantity types and values contained in the tensor
REPEAT i1 := 1 TO nrf get required number of elements in any tensor(qt);
IF SIZEOF (gt.elements) = 1 THEN
-— special case: tensor where all elements have the same quantity type
J o= 1;
ELSE
J o= 1i;
END IF;

IF NOT (nrf_verify values_ for quantity type (
root, dc, real offset, integer offset, gt.elements[j].quantity type))
RETURN (FALSE) ;

END IF;

real offset := real offset +
gt.elements[]j] .quantity type.number of real values;

integer offset := integer offset +

THEN

Copyright ©1995-2016 European Space Agency

page 132

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

gt.elements[]j] .quantity type.number of integer values;
END REPEAT;
END;

END CASE;

RETURN (TRUE) ;
END FUNCTION;

Argument definitions:

— root specifies the nrf root instance.
— dc specifies the nrf_datacube for which a quantity type and value shall be verified.

— real offset specifies the offset of the actual quantity type value into the real values list of the
datacube, i.e. the real _values[real offset+1] is the value element to be verified.

— integer offset specifies the offset of the actual quantity type value into the integer values list of the
datacube, i.e. the integer values[integer offset+1] is the value element to be verified.

— gt specifies the quantity type that defines the required type of the value(s) to be verified.
4.2.8.24 FUNCTION nrf _verify_nodes_in_mapping

The function nrf_verify_nodes_in_mapping verifies that all source and target nodes specified in the
node_mappings of an nrf network model nodes mapping are part of the respective source_model and
target_model. If this is the case the function returns TRUE, otherwise the function returns FALSE.

Express specification:

FUNCTION nrf verify nodes_in mapping (

a mapping : nrf network model nodes mapping) : BOOLEAN;
REPEAT i := 1 TO SIZEOF (a mapping.node mappings) ;
REPEAT j := 1 TO SIZEOF (a mapping.node mappings[i].source nodes) ;

IF NOT nrf verify item in model tree(
a mapping.node mappings[i].source nodes[]j],
a mapping.source model) THEN
RETURN (FALSE) ;
END IF;
END REPEAT;
IF NOT nrf verify item in model tree(
a mapping.node mappings[i].target node,
a mapping.target model) THEN
RETURN (FALSE) ;
END IF;
END REPEAT;
RETURN (TRUE) ;
END FUNCTION;

Argument definitions:

— a_mapping specifies the nrf network model nodes mapping to be verified.

4.2.9 NRF Product structure UoF

The UoF nrf product structure captures the structure of the product being modelled — e.g. the product
assembly tree or a functional decomposition tree.

Copyright ©1995-2016 European Space Agency page 133

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

This Unit of Functionality is defined following as closely as possible the concepts for product and product
structure definition in ISO 10303-41 and ISO 10303-44.

4.2.9.1 ENTITY nrf_product

An nrf_product is an identification and textual description of a physically realisable object that is produced
by a natural or artificial process.

Express specification:

ENTITY nrf product;

id : nrf identifier;

name : nrf label;

description : nrf text;

frame of reference : SET [1:?] OF nrf product context;
UNIQUE

has unique id: id;
END ENTITY;

Attribute definitions:

— id specifies the identifier of an instance of nrf_product.
— name specifies the human-interpretable name of an instance of nrf_product.
— description specifies the textual description of an instance of nrf_product.

— frame_of reference specifies one or more references to a product_context.

Formal propositions:

— has_unique_id: The id shall be unique in the exchange dataset.
4.2.9.2 ENTITY nrf_product_context

An nrf product_context collects information on the engineering or manufacturing perspective in which the
product data are defined. This context may affect the meaning and usage of the product data.

Express specification:

ENTITY nrf product context;
name : nrf label;
discipline type : nrf label;

END ENTITY;

Attribute definitions:

— name specifies the human-interpretable name of an instance of nrf_product_context.

— discipline_type specifies the identification of the discipline to which the product data belong. It is a
label string.

4.2.9.3 ENTITY nrf _product_definition

An nrf_product_definition is an identification of a characterization of a product in a particular application
context.

Copyright ©1995-2016 European Space Agency page 134

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

Express specification:

ENTITY nrf product definition;

id : nrf identifier;

description : nrf text;

frame of reference : nrf product definition context;
UNIQUE

has _unique id for frame of reference: id, frame of reference;
END ENTITY;

Attribute definitions:

— 1id specifies the identifier of an instance of nrf_product_definition.
— description specifies the textual description of an instance of nrf_product_definition.

— frame of reference specifies the reference to nrf_product definition context.

Formal propositions:

— has_unique_id for frame of reference: The combination of id and frame of reference shall be
unique in the exchange dataset.

NOTE A product's physical design may be one product definition while the functional design of the same
product may be a different product_definition.

4.2.9.4 ENTITY nrf_product_definition_ context

An nrf_product_definition_context collects information on the stage in the product life cycle to which the
product data belongs. This context may affect the meaning and usage of the product data.

Express specification:

ENTITY nrf product definition context;
name : nrf label;
life cycle stage : nrf label;

END ENTITY;

Attribute definitions:

— name specifies the human-interpretable name of an instance of nrf_product_definition_context.

— life_cycle stage specifies a label string that identifies the life cycle stage to which the product data
belong.

EXAMPLE Typical values for life_cycle stage are: 'conceptual design', 'preliminary design', 'detailed
design'.

4.2.9.5 ENTITY nrf _product_next_assembly usage relationship

An nrf_product_next_assembly_usage_relationship is an identified association between two
product_definitions. It specifies that one nrf_product definition is the next level higher assembly that uses
the other nrf_product definition as a constituent. This relationship is used to specify an assembly tree that is
also often called product tree or manufacturing tree.

Express specification:

Copyright ©1995-2016 European Space Agency page 135

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

ENTITY nrf product next_assembly usage_relationship;

id : nrf identifier;

assembly : nrf product definition;

constituent : nrf product definition;
UNIQUE

has unique id for assembly: id, assembly;
WHERE

product assembly is acyclic:
nrf verify acyclic product definition relationship (SELF, [constituent]):;
END ENTITY;

Attribute definitions:

— 1id specifies the identifier of an instance of nrf_product next assembly usage relationship.

— assembly specifies an higher level nrf product definition.

— constituent specifies a lower level nrf_product definition.

Formal propositions:

— has _unique id for assembly: The combination id and assembly shall be unique in the exchange
dataset.

— product_assembly_is_acyclic: The relationship shall form an acyclic graph, i.e. no circular
references to nrf_product definition instances are allowed.

4.2.9.6 FUNCTION nrf_verify_acyclic_product_definition_relationship

The function nrf _verify acyclic_product_definition relationship determines whether or not the given
nrf_product definition entities have been self-defined by the associations made in the specified
nrf_product next assembly usage relationship.

The function returns a value of FALSE if an nrf product definition, which is referenced by the attribute
assembly of the relation argument, is also referenced through the attribute constituent of the same relation
argument or any of relation instances in the product_definition tree. Otherwise, it returns a value of TRUE.

Express specification:

FUNCTION nrf verify acyclic product definition relationship (

relation : nrf product next assembly usage relationship;
constituents : SET [1:?] OF nrf product definition) : BOOLEAN;
LOCAL

x : BAG OF nrf product next assembly usage relationship;
s : STRING;

END LOCAL;

IF relation.assembly IN constituents THEN
RETURN (FALSE) ;

END IF;
S = 'NRF_ARM.NRF_PRODUCT_NEXT_ASSEMBLY_USAGE_RELATIONSHIP.CONSTITUENT';
x := USEDIN(relation.assembly, s);
REPEAT i := 1 TO HIINDEX (X);

IF NOT nrf verify acyclic product_definition_relationship (

x[1], constituents + [relation.constituent]) THEN
RETURN (FALSE) ;
END IF;

END REPEAT;
RETURN (TRUE) ;
END_FUNCTION;

Copyright ©1995-2016 European Space Agency page 136

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

Argument definitions:

— relation: the candidate nrf_product definition_relationship to be verified.

— constituents: the set of nrf_product_definition entity data types that the function is searching for in
the constituent attribute of the relation argument.

4.2.9.7 ENTITY nrf_product_version

An nrf product version is an identified grouping of nrf product definitions that together define the
version of a product. A version differs from other versions of a product in some significant way. However,
the difference is insufficient to regard the version as a different product.

The rules for differentiating between the case in which the changes to a product are great enough to justify
the definition of a new product and the case in which the changes only require the definition of a new version

of a product are enterprise specific. Such rules are not specified in the scope of this protocol.

Express specification:

ENTITY nrf product version;

for product : nrf product;

id : nrf identifier;

description : nrf text;

definitions : SET [1:?] OF nrf product definition;
UNIQUE

has unique id for product: id, for product;
END ENTITY;

Attribute definitions:

— for_product specifies the reference to an nrf_product.
— 1id specifies the identifier of an instance of nrf_product_version.
— description specifies the textual description of an instance of nrf_product_version.

— definitions specifies the references to one or more nrf product definitions.

Formal propositions:

— has_unique_id for product: The combination of for product and id shall be unique in the exchange
dataset.

NOTE The current definition in [STEP-41] for product definition allows referencing only one version of
the product (product definition formation).

EXAMPLE The version identifier 'v3.11' for a part is an example of an id.
4.2.10 Materials UoF

The nrf_materials UoF contains the application objects needed to specify identified materials and specify the
required physical properties to be associated with them.

Copyright ©1995-2016 European Space Agency page 137

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4.2.10.1 ENTITY nrf_material_class

An nrf_material_class is a specification of a class of nrf_material instances, that is a named category of
materials which share common characteristics and behaviour.

Express specification:

ENTITY nrf material class
SUBTYPE OF (nrf named observable item class);

subclasses : LIST OF nrf material class;
required quantity type names : LIST OF nrf non blank label;
DERIVE

all required quantity type names : LIST OF nrf non blank label :=
nrf get all required quantity type names (SELF) ;
WHERE
material class tree is acyclic:
nrf verify acyclic material class tree(SELF, [SELF]);
required quantity type names are unique:
VALUE UNIQUE (required quantity type names);
END ENTITY;

Attribute definitions:

— subclasses specifies the subclasses of an nrf_material_class, if any. This allows for the definition
of a class hierarchy for materials.

— required_quantity type names specifies the names of the quantity types (nrf_any_quantity type
instances) that shall be defined for materials that belong to an nrf_material_class.

— all required_quantity type names is derived to return the expanded list of all names for the
required quantity types for the current nrf_material_class and all its subclasses.

Formal propositions:

— material_class_tree_is_acyclic: The hierarchical material class tree shall be acyclic, i.e. there shall
be no circular references.

— required quantity type names are unique: The required quantity type names shall be unique.
4.2.10.2 ENTITY nrf_material

An nrf_material is a simple specification of a material. Materials may be defined for use in
nrf_network model instances and can be assigned to model elements. Material properties can be specified as
quantity type values.

Express specification:

ENTITY nrf material

SUBTYPE OF (nrf named observable item);

SELF\nrf named observable item.item class : nrf material class;
END ENTITY;

Attribute definitions:

— item_class specifies the nrf network material class identifiying the class of an nrf_material

Copyright ©1995-2016 European Space Agency page 138

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4.2.10.3 FUNCTION nrf _get all required quantity type names

The function nrf_get_all_required_quantity_type names collects and returns all
required_quantity type names defined in an nrf_material_class and its subclasses. The collection is done
recursively, starting from the top of the material class tree.

Express specification:

FUNCTION nrf get all required quantity type names (

mc : nrf material class) : LIST OF nrf non blank label;
LOCAL

all required quantity type names : LIST OF nrf non blank label;
END LOCAL;

all required quantity type names :=

mc.required quantity type names;
REPEAT i := 1 TO SIZEOF (mc.subclasses);

all required quantity type names :=

all required quantity type names +

nrf get all required quantity type names (mc.subclasses[i]);
END REPEAT;
RETURN (all required quantity type names);

END FUNCTION;

Argument definitions:

— mc specifies the nrf_material class for which all required_quantity type names need to be
returned.

4.2.10.4 FUNCTION nrf_verify_acyclic_material_class_tree

The function nrf_verify acyclic_material class tree verifies recursively that the hierarchical class tree
defined by nrf_material class instances is acyclic, i.e. there are no circular nrf_material_class references.
The function returns TRUE if this is the case and FALSE otherwise.

Express specification:

FUNCTION nrf verify acyclic material class_tree(
mc : nrf material class;
superclasses : LIST OF nrf material class) : BOOLEAN;
REPEAT i := 1 TO SIZEOF (mc.subclasses);
IF mc.subclasses[i] IN superclasses THEN
RETURN (FALSE) ;

END IF;

IF NOT nrf verify acyclic material class_tree (
mc.subclasses[i1], superclasses + mc.subclasses) THEN
RETURN (FALSE) ;

END IF;

END REPEAT;
RETURN (TRUE) ;
END FUNCTION;

Argument definitions:

— mc specifies the nrf _material _class to be verified.

— superclasses specifies the list of higher level classes that shall not be referenced by mc or its
subclasses.

Copyright ©1995-2016 European Space Agency page 139

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4.2.11 END_SCHEMA declaration for nrf_arm

The following EXPRESS declaration ends the nrf arm schema.

Express specification:

[END_SCHEMA;

4.3 Meshed geometric model (MGM) module

This subclause specifies the units of functionality for the meshed geometric model module. The module
contains the following units of functionality:

MGM visual presentation
MGM basic geometry objects
MGM meshed geometric model

Sl

MGM meshed boolean construction geometry

4.3.1 SCHEMA declaration for mgm_arm

The following EXPRESS declaration begins the mgm_arm schema.

Express specification:

SCHEMA mgm_arm;

-- $Ids

-- Copyright (c) 1995-2018 European Space Agency (ESA)
-- All rights reserved.

4.3.2 Interfaced schema(ta) for mgm_arm

The mgm_arm schema uses the nrf_arm schema specified in [STEP-NRF].

Express specification:

|USE FROM nrf_arm;

4.3.3 CONSTANT specifications

One constant is defined for the MGM module: SCHEMA OBJECT IDENTIFIER.

Express specification:

CONSTANT
SCHEMA OBJECT IDENTIFIER2 : STRING :=
'{http://www.purl.org/ESA/step-tas/v6.0/mgm arm.exp}';
-- in formal version to be replaced with
-- '"{ iso standard n part(p) version(v) }

END CONSTANT;

Constant definitions:

Copyright ©1995-2016 European Space Agency page 140

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

SCHEMA_OBJECT_IDENTIFIER provides a built-in way to reference the object identifier of the protocol
for version verification. For the definition and usage of the object identifier see ISO 10303-1 and Annex E.

4.3.4 MGM visual presentation UoF

The MGM visual presentation UoF collects the application objects that capture visualization aspects for use
in the various model representations.

4.3.4.1 TYPE mgm_rgb_component

An mgm_rgb_component specifies a type for the value of the red, green or blue component of an
mgm_colour_rgb.

Express specification:

TYPE mgm rgb component = REAL;
WHERE

{0.0 <= SELF <= 1.0};
END TYPE;

Formal propositions:

— wrl: The value of an mgm_rgb component shall be between zero and one inclusive.
4.3.4.2 ENTITY mgm_colour_rgb

An mgm_colour_rgb defines a colour by specifying the intensity of red, green and blue.

Express specification:

ENTITY mgm colour_rgb;

name : OPTIONAL nrf label;
red : mgm rgb component;
green : mgm rgb component;
blue : mgm rgb component;

END ENTITY;

Attribute definitions:

— name optionally specifies the name of the colour.
— red specifies the intensity of the red component of the colour as a value between 0.0 and 1.0.
— green specifies the intensity of the green component of the colour as a value between 0.0 and 1.0.

— blue specifies the intensity of the blue component of the colour as a value between 0.0 and 1.0.

4.3.5 MGM basic geometry objects UoF

The MGM basic geometry objects UoF contains application objects providing basic entitites for the UoF
mgm_meshed geometric_model.

Copyright ©1995-2016 European Space Agency page 141

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4.3.5.1 ENTITY mgm_3d_cartesian_point

An mgm_3d_cartesian_point specifies a point in a three-dimensional, Cartesian, orthonormal, right-handed
coordinate system with X, y and z coordinates. An mgm_3d_cartesian_point may optionally have an
identifier. An mgm_3d_cartesian_point can be referenced at any place in a shape definition where a point is
demanded. The unit of length is specified through a given quantity type, which is typically enforced to be
the 'length' quantity type in an mgm_quantity_context.

Express specification:

ENTITY mgm 3d cartesian_point
SUPERTYPE OF (ONEOF (mgm parametric 3d cartesian point));

id : OPTIONAL nrf identifier;

X : REAL;

% : REAL;

Z : REAL;

quantity type : nrf real quantity type;
WHERE

wrl: nrf verify dimensional exponents (
quantity type.quantity category,
1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0);
END ENTITY;

Attribute definitions:

— 1id optionally specifies the identifier of an instance of mgm_3d_cartesian_point.
— X specifies the value of the coordinate on the X axis.
— y specifies the value of the coordinate on the Y axis.
— z specifies the value of the coordinate on the Z axis.

— quantity type specifies the quantity type of the X, y and z coordinates.

Formal propositions:

— wrl: The quantity type shall have a quantity category with dimension 'length'.
4.3.5.2 ENTITY mgm_parametric_3d_cartesian_point

An mgm_parametric_3d_cartesian_point is a type of mgm_3d_cartesian_point that specifies its
coordinates with value prescriptions. This enables parametric definition of points.

Express specification:

ENTITY mgm parametric_3d cartesian_point
SUBTYPE OF (mgm 3d cartesian point);

x prescription : nrf real quantity value prescription;

y_prescription : nrf real quantity value prescription;

z prescription : nrf real quantity value prescription;
DERIVE

SELF\mgm 3d cartesian point.x : REAL
SELF\mgm 3d cartesian point.y : REAL
SELF\mgm 3d cartesian point.z : REAL
WHERE
wrl: (x prescription.quantity type :=: quantity type) AND
(y_prescription.quantity type :=: quantity type) AND

X _prescription.val;
y_prescription.val;
z _prescription.val;

Copyright ©1995-2016 European Space Agency page 142

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

(z_prescription.quantity type :=: quantity type);
END ENTITY;

Attribute definitions:

— X_prescription prescribes the value for the coordinate on the X axis
— y_prescription prescribes the value for the coordinate on the Y axis
— z_prescription prescribes the value for the coordinate on the Z axis
— x is derived from the literal or default value of x_prescription
— yis derived from the literal or default value of y_prescription

— zis derived from the literal or default value of z_prescription

Formal propositions:

— wrl: Each of the coordinate prescriptions shall have the same quantity type as the quantity type of
the mgm_parametric_3d_cartesian_point itself.

4.3.5.3 ENTITY mgm_3d_direction

An mgm_3d_direction defines a general direction vector in three- dimensional Cartesian space. The actual
magnitudes of the components have no effect upon the direction being defined, only the ratios x:y:z are
significant.

NOTE The components of this entity are not necessarily normalised. If a unit vector is required it should
be normalised before use.

Express specification:

ENTITY mgm 3d direction
SUPERTYPE OF (ONEOF (mgm parametric 3d direction));

x : REAL;

y : REAL;

z : REAL;
WHERE

wrl: SQRT (x**2 + y**2 + z**2) > 0.9;
END ENTITY;

Attribute definitions:

— X specifies the component in the direction of the X axis.
— y specifies the component in the direction of the Y axis.

— z specifies the component in the direction of the Z axis.

Formal propositions:

— wrl: The magnitude of the direction vector shall be greater than 0.9.
NOTE A significant value for the magnitude of direction vector is required to prevent numerical problems.

A minimum magnitude of 0.9 is a pragmatic choice that allows any normalisation method to produce a
valid direction vector.

Copyright ©1995-2016 European Space Agency page 143

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4.3.5.4 ENTITY mgm_parametric_3d_direction

An mgm_parametric_3d_direction specifies a general direction vector in three-dimensional Cartesian
space with value prescriptions for the direction components. The actual magnitudes of the components have
no effect upon the direction being defined, only the ratios x:y:z are significant.

NOTE The components of this entity are not necessarily normalised. If a unit vector is required it should
be normalised before use.

Express specification:

ENTITY mgm parametric 3d direction
SUBTYPE OF (mgm 3d direction);
x prescription : nrf real quantity value prescription;
y prescription : nrf real quantity value prescription;
z prescription : nrf real quantity value prescription;

DERIVE
SELF\mgm 3d direction.x : REAL := x prescription.val;
SELF\mgm 3d direction.y : REAL := y prescription.val;
SELF\mgm 3d direction.z : REAL := z prescription.val;
WHERE

wrl: nrf verify dimensional exponents (
x prescription.quantity type.quantity category,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) AND
(y prescription.quantity type :=: x prescription.quantity type) AND
(z_prescription.quantity type :=: x prescription.quantity type);
END ENTITY;

Attribute definitions:

— x_prescription prescribes the value for the component in the direction of the X axis
— y_prescription prescribes the value for the component in the direction of the Y axis
— z_prescription prescribes the value for the component in the direction of the Z axis
— x is derived from the literal or default value of x_prescription
— yis derived from the literal or default value of y prescription

— zis derived from the literal or default value of z_prescription

Formal propositions:

— wrl: All direction prescriptions shall have the same quantity type and they shall all be non-
dimensional.

4.3.5.5 ENTITY mgm_axis_transformation

An mgm_axis_transformation is an abstract entity that provides a generic mechanism to reference static
coordinate system transformations between related geometrical shapes. Each mgm_axis_transformation is

either an mgm_axis placement or an mgm_axis_transformation_sequence.

Express specification:

ENTITY mgm axis_ transformation
ABSTRACT SUPERTYPE OF (ONEOF (mgm axis placement, mgm axis transformation sequence));
END ENTITY;

Copyright ©1995-2016 European Space Agency page 144

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4.3.5.6 ENTITY mgm_axis placement

An mgm_axis_placement defines the location and orientation of a Cartesian orthonormal coordinate system
in three-dimensional space with respect to the coordinate system in which it is specified.

From the attributes of an mgm_axis_placement a rotation matrix and a translation vector can be derived. In
the following the attribute names are replaced by symbols in the following ways:

t : location

z : z_axis_direction

X : x_axis_direction

The vectors x and Y are derived from the vectors X and z via their cross-products:

~

y=2zXX

X=Yy XZ

For the three vectors x, ¥ and z we introduce now the normalized versions:

The rotation matrix to transform coordinates from the local to the reference system is built from these
normalized vectors

R=[X y 7

Suppose P is a vector with coordinates expressed in the reference system and P is the same vector, but its
coordinates are expressed in the local coordinate system. The following relation between P and P holds:

p=Rp+t

Express specification:

ENTITY mgm_axis placement

SUBTYPE OF (mgm axis transformation);

location : mgm 3d cartesian point;

z _axis direction : mgm 3d direction;

X axis direction : mgm 3d direction;
WHERE

wrl: ABS((z_axis direction.x*x axis direction.x +

z axis direction.y*x axis direction.y +

z_axis direction.z*x axis direction.z)/

(SQRT (z_axis direction.x**2 + z axis direction.y**2 + z axis direction.z**2)*

SORT (x_axis direction.x**2 + x axis direction.y**2 + x axis direction.z**2)))

< 0.9;

END ENTITY;

Attribute definitions:

Copyright ©1995-2016 European Space Agency page 145

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

— location specifies a geometric_construction_point that serves as the origin of the coordinate system.
The coordinates of location are expressed in the reference system.

— z_axis_direction specifies the exact direction of the z-axis of the local coordinate system to defined
by an mgm_axis_placement. The components of z_axis_direction are expressed in the reference
system.

— x_axis_direction specifies the (approximate) direction of the x-axis of the local coordinate system.
x_axis_direction defines together with z_axis_direction the x-z-plane of the local coordinate system
to be defined by an mgm_axis_placement. The components of x axis_direction are expressed in
the reference system.

Formal propositions:

— wrl: The absolute value of the dot product of the normalised versions of the z axis_direction and
the x_axis_direction shall be less than 0.9 in order to guarantee that the two direction vectors are not
parallel or anti-parallel.

NOTE A value of 0.9 for the absolute value of the dot product of the normalised versions of the

z axis_direction and the x_axis_direction has been chosen to provide a significant deviation of 1.0, which
corresponds to the parallel case. This allows practically any vector in the required x-z-plane that is not
parallel to z_axis_direction to serve as x_axis_direction

4.3.5.7 ENTITY mgm_axis_transformation_sequence

An mgm_axis_transformation_sequence is a sequence of transformations of type
mgm_translation_or_rotation, which can be either a translation or a rotation. An mgm_translation represents
the translation. Two types of rotation can be part of the sequence: mgm_rotation with axes fixed and

mgm_rotation with_axes_moving.

From each mgm_translation a translation vector t can be created.

o>
I
INIENS

The occurence of an mgm_translation is added to translation vector build up from the previously defined
mgm_translation instances in the sequence. Suppose the latter vector is referenced through t the expression
for the new translation vector t becomes:

t=t+t
Both rotation types inherit the attributes from the super type mgm_rotation.

It is assumed that the normalized version of axis has the three components ¢z , 9y and ¢ , and the angle is
represented by «v. If the rotation is of type mgm_rotation with axes fixed, rotation vector r is created from
the & and q :

Tz Oy
r=|r,| = |ag,
Tz aq,

Copyright ©1995-2016 European Space Agency page 146

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

If the rotation is of type mgm_rotation_with_axes_moving and the rotation is the j-¢4 rotation in the
mgm_axis_transformation_sequence, rotation vector r is then defined by:

Tz qzx
_ _ j—1pji—2 1
r=|r,| =aR7TR/77T...R gy
Tz 4z
with R/ _1, R’ _2, ey R! being the rotation matrices of the previous rotations in the

mgm_axis_transformation_sequence.

Suppose that the rotation vector r can be written as the product of its magnitude and a normalised version of
the r referenced through n:

Ny
r=|rn=|r| |n,
n,

The j-th rotation matrix can be created with:

R’ = cos(|r[)I + [1 — cos(|r|)nn” + sin(|r|)T

_ 1 0 O NNy NyNg NyTy 0 —N. Ny
R’ =cos(|r|) |0 1 Of+4[1—cos(|r|)] [nany nyny mn.ny|+sin(|r|) | n, 0 —ny
0O 0 1 NNy NyNy NNy —MNy Ny 0

The mgm_axis_transformation_sequence is a series of transformations, which must be executed in the
order in which these occur in the sequence. If any mgm_translation instances occured in the sequence before
any mgm_rotation, then the build up translation vector is also rotated using the rotation matrix of this

mgm_rotation.

t = R/t

In the following the position of a point expressed in the reference is indicated with P and the position of the
same point expressed in the local system is indicated with P . For each of the transformations in
mgm_axis_transformation_sequence the following operations have to be applied:

If the transformation is a rotation:

p=R'D

If it is a translation:

p=D+t

in which P becomes P of the previous transformation.

Express specification:

ENTITY mgm axis transformation_sequence
SUBTYPE OF (mgm axis transformation);
transformation sequence : LIST [1:?] OF mgm translation or rotation;

Copyright ©1995-2016 European Space Agency page 147

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

WHERE
wrl: (SIZEOF (QUERY (ts <* transformation sequence |
'MGM_ARM.MGM ROTATION WITH AXES MOVING' IN TYPEOF (ts))) = 0) OR
(SIZEOF (QUERY (ts <* transformation_sequence |
'MGM_ARM.MGM ROTATION WITH AXES FIXED' IN TYPEOF (ts))) = 0);
END ENTITY;

Attribute definitions:

— transformation_sequence specifies a sequence of coordinate transformation definitions of the type
mgm_translation_or_rotation

Formal propositions:

— wrl: all mgm_rotation instances in transformation_sequence must be of the same subtype, i.e. either
all mgm _rotation with axes fixed or all mgm_rotation with axes moving

4.3.5.8 ENTITY mgm_translation_or_rotation

An mgm_translation_or_rotation specifies an abstract supertype that provides a generic mechanism to
reference an mgm_translation or an mgm_rotation.

Express specification:

ENTITY mgm translation or_ rotation
ABSTRACT SUPERTYPE OF (ONEOF (mgm translation, mgm rotation));
END ENTITY;

4.3.5.9 ENTITY mgm_translation

An mgm_translation specifies a translation in three dimensional cartesian space expressed in x, y and z
components.

NOTE An mgm_translation is only used in an mgm_axis_transformation_sequence.

Express specification:

ENTITY mgm_translation
SUPERTYPE OF (ONEOF (mgm parametric translation))
SUBTYPE OF (mgm translation or rotation);

X : REAL;

y . REAL;

4 : REAL;

quantity type : nrf real quantity type;
WHERE

wrl: nrf verify dimensional exponents (
quantity type.quantity category,
1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0);
END ENTITY;

Attribute definitions:

— x specifies translation in the x-direction of the reference system
— y specifies translation in the y-direction of the reference system

— z specifies translation in the z-direction of the reference system

Copyright ©1995-2016 European Space Agency page 148

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

— quantity_type specifies the quantity type of the x, y and z components.

Formal propositions:

— wrl: The quantity type shall have a quantity category with dimension 'length'.
4.3.5.10 ENTITY mgm_parametric_translation

An mgm_parametric_translation is a type of mgm_translation that specifies its components with value
prescriptions. This enables parametric definition of translations.

Express specification:

ENTITY mgm parametric_translation
SUBTYPE OF (mgm translation);
x prescription : nrf real quantity value prescription;
y_prescription : nrf real quantity value prescription;
z_prescription : nrf real quantity value prescription;
DERIVE
SELF\mgm translation.x : REAL := x prescription.val;
SELF\mgm translation.y : REAL := y prescription.val;
SELF\mgm translation.z : REAL := z prescription.val;
WHERE
wrl: (x prescription.quantity type :=: quantity type) AND
(y_prescription.quantity type quantity type) AND
(z_prescription.quantity type quantity type);
END ENTITY;

Attribute definitions:

— X_prescription prescribes the value for the translation in the x-direction
— y_prescription prescribes the value for the translation in the y-direction
— z_prescription prescribes the value for the translation in the z-direction
— x is derived from the literal or default value of x_prescription
— yis derived from the literal or default value of y_prescription

— zis derived from the literal or default value of z_prescription

Formal propositions:

— wrl: Each of the component prescriptions shall have the same quantity type as the quantity type of
the mgm_parametric_translation itself.

4.3.5.11 ENTITY mgm_rotation

An mgm_rotation is a type of mgm_translation_or_rotation that specifies a rotation relative to a given
rotation axis. It is an abstract supertype that provides a generic mechanism to reference an

mgm_rotation_with_axes_fixed or an mgm_rotation_with_axes_moving.

NOTE An mgm_rotation is only used in an mgm_axis_transformation sequence.

Express specification:

Copyright ©1995-2016 European Space Agency page 149

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

ENTITY mgm rotation
ABSTRACT SUPERTYPE OF (ONEOF (
mgm rotation with axes fixed,
mgm rotation with axes moving))
SUBTYPE OF (mgm translation or rotation);

axis : mgm 3d direction;
angle : REAL;
quantity type : nrf real quantity type;
WHERE
wrl: quantity type.quantity category.name = 'plane angle';
wr2: {-360.0 <= angle <= 360.0};

END ENTITY;

Attribute definitions:

— axis specifies an mgm_3d_direction, which is expressed in the reference system, indicating the
orientation of the rotation axis. For operations the normalized version of axis has to be used.

— angle specifies the value of the angle over which the local system is rotated with respect to the
reference system. angle is expressed in the unit of the applicable plane angle quantity type.

Formal propositions:

— wrl: The quantity type shall be a 'plane_angle'.
— wrl: angle shall be greater or equal to -360 and less or equal to +360.

4.3.5.12 ENTITY mgm_rotation_with_axes_fixed

An mgm_rotation_with_axes_fixed specifies a coordinate system rotation in which the reference system for
any of the subsequent tranformations (either rotation of translation) in an

mgm_axis_transformation_sequence remains unchanged.

NOTE An mgm_rotation_with axes fixed is only used in an mgm_axis transformation_sequence.

Express specification:

ENTITY mgm rotation with axes fixed
SUPERTYPE OF (ONEOF (mgm parametric rotation with axes fixed))
SUBTYPE OF (mgm rotation);

END ENTITY;

4.3.5.13 ENTITY mgm_parametric_rotation_with_axes fixed

An mgm_parametric_rotation_with_axes_fixed is a type of mgm_rotation_with_axes_fixed that specifies
its rotation angle with a value prescription. This enables the parametric definition of such a rotation.

Express specification:

ENTITY mgm parametric_rotation with_axes fixed
SUBTYPE OF (mgm rotation with axes fixed);
angle prescription : nrf real quantity value prescription;

DERIVE

SELF\mgm rotation.angle : REAL := angle prescription.val;
WHERE

wrl: angle prescription.quantity type :=: quantity type;
END ENTITY;

Copyright ©1995-2016 European Space Agency page 150

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

Attribute definitions:

— angle prescription prescibes the value for the rotation angle.

— angle is derived from the literal or default value of angle prescription.

Formal propositions:

— wrl: The angle prescription shall have the same quantity type as the quantity type of the
mgm_parametric_rotation_with_axes_fixed itself.

4.3.5.14 ENTITY mgm_rotation_with_axes moving

An mgm_rotation_with_axes_moving defines a coordinate system rotation in which the reference system
for any of the subsequent tranformations (either rotation of translation) in an
mgm_axis_transformation_sequence is rotated according to mgm_rotation_with _axes moving.

NOTE An mgm_rotation_with_axes _moving is only used in an mgm_axis_transformation sequence.

Express specification:

ENTITY mgm rotation with_ axes moving
SUPERTYPE OF (ONEOF (mgm parametric rotation with axes moving))
SUBTYPE OF (mgm rotation);

END ENTITY;

4.3.5.15 ENTITY mgm_parametric_rotation_with_axes _moving

An mgm_parametric_rotation_with_axes_moving is a type of mgm_rotation with_axes moving that
specifies its rotation angle with a value prescription. This enables the parametric definition of such a rotation.

Express specification:

ENTITY mgm parametric rotation with axes_moving
SUBTYPE OF (mgm rotation with axes moving) ;
angle prescription : nrf real quantity value prescription;

DERIVE

SELF\mgm rotation.angle : REAL := angle prescription.val;
WHERE

wrl: angle prescription.quantity type :=: quantity type;

END ENTITY;

Attribute definitions:

— angle prescription prescibes the value for the rotation angle.

— angle is derived from the literal or default value of angle prescription.

Formal propositions:

— wrl: The angle prescription shall have the same quantity type as the quantity type of the
mgm_parametric_rotation_with_axes_moving itself.

Copyright ©1995-2016 European Space Agency page 151

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4.3.5.16 ENTITY mgm_quantity context

An mgm_quantity_context specifies global quantity types and numerical uncertainty values for a model.
The global quantity types (with units) apply to all parametric attributes of the instances that define the model.
The actual global quantity types and uncertainties are defined in an external dictionary. An

mgm_quantity context shall as a minimum include the following quantity types: 'length’, 'plane_angle',
'time', 'temperature’, 'velocity' and 'angular_velocity', and the following uncertainty:

'point_coincidence length'.

NOTE 1 The tolerance to be used to determine whether or not two angles are considered to be coincident is
derived from the 'point_coincidence length' uncertainty. This angle tolerance, expressed in radians, is the
angle needed to rotate an object at a distance of one length unit such that the object is translated along a
distance equal to an arc-length equal to 'point coincidence length' uncertainty. This implies that the value
of the angle tolerance expressed in radians is equal to the value of 'point coincidence length' uncertainty
expressed in the length unit.

NOTE 2 An mgm_quantity_context is referenced from an mgm_meshed geometric_model. The
mgm_quantity context is only applicable to the instances contained within the

mgm_meshed geometric_model. Any submodels contained in the model shall reference the same
mgm_quantity _context instance, thereby ensuring that all defining instances in a model conform to one
global quantity and unit context. A different mgm_meshed geometric_ model model/submodel tree (i.e.
with a different root model) may reference a different mgm_quantity context instance.

Express specification:

ENTITY mgm quantity context;
quantity types : LIST OF nrf any quantity type;
uncertainties : LIST OF nrf real quantity value literal;
WHERE
wrl: mgm verify context quantity types (SELF) ;
wr2: mgm verify context uncertainties (SELF) ;
END ENTITY;

Attribute definitions:

— quantity types specifies the global quantity types (with units) that apply to all parametric attributes
of the instances in a model that makes an mgm_quantity _context applicable.

— uncertainties specifies the uncertainty values or numerical tolerances for a model that makes an
mgm_quantity_context applicable.

Formal propositions:

— wrl: The quantity types shall have unique quantity category names and shall include as a
minimum: 'length', 'plane_angle', 'time', 'temperature', 'velocity' and 'angular velocity'.

— wr2: The uncertainties shall as a minimum include a 'point_coincidence length' specified in the
same unit as the context's 'length' and greater than zero. The 'point_coincidence length' is the
distance within which two points are considered to be at the same location.

4.3.5.17 FUNCTION mgm_verify context quantity types

The function mgm_verify_context_quantity types verifies that the names of the quantity categories
referenced in the quantity types of an mgm_quantity context are unique and that as a minimum the

Copyright ©1995-2016 European Space Agency page 152

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

following quantity types are included: 'length’, 'plane_angle', 'time', 'temperature', 'velocity' and
'angular_velocity'.

Express specification:

FUNCTION mgm verify context quantity types (
a quantity context : mgm quantity context) : BOOLEAN;
LOCAL
gc : nrf physical quantity category;
gc _names : LIST OF nrf non blank label := [];

length verified : BOOLEAN := FALSE;
plane angle verified : BOOLEAN := FALSE;
time verified : BOOLEAN := FALSE;
temperature verified : BOOLEAN := FALSE;
velocity verified : BOOLEAN := FALSE;
angular velocity verified : BOOLEAN := FALSE;
END LOCAL;
REPEAT i := 1 TO SIZEOF (a quantity context.quantity types);
gc := a quantity context.quantity types[i].quantity category;

IF gc.name IN gc names THEN
-- non-unique name
RETURN (FALSE) ;

END_IF;
gc_names := dC_names + dc.name;
CASE gc.name OF
"length': length verified := nrf verify dimensional exponents (
qe, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0);
'plane angle': plane angle verified := nrf verify dimensional exponents (
qe, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0);
'time': time verified := nrf verify dimensional exponents (
qe, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0);
'temperature': temperature verified := nrf verify dimensional exponents (
qe, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0);
'velocity': velocity verified := nrf verify dimensional exponents (

gc, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0);

'angular velocity': angular velocity verified := nrf verify dimensional exponent

qc, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 0.0);
END CASE;
END REPEAT;
IF NOT (length verified AND
plane angle verified AND
time verified AND
temperature verified AND
velocity verified AND
angular velocity verified) THEN
RETURN (FALSE) ;
END IF;
RETURN (TRUE) ;
END_FUNCTION;

Argument definitions:

— a_quantity context specifies the mgm_quantity context to be verified.
4.3.5.18 FUNCTION mgm_verify_context_uncertainties

The function mgm_verify context uncertainties verifies that an mgm_quantity context has at least an
uncertainty specified for a 'point_coincidence length' and that it uses the same unit as the context's 'length’
quantity type.

Copyright ©1995-2016 European Space Agency page 153

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

Express specification:

FUNCTION mgm verify context uncertainties (

a quantity context : mgm quantity context) : BOOLEAN;
LOCAL
valid : BOOLEAN := FALSE;
length quantity type : nrf any quantity type;
END LOCAL;
REPEAT i := 1 TO SIZEOF (a _quantity context.quantity types);

IF a quantity context.quantity types[i].quantity category.name = 'length' THEN
length quantity type := a quantity context.quantity types[i];
ESCAPE;

END IF;

END REPEAT;
REPEAT i := 1 TO SIZEOF (a_quantity context.uncertainties);

IF a quantity context.uncertainties[i].quantity type.name =
'point coincidence length' THEN
IF a quantity context.uncertainties[i].quantity type.unit.name =
length quantity type.unit.name THEN
valid := TRUE;
END IF;
END IF;
END REPEAT;
RETURN (valid) ;
END FUNCTION;

Argument definitions:

— a_quantity _context specifies the mgm_quantity context to be verified.
4.3.5.19 FUNCTION mgm_get_context_quantity_type

The function mgm_get context quantity type returns the nrf any quantity type from the quantity types
in the quantity context of a given mgm_meshed geometric_model for a given basic quantity type name. If
no match can be found the function returns indeterminate.

Express specification:

FUNCTION mgm get context quantity type (
a model : mgm meshed geometric model;
a quantity category name : STRING) : nrf any quantity type;
REPEAT i := 1 TO SIZEOF (a _model.quantity context.quantity types);
IF a model.quantity context.quantity types[i].quantity category.name =
a quantity category name THEN
RETURN (a_model.quantity context.quantity types[i]);
END IF;
END REPEAT;
RETURN (?) ;
END FUNCTION;

Argument definitions:

— a model specifies the mgm_meshed geometric_model from which to get the quantity context.

— a_quantity_category name specifies the name to match the name of the quantity category of the
nrf any quantity type to be retrieved.

Copyright ©1995-2016 European Space Agency page 154

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4.3.5.20 FUNCTION mgm_get context uncertainty value

The function mgm_get context uncertainty value returns the value of the nrf real quantity value literal
from the uncertainties in the quantity context of a given mgm_meshed geometric_model, for which the
name of the quantity type matches a given name. If no match can be found the function returns
indeterminate.

Express specification:

FUNCTION mgm get context uncertainty value (
a model : mgm meshed geometric model;
an_uncertainty name : STRING) : REAL;
REPEAT i := 1 TO SIZEOF (a_model.quantity context.uncertainties);
IF a model.quantity context.uncertainties[i].quantity type.name =
an_uncertainty name THEN
RETURN (a_model.quantity context.uncertainties([i].val);
END IF;
END REPEAT;
RETURN (?) ;
END FUNCTION;

Argument definitions:

— a_model specifies the mgm_meshed geometric_model from which to get the uncertainty value.

— an_uncertainty _name specifies the name to match the name of the quantity type of the
nrf real quantity value literal of which to return the value.

4.3.5.21 FUNCTION mgm_compute_distance between_points

The function mgm_compute_distance_between_points computes and returns the distance between two
points of which the locations are defined by mgm_3d_cartesian_point instances. The distance is expressed in
the length unit of the coordinates of the two points.

Express specification:

FUNCTION mgm compute distance_between points (
pl : mgm 3d cartesian point;
p2 : mgm 3d cartesian point): REAL;

LOCAL
dx, dy, dz : REAL;
END LOCAL;
dx := p2.x - pl.x;
dy := p2.y - pl.y;
dz := p2.z - pl.z;
RETURN (SQRT (dx*dx + dy*dy + dz*dz));

END FUNCTION;

Argument definitions:

— pl specifies the first mgm_3d_cartesian_point
— p2 specifies the second mgm_3d_cartesian_point

Copyright ©1995-2016 European Space Agency page 155

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4.3.5.22 RULE mgm_all plane angle quantity types in_degree

The RULE mgm_all_plane_angle quantity types_in_degree requires that all nrf real quantity instances
in the dataset that represent a 'plane_angle' use 'degree' as a unit.

Express specification:

RULE mgm_all plane angle quantity types_in degree FOR (nrf real quantity type);
LOCAL
rule satisfied : LOGICAL := TRUE;
END LOCAL;
REPEAT i := 1 TO SIZEOF (nrf real quantity type) WHILE rule satisfied;
IF nrf real quantity type[i].quantity category.name = 'plane angle' THEN
IF nrf real quantity type[i].unit.name <> 'degree' THEN
rule satisfied := FALSE;
END IF;
END IF;
END REPEAT;
WHERE
wrl: rule satisfied;
END RULE;

4.3.6 MGM meshed geometric model UoF

The MGM meshed geometric model UoF contains the application objects to define a geometric model
consisting of surfaces meshed with oriented faces for the purpose of engineering analysis using shell
geometry.

4.3.6.1 TYPE mgm_active_side_type

An mgm_active_side_type is an enumeration that indicates the activity type of an

mgm_meshed primitive_bounded surface. An mgm_meshed primitive bounded surface has two sides,
side 1 and side 2 that are defined by the mgm_primitive_bounded surface that is associated through the

surface attribute of the mgm_meshed primitive bounded surface.

Express specification:

TYPE mgm active side_ type = ENUMERATION OF (
NONE,
SIDEL,
SIDEZ2,
BOTH) ;
END_TYPE;

Enumeration value definitions:

SIDE1: indicates that the faces on side 1 of an mgm_meshed primitive bounded_surface are active and the
faces on side 2 are inactive.

SIDE2: indicates that the faces on side 2 of an mgm_meshed primitive_bounded surface are active and the
faces on side 1 are inactive.

BOTH: indicates that the faces on both sides of an mgm_meshed primitive bounded surface are active.

NONE: indicates that the faces on both sides of an mgm_meshed primitive_bounded surface are inactive.

Copyright ©1995-2016 European Space Agency page 156

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

NOTE 1 For thermal-radiative applications inactive faces do not emit nor reflect thermal radiation, but act
as shaders in the thermal-radiative model, with an artificial absorptance of 1.0 for all thermal radiation.

NOTE 2 mgm_meshed primitive bounded surface instances with active_side = NONE shall not have
associated sidel surface material and side2 surface material.

4.3.6.2 ENTITY mgm_meshed geometric_model

An mgm_meshed geometric_model is a type of nrf network model specifying a geometric model
representation consisting of nodes that are mgm_any meshed_geometric_item instances. These may be
collected in a hierarchical tree structure using mgm_compound _meshed geometric_item instances. Any
static or dynamic (kinematic) coordinate system transformations may be specified at each level for each

individual mgm_any_meshed geometric_item in the tree structure.

The geometric items are sets of oriented, bounded faces for the purpose of engineering analysis using shell
geometry. The faces are associated with mgm_primitive_bounded surface instances in
mgm_meshed primitive_bounded surface instances, which may contain various types of meshing.

Express specification:

ENTITY mgm meshed geometric_model
SUBTYPE OF (nrf network model) ;

SELF\nrf network model.nodes : LIST OF UNIQUE mgm any meshed geometric item;
SELF\nrf network model.submodels : LIST OF UNIQUE mgm meshed geometric_model;
quantity context : mgm quantity context;
root item : mgm any meshed geometric item;
enclosures : LIST OF UNIQUE mgm enclosure;

WHERE

wrl: SIZEOF (node relationships) = 0;
wr2: SIZEOF (QUERY (sm <* submodels |
SIZEOF (submodels) ;
wr3: mgm verify acyclic compound meshed geometric item tree(root item, [root item]);
END ENTITY;

sm.quantity context :=: SELF.quantity context))

Attribute definitions:

— SELF\nrf network model.nodes specifies all instances, which are a subtype of
mgm_any_meshed geometric_item, that are contained in an mgm_meshed_geometric_model.

— SELF\nrf_network model.submodels specifies the next lower level
mgm_meshed_geometric_model instances that are part of an mgm_meshed_geometric_model

— quantity context specifies the mgm_quantity context defining the applicable quantity types, units
and uncertainties for the model

— root_item specifies the mgm_any meshed geometric_item that is the root of the
mgm_compound meshed geometric_item tree
— enclosures specifies the list of enclosures defined for the model, if any.

Formal propositions:

— wrl: No nrf network node relationships shall be defined for an mgm_meshed_geometric_model.

— wr2: The quantity context of all submodels shall be the same as the quantity context of the
containing mgm_meshed_geometric_model. This implies that all
mgm_meshed_geometric_model instances in one submodel tree shall use the same

mgm_quantity context.

Copyright ©1995-2016 European Space Agency page 157

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

— wr3: If the root_item comprises an mgm_compound _meshed geometric_item tree, it shall be an
acyclic tree.

4.3.6.3 ENTITY mgm_any_meshed_geometric_item

An mgm_any_meshed_geometric_item is a type of nrf_network node that provides a generic mechanism

to reference to instances of mgm_compound meshed geometric_item,
mgm_meshed geometric_item by submodel, mgm meshed primitive bounded surface or
mgm_meshed boolean_difference surface. It is the construction object for an

mgm_meshed geometric model. Each mgm_any_meshed_geometric_item has an optional transformation
that can be used to locate and orient it with respect to its next higher level containing geometric item or
model. Any mgm_any_meshed_geometric_item may be articulated during a run of a model through the
specification of kinematic_articulations in an sma_space mission case. Such kinematic movement is applied
in addition to the static transformation.

Express specification:

ENTITY mgm any meshed geometric_item
ABSTRACT SUPERTYPE OF (ONEOF (
mgm compound meshed geometric item,
mgm meshed geometric item by submodel,
mgm meshed primitive bounded surface,
mgm meshed boolean difference surface))
SUBTYPE OF (nrf network node) ;
transformation : OPTIONAL mgm axis transformation;
WHERE
wrl: mgm verify transformation (SELF) ;
END ENTITY;

Attribute definitions:

— transformation optionally specifies an mgm_axis transformation that defines a static coordinate
system transformation to be applied relative to the reference system of the next higher level
mgm_any_meshed_geometric_item or mgm meshed geometric_model.

Formal propositions:

— wrl: The transformation shall be valid.
4.3.6.4 ENTITY mgm_compound_meshed_geometric_item

An mgm_compound_meshed_geometric_item is a type of mgm_any meshed geometric_item that
specifies a collection of mgm_any meshed geometric_item instances in a list. It provides the mechanism to
define the geometric items of an mgm_meshed geometric_model in a hierarchical tree, where at each level
coordinate transformations may be applied.

Express specification:

ENTITY mgm compound meshed geometric_item
SUPERTYPE OF (ONEOF (mgm qualified compound meshed primitive bounded surface))
SUBTYPE OF (mgm any meshed geometric item);
geometric items : LIST [1:?] OF UNIQUE mgm any meshed geometric item;

END ENTITY;

Copyright ©1995-2016 European Space Agency page 158

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

Attribute definitions:

— geometric_items specifies the list of mgm_any meshed geometric_item instances to be collected
into an mgm_compound_meshed_geometric_item.

4.3.6.5 ENTITY mgm_meshed_geometric_item_by_submodel

An mgm_meshed geometric_item_ by submodel is a type of mgm_any meshed geometric_item that
specifies an mgm_meshed geometric_model (as a submodel) for inclusion at some level into a hierarchical
tree of mgm_compound meshed geometric_item instances, possibly with a coordinate transformation.

Express specification:

ENTITY mgm meshed geometric_item by submodel
SUBTYPE OF (mgm any meshed geometric item);
submodel : mgm meshed geometric model;

WHERE
wrl: submodel IN containing model.submodels;

END ENTITY;

Attribute definitions:

— submodel specifies an mgm_meshed geometric_model as a submodel that defines a complete set of
bounded faces.

Formal propositions:

— wrl: The submodel shall be registered as a submodel of the containing model.
4.3.6.6 ENTITY mgm_meshed primitive bounded_surface

An mgm_meshed primitive_bounded_surface is a type of mgm_any meshed geometric_item that
specifies a connected set of faces defined on one or on both sides of an mgm_primitive bounded_surface. It
is by definition a leave node in a hierarchical mgm_compound meshed geometric_item tree.

Express specification:

ENTITY mgm meshed primitive bounded surface
SUBTYPE OF (mgm any meshed geometric item);
surface : mgm primitive bounded surface;
active side : mgm active side type;
sidel notional thickness : OPTIONAL nrf real quantity value prescription;
side2 notional thickness : OPTIONAL nrf real quantity value prescription;
sidel surface material : OPTIONAL nrf material;
side2 surface material : OPTIONAL nrf material;
sidel bulk material : OPTIONAL nrf material;
side2 bulk material : OPTIONAL nrf material;
sidel colour : OPTIONAL mgm colour rgb;
side2 colour : OPTIONAL mgm colour rgb;
dirl meshing : nrf positive integer;
dir2 meshing : nrf positive integer;
dirl submeshing : OPTIONAL nrf positive integer;
dir2 submeshing : OPTIONAL nrf positive integer;
dirl grid spacings : OPTIONAL LIST [1l:?] OF REAL;
dir2 grid spacings : OPTIONAL LIST [1l:?] OF REAL;
sidel faces : LIST [1l:?] OF mgm face;

Copyright ©1995-2016 European Space Agency page 159

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

side2 faces : LIST [1:?] OF mgm face;
WHERE

has valid sidel notional thickness: (NOT EXISTS(sidel notional thickness)) OR
((EXISTS (sidel notional thickness) AND (sidel notional thickness.quantity type :=:
mgm get context quantity type(containing model, 'length')) AND
(sidel notional thickness.val > 0.0)));

has valid side2 notional thickness: (NOT EXISTS(side2 notional thickness)) OR
((EXISTS (side2 notional thickness) AND (side2 notional thickness.quantity type :=:
mgm get context quantity type(containing model, 'length')) AND
(side2 notional thickness.val > 0.0)));

has valid sidel pseudo solid:
(EXISTS (sidel notional thickness) AND EXISTS (sidel bulk material)) OR
(NOT EXISTS(sidel notional thickness) AND NOT EXISTS (sidel bulk material));

has valid side2 pseudo solid:
(EXISTS (side2 notional thickness) AND EXISTS (side2 bulk material)) OR
(NOT EXISTS(side2 notional thickness) AND NOT EXISTS (side2 bulk material));

has valid dirl grid spacings: (NOT EXISTS(dirl grid spacings)) OR
(EXISTS (dirl grid spacings) AND (SIZEOF (dirl grid spacings) = dirl meshing+l) AND
mgm verify surface grid spacings(dirl grid spacings));

has valid dir2 grid spacings: (NOT EXISTS(dir2 grid spacings)) OR

(EXISTS (dir2 grid spacings) AND (SIZEOF (dir2 grid spacings) = dir2 meshing+l) AND
mgm verify surface grid spacings(dir2 grid spacings));
has correct number of sidel faces: SIZEOF (sidel faces) = dirl meshing*dir2 meshing;
has correct number of side2 faces: SIZEOF (side2 faces) = dirl meshing*dir2 meshing;
has valid active sidel: (((active side = mgm active side type.BOTH) OR

(active side = mgm active side type.SIDEl)) AND EXISTS (sidel surface material)) OR
(active side = mgm active side type.NONE) OR
(active side = mgm active side type.SIDE2);

has valid active side2: (((active side = mgm active side type.BOTH) OR
(active side = mgm active side type.SIDE2)) AND EXISTS (side2 surface material)) OR
(active side = mgm active side type.NONE) OR
(active side = mgm active side type.SIDEL);

surface has correct inverse reference: surface.geometric item :=: SELF;

END ENTITY;

Attribute definitions:

— surface specifies the mgm_primitive_bounded surface defining the geometry of an
mgm_meshed_primitive_bounded_surface

— active_side specifies one item of mgm_active side_ type that is an enumeration type.

— sidel notional thickness optionally specifies a notional thickness that may be used to derive a
‘pseudo-solid’ object for analysis purposes. This ‘pseudo-solid’ is assumed to be located at side 1 of
surface and the thickness is measured from the plane of surface.

— side2 notional thickness optionally specifies a notional thickness that may be used to derive a
‘pseudo-solid’ object for analysis purposes. This ‘pseudo-solid’ is assumed to be located at side 2 of
surface and the thickness is measured from the plane of surface.

— sidel surface material optionally specifies the nrf material that defines the surface property values
of side 1 of surface.

— side2 surface_material optionally specifies the nrf material that defines the surface property values
of side 2 of surface.

— sidel bulk material optionally specifies the nrf_material that defines the bulk property values of
the pseudo-solid created on side 1 of the surface through specification of sidel notional thickness.

— side2 bulk material optionally specifies the nrf_material that defines the bulk property values of
the pseudo-solid created on side 2 of the surface through specification of sidel notional thickness.

— sidel_colour optionally specifies the mgm_colour_rgb to be used for visualization of side 1 of an
mgm_meshed_primitive_bounded_surface.

Copyright ©1995-2016 European Space Agency page 160

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

— side2_colour optionally specifies the mgm_colour_rgb to be used for visualization of side 2 of an
mgm_meshed_primitive_bounded_surface.

— dirl_meshing specifies the number of mesh-divisions, being at least 1, along direction-1 of surface.
— dir2_meshing specifies the number of mesh-divisions, being at least 1, along direction-2 of surface.

— dirl_submeshing optionally specifies the number of sub-mesh- divisions, being at least 1, along
direction 1 of surface to be applied to each face meshed on surface.

— dir2_submeshing optionally specifies the number of sub-mesh- divisions, being at least 1, along
direction 2 of surface to be applied to each face meshed on surface.

— dirl_grid spacings optionally specifies a list of coordinates in direction-1 of surface location of the
face boundaries. If dirl _grid spacings is not specified a uniform grid spacing is implied along
direction-1 of surface.

— dir2_grid_spacings optionally specifies a list of coordinates in direction-2 of surface location of the
face boundaries. If dir2_grid spacings is not specified a uniform grid spacing is implied along
direction-2 of surface.

— sidel faces specifies the list of faces meshed on side 1 of the surface. The ordering of the faces in
the list is first along direction-1 and then along direction-2 as defined for the associated surface.

— side2_faces specifies the list of faces meshed on side 2 of the surface. The ordering of the faces in
the list is first along direction-1 and then along direction-2 as defined for the associated surface.

Formal propositions:

— has_valid_sidel notional_thickness: If sidel notional thickness is specified, it shall have the
applicable 'length' quantity type and a value greater than zero.

— has valid side2 notional thickness: If side2 notional thickness is specified, it shall have the
applicable 'length' quantity type and a value greater than zero.

— has valid sidel pseudo solid: If sidel notional thickness is specified, then also
sidel bulk material must be specified.

— has_valid_side2 pseudo_solid: If side2 notional thickness is specified, then also
side2_bulk material must be specified.

— has valid dirl grid spacings: If dirl grid spacings is specified, the number of coordinate values
must be equal to dirl _meshing+1 and the values of dirl grid spacings must be in ascending order
and start with 0.0 and ends with 1.0.

— has_valid_dir2_grid spacings: If dir2_grid_spacings is specified, the number of coordinate values
must be equal to dir2_meshing+1 and the values of dir2_grid spacings must be in ascending order
and start with 0.0 and ends with 1.0.

— has_correct number of sidel faces: The number of sidel faces shall be equal to the product of
dirl_meshing and dir2_meshing.

— has_correct number of side2 faces: The number of side2 faces shall be equal to the product of
dirl _meshing and dir2_meshing.

— has_valid_active_sidel: If active_side is SIDE1 or BOTH then sidel_surface_material must be
specified.

— has_valid active side2: If active side is SIDE2 or BOTH then side2 surface material must be
specified.

— surface has correct_inverse reference: The geometric_item of surface shall reference this
mgm_meshed_primitive_bounded_surface.

Copyright ©1995-2016 European Space Agency page 161

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4.3.6.7 RULE mgm_verify referencing of meshed geometric_items

The RULE mgm_verify_referencing_of meshed_geometric_items verifies that any

mgm_any meshed geometric_item that is part of any mgm_meshed geometric_model is referenced only
once.

Express specification:

RULE mgm verify referencing of meshed geometric_items FOR (nrf root);
LOCAL -
rule satisfied : LOGICAL := TRUE;
all items : LIST OF mgm any meshed geometric item := [];
root model : nrf network model;
check item : mgm any meshed geometric item;
END LOCAL;
REPEAT i := 1 TO SIZEOF (nrf root[l].root models) WHILE rule satisfied;
root model := nrf root[l].root models[i];
IF 'MGM ARM.MGM MESHED GEOMETRIC MODEL' IN TYPEOF (root model) THEN
all items := all items +
mgm get items from meshed geometric item(root model.root item);
END IF;
END REPEAT;
REPEAT WHILE ((SIZEOF(all items) > 1) AND rule satisfied);
check item := all items[1];
REMOVE (all items, 1);
IF check item IN all items THEN
rule satisfied := FALSE;
END IF;
END REPEAT;
WHERE
wrl: rule satisfied;
END RULE;

4.3.6.8 FUNCTION mgm_get _items from_meshed geometric_item

The function mgm_get_items_from_meshed_geometric_item returns a list of all
mgm_any meshed geometric_item instances that are part of a given mgm_any_meshed geometric_item.

Express specification:

FUNCTION mgm get items_from meshed geometric_item (

an_item : mgm any meshed geometric item) : LIST OF mgm any meshed geometric item;
LOCAL

all items : LIST OF mgm any meshed geometric item := [];
END LOCAL;
all items := all items + [an item];
IF 'MGM ARM.MGM COMPOUND MESHED GEOMETRIC ITEM' IN TYPEOF (an_item) THEN

REPEAT i := 1 TO SIZEOF (an_ item.geometric items);

all items := all items +

mgm get items from meshed geometric_item(an item.geometric items[i]);
END REPEAT;

ELSE
IF 'MGM ARM.MGM MESHED BOOLEAN DIFFERENCE SURFACE' IN TYPEOF(aniitem) THEN
all items := all items +
mgm _get items_ from meshed geometric_item(an item.base surface);
ELSE
IF 'MGM ARM.MGM MESHED GEOMETRIC ITEM BY SUBMODEL' IN TYPEOF(aniitem) THEN
all items := all items +
mgm get items from meshed geometric_item(an item.submodel.root item);
END IF;

Copyright ©1995-2016 European Space Agency page 162

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

END IF;
END IF;
RETURN (all items);

END FUNCTION;

Argument definitions:

— an_item specifies the mgm_any meshed geometric_item for which all contained
mgm_any_meshed geometric_item instances should be returned.

4.3.6.9 ENTITY mgm_primitive bounded_surface

An mgm_primitive_bounded_surface is a surface of finite area with identifiable boundaries. It is a generic
object that specifies the attributes common to all primitive bounded surfaces.

The side of an mgm_primitive bounded_surface that corresponds to the side with the positive normal is
referred to as side 1 and the opposite side is referred to as side 2.

Express specification:

ENTITY mgm primitive bounded surface
ABSTRACT SUPERTYPE OF (ONEOF (
mgm triangle,
mgm rectangle,
mgm quadrilateral,
mgm disc,
mgm cylinder,
mgm cone,
mgm_ sphere,
mgm paraboloid)) ;
geometric item : mgm any meshed geometric item;
END ENTITY;

Attribute definitions:

— geometric_item specifies the mgm_any meshed geometric item that is using this
mgm_primitive_bounded_surface to define its surface shape.

4.3.6.10 ENTITY mgm_triangle

An mgm_triangle is a type of mgm_primitive_bounded surface that specifies a planar surface bounded by
three straight edges defined by three points.

p3
direction-2

p1) p2
direction-1

Figure 1 Sketch of mgm_triangle

Copyright ©1995-2016 European Space Agency page 163

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

The positive normal on the surface is defined by the cross product of the vector from p1 to p2 and the vector
from p1 to p3.

The first parametric direction (direction-1) is defined along the vector from p1 to p2, the second parametric
direction (direction-2) is defined along the vector from p2 to p3.

Express specification:

ENTITY mgm triangle
SUBTYPE OF (mgm primitive bounded surface);

pl : mgm 3d cartesian point;

p2 : mgm 3d cartesian point;

p3 : mgm 3d cartesian point;
WHERE

wrl: mgm verify points use context length gquantity type(
[pl, p2, p3], geometric item.containing model) ;
wr2: mgm verify no coincident points([pl, p2, p3], mgm get context uncertainty value
geometric item.containing model, 'point coincidence length'));
wr3: mgm verify no colinear points([pl, p2, p3], mgm get context uncertainty wvalue (
geometric item.containing model, 'point coincidence length'));
END ENTITY;

Attribute definitions:

— pl specifies an mgm_3d_cartesian_point that defines the first vertex of the triangle.
— p2 specifies an mgm_3d_cartesian_point that defines the second vertex of the triangle.
— p3 specifies an mgm_3d_cartesian_point that defines the third vertex of the triangle.

Formal propositions:

— wrl: the coordinates of all points shall all use the length quantity type specified in the
global quantity context of the containing model.

— wr2: all edges of the triangle shall have a length greater than the point_coincidence length
uncertainty.

— wr3: the three points shall not be co-linear.
4.3.6.11 ENTITY mgm_rectangle

An mgm_rectangle is a type of mgm_primitive bounded surface that specifies a planar rectangular
bounded surface defined by three points.

3
) L

direction-2

[o
—_ » p2
p1 direction-1

Figure 2 Sketch of an mgm_rectangle

Copyright ©1995-2016 European Space Agency page 164

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

The positive normal on the surface is defined by the cross product of the vector from p1 to p2 and the vector
from p1 to p3.

The first parametric direction (direction-1) is defined along the vector from p1 to p2, the second parametric
direction (direction-2) is defined along the vector from p1 to p3.

Points p1, p2 and p3 define three vertices of the rectangular bounded surface. The vectors from p1 to p2 and
from p1 to p3 are required to be orthogonal. The fourth vertex of the rectangular surface is implied to be

located by the vector sum of the vector to p2 plus the vector from p1 to p3.

Express specification:

ENTITY mgm rectangle
SUBTYPE OF (mgm primitive bounded surface);

pl : mgm 3d cartesian point;

p2 : mgm 3d cartesian point;

p3 : mgm 3d cartesian point;
WHERE

wrl: mgm verify points use context length gquantity type (
[pl, p2, p3], geometric item.containing model) ;
wr2: mgm verify points span orthogonal system(pl, p2, p3,
mgm get context uncertainty value (
geometric item.containing model, 'point coincidence length'));
END ENTITY;

Attribute definitions:

— pl specifies an mgm_3d_cartesian_point that defines the first vertex of the rectangle.
— p2 specifies an mgm_3d _cartesian_point that defines the second vertex of the rectangle.
— p3 specifies an mgm_3d_cartesian_point that defines the third vertex of the rectangle.

Formal propositions:

— wrl: the coordinates of points pl, p2, p3 shall all use the length quantity type specified in the
quantity context of the containing model.

— wr2: points pl, p2 and p3 shall span an orthogonal system.
4.3.6.12 ENTITY mgm_quadrilateral

An mgm_quadrilateral is a type of mgm_primitive_bounded surface that specifies a planar quadrilateral
surface bounded by four straight edges, defined by four points.

p4
p3

p4
direction-2

p3

p2
direction-2

p2

p1
p1 direction-1

Copyright ©1995-2016 European Space Agency page 165

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

Figure 3 Sketch of two mgm_quadrilateral bounded surfaces

The positive normal on the surface is defined by the cross product of the vector from p1 to p2 and the vector
from pl to p4.

The first parametric direction (direction-1) is defined along the vector from p1 to p2, the second parametric
direction (direction-2) is defined along the vector from p1 to p4.

Express specification:

ENTITY mgm quadrilateral
SUBTYPE OF (mgm primitive bounded surface);
pl : mgm 3d cartesian point;
p2 : mgm 3d cartesian point;
p3 : mgm 3d cartesian point;
p4 : mgm 3d cartesian point;
WHERE
wrl: mgm verify points use context length gquantity type (
[pl, p2, p3, p4], geometric item.containing model);
wr2: mgm verify quadrilateral (SELF) ;
END ENTITY;

Attribute definitions:

— pl specifies an mgm_3d_cartesian_point that defines the first vertex of the quadrilateral.
— p2 specifies an mgm_3d_cartesian_point that defines the second vertex of the quadrilateral.
— p3 specifies an mgm_3d_cartesian_point that defines the third vertex of the quadrilateral.
— p4 specifies an mgm_3d_cartesian_point that defines the fourth vertex of the quadrilateral.

Formal propositions:

— wrl: the coordinates of points p1, p2, p3, p4 shall all use the length quantity type specified in the
quantity context of the containing model.

— wr2: Verify the following constraints: (1) The distance between each pair of points shall be greater
than the applicable 'point_coincidence length', (2) The quadrilateral shall be planar, (3) All four
interior angles of the quadrilateral shall be greater than 0 and less than 180 degrees.

4.3.6.13 ENTITY mgm_disc

An mgm_disc is a type of mgm_primitive_bounded_surface that defines a disc, ring, sector of disc or sector
of ring.

Copyright ©1995-2016 European Space Agency page 166

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

end_angle

i di direction-1
inner_fadius 3
outer_radius direction-2

start_angle
p3

Figure 4 Sketch of mgm_disc

The vector from pl to p2 defines the positive normal on the surface.

The first parametric direction (direction-1) is defined along the radius of the mgm_disc, the second

parametric direction (direction-2) is defined along the positive direction of revolution about the vector from

pl to p2.

Express specification:

ENTITY mgm disc
SUBTYPE OF (mgm primitive bounded surface);

pl : mgm 3d cartesian point;
p2 : mgm 3d cartesian point;
p3 : mgm 3d cartesian point;
inner radius : nrf real quantity value prescription;
outer radius : nrf real quantity value prescription;
start angle : nrf real quantity value prescription;
end_angle : nrf real gquantity value prescription;
WHERE

wrl: mgm verify points use context length gquantity type (
[pl, p2, p3], geometric item.containing model) ;
wr2: (inner radius.quantity type :=:
mgm get context quantity type(geometric item.containing model, 'length'))
AND (outer radius.quantity type :=:
mgm get context quantity type(geometric item.containing model, 'length'));
wr3: (start angle.quantity type :=:

AND (end angle.quantity type :=:

wrd: mgm verify points span orthogonal system(pl, p2, p3,
mgm get context uncertainty wvalue (
geometric item.containing model, 'point coincidence length'));
wr5: inner radius.val >= 0.0;

wr6: outer radius.val > inner radius.val +
mgm get context uncertainty wvalue (
geometric item.containing model, 'point coincidence length');
wr7: mgm verify start and end angles(
start angle.val, end angle.val, mgm get context uncertainty value(
geometric item.containing model, 'point coincidence length'));
END ENTITY;

mgm get context quantity type(geometric item.containing model, 'plane angle'))

mgm get context quantity type(geometric item.containing model, 'plane angle'));

Attribute definitions:

Copyright ©1995-2016 European Space Agency

page 167

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

— pl specifies an mgm_3d_cartesian_point that is the centre of the disc and defines together with p2
the axis of revolution. The positive direction of the axis of revolution is in the direction from p1 to
p2.

— p2 specifies an mgm_3d_cartesian_point that defines together with p1 the axis of revolution. The
positive direction of the axis of revolution is in the direction from p1 to p2.

— p3 specifies an mgm_3d_cartesian_point that defines together with p1 and p2 the reference plane
from which start angle and end angle are measured.

— inner radius specifies the value of the inner radius in the case an mgm_disc represents a ring.
inner_radius is expressed in the unit of the applicable length quantity type.

— outer_radius specifies the value of outer radius of an mgm_disc. outer radius is expressed in the
unit of the applicable length quantity type.

— start_angle specifies the value of the starting angle measured from the vector from p1 to p3 around
the axis of revolution. start_angle defines the position of the mgm_disc segment. start_angle is
expressed in the unit of the applicable plane angle quantity type.

— end_angle specifies the value of the end angle measured from the vector from p1 to p3 around the
axis of revolution. end angle defines together with start_angle the size of the mgm_disc segment.
end_angle is expressed in the unit of the applicable plane angle quantity type.

Formal propositions:

— wrl: the coordinates of points pl, p2, p3 shall all use the length _quantity type specified in the
quantity context of the containing model.

— wr2: inner_radius and outer radius shall use the length quantity type specified in the
quantity context of the containing model.

— wr3: start_angle and end_angle shall use the plane angle quantity type specified in the
quantity context of the containing model.

— wr4: points pl, p2 and p3 shall span an orthogonal system within the tolerance of the applicable
point_coincidence length uncertainty.

— wr5: the inner_radius shall be greater than or equal to zero.

— wr6: the outer_radius shall be greater than the inner_radius plus the applicable
point_coincidence length uncertainty.

— wr7: start_angle and end_angle shall comply with the following constraints: (1) both shall lie in the
interval -360 to +360 degrees, (2) end_angle shall be greater than start _angle, (3) the difference
between end angle and start_angle shall be 360 degrees or less. These constraints shall be met
while taking into account the applicable numerical tolerance.

4.3.6.14 ENTITY mgm_cylinder

An mgm_cylinder is a type of mgm_primitive_bounded surface that defines a cylinder or cylinder segment
surface.

Copyright ©1995-2016 European Space Agency page 168

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

direction_1

end_angle

radius direction_2

p3 start_angle

Figure 5 Sketch of an mgm_ cylinder

The positive normal on the surface is defined outwards from the cylinder or cylinder-segment.

The first parametric direction (direction-1) is defined along the direction defined by the vector from p1 to p2.
The second parametric direction (direction-2) is defined along the positive direction of revolution about the
vector from p1 to p2.

The height of the mgm_cylinder is equal to the distance between p1 and p2.

Express specification:

ENTITY mgm cylinder
SUBTYPE OF (mgm primitive bounded surface);

pl : mgm 3d cartesian point;

p2 : mgm 3d cartesian point;

p3 : mgm 3d cartesian point;

radius : nrf real quantity value prescription;

start angle : nrf real quantity value prescription;

end angle : nrf real quantity value prescription;
WHERE

wrl: mgm verify points use context length gquantity type(
[pl, p2, p3], geometric item.containing model) ;
wr2: (radius.quantity type :=:
mgm get context quantity type(geometric item.containing model, 'length'));
wr3: (start angle.quantity type :=:
mgm get context quantity type(geometric item.containing model, 'plane angle'))
AND (end angle.quantity type :=:
mgm get context quantity type(geometric item.containing model, 'plane angle'));
wrd: mgm verify points span orthogonal system(pl, p2, p3,
mgm get context uncertainty value (
geometric item.containing model, 'point coincidence length'));
wr5: radius.val > mgm get context uncertainty value (
geometric item.containing model, 'point coincidence length');

Copyright ©1995-2016 European Space Agency page 169

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

wr6: mgm verify start and end angles(
start angle.val, end angle.val, mgm get context uncertainty value(
geometric item.containing model, 'point coincidence length'));
END ENTITY;

Attribute definitions:

— pl specifies an mgm_3d_cartesian_point that is the centre of the sphere and defines together with
p2 the axis of revolution. The positive direction of the axis of revolution is in the direction from p1
to p2.

— p2 specifies an mgm_3d_cartesian_point that defines together with p1 the axis of revolution. The
positive direction of the axis of revolution is in the direction from p1 to p2. The height of the
mgm_cylinder is equal to the distance between p1 and p2.

— p3 specifies an mgm_3d_cartesian_point that defines together with p1 and p2 the reference plane
from which start_angle and end angle are measured.

— radius specifies the radius of the cylinder.

start_angle specifies the value of the starting angle measured from the vector from p1 to p3 around
the axis of revolution. start angle defines the position of the mgm_cylinder segment.

— end_angle specifies the value of the end angle measured from the vector from p1 to p3 around the
axis of revolution. end_angle defines together with start_angle the size of the mgm_cylinder
segment.

Formal propositions:

— wrl: the coordinates of points pl, p2, p3 shall all use the length _quantity type specified in the
quantity context of the containing model.

— wr2: radius shall use the length _quantity type specified in the quantity context of the containing
model.

— wr3: start_angle and end_angle shall use the plane angle quantity type specified in the
quantity context of the containing model.

— wr4: points pl, p2 and p3 shall span an orthogonal system within the tolerance of the applicable
point_coincidence length uncertainty.

— wr5: radius shall be greater than the applicable point_coincidence length uncertainty.

— wr6: start_angle and end_angle shall comply with the following constraints: (1) both shall lie in the
interval -360 to +360 degrees, (2) end_angle shall be greater than start angle, (3) the difference
between end angle and start angle shall be 360 degrees or less. These constraints shall be met
while taking into account the applicable numerical tolerance.

4.3.6.15 ENTITY mgm_cone

An mgm_cone is a type of mgm_primitive _bounded_surface that defines a cone or cone-segment surface.

Copyright ©1995-2016 European Space Agency page 170

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

p2

radius2

direction_1

end_angle

radius1

\
p3 start_angle

Figure 6 Sketch of an mgm_cone

direction_2

The positive normal on the surface is defined outwards from the cone or cone-segment.

The first parametric direction (direction-1) is defined by the vector from p1 to p2. The second parametric
direction (direction-2) is defined along the positive direction of revolution about the vector pointing from p1

to p2.

The height of the mgm_cone is equal to the distance between p1 and p2.

Express specification:

ENTITY mgm_cone

SUBTYPE OF (mgm primitive bounded surface);

pl : mgm 3d cartesian point;
p2 : mgm 3d cartesian point;
p3 : mgm 3d cartesian point;
radiusl : nrf real quantity value prescription;
radius2 : nrf real quantity value prescription;
start angle : nrf real quantity value prescription;
end angle : nrf real gquantity value prescription;
WHERE

wrl: mgm verify points use context length quantity type(

wr2: (radiusl.quantity type :=:

wr3: (start angle.quantity type

AND (end angle.quantity type

[pl, p2, p3], geometric item.containing model) ;

mgm get context quantity type(geometric item.containing model,
AND (radius2.quantity type :=:
mgm get context quantity type(geometric item.containing model,

mgm get context quantity type(geometric item.containing model,
mgm get context quantity type(geometric item.containing model,

wrd: mgm verify points span orthogonal system(pl, p2,
mgm get context uncertainty value (

p3,

'length'))
'length'));
'plane angle'))

'plane _angle'));

Copyright ©1995-2016 European Space Agency

page 171

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

geometric item.containing model, 'point coincidence length'));
wr5: (radiusl.val >= 0.0) AND (radius2.val >= 0.0);
wr6: (radiusl.val > mgm get context uncertainty wvalue (
geometric item.containing model, 'point coincidence length'))
OR (radius2.val > mgm get context uncertainty wvalue (
geometric item.containing model, 'point coincidence length'));
wr7: mgm verify start and end angles(
start angle.val, end angle.val, mgm get context uncertainty value(
geometric item.containing model, 'point coincidence length'));
END ENTITY;

Attribute definitions:

— pl specifies an mgm_3d_cartesian_point that is the centre of the sphere and defines together with
p2 the axis of revolution. The positive direction of the axis of revolution is in the direction from p1
to p2.

— p2 specifies an mgm_3d_cartesian_point that defines together with p1 the axis of revolution. The
positive direction of the axis of revolution is in the direction from p1 to p2. The height of the
mgm_cone is equal to the distance between p1 and p2.

— p3 specifies an mgm_3d_cartesian_point that defines together with p1 and p2 the reference plane
from which start_angle and end angle are measured.

— radius] specifies the radius of the cone at the plane in which p1 is located.
— radius?2 specifies the radius of the cone at the plane in which p2 is located.

— start_angle specifies the value of the starting angle measured from the vector from p1 to p3 around
the axis of revolution. start angle defines the position of the mgm_cone segment.

— end_angle specifies the value of the end angle measured from the vector from p1 to p3 around the
axis of revolution. end angle defines together with start _angle the size of the mgm_cone segment.

Formal propositions:

— wrl: the coordinates of points p1, p2, p3 shall all use the length _quantity type specified in the
quantity context of the containing model.

— wr2: radius shall use the length quantity type specified in the quantity context of the containing
model.

— wr3: start_angle and end_angle shall use the plane angle quantity type specified in the
quantity context of the containing model.

— wr4: points pl, p2 and p3 shall span an orthogonal system within the tolerance of the applicable
point_coincidence length uncertainty.

— wr5: radius1 and radius2 shall both be greater than or equal to zero.

— wrb6: At least one of radius] and radius2 shall have a value greater than the applicable
point_coincidence length uncertainty.

— wr7: start_angle and end_angle shall comply with the following constraints: (1) both shall lie in the
interval -360 to +360 degrees, (2) end_angle shall be greater than start angle, (3) the difference
between end_angle and start_angle shall be 360 degrees or less. These constraints shall be met
while taking into account the applicable numerical tolerance.

4.3.6.16 ENTITY mgm_sphere

An mgm_sphere is a type of mgm_primitive_bounded_surface that defines a complete or partial spherical
bounded surface.

Copyright ©1995-2016 European Space Agency page 172

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

p2
®

apex_truncation

.

e

end_angle

radius

direction-1

Y, /
— direction-2

-base_truncation

p3
Figure 7 Sketch of an mgm_sphere

The positive normal on the surface is defined outwards from the sphere or sphere-segment.

The first parametric direction (direction-1) is defined by the vector from p1 to p2. The second parametric

direction (direction-2) is defined along the positive direction of revolution about the vector pointing from p1

to p2.

Express specification:

ENTITY mgm_sphere
SUBTYPE OF (mgm primitive bounded surface);

pl : mgm 3d cartesian point;
p2 : mgm 3d cartesian point;
p3 : mgm 3d cartesian point;
radius : nrf real gquantity value prescription;

base truncation : nrf real quantity value prescription;
apex truncation : nrf real quantity value prescription;

start angle : nrf real gquantity value prescription;
end _angle : nrf real quantity value prescription;
WHERE

wrl: mgm verify points use context length quantity type(
[pl, p2, p3], geometric item.containing model) ;
wr2: (radius.quantity type :=:
mgm get context quantity type(geometric item.containing model, 'length'))
AND (base truncation.quantity type :=:
mgm get context quantity type(geometric item.containing model, 'length'))
AND (apex truncation.quantity type :=:
mgm get context quantity type(geometric item.containing model, 'length'));
wr3: (start angle.quantity type :=:
mgm get context quantity type(geometric item.containing model, 'plane angle'))
AND (end angle.quantity type :=:
mgm get context quantity type(geometric item.containing model, 'plane angle'));
wr4: mgm verify points span orthogonal system(pl, p2, p3,
mgm get context uncertainty value (
geometric item.containing model, 'point coincidence length'));
wr5: radius.val >

wr6: base truncation.val >= -radius.val -

mgm get context uncertainty value (geometric item.containing model, 'point coincidence

| length');

Copyright ©1995-2016 European Space Agency page 173

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

wr7: apex truncation.val <= radius.val +

wr8: apex truncation.val > base truncation.val +

wr9: mgm verify start and end angles(
start angle.val, end angle.val, mgm get context uncertainty value(
geometric item.containing model, 'point coincidence length'));
END ENTITY;

mgm get context uncertainty value (geometric item.containing model, 'point coincidence|length');
mgm get context uncertainty value (geometric item.containing model, 'point coincidence|length');

mgm get context uncertainty value (geometric item.containing model, 'point coincidence|length');

Attribute definitions:

pl specifies an mgm_3d_cartesian_point that is the centre of the sphere and defines together with
p2 the axis of revolution. The positive direction of the axis of revolution is in the direction from p1
to p2.

p2 specifies an mgm_3d_cartesian_point that defines together with p1 the axis of revolution. The
positive direction of the axis of revolution is in the direction from p1 to p2.

p3 specifies an mgm_3d_cartesian_point that defines together with p1 and p2 the reference plane
from which start_angle and end angle are measured.

radius specifies the radius of the mgm_sphere.

base_truncation specifies specifies the position of base truncation plane measured from p1 along the
axis of revolution. The base truncation plane is the plane perpendicular to the axis of revolution. If
apex_truncation is set equal to radius and base_truncation is set equal to minus radius a complete
sphere is defined.

apex_truncation specifies the position of apex truncation plane measured from p1 along the axis of
revolution. The apex truncation plane is the plane perpendicular to the axis of revolution. If
apex_truncation is set equal to radius and base_truncation is set equal to minus radius a complete
sphere is defined.

start _angle specifies the angle at which the sphere segment starts. start_angle is measured from the
plane defined by vectors p1 to p2 and p1 to p3 and around the axis of revolution.

end_angle specifies the angle at which the sphere segment ends. end_angle is measured from the
plane defined by vectors p1 to p2 and p1 to p3 and around the axis of revolution. end_angle defines
together with start_angle the extent of the mgm_sphere segment. A complete sphere is defined
when end_angle minus start_angle is equal to 360 degrees.

Formal propositions:

wrl: the coordinates of points pl, p2, p3 shall all use the length _quantity type specified in the
quantity context of the containing model.

wr2: radius, base_truncation and apex_truncation shall use the length quantity type specified in the
quantity context of the containing model.

wr3: start_angle and end_angle shall use the plane _angle quantity type specified in the
quantity _context of the containing model.

wr4: points pl, p2 and p3 shall span an orthogonal system within the tolerance of the applicable
point_coincidence_length uncertainty.

wrS5: radius shall be greater than the applicable point_coincidence length uncertainty.

wr6: base_truncation shall be greater than or equal to the negative radius minus the applicable
point_coincidence_length uncertainty.

wr7: apex_truncation shall be less than or equal to the radius plus the applicable
point_coincidence length uncertainty.

Copyright ©1995-2016 European Space Agency page 174

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

— wr8: apex_truncation shall be greater than base truncation plus the applicable
point_coincidence length uncertainty.

— wr9: start_angle and end_angle shall comply with the following constraints: (1) both shall lie in the
interval -360 to +360 degrees, (2) end_angle shall be greater than start angle, (3) the difference
between end angle and start angle shall be 360 degrees or less. These constraints shall be met
while taking into account the applicable numerical tolerance.

4.3.6.17 ENTITY mgm_paraboloid

An mgm_paraboloid is a type of mgm_primitive bounded surface that defines a complete or partial
paraboloid surface.

radius - |
P
p2 -

- |
|

\

\
i
\ |
I\ !
I\ I
l)

: L7 direction-1
. < I
apex_truncation 4 -
=== N = — — — —] c 1 end_angle
\
\
p1 | sk
-~

start_angle \

Ay / .
/ N direction-2

Figure 8 Sketch of an mgm_paraboloid

p3

The positive normal on the surface is defined outwards from the paraboloid or paraboloid-segment.

The first parametric direction (direction-1) is defined by the vector from p1 to p2. The second parametric
direction (direction-2) is defined along the positive direction of revolution about the vector pointing from p1
to p2.

The height of the mgm_paraboloid is equal to the distance between p1 and p2.

Express specification:

ENTITY mgm paraboloid
SUBTYPE OF (mgm primitive bounded surface);
pl : mgm 3d cartesian point;
p2 : mgm 3d cartesian point;
p3 : mgm 3d cartesian point;
radius : nrf real gquantity value prescription;
apex truncation : nrf real quantity value prescription;
start angle : nrf real gquantity value prescription;
end _angle : nrf real gquantity value prescription;

Copyright ©1995-2016 European Space Agency page 175

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

WHERE
wrl: mgm verify points use context length gquantity type(
[pl, p2, p3], geometric item.containing model) ;
wr2: (radius.quantity type :=:
mgm get context quantity type(geometric item.containing model,
AND (apex truncation.quantity type :=:
mgm get context quantity type(geometric item.containing model,
wr3: (start angle.quantity type :=:

AND (end angle.quantity type :=:
mgm get context quantity type(geometric item.containing model,

mgm get context quantity type(geometric item.containing model,

'length'))
'length'));
'plane _angle'))

'plane _angle'));

wrd: mgm verify points span orthogonal system(pl, p2, p3,
mgm get context uncertainty wvalue (
geometric item.containing model,
wr5: radius.val >
mgm get context uncertainty value (geometric item.containing model,
wr6: apex truncation.val >= 0.0;
wr7: mgm compute distance between points(pl, p2) > apex truncation.val +
mgm get context uncertainty value (geometric item.containing model, 'point coincidence
wr8: mgm verify start and end angles(
start angle.val, end angle.val, mgm get context uncertainty value(
geometric item.containing model, 'point coincidence length'));
END ENTITY;

'point coincidence length'));

'point coincidence]|

Attribute definitions:

pl specifies an mgm_3d_cartesian_point that defines the location of the apex of the paraboloid and
that defines together with p2 the axis of revolution. The positive direction of the axis of revolution
is in the direction from p1 to p2.

p2 specifies an mgm_3d_cartesian_point that defines together with p1 the axis of revolution. The
positive direction of the axis of revolution is in the direction from p1 to p2. Point p2 also defines the
base truncation plane of the paraboloid. The base truncation plane is perpendicular to the axis of
revolution. The height of the paraboloid is equal to the distance between p1 and p2.

p3 specifies an mgm_3d_cartesian_point that defines together with p1 and p2 the reference plane
from which start_angle and end angle are measured.

radius specifies the radius of the paraboloid at the base truncation plane defined by p2.

apex_truncation specifies the position of apex truncation plane measured from p1 along the axis of
revolution. The apex truncation plane is perpendicular to the axis of revolution.

start_angle specifies the angle at which the paraboloid segment starts. start_angle is measured from
the plane defined by vectors pl to p2 and pl to p3 and around the axis of revolution.

end_angle specifies the angle at which the paraboloid segment ends. end_angle is measured from
the plane defined by vectors pl to p2 and p1 to p3 and around the axis of revolution. end angle
defines together with start _angle the extent of the mgm_paraboloid segment. A complete
paraboloid is defined when end_angle minus start angle is equal to 360 degrees.

Formal propositions:

— wrl: the coordinates of points p1, p2, p3 shall all use the length _quantity type specified in the
quantity context of the containing model.

— wr2: radius and apex_truncation shall use the length quantity type specified in the
quantity context of the containing model.

— wr3: start_angle and end_angle shall use the plane_angle quantity type specified in the
quantity context of the containing model.

Copyright ©1995-2016 European Space Agency page 176

| Length');

| Length');

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

— wr4: points pl, p2 and p3 shall span an orthogonal system within the tolerance of the applicable
point_coincidence length uncertainty.

— wr5: radius shall be greater than the applicable point_coincidence length uncertainty.
— wrb: apex_truncation shall be greater than or equal to zero.

— wr7: the height of the paraboloid (that is the distance between p1 and p2) shall be greater than the
apex_truncation plus the applicable point_coincidence length uncertainty.

— wr8: start_angle and end_angle shall comply with the following constraints: (1) both shall lie in the
interval -360 to +360 degrees, (2) end_angle shall be greater than start angle, (3) the difference
between end_angle and start angle shall be 360 degrees or less. These constraints shall be met
while taking into account the applicable numerical tolerance.

4.3.6.18 ENTITY mgm_primitive_solid

An mgm_primitive_solid is an abstract supertype that specifies a simple regular solid shape in 3D space. It
is a generic object that specifies the attributes common to all primitive solids.

Express specification:

ENTITY mgm primitive solid
ABSTRACT SUPERTYPE OF (ONEOF (
mgm infinite solid by plane,
mgm infinite solid cylinder,
mgm_solid cylinder,
mgm solid cone,
mgm solid sphere,
mgm solid paraboloid,
mgm solid box,
mgm solid triangular prism));
geometric item : mgm any meshed geometric item;
END ENTITY;

Attribute definitions:

— geometric_item specifies the mgm_any meshed geometric_item that is using this
mgm_primitive_solid to define its solid shape.

4.3.6.19 ENTITY mgm_infinite_solid_by_plane

An mgm_infinite_solid_by_plane is a type of mgm_primitive solid that specifies an infinitely extending
solid shape on one side of a plane. The plane is defined by two points. The plane goes through point pl and
the positive normal on the plane is spanned by the vector from point p1 to point p2. This solid is typically
used to define a half space that is delimited by an infinite plane for use in boolean geometric construction
operations.

For the purpose of applying an mgm_half space_selector_type the OUTSIDE of the solid is defined as all
points on the side of the positive normal on the plane and consequently the INSIDE is defined as all points

on the side of the negative normal.

Express specification:

ENTITY mgm infinite_ solid by plane
SUBTYPE OF (mgm primitive solid);
pl : mgm 3d cartesian point;

Copyright ©1995-2016 European Space Agency page 177

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

p2 : mgm 3d cartesian point;
WHERE
wrl: mgm verify points use context length gquantity type(
[pl, p2], geometric item.containing model) ;
wr2: mgm verify no coincident points([pl, p2], mgm get context uncertainty value (
geometric item.containing model, 'point coincidence length'));
END ENTITY;

Formal propositions:

— wrl: the coordinates of points pl and p2 shall use the length quantity type specified in the
global quantity context of the containing model.

— wr2: the distance between points p1 and p2 shall be greater than the point_coincidence length
uncertainty.

4.3.6.20 ENTITY mgm_infinite_solid_cylinder

An mgm_infinite_solid_cylinder is a type of mgm_primitive solid that specifies an infinitely long
cylindrical solid shape. The axis of revolution of the cylindrical solid is defined by two points. This solid is
typically used to define a cylindrical half space for use in boolean geometric construction operations.

Express specification:

ENTITY mgm infinite_ solid_cylinder
SUBTYPE OF (mgm primitive solid);

pl : mgm 3d cartesian point;

p2 : mgm 3d cartesian point;

radius : nrf real gquantity value prescription;
WHERE

wrl: mgm verify points use context length gquantity type (
[pl, p2], geometric item.containing model);
wr2: mgm verify no coincident points ([pl, p2], mgm get context uncertainty value (
geometric item.containing model, 'point coincidence length'));
wr3: (radius.quantity type :=:
mgm get context quantity type(geometric item.containing model, 'length'));
wr4: radius.val > mgm get context uncertainty value (
geometric item.containing model, 'point coincidence length');
END ENTITY;

Attribute definitions:

— pl specifies the first point of the axis of revolution of the cylinder
— p2 specifies the second point of the axis of revolution of the cylinder

— radius specifies the radius of the cylinder.

Formal propositions:

— wrl: the coordinates of points p1 and p2 shall use the length _quantity type specified in the
global quantity context of the containing model.

— wr2: the distance between points pl and p2 shall be greater than the point_coincidence length
uncertainty.

— wr3: radius shall use the length quantity type specified in the quantity context of the containing
model.

— wr4: radius shall be greater than the applicable point_coincidence length uncertainty.

Copyright ©1995-2016 European Space Agency page 178

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4.3.6.21 ENTITY mgm_solid_cylinder

An mgm_solid_cylinder is a type of mgm_primitive_solid that defines a solid cylinder or a solid cylinder
segment. The cylinder segment is the part of the cylinder enclosed by the planes at start_angle and end angle
together with the planes normal to the axis at the points pl and p2.

pd start angle

Figure 9 Sketch of an mgm_solid_cylinder

The height of the mgm_solid_cylinder is equal to the distance between p1 and p2.

Express specification:

SUBTYPE OF (

pl

p2

p3

radius

start angle

end_angle
WHERE

mgm pri

ENTITY mgm solid cylinder
mitive solid);

mgm

3d cartesian point;

mgm

3d cartesian point;

mgm

3d cartesian point;

nrf

real quantity value prescription;

nrf

real quantity value prescription;

nrf

real quantity value prescription;

wrl: mgm verify points use context length gquantity type (

[pl, p2, p3], geometric item.containing model) ;
wr2: (radius.quantity type :=:
mgm get context quantity type(geometric item.containing model,

wr3: (start angle.quantity type :=:
mgm get context quantity type (geometric item.containing model,

AND (end angle.quantity type :=:
mgm get context quantity type (geometric item.containing model,

wrd: mgm verify points span orthogonal system(pl, p2, p3,

mgm get context uncertainty wvalue (

geometric item.containing model,
wr5: radius.val > mgm get context uncertainty value (
geometric item.containing model,

'length'));
'plane angle'))

'plane _angle'));

'point coincidence length'));

'point coincidence length');

Copyright ©1995-2016 European Space Agency

page 179

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

wr6: mgm verify start and end angles(
start angle.val, end angle.val, mgm get context uncertainty value(
geometric item.containing model, 'point coincidence length'));
END ENTITY;

Attribute definitions:

— pl specifies an mgm_3d_cartesian_point that is is the centre of the cylinder and defines together
with p2 the axis of revolution. The positive direction of the axis of revolution is in the direction
from pl to p2.

— p2 specifies an mgm_3d_cartesian_point that is defines together with p1 the axis of revolution. The
positive direction of the axis of revolution is in the direction from p1 to p2. The height of the
mgm_cylinder is equal to the distance between p1 and p2.

— p3 specifies an mgm_3d_cartesian_point that defines together with p1 and p2 the reference plane
from which start_angle and end angle are measured.

— radius specifies the radius of the cylinder.

— start_angle specifies the value of the starting angle measured from the vector from p1 to p3 around
the axis of revolution. start angle defines the position of the mgm_cylinder segment.

— end_angle specifies the value of the end angle measured from the vector from p1 to p3 around the
axis of revolution. end_angle defines together with start_angle the size of the mgm_cylinder
segment.

Formal propositions:

— wrl: the coordinates of points pl, p2, p3 shall all use the length _quantity type specified in the
quantity context of the containing model.

— wr2: radius shall use the length _quantity type specified in the quantity context of the containing
model.

— wr3: start_angle and end_angle shall use the plane angle quantity type specified in the
quantity context of the containing model.

— wr4: points pl, p2 and p3 shall span an orthogonal system within the tolerance of the applicable
point_coincidence length uncertainty.

— wr5: radius shall be greater than the applicable point_coincidence length uncertainty.

— wr6: start_angle and end_angle shall comply with the following constraints: (1) both shall lie in the
interval -360 to +360 degrees, (2) end_angle shall be greater than start angle, (3) the difference
between end angle and start angle shall be 360 degrees or less. These constraints shall be met
while taking into account the applicable numerical tolerance.

4.3.6.22 ENTITY mgm_solid_cone

An mgm_solid_cone is a type of mgm_primitive_solid that defines a solid cone or a solid cone segment.
The cone segment is the part of the cone enclosed by the planes at start angle and end_angle together with
the planes normal to the axis at the points p1 and p2.

Copyright ©1995-2016 European Space Agency page 180

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

radius2 "

4
p3 start angle

Figure 10 Sketch of an mgm_solid_cone

The height of the mgm_cone is equal to the distance between p1 and p2.

Express specification:

ENTITY mgm _solid_cone
SUBTYPE OF (mgm primitive solid);

pl : mgm 3d cartesian point;
p2 : mgm 3d cartesian point;
p3 : mgm 3d cartesian point;
radiusl : nrf real quantity value prescription;
radius2 : nrf real quantity value prescription;
start angle : nrf real quantity value prescription;
end angle : nrf real quantity value prescription;
WHERE

wrl: mgm verify points use context length gquantity type(
[pl, p2, p3], geometric item.containing model) ;
wr2: (radiusl.quantity type :=:
mgm get context quantity type(geometric item.containing model, 'length'))
AND (radius2.quantity type :=:
mgm get context quantity type(geometric item.containing model, 'length'));
wr3: (start angle.quantity type :=:

AND (end angle.quantity type :=:

wrd: mgm verify points span orthogonal system(pl, p2, p3,
mgm get context uncertainty wvalue (
geometric item.containing model, 'point coincidence length'));
wr5: (radiusl.val >= 0.0) AND (radius2.val >= 0.0);
wr6: (radiusl.val > mgm get context uncertainty wvalue (
geometric item.containing model, 'point coincidence length'))
OR (radius2.val > mgm get context uncertainty value (
geometric item.containing model, 'point coincidence length'));
wr7: mgm verify start and end angles(
start angle.val, end angle.val, mgm get context uncertainty value(

mgm get context quantity type(geometric item.containing model, 'plane angle'))

mgm get context quantity type(geometric item.containing model, 'plane angle'));

Copyright ©1995-2016 European Space Agency

page 181

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

geometric item.containing model, 'point coincidence length'));
END ENTITY;

Attribute definitions:

— pl specifies an mgm_3d _cartesian_point that is is the centre of the cone and defines together with
p2 the axis of revolution. The positive direction of the axis of revolution is in the direction from p1
to p2.

— p2 specifies an mgm_3d_cartesian_point that is defines together with p1 the axis of revolution. The
positive direction of the axis of revolution is in the direction from p1 to p2. The height of the
mgm_cone is equal to the distance between p1 and p2.

— p3 specifies an mgm_3d_cartesian_point that defines together with p1 and p2 the reference plane
from which start_angle and end angle are measured.

— radius] specifies the radius of the cone at the plane in which p1 is located.
— radius?2 specifies the radius of the cone at the plane in which p2 is located.

— start_angle specifies the value of the starting angle measured from the vector from p1 to p3 around
the axis of revolution. start_angle defines the position of the mgm_cone segment.

— end_angle specifies the value of the end angle measured from the vector from p1 to p3 around the
axis of revolution. end angle defines together with start _angle the size of the mgm_cone segment.

Formal propositions:

— wrl: the coordinates of points pl, p2, p3 shall all use the length _quantity type specified in the
quantity context of the containing model.

— wr2: radius shall use the length quantity type specified in the quantity context of the containing
model.

— wr3: start_angle and end_angle shall use the plane_angle quantity type specified in the
quantity context of the containing model.

— wr4: points pl, p2 and p3 shall span an orthogonal system within the tolerance of the applicable
point_coincidence length uncertainty.

— wr5: radius1 and radius2 shall both be greater than zero.

— wrb6: At least one of radius] and radius2 shall have a value greater than the applicable
point_coincidence length uncertainty.

— wr7: start_angle and end_angle shall comply with the following constraints: (1) both shall lie in the
interval -360 to +360 degrees, (2) end_angle shall be greater than start angle, (3) the difference
between end_angle and start_angle shall be 360 degrees or less. These constraints shall be met
while taking into account the applicable numerical tolerance.

4.3.6.23 ENTITY mgm_solid_sphere

An mgm_solid_sphere is a type of mgm_primitive solid that defines a solid sphere or a solid sphere
segment. The sphere segment is the part of the sphere enclosed by the planes at start angle and end_angle,
together with the planes at the apex truncation and base truncation.

Copyright ©1995-2016 European Space Agency page 182

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

Figure 11 Sketch of an mgm_solid_sphere

Express specification:

ENTITY mgm solid_ sphere
SUBTYPE OF (mgm primitive solid);

pl : mgm 3d cartesian point;
p2 : mgm 3d cartesian point;
pr3 : mgm 3d cartesian point;
radius : nrf real quantity value prescription;

base truncation : nrf real quantity value prescription;
apex truncation : nrf real quantity value prescription;

start angle : nrf real quantity value prescription;
end angle : nrf real quantity value prescription;
WHERE

wrl: mgm verify points use context length gquantity type(
[pl, p2, p3], geometric item.containing model) ;
wr2: (radius.quantity type :=:
mgm get context quantity type(geometric item.containing model,
AND (base truncation.quantity type :=:
mgm get context quantity type(geometric item.containing model,
AND (apex truncation.quantity type :=:
mgm get context quantity type(geometric item.containing model,
wr3: (start angle.quantity type :=:
mgm get context quantity type(geometric item.containing model,
AND (end angle.quantity type :=:
mgm get context quantity type(geometric item.containing model,
wrd: mgm verify points span orthogonal system(pl, p2, p3,
mgm get context uncertainty value(

wr5: radius.val >

wr6: base truncation.val >= -radius.val -

wr7: apex truncation.val <= radius.val +

wr8: apex truncation.val > base truncation.val +

wr9: mgm verify start and end angles(

geometric item.containing model, 'point coincidence length'));
mgm get context uncertainty value (geometric item.containing model, 'point coincidence
mgm get context uncertainty value (geometric item.containing model, 'point coincidence
mgm get context uncertainty value (geometric item.containing model, 'point coincidence
mgm get context uncertainty value (geometric item.containing model, 'point coincidence

start angle.val, end angle.val, mgm get context uncertainty value(

'length'))
'length'))
'length'));
'plane angle'))

'plane angle'));

_length');
_length');
_length');

_length');

Copyright ©1995-2016 European Space Agency

page 183

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

geometric item.containing model, 'point coincidence length'));
END ENTITY;

Attribute definitions:

— pl specifies an mgm_3d_cartesian_point that is is the centre of the sphere and defines together with
p2 the axis of revolution. The positive direction of the axis of revolution is in the direction from p1
to p2.

— p2 specifies an mgm_3d_cartesian_point that defines together with p1 the axis of revolution. The
positive direction of the axis of revolution is in the direction from p1 to p2.

— p3 specifies an mgm_3d_cartesian_point that defines together with p1 and p2 the reference plane
from which start_angle and end angle are measured.

— radius specifies the radius of the mgm_sphere.

— base_truncation specifies specifies the position of base truncation plane measured from p1 along the
axis of revolution. The base truncation plane is the plane perpendicular to the axis of revolution. If
apex_truncation is set equal to radius and base_truncation is set equal to minus radius a complete
sphere is defined.

— apex_truncation specifies the position of apex truncation plane measured from p1 along the axis of
revolution. The apex truncation plane is the plane perpendicular to the axis of revolution. If
apex_truncation is set equal to radius and base_truncation is set to minus radius a complete sphere
is defined.

— start_angle specifies the angle at which the sphere segment starts. start angle is measured from the
plane defined by vectors p1 to p2 and p1 to p3 and around the axis of revolution.

— end_angle specifies the angle at which the sphere segment ends. end angle is measured from the
plane defined by vectors p1 to p2 and p1 to p3 and around the axis of revolution. end_angle defines
together with start_angle the extent of the mgm_sphere segment. A complete sphere is defined
when end_angle minus start_angle is equal to 360 degrees.

Formal propositions:

— wrl: the coordinates of points p1, p2, p3 shall all use the length quantity type specified in the
quantity context of the containing model.

— wr2: radius shall use the length quantity type specified in the quantity context of the containing
model.

— wr3: start_angle and end_angle shall use the plane angle quantity type specified in the
quantity _context of the containing model.

— wr4: points pl, p2 and p3 shall span an orthogonal system within the tolerance of the applicable
point_coincidence_length uncertainty.

— wr5: radius shall be greater than the applicable point_coincidence length uncertainty.

— wr6: base_truncation shall be greater than or equal to the negative radius minus the applicable
point_coincidence_length uncertainty.

— wr7: apex_truncation shall be less than or equal to the radius plus the applicable
point_coincidence length uncertainty.

— wr8: apex_truncation shall be greater than base truncation plus the applicable
point_coincidence length uncertainty.

— wr9: start_angle and end_angle shall comply with the following constraints: (1) both shall lie in the
interval -360 to +360 degrees, (2) end_angle shall be greater than start angle, (3) the difference

Copyright ©1995-2016 European Space Agency page 184

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

between end angle and start_angle shall be 360 degrees or less. These constraints shall be met
while taking into account the applicable numerical tolerance.

4.3.6.24 ENTITY mgm_solid_paraboloid

An mgm_solid_paraboloid is a type of mgm_primitive solid that defines a solid paraboloid or a solid
paraboloid segment. The paraboloid segment is the part of the paraboloid enclosed by the planes at
start_angle and end_angle, together with the planes at point p2 and the base truncation.

radius -
p2 |
T |
|
|
I, |
: I
Y
apex_truncation \ — g i)
ol | - ﬁ\eml_ange
S N
start angle)
{
A

Figure 12 Sketch of an mgm_solid_paraboloid
The height of the mgm_paraboloid is equal to the distance between p1 and p2.

Express specification:

ENTITY mgm solid paraboloid
SUBTYPE OF (mgm primitive solid);

pl : mgm 3d cartesian point;
P2 : mgm 3d cartesian point;
p3 : mgm 3d cartesian point;
radius : nrf real quantity value prescription;
apex_ truncation : nrf real quantity value prescription;
start angle : nrf real quantity value prescription;
end angle : nrf real gquantity value prescription;
WHERE

wrl: mgm verify points use context length quantity type (
[pl, p2, p3], geometric item.containing model) ;
wr2: (radius.quantity type :=:
mgm get context quantity type(geometric item.containing model, 'length'))
AND (apex truncation.quantity type :=:
mgm get context quantity type(geometric item.containing model, 'length'));
wr3: (start angle.quantity type :=:
mgm get context quantity type(geometric item.containing model, 'plane angle'))
AND (end angle.quantity type :=:
mgm get context quantity type(geometric item.containing model, 'plane angle'));
wr4: mgm verify points span orthogonal system(pl, p2, p3,

Copyright ©1995-2016 European Space Agency page 185

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

mgm get context uncertainty wvalue (
geometric item.containing model, 'point coincidence length'));
wr5: radius.val >
mgm get context uncertainty value (geometric item.containing model, 'point coincidence
wr6: apex truncation.val >= 0.0;
wr7: mgm compute distance between points(pl, p2) > apex truncation.val +
mgm get context uncertainty value (geometric item.containing model, 'point coincidence
wr8: mgm verify start and end angles(
start angle.val, end angle.val, mgm get context uncertainty value(
geometric item.containing model, 'point coincidence length'));

| Length');

| Length');

END ENTITY;

Attribute definitions:

— pl specifies an mgm_3d_cartesian_point that defines the location of the apex of the paraboloid and
that defines together with p2 the axis of revolution. The positive direction of the axis of revolution
is in the direction from p1 to p2.

— p2 specifies an mgm_3d_cartesian_point that defines together with p1 the axis of revolution. The
positive direction of the axis of revolution is in the direction from p1 to p2. Point p2 also defines the
base truncation plane of the paraboloid. The base truncation plane is perpendicular to the axis of
revolution. The height of the paraboloid is equal to the distance between p1 and p2.

— p3 specifies an mgm_3d_cartesian_point that defines together with p1 and p2 the reference plane
from which start_angle and end angle are measured.

— radius specifies the radius of the paraboloid at the base truncation plane defined by p2.

— apex_truncation specifies the position of apex truncation plane measured from p1 along the axis of
revolution. The apex truncation plane is perpendicular to the axis of revolution.

— start_angle specifies the angle at which the paraboloid segment starts. start_angle is measured from
the plane defined by vectors pl to p2 and p1 to p3 and around the axis of revolution.

— end_angle specifies the angle at which the paraboloid segment ends. end_angle is measured from
the plane defined by vectors pl to p2 and p1 to p3 and around the axis of revolution. end angle
defines together with start_angle the extent of the mgm_paraboloid segment. A complete paraboloid
is defined when end_angle minus start_angle is equal to 360 degrees.

Formal propositions:

— wrl: the coordinates of points pl, p2, p3 shall all use the length _quantity type specified in the
quantity context of the containing model.

— wr2: radius shall use the length quantity type specified in the quantity context of the containing
model.

— wr3: start_angle and end_angle shall use the plane angle quantity type specified in the
quantity context of the containing model.

— wr4: points pl, p2 and p3 shall span an orthogonal system within the tolerance of the applicable
point_coincidence length uncertainty.

— wr5: radius shall be greater than the applicable point_coincidence length uncertainty.
— wrb: apex_truncation shall be greater than or equal to zero.

— wr7: the height of the paraboloid (that is the distance between pl and p2) shall be greater than the
apex_truncation plus the applicable point coincidence length uncertainty.

— wr8: start_angle and end_angle shall comply with the following constraints: (1) both shall lie in the
interval -360 to +360 degrees, (2) end_angle shall be greater than start angle, (3) the difference

Copyright ©1995-2016 European Space Agency page 186

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

between end angle and start_angle shall be 360 degrees or less. These constraints shall be met

while taking into account the applicable numerical tolerance.

4.3.6.25 ENTITY mgm_solid_box

An mgm_solid_box is a type of mgm_primitive_solid that defines a rectangular box through four points p1,
p2, p3 and p4. The points define four vertices of the box as illustrated in the figure below. The other four
vertices of the box are implied to be: p2 plus vector pl to p3, p2 plus vector pl to p4, p3 plus vector pl to p4,

and p2 plus vector pl to p3 plus vector pl to p4.

p2

Figure 13 Sketch of an mgm_solid_box

Express specification:

ENTITY mgm solid box
SUBTYPE OF (mgm primitive solid);

pl : mgm 3d cartesian point;
p2 : mgm 3d cartesian point;
p3 : mgm 3d cartesian point;
p4 : mgm 3d cartesian point;

WHERE

wrl: mgm verify points use context length quantity type(

[pl, p2, p3, p4], geometric item.containing model) ;
wr2: mgm verify solid box (SELF) ;

END ENTITY;

Attribute definitions:

— pl specifies the first vertex of the solid box
— p2 specifies the second vertex of the solid box
— p3 specifies the third vertex of the solid box
— p4 specifies the fourth vertex of the solid box

Formal propositions:

Copyright ©1995-2016 European Space Agency

page 187

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

— wrl: the coordinates of points p1, p2, p3, p4 shall all use the length quantity type specified in the
quantity context of the containing model.

— wr2: the specification shall meet the following criteria: (1) the points p1, p2, p3, p4 do not coincide,
(2) the points p1, p2, p3 span an orthogonal system, (3) vector pl to p4 has the same direction as the
positive normal on the plane spanned by vector p1 to p2 and vector p1 to p3.

4.3.6.26 ENTITY mgm_solid_triangular_ prism

An mgm_solid_triangular_prism is a type of mgm_primitive solid that defines a triangular prism through
a triangle defined by three points and a height defined by a fourth point.

p4

p2

Figure 14 Sketch of an mgm_solid_triangular_prism

Express specification:

ENTITY mgm solid_ triangular prism
SUBTYPE OF (mgm primitive solid);
pl : mgm 3d cartesian point;

p2 : mgm 3d cartesian point;

p3 : mgm 3d cartesian point;

p4 : mgm 3d cartesian point;
WHERE

wrl: mgm verify points use context length quantity type(
[pl, p2, p3, p4], geometric item.containing model);
wr2: mgm verify solid triangular prism(SELF) ;
END ENTITY;

Attribute definitions:

— pl specifies an mgm_3d _cartesian_point that defines the first vertex of a triangular base of the
triangular prism

— p2 specifies an mgm_3d_cartesian_point that defines the second vertex of a triangular base of the
triangular prism

— p3 specifies an mgm_3d_cartesian_point that defines the third vertex of a triangular base of the
triangular prism

Copyright ©1995-2016 European Space Agency page 188

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

— p4 specifies an mgm_3d_cartesian_point that defines the height of the triangular prism

Formal propositions:

— wrl: the coordinates of points p1, p2, p3, p4 shall all use the length quantity type specified in the
quantity _context of the containing model.

— wr2: the specification shall meet the following criteria: (1) the points p1, p2, p3 do not coincide, (2)
the points p1, p2, p3 are not colinear, (3) vector pl to p4 has the same direction as the positive
normal on the plane spanned by vector pl to p2 and vector pl to p3.

4.3.6.27 ENTITY mgm_qualified compound meshed_primitive bounded_surface

An mgm_qualified compound meshed primitive bounded_surface is a type of
mgm_compound _meshed geometric_item that collects mgm_meshed primitive_bounded surface instances
to a higher order meshed primitive shape. The kind of shape is designated by the qualifier attribute.

EXAMPLE 1 - A box can be represented by an
mgm_qualified_compound_meshed_primitive_bounded_surface consisting of six

mgm_meshed primitive bounded surface instances using mgm_rectangle surfaces. The value of the
qualifier could then be "closed six sided box".

Express specification:

ENTITY mgm qualified compound meshed primitive bounded surface
SUBTYPE OF (mgm compound meshed geometric item);
SELF\mgm compound meshed geometric item.geometric items :
LIST [1l:?] OF UNIQUE mgm meshed primitive bounded surface;
qualifier : nrf enumeration quantity wvalue literal;
WHERE
wrl: qualifier.quantity type.name = 'compound surface qualifier';
END ENTITY;

Attribute definitions:

— geometric_items is redeclared to specify the list of mgm_meshed primitive_bounded surface
instances that form a higher order primitive.

— qualifier specifies the designation of the kind of higher order shape represented by an
mgm_qualified_compound_meshed_primitive_bounded_surface.

Formal propositions:

— wrl: The name of the quantity_type of the qualifier shall be 'compound_surface qualifier'.
4.3.6.28 ENTITY mgm_face

An mgm_face represents a face meshed on the geometry of an mgm_meshed_primitive_bounded surface.
For reasons of efficiency no id, name and description attributes are included.

Express specification:

ENTITY mgm_ face
SUBTYPE OF (nrf observable item);

Copyright ©1995-2016 European Space Agency page 189

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

corresponding node : OPTIONAL nrf network node;
END ENTITY;

Attribute definitions:

— corresponding node optionally specifies the nrf network node that corresponds to an mgm_face.
The corresponding_node is not specified when no other nrf_network model is associated with an

mgm_meshed geometric_model.

4.3.6.29 ENTITY mgm_face pair

An mgm_face pair is a type of nrf_observable item_relationship that specifies a pair of mgm_face
instances.

EXAMPLE 2 - A radiative exchange factor quantity type can be associated with a pair of thermal radiative
faces that is represented by an mgm_face_pair.

Express specification:

ENTITY mgm face pair

SUBTYPE OF (nrf observable item relationship);

SELF\nrf observable item relationship.items : LIST [2:2] OF mgm face;
END ENTITY;

Attribute definitions:

— items specifies the pair of mgm_face instances.
4.3.6.30 ENTITY mgm_enclosure

An mgm_enclosure is a named grouping of mgm_meshed primitive_bounded surface instances.

EXAMPLE 3 - An mgm_enclosure can be used for the purpose of efficient thermal radiative computations.
The faces in one enclosure cannot exchange heat through thermal radiation with faces in another enclosure.

Express specification:

ENTITY mgm_enclosure;
id : nrf identifier;
name : nrf label;
description : nrf text;
surfaces : LIST [1l:?] OF mgm meshed primitive bounded surface;
active sides : LIST [1:?] OF mgm active side type;
INVERSE
containing model : mgm meshed geometric model FOR enclosures;
UNIQUE
url: containing model, id;
-— WHERE
—— wrl: mgm verify enclosure faces (SELF) ;
END ENTITY;

Attribute definitions:

— 1id specifies the identifier of an mgm_enclosure.

— name specifies the human-interpretable name of an mgm_enclosure.

Copyright ©1995-2016 European Space Agency page 190

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

— description specifies the textual description for an mgm_enclosure.

— surfaces specifies the list of mgm_meshed_primitive_bounded_surface instances that belong to the

enclosure.

— active_sides specifies for each surface in surfaces which side is part of the enclosure.

— containing_model specifies the mgm_meshed geometric_model containing an mgm_enclosure.

Formal propositions:

— url: the combination of containing model and id must be unique within the dataset.

— wrl: all surfaces shall be part of the containing_model, either directly or through a submodel and
the active side as specified in active_sides shall be one or both of the active sides specified for the

corresponding surface.
4.3.6.31 FUNCTION mgm_verify_transformation

The function mgm_verify transformation verifies that all elements in the transformation of an

mgm_any meshed geometric_item use the applicable context quantity types. The function returns TRUE if

this is the case and FALSE otherwise.

Express specification:

FUNCTION mgm verify transformation (
an_item : mgm any meshed geometric item) : BOOLEAN;
IF EXISTS(an item.transformation) THEN
IF 'MGM ARM.MGM AXIS PLACEMENT' IN TYPEOF (an_ item.transformation) THEN
IF an item.transformation.location.quantity type :<>:
mgm get context quantity type(an item.containing model, 'length') THEN
RETURN (FALSE) ;
END IF;
ELSE
-- it is an mgm axis transformation sequence

IF 'MGM_ARM.MGM_TRANSLATION' IN
TYPEOF (an_item.transformation.transformation sequence([i]) THEN
IF an item.transformation.transformation sequence[i].quantity type
mgm get context quantity type(an item.containing model, 'length') THEN
RETURN (FALSE) ;
END_IF;
ELSE
-- it is an mgm rotation
IF an item.transformation.transformation sequence[i].quantity type
mgm get context quantity type (
an_item.containing model, 'plane angle') THEN
RETURN (FALSE) ;
END_IF;
END IF;
END REPEAT;
END_IF;
END_IF;
RETURN (TRUE) ;
END_FUNCTION;

REPEAT I := 1 TO SIZEOF (an_ item.transformation.transformation sequence);

<>

<>

Argument definitions:

— an_item specifies the mgm_any meshed geometric_item to be verified.

Copyright ©1995-2016 European Space Agency

page 191

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4.3.6.32 FUNCTION mgm_verify _acyclic compound meshed geometric_item_tree

The function nrf_verify_acyclic_network _model_tree verifies that there is no circular reference in the tree of
an mgm_compound _meshed geometric_item instances. In other words, the tree forms an acyclic graph. The

function returns TRUE if this is the case and FALSE otherwise.

Express specification:

FUNCTION mgm verify acyclic_compound meshed geometric_item tree (
an_item : mgm any meshed geometric item;
super items : LIST OF mgm any meshed geometric item) : BOOLEAN;

IF 'MGM ARM.MGM COMPOUND MESHED GEOMETRIC ITEM' IN TYPEOF (an_item) THEN
REPEAT i := 1 TO SIZEOF (an_ item.geometric items);
IF (an_item.geometric items[i] IN super items) THEN
RETURN (FALSE) ;
END IF;
IF NOT mgm verify acyclic_compound meshed geometric_item_ tree (
an_item.geometric items[i], super items + an item.geometric items) THEN
RETURN (FALSE) ;
END IF;
END REPEAT;
END IF;
RETURN (TRUE) ;
END FUNCTION;

Argument definitions:

— an_item specifies the candidate mgm_any meshed geometric_item that is to be verified.

— super_items specifies the list of mgm_any meshed geometric_item instances that occur at the same

or higher level as an_item.
4.3.6.33 FUNCTION mgm_verify_no_coincident_points

The function mgm_verify_no_coincident_points verifies that no two points in a given set of points
coincide, that is the distance between each pair of points shall be greater than the given minimum_distance.
The function returns TRUE if this is the case and FALSE otherwise.

Express specification:

FUNCTION mgm verify no_coincident_points (
points : SET OF mgm 3d cartesian point;
minimum distance : REAL) : BOOLEAN;

REPEAT i := 1 TO SIZEOF (points);
REPEAT j := (i + 1) TO SIZEOF (points);

RETURN (FALSE) ;
END IF;
END REPEAT;
END REPEAT;
RETURN (TRUE) ;
END_FUNCTION;

IF mgm compute distance between points(points[i], points[]]) <= minimum distance

Argument definitions:

Copyright ©1995-2016 European Space Agency page 192

THEN

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

— points specifies the set of mgm_3d_cartesian_point instances to verify, where each point shall use
the same quantity_type for its X, y and z coordinates.

— mimimum_distance specifies the minimum distance that shall be present between each pair of
points. It shall be specified in the same unit as the quantity_type of the coordinates of each of the
points.

4.3.6.34 FUNCTION mgm_verify no_colinear_ points

The function mgm_verify_no_colinear_points verifies that the points in a given set are not co-linear. The
function returns TRUE if this is the case and FALSE otherwise.

Express specification:

FUNCTION mgm verify no_colinear points (
points : SET OF mgm 3d cartesian point;
tolerance : REAL) : BOOLEAN;

LOCAL
ux, uy, uz, ulen : REAL;
vx, vy, vz, vlen : REAL;
dot : REAL;

END LOCAL;

IF SIZEOF (points) <= 2 THEN
RETURN (TRUE) ;

END IF;
REPEAT i := 3 TO SIZEOF (points);

ux := points[i-1].x - points[i-2].x;

uy := points[i-1].y - points[i-2].y;

uz := points[i-1].z - points[i-2].z;

ulen := SQRT (ux*ux + uy*uy + uz*uz);

vx := points[i].x - points[i-1].x;

vy := points[i].y - points[i-1].y;

vz := points[i].z - points[i-1].z;

vlen := SQRT (vx*vx + vy*vy + vz*vz);

dot := (ux*vx + uy*vy + uz*vz) / (ulen * vlen);

IF (dot <= (-1.0+tolerance)) OR (dot >= (1.0-tolerance)) THEN

RETURN (FALSE) ;
END IF;

END REPEAT;
RETURN (TRUE) ;
END FUNCTION;

Argument definitions:

— points specifies the set of mgm_3d_cartesian_point instances to verify, where each point shall use
the same quantity_type for its X, y and z coordinates.

— tolerance specifies the applicable point coincidence uncertainty.
4.3.6.35 FUNCTION mgm_verify_quadrilateral

The function mgm_verify_quadrilateral verifies that an mgm_quadrilateral instance is valid by checking
the following constraints: (1) The distance between each pair of points shall be greater than the applicable
'point_coincidence length', (2) The quadrilateral shall be planar, (3) All four interior angles of the
quadrilateral shall be greater than 0 and less than 180 degrees. The function returns TRUE if the quadrilateral
is valid and FALSE if it is not.

Copyright ©1995-2016 European Space Agency page 193

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

Express specification:

FUNCTION mgm verify quadrilateral (

quad : mgm quadrilateral) : BOOLEAN;
LOCAL

tol : REAL;

dot : REAL;

mx, my, mz, mlen : REAL;
nx, ny, nz, nlen : REAL;
ux, uy, uz, ulen : REAL;
vx, vy, vz, vlen : REAL;
END LOCAL;
tol := mgm get context uncertainty value (
quad.geometric item.containing model, 'point coincidence length');

-- verify interior angle at pl from vectors u and v
-- u is vector pl to p2, v is vector pl to p4

ux := quad.p2.x - quad.pl.x;
uy := quad.p2.y - quad.pl.y;
uz := quad.p2.z - quad.pl.z;
vx := quad.p4.x - quad.pl.x;
vy := quad.pd4.y - quad.pl.y;

vz := quad.p4.z - quad.pl.z;

ulen := SQRT (ux*ux + uy*uy + uz*uz);

vlen := SQRT (vx*vx + vy*vy + vz*vz);

IF (ulen <= tol) OR (vlen <= tol) THEN
RETURN (FALSE) ;

END IF;

-- compute normalized dot product

dot := (ux*vx + uy*vy + uz*vz) / (ulen * vlen);

-- fail if angle to close to 0 or 180 deg

IF (dot <= (-1.0+tol)) OR (dot >= (1.0-tol)) THEN
RETURN (FALSE) ;

END IF;

-- compute normal via cross-product

nx := uy*vz - uz*vy;

ny := uz*vx - ux*vz;

nz := ux*vy - uy*vx;

nlen := SQRT (nx*nx + ny*ny + nz*nz);

IF nlen <= tol THEN
RETURN (FALSE) ;

END IF;
-- normalise n

nx := nx / nlen;
ny := ny / nlen;
nz := nz / nlen;

-- verify that p3 is in the plane spanned by pl, p2, p4
-- m is vector from pl to p3
mx := quad.p3.x - quad.pl.x;
quad.p3.y - quad.pl.y;
quad.p3.z - quad.pl.z;

S
N
[

-- this may not be greater than the point coincidence length
IF ABS (mx*nx + my*ny + mz*nz) > tol THEN

RETURN (FALSE) ;
END IF;

-- loop to verify correct interior angles at points p2, p3 ,p4
REPEAT 1 := 2 TO 4;
CASE 1 OF
2: BEGIN
-- verify interior angle at p2 from vectors u and v
-- u is vector p2 to p3, v is vector p2 to pl

-- compute the length of the projection of m on n (i.e. absolute dot product)

Copyright ©1995-2016 European Space Agency

page 194

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

ux := quad.p3.x - quad.p2.x;
uy := quad.p3.y - quad.p2.y;
uz := quad.p3.z - quad.p2.z;
vx := quad.pl.x - quad.p2.x;
vy := quad.pl.y - quad.p2.y;
vz := quad.pl.z - quad.p2.z;
END;
3: BEGIN

-- verify interior angle at p3 from vectors u and v
-- u 1is vector p3 to p4, v is vector p3 to p2

ux := quad.p4.x - quad.p3.x;
uy := quad.p4.y - quad.p3.y;
uz := quad.p4.z - quad.p3.z;
vx := quad.p2.x - quad.p3.x;
vy := quad.p2.y - quad.p3.y;
vz := quad.p2.z - quad.p3.z;
END;
4: BEGIN

-- verify interior angle at p4 from vectors u and v
-- u 1is vector p4 to pl, v is vector p4 to p3

ux := quad.pl.x - quad.p4.x;

uy := quad.pl.y - quad.péd.y;

uz := quad.pl.z - quad.pé.z;

vx := quad.p3.x - quad.p4.x;

vy := quad.p3.y - quad.péd.y;

vz := quad.p3.z - quad.p4.z;

END;

END CASE;
ulen := SQRT (ux*ux + uy*uy + uz*uz);
vlen := SQRT (vx*vx + vy*vy + vz*vz);

IF (ulen <= tol) OR (vlen <= tol) THEN
RETURN (FALSE) ;

END IF;

-- compute normalized dot product

dot := (ux*vx + uy*vy + uz*vz) / (ulen * vlen);

-- fail if angle to close to 0 or 180 deg

IF (dot <= (-1.0+tol)) OR (dot >= (1.0-tol)) THEN
RETURN (FALSE) ;

END IF;

-- compute normal via cross-product

mx := uy*vz - uz*vy;

my := uz*vx - ux*vz;

mz := ux*vy - uy*vx;

mlen := SORT (mxX*mx + my*my + mz*mz);

IF mlen <= tol THEN
RETURN (FALSE) ;
END IF;
-- compute dot product for this normal and the reference normal at pl
dot := mx*nx + my*ny + mz*nz;
-- fail if dot negative because then one of the interior angles > 180 deg
IF dot < 0.0 THEN
RETURN (FALSE) ;
END IF;
END REPEAT;

RETURN (TRUE) ;
END FUNCTION;

Argument definitions:

— quad specifies the candidate mgm_quadrilateral to be verified

Copyright ©1995-2016 European Space Agency

page 195

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4.3.6.36 FUNCTION mgm_verify points_span_orthogonal system

The function mgm_verify points span_orthogonal system verifies that three cartesian points p1, p2 and
p3 span a system of two orthogonal vectors p1 to p2 and p1 to p3. The function also verifies that points p2
and p3 do not coincide with point p1 within a given tolerance. The function returns TRUE if this is the case
and FALSE otherwise.

Express specification:

FUNCTION mgm verify points_span orthogonal system(

pl : mgm 3d cartesian point;
p2 : mgm 3d cartesian point;
p3 : mgm 3d cartesian point;
tolerance : REAL) : BOOLEAN;

LOCAL
vlix, vly, vlz, vllen : REAL;
v2x, v2y, v2z, v2len : REAL;
normalized dot product : REAL;

END LOCAL;

vlix := p2.x - pl.x;

vly := p2.y - pl.y;

vlz := p2.z - pl.z;

v2x := p3.x - pl.x;

v2y := p3.y - pl.y;

v2z := p3.z - pl.z;

vlilen := SQRT (vlx*vlix + vly*vly + vlz*vlz);

v2len := SQRT (v2x*v2x + Vv2y*v2y + v2z*v2z);

IF (vllen <= tolerance) OR (v2len <= tolerance) THEN
RETURN (FALSE) ;

END IF;

normalized dot product := (vlx*v2x + vly*v2y + vlz*v2z)/(vllen*v2len);

IF ABS(normalized dot product) > tolerance THEN
RETURN (FALSE) ;

END IF;

RETURN (TRUE) ;

END FUNCTION;

Argument definitions:

— pl specifies the first point of three that are to be verified to span an orthogonal system
— p2 specifies the second point of three that are to be verified to span an orthogonal system
— p3 specifies the third point of three that are to be verified to span an orthogonal system

— tolerance specifies the minimum length tolerance to take into account
4.3.6.37 FUNCTION mgm_verify_points_use_context_length_quantity type

The function mgm_verify points use context length quantity type verifies that the coordinates of one
or more mgm_3d_cartesian_point instances all use the 'length' quantity type that is applicable for a given
mgm_meshed geometric model. The function returns TRUE if this is the case, and FALSE if not.

Express specification:

FUNCTION mgm verify points_use_context length quantity type (
points : SET OF mgm 3d cartesian point;
a model : mgm meshed geometric model) : BOOLEAN;
LOCAL
context length quantity type : nrf any quantity type;

Copyright ©1995-2016 European Space Agency page 196

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

END LOCAL;
context length quantity type := mgm get context quantity type (
a model, 'length');
REPEAT i := 1 TO SIZEOF (points);
IF points[i].quantity type :<>: context length quantity type THEN
RETURN (FALSE) ;
END IF;
END REPEAT;
RETURN (TRUE) ;
END_ FUNCTION;

Argument definitions:

— points specifies the set of mgm_3d cartesian_point instances to be verified

— a_model specifies the mgm_meshed geometric_model from which to get the applicable 'length’
quantity type for the coordinates of all points.

4.3.6.38 FUNCTION mgm_verify surface grid_spacings

The function mgm_verify surface grid_spacings verifies that the grid spacings for an

mgm_meshed primitive_bounded surface are valid. It is required that the first value is zero, the last value is
one and all values are in ascending order. The function returns TRUE if this is the case and FALSE
otherwise.

Express specification:

FUNCTION mgm verify surface grid spacings (
a grid spacings : LIST OF REAL) : BOOLEAN;
IF a grid spacings[LOINDEX (a grid spacings)] <> 0.0 THEN
RETURN (FALSE) ;
END_IF;
IF a grid spacings[HIINDEX (a grid spacings)] <> 1.0 THEN
RETURN (FALSE) ;
END_IF;
REPEAT i := 1 TO SIZEOF (a grid spacings) - 1;
IF (a_grid spacings[i] >= a grid spacings[i+1]) THEN
RETURN (FALSE) ;
END_IF;
END REPEAT;
RETURN (TRUE) ;
END FUNCTION;

Argument definitions:

— a grid spacings specifies the list of grid spacing values to be verified.
4.3.6.39 FUNCTION mgm_verify_start_and_end_angles

The function mgm_verify_start_and_end_angles verifies the following constraints on the start angle and
end_angle for surfaces or solids of revolution.

— The end_angle is required to be greater than the start angle.
— Both angles are required to lie in the interval from -360 to +360 degrees.

— The difference between end_angle and start_angle is required to be 360 degrees or less.

Copyright ©1995-2016 European Space Agency page 197

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

For all these constraints a numerical tolerance is taken into account that is related to the applicable
point_coincidence length uncertainty. The function returns TRUE if the constraints are met and FALSE
otherwise.

Express specification:

FUNCTION mgm verify start and end angles(
start angle : REAL;

end angle : REAL;
tolerance : REAL) : BOOLEAN;
LOCAL
tol : REAL;
END LOCAL;
-- convert point coincidence length uncertainty to angular tolerance in degree
tol := tolerance * 180.0 / PI;
IF -tol - 360.0) <= start angle < (360.0 - tol)} AND

{(
{(-360.0 + tol) < end angle <= (360.0 + tol)} AND
((start_angle + tol) < end angle) AND
((end angle - start angle) <= (360.0 + tol)) THEN
RETURN (TRUE) ;
ELSE

RETURN (FALSE) ;
END IF;

END FUNCTION;

Argument definitions:

— start_angle specifies the start angle (in degree) of the surface or solid of revolution to be verified
— end_angle specifies the end angle (in degree) of the surface or solid of revolution to be verified

— tolerance specifies the applicable 'point_coincidence uncertainty'
4.3.6.40 FUNCTION mgm_verify_solid_box

The function mgm_verify_solid_box verifies whether the points of an mgm_solid box define a valid solid
box according to the following criteria: (1) the points p1, p2, p3, p4 do not coincide, (2) the points p1, p2, p3
span an orthogonal system, (3) vector pl to p4 has the same direction as the positive normal on the plane
spanned by vector pl to p2 and vector p1 to p3.

The function returns TRUE if this is the case and FALSE otherwise.

Express specification:

FUNCTION mgm verify solid box(

sb : mgm solid box) : BOOLEAN;

LOCAL
tol : REAL;
mx, my, mz, mlen : REAL;
nx, ny, nz, nlen : REAL;
ux, uy, uz : REAL;
vx, vy, vz : REAL;

END LOCAL;

tol := mgm get context uncertainty wvalue (
sb.geometric item.containing model, 'point coincidence length');

IF NOT mgm verify no coincident points([sb.pl, sb.p2, sb.p3, sb.p4], tol) THEN
RETURN (FALSE) ;
END IF;

Copyright ©1995-2016 European Space Agency page 198

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

IF NOT mgm verify points span orthogonal system(sb.pl, sb.p2, sb.p3, tol) THEN
RETURN (FALSE) ;
END IF;

-- u is vector pl to p2, v is vector pl to p3

ux := sb.p2.x - sb.pl.x;
uy := sb.p2.y - sb.pl.y;
uz := sb.p2.z - sb.pl.z;
vx := sb.p3.x - sb.pl.x;
vy := sb.p3.y - sb.pl.y;
vz := sb.p3.z - sb.pl.z;

-- compute normal via cross product of u and v

nx := uy*vz - uz*vy;
ny := uz*vx - ux*vz;
nz := ux*vy - uy*vx;
nlen := SQRT (nx*nx + ny*ny + nz*nz);

IF nlen <= tol THEN
RETURN (FALSE) ;
END IF;

-- m is vector from pl to p4

mx := sb.p4.x - sb.pl.x;
my := sb.pd4.y - sb.pl.y;
mz := sb.p4.z - sb.pl.z;
mlen := SORT (mx*mx + my*my + mz*mz);

IF mlen <= tol THEN
RETURN (FALSE) ;
END IF;

-- vector pl to p4 must be parallel to the normal n
-- i.e. the normalised dot product must be greater than 1-tol
IF NOT ((mx*nx + my*ny + mz*nz)/(mlen*nlen) > (1.0 - tol)) THEN
RETURN (FALSE) ;
END IF;
RETURN (TRUE) ;
END FUNCTION;

Argument definitions:

— sb specifies the mgm_solid box to be verified.
4.3.6.41 FUNCTION mgm_verify solid triangular prism

The function mgm_verify_solid_triangular_prism verifies whether the points of an
mgm_solid_triangular_prism define a valid solid triangular prism according to the following criteria: (1) the
points pl, p2, p3 do not coincide, (2) the points p1, p2, p3 are not colinear, (3) vector pl to p4 has the same
direction as the positive normal on the plane spanned by vector p1 to p2 and vector p1 to p3.

The function returns TRUE if this is the case and FALSE otherwise.

Express specification:

FUNCTION mgm verify solid triangular prism(

stp : mgm solid triangular prism) : BOOLEAN;
LOCAL

tol : REAL;

mx, my, mz, mlen : REAL;

nx, ny, nz, nlen : REAL;
ux, uy, uz : REAL;

Copyright ©1995-2016 European Space Agency page 199

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

vx, vy, vz : REAL;
END LOCAL;
tol := mgm get context uncertainty wvalue (
stp.geometric item.containing model, 'point coincidence length');

IF NOT mgm verify no coincident points([stp.pl, stp.p2, stp.p3, stp.pd4], tol) THEN
RETURN (FALSE) ;
END IF;
IF NOT mgm verify no colinear points([stp.pl, stp.p2, stp.p3], tol) THEN
RETURN (FALSE) ;
END IF;
-- u is vector pl to p2, v is vector pl to p3
ux := stp.p2.x - stp.pl.x;
uy := stp.p2.y - stp.pl.y;
uz := stp.p2.z - stp.pl.z;
VX := stp.p3.x - stp.pl.x;
vy := stp.p3.y - stp.pl.y;
vz := stp.p3.z - stp.pl.z;
-- compute normal via cross product of u and v
nx := uy*vz - uz*vy;
ny := uz*vx - ux*vz;
nz := ux*vy - uy*vx;
nlen := SQRT (nx*nx + ny*ny + nz*nz);
IF nlen <= tol THEN
RETURN (FALSE) ;
END IF;
-- m is vector from pl to p4
mx := stp.pd4.x - stp.pl.x;
my := stp.pd4.y - stp.pl.y;
mz := stp.pd4.z - stp.pl.z;
mlen := SORT (mx*mx + my*my + mz*mz);
IF mlen <= tol THEN
RETURN (FALSE) ;
END IF;
-- vector pl to p4 must be parallel to the normal n
-- i.e. the normalised dot product must be greater than 1-tol
IF NOT ((mx*nx + my*ny + mz*nz)/(mlen*nlen) > (1.0 - tol)) THEN
RETURN (FALSE) ;
END IF;
RETURN (TRUE) ;
END FUNCTION;
Argument definitions:
— stp specifies the mgm_solid_triangular prism to be verified.
4.3.6.42 RULE mgm_verify_referencing_of faces
The RULE mgm_verify_referencing_of faces verifies that any mgm_face that is part of any
mgm_meshed_geometric_model is referenced only once.
Express specification:
RULE mgm verify referencing of faces FOR (nrf root);
LOCAL
rule satisfied : LOGICAL := TRUE;
all faces : LIST OF mgm face := [];
root model : nrf network model;
Copyright ©1995-2016 European Space Agency page 200

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

check face : mgm face;

END LOCAL;
REPEAT i := 1 TO SIZEOF (nrf root[l].root models):;
root model := nrf root[l].root models[i];
IF 'MGM ARM.MGM MESHED GEOMETRIC MODEL' IN TYPEOF (root model) THEN
all faces := all faces +
mgm get faces from meshed geometric item(root model.root item);
END IF;

END REPEAT;

REPEAT WHILE ((SIZEOF (all faces) > 1) AND rule satisfied);
check face := all faces[1];
REMOVE (all faces, 1);

IF check face IN all faces THEN
rule satisfied := FALSE;
END IF;
END REPEAT;
WHERE
wrl: rule satisfied;
END RULE;

4.3.6.43 FUNCTION mgm_get_faces_from_meshed_geometric_item

The function mgm_get_faces_from_meshed_geometric_item returns a list of all mgm_face instances that
are part of a given mgm_any meshed geometric_item.

Express specification:

FUNCTION mgm get faces_from meshed geometric_item (

an _item : mgm any meshed geometric item) : LIST OF mgm face;
LOCAL

all faces: LIST OF mgm face := [];
END LOCAL;

IF 'MGM_ARM.MGM_MESHED_PRIMITIVE_BOUNDED_SURFACE' IN TYPEOF(an_item) THEN
IF EXISTS(an item.sidel faces) THEN

all faces := all faces + an item.sidel faces;
END IF;
IF EXISTS(an item.side2 faces) THEN
all faces := all faces + an item.side2 faces;
END IF;
ELSE
IF 'MGM ARM.MGM COMPOUND MESHED GEOMETRIC ITEM' IN TYPEOF (an_item) THEN
REPEAT i := 1 TO SIZEOF (an item.geometric items);
all faces := all faces +

mgm get faces from meshed geometric_item(an_item.geometric_ items[i]);
END REPEAT;

ELSE
IF 'MGM ARM.MGM MESHED BOOLEAN DIFFERENCE SURFACE' IN TYPEOF (an_ item) THEN
all faces := all faces +
mgm _get faces from meshed geometric_item(an_item.base surface);
ELSE
IF 'MGM ARM.MGM MESHED GEOMETRIC ITEM BY SUBMODEL' IN TYPEOF (an_ item) THEN
all faces := all faces +
mgm get faces from meshed geometric_item(an_item.submodel.root item);
END IF;
END IF;
END IF;
END IF;

RETURN (all faces);
END FUNCTION;

Argument definitions:

Copyright ©1995-2016 European Space Agency page 201

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

— an_item specifies the mgm_any meshed geometric_item for which all contained mgm_face
instances should be returned.

4.3.6.44 FUNCTION mgm_verify enclosure faces

The function mgm_verify_enclosure_faces verifies that all surfaces of an mgm_enclosure are part of the
containing_model, either directly or through a submodel and that the active side as specified in active_sides
of an mgm_enclosure shall be one or both of the actives side specified for the corresponding surface. If this
is the case the function returns TRUE, else FALSE.

Express specification:

FUNCTION mgm verify enclosure_faces (
an_enclosure : mgm enclosure) : BOOLEAN;
-— !ITBD!!
RETURN (TRUE) ;
END_ FUNCTION;

Argument definitions:

— an_enclosure specifies the mgm_enclosure to be verified.

4.3.7 MGM meshed boolean construction geometry UoF

The MGM meshed boolean construction geometry UoF contains application objects that enable the
representation of meshed geometric items resulting from boolean construction operations.

4.3.7.1 TYPE mgm_half space_selector_type

The mgm_half space_selector_type specifies which half space as defined by an mgm_primitive solid to
use in boolean construction operations. When the mgm_half _space_selector_type is INSIDE, the half space
inside the mgm_primitive solid or tas_primitive half space is used as a boolean operand. Likewise a value
of OUTSIDE indicates the half space outside the mgm_primitive_solid or tas_primitive_half space is used
as a boolean operand.

Express specification:

TYPE mgm half space selector_type = ENUMERATION OF (
INSIDE,
OUTSIDE) ;

END_TYPE;

4.3.7.2 ENTITY tas_half space_solid

An mgm_half space_solid specifies a half space solid shape for the purpose of boolean construction
operations. A half space solid is one of the two continuous subspaces that result from dividing the full 3D
space into exactly two parts.

Express specification:

ENTITY mgm half space solid;
id : nrf identifier;
name : nrf label;

Copyright ©1995-2016 European Space Agency page 202

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

description : nrf text;
transformation : OPTIONAL mgm axis transformation;
solid : mgm primitive solid;

half space selector : mgm half space selector type;
END ENTITY;

Attribute definitions:

— id specifies the identifier of an mgm_half space solid.
— name specifies the human-interpretable name of an mgm_half space_solid.
— description specifies the textual description of an mgm_half space_solid.

— transformation optionally specifies the mgm_axis_transformation to be applied to the solid. The
transformation is defined with respect to the placement of the mgm_meshed geometric_item that

uses this mgm_half space_solid.
— solid specifies the mgm_primitive solid of which the volume is used to define the half space.
— half space_selector specifies whether the inside or the outside half of the solid constitutes the
substance of the solid. The definitions of what constitutes INSIDE and OUTSIDE are explicitly

given for each of the subtypes of mgm_primitive solid. A half space is one of the two continuous
subspaces that result from dividing the full 3D space into exactly two parts.

4.3.7.3 ENTITY mgm_meshed boolean_difference surface

An mgm_meshed_boolean_difference_surface specifies a bounded surface that is defined by a

base surface of which the part enclosed by a given cutting_solid is removed. In other words the resulting
surface after the boolean operation contains all points of the base surface that are outside the half space

defined by the cutting_ solid.

Express specification:

ENTITY mgm meshed boolean difference surface
SUBTYPE OF (mgm any meshed geometric item);
base surface : mgm any meshed geometric item;
cutting solid : mgm half space solid;

WHERE
wrl: mgm verify boolean difference base surface (base surface);
wr2: cutting solid.solid.geometric item :=: SELF;

END ENTITY;

Attribute definitions:

— base_surface specifies the bounded surface that is the first operand of the boolean difference

operation.

— cutting_solid specifies the mgm_primitive_solid that is the second, cutting half space, operand of

the boolean difference operation.

Formal propositions:

— wrl: The leaf items of the base surface shall all be mgm_meshed primitive bounded surface or

mgm_meshed_boolean_difference_surface instances.

— wr2: The geometric_item of the solid of the cutting_solid shall reference this

mgm_meshed_boolean_difference_surface.

Copyright ©1995-2016 European Space Agency

page 203

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4.3.7.4 FUNCTION mgm_verify boolean_difference base surface

The function mgm_verify_boolean_difference_base_surface verifies that the leaf items of the base surface

of a given mgm_meshed boolean_difference_surface are all mgm_meshed primitive_bounded surface or
mgm_meshed_boolean_difference surface instances. The function returns TRUE if this is the case and

FALSE otherwise.

Express specification:

FUNCTION mgm verify boolean difference base_surface (
a base surface : mgm any meshed geometric item) : BOOLEAN;
IF 'MGM ARM.MGM COMPOUND MESHED GEOMETRIC ITEM' IN TYPEOF (a base surface) THEN
REPEAT i := 1 TO SIZEOF (a_base surface.geometric items);
IF NOT mgm verify boolean difference base_surface (
a base surface.geometric items[i]) THEN
RETURN (FALSE) ;
END IF;
END REPEAT;
ELSE
IF NOT (
('MGM_ARM.MGM MESHED PRIMITIVE BOUNDED SURFACE' IN TYPEOF (a base surface)) OR
('MGM_ARM.MGM MESHED BOOLEAN DIFFERENCE SURFACE' IN TYPEOF (a_base surface)))
THEN
RETURN (FALSE) ;
END IF;
END IF;
RETURN (TRUE) ;
END FUNCTION;

Argument definitions:

— a_base_surface specifies the mgm_any meshed geometric_item to be verified.

4.3.8 END _SCHEMA declaration for mgm_arm

The following EXPRESS declaration ends the mgm_arm schema.

Express specification:

[END_SCHEMA; -- mgm_arm

4.4 Space kinematic model (SKM) module
This subclause specifies the unit of functionality for the space kinematic model module. There is only one:

1. SKM rigid body kinematics UoF

4.4.1 SCHEMA declaration for skm_arm

The following EXPRESS declaration begins the skm arm schema.

Express specification:

Copyright ©1995-2016 European Space Agency page 204

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

SCHEMA skm arm;

-- Ids

-—- Copyright (c) 1995-2018 European Space Agency (ESA)
—-— All rights reserved.

4.4.2 Interfaced schema(ta) for skm_arm

The mgm_arm schema uses the nrf_arm schema specified in [STEP-NRF] and the mgm_arm schema.

Express specification:

USE FROM nrf arm;
USE FROM mgm_arm;

4.4.3 CONSTANT specifications

Two constants are defined for the SKM module:

Express specification:

CONSTANT
SCHEMA OBJECT IDENTIFIER : STRING :=
"{http://www.purl.org/ESA/step-tas/v6.0/skm_arm.exp}';
-- in formal version to be replaced with
-- '{ iso standard n part(p) version(v) }'

END CONSTANT;

Constant definitions:

SCHEMA_OBJECT_IDENTIFIER provides a built-in way to reference the object identifier of the protocol
for version verification. For the definition and usage of the object identifier see ISO 10303-1 and Annex E.

4.4.4 SKM rigid body kinematics UoF

The SKM rigid body kinematics UoF provides the objects needed to add rigid body kinematics definitions to
a meshed geometric model specified by an mgm_meshed geometric_model. The basic object is the
skm_kinematic_joint which defines the potential movement of one part of a geometric model (a complete
subtree) with respect to its containing part, which is the next higher level

mgm_compound meshed geometric_item.

4.4.4.1 ENTITY skm_kinematic_degree_ of freedom

An skm_kinematic_degree_of freedom is an abstract supertype that provides a generic mechanism to
specify a sliding (i.e. translational) or revolute (i.e. rotational) degree of freedom for a kinematic joint.

Express specification:

ENTITY skm kinematic_degree_ of freedom
ABSTRACT SUPERTYPE OF (ONEOF (
skm sliding degree of freedom,
skm revolute degree of freedom));
axis : mgm 3d direction;
END ENTITY;

Copyright ©1995-2016 European Space Agency page 205

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

Attribute definitions:

— axis specifies the translation direction or the axis of rotation for the kinematic degree of freedom.
4.4.4.2 ENTITY skm_sliding_degree_of freedom

An skm_sliding_degree_of freedom is a kind of skm_kinematic_degree of freedom that specifies a
sliding degree of freedom for a kinematic joint and optionally the stops that constrain the allowable range for
the translation distance. The positive sliding distance is defined in the direction of the translation axis
specified in the axis attribute that is inherited from skm_kinematic_degree of freedom. Zero sliding distance
is defined as the position of the affected geometric item after any static transformations have been applied.

Express specification:

ENTITY skm_sliding_ degree of freedom
SUBTYPE OF (skm kinematic degree of freedom);
lower stop distance : OPTIONAL nrf real quantity value prescription;
upper stop distance : OPTIONAL nrf real quantity value prescription;
WHERE
wrl: (NOT EXISTS (lower stop distance)) OR (
nrf verify dimensional exponents (
lower stop distance.quantity type.quantity category,
1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0));
wr2: (NOT EXISTS (upper stop distance)) OR (
nrf verify dimensional exponents (
upper stop distance.quantity type.quantity category,
1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0));
END ENTITY;

Attribute definitions:

— lower_stop_distance optionally specifies the allowed lower limit sliding distance for a sliding
kinematic joint.

— upper_stop_distance optionally specifies the allowed upper limit sliding distance for a sliding
kinematic joint.

Formal propositions:

— wrl: If lower_stop_distance exists it shall have the dimension of length.

— wr2: If upper_stop_distance exists it shall have the dimension of length.
4.4.4.3 ENTITY skm_revolute_degree_of freedom

An skm_revolute_degree of freedom is a kind of skm_kinematic_degree_of freedom that specifies a
revolute degree of freedom for a kinematic joint and optionally the stops (or limit angles) that constrain the
allowable range for the rotation angle. The positive rotation angle is defined with respect to the rotation axis
specified in the axis attribute that is inherited from skm_kinematic_degree_of freedom. Zero rotation is
defined as the orientation of the affected geometric item after any static transformations have been applied.

Express specification:

ENTITY skm_revolute degree of freedom
SUBTYPE OF (skm kinematic degree of freedom);
lower stop angle : OPTIONAL nrf real quantity value prescription;

Copyright ©1995-2016 European Space Agency page 206

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

upper_ stop angle : OPTIONAL nrf real quantity value prescription;
WHERE

wrl: (NOT EXISTS (lower stop angle)) OR

(lower stop angle.quantity type.quantity category.name = 'plane angle');

wr2: (NOT EXISTS (upper stop angle)) OR

(upper stop angle.quantity type.quantity category.name = 'plane angle');
END ENTITY;

Attribute definitions:

— lower_stop_angle optionally specifies the allowed lower limit angle of rotation for a revolute
kinematic joint.

— upper_stop_angle optionally specifies the allowed upper limit angle of rotation for a revolute
kinematic joint.

Formal propositions:

— wrl: If lower_stop_angle exists it shall have the quantity type 'plane_angle' and

— wr2: If upper_stop_angle exists it shall have the quantity type 'plane_angle' and its value shall be in
the range from —360 to +360 degrees.

4.4.4.4 ENTITY skm_kinematic_joint

An skm_kinematic_joint specifies the possibility for the movement of a rigid body represented by an
mgm_any_meshed_geometric_item with respect to its containing (next higher level) geometric item or
model. The kinematic joint may have up to six degrees of freedom, comprising at most three sliding degrees
of freedom and at most three revolute degrees of freedom.

NOTE In engineering analysis applications support for rigid body kinematics is known under variety of
names, among others: kinematic joints, moving, articulated or animated bodies, shapes or assemblies.

Express specification:

ENTITY skm _kinematic_joint;
geometric item : mgm any meshed geometric item;
degrees of freedom : LIST [1:6] OF skm kinematic degree of freedom;
WHERE
wrl: skm verify degrees of freedom (SELF) ;
END ENTITY;

Attribute definitions:

— geometric_item specifies the mgm_any meshed geometric_item for which the kinematic joint is
defined.

— degrees_of freedom specifies the sequence of up to six kinematic degrees of freedom for the joint.

Formal propositions:

— wrl: Verify for the following constraints: (1) The number of degrees shall not be more than six, (2)
For each degree of freedom of type skm_sliding_degree of freedom for which both
lower stop_distance and upper_stop_distance are specified, the value of lower stop_distance shall
be less than the value of upper_stop_distance. (3) For each degree of freedom of type
skm revolute degree of freedom for which lower stop angle is specified, the value of

Copyright ©1995-2016 European Space Agency page 207

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

lower_stop angle shall range from —360 to +360 degrees.(4) For each degree of freedom of type
skm revolute degree of freedom for which upper stop_angle is specified, the value of
upper_stop_angle shall range from —360 to +360 degrees.(5) For each degree of freedom of type
skm revolute degree of freedom for which both lower stop angle and upper stop angle are
specified, the value of lower_stop_angle should be less than the value of upper_stop angle.(6) The
number of degrees of freedom of type skm_sliding_degree_of freedom shall not be more than
three. (7)The number of degrees of freedom of type skm_revolute degree of freedom shall not be
more than three.

NOTE 1: Degrees of freedom not listed in degrees_of freedom are considered to be fixed.

NOTE 2: The coordinate transformations resulting from translations and rotations along the axes as defined
by the degrees of freedom have to be applied in the order in which these are defined in
degrees of freedom. These transformations have to be applied in the same was as is documented under
mgm_axis_transformation_sequence. In this context the rotations originating from instances of
skm_revolute degree of freedom have to be treated in the same way as the rotations specified by instances

of mgm rotation with axes moving.

4.4.4.5 FUNCTION skm_verify degrees of freedom

The function skm_verify_degrees_of freedom verifies that (1) The number of degrees shall not be more
than six, (2) For each degree of freedom of type skm_sliding_degree of freedom for which both

lower stop_distance and upper_stop distance are specified, the value of lower stop distance shall be less
than the value of upper_stop_distance. (3) For each degree of freedom of type
skm_revolute degree of freedom for which lower stop angle is specified, the value of lower stop angle
shall range from —360 to +360 degrees.(4) For each degree of freedom of type
skm_revolute degree of freedom for which upper stop angle is specified, the value of upper stop angle
shall range from —360 to +360 degrees.(5) For each degree of freedom of type
skm_revolute degree of freedom for which both lower stop angle and upper stop angle are specified, the
value of lower stop_angle should be less than the value of upper stop angle.(6) The number of degrees of
freedom of type skm_sliding_degree_of freedom shall not be more than three. (7)The number of degrees of
freedom of type skm_revolute degree of freedom shall not be more than three.

Express specification:

FUNCTION skm verify degrees of freedom
a_joint : skm kinematic joint) : BOOLEAN;

LOCAL
dist tol : REAL;
angle tol : REAL;
dof count : INTEGER;

a dof : skm kinematic degree of freedom;

sliders : LIST OF skm sliding degree of freedom;

rotators : LIST OF skm revolute degree of freedom;
END LOCAL;
dist tol := mgm get context uncertainty value(

a joint.geometric item.containing model, 'point coincidence length');

angle tol := dist tol * 180.0 / PI;
sliders := [];
rotators := [];
REPEAT dof count := 1 TO SIZEOF (a_ joint.degrees of freedom);

a dof := a joint.degrees of freedom[dof count];

IF 'SKM ARM.SKM SLIDING DEGREE OF FREEDOM' IN TYPEOF (a_dof) THEN

sliders := sliders + [a_dof];

IF (EXISTS(a_dof.lower stop distance)) AND
(EXISTS (a_dof.upper stop distance)) THEN

Copyright ©1995-2016 European Space Agency page 208

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

IF ((a_dof.upper stop distance.val -
a_dof.lower stop_distance.val) < dist tol) THEN
RETURN (FALSE) ;
END IF;
END IF;
ELSE
-- it is a skm revolute degree of freedom
rotators := rotators + [a dof];
IF EXISTS (a_dof.lower stop angle) THEN
IF (a_dof.lower stop angle.val < (-360.0 - angle tol)) OR
((360.0 + angle tol) < a dof.lower stop angle.val) THEN
RETURN (FALSE) ;
END IF;
END IF;
IF EXISTS (a_dof.upper stop angle) THEN
IF (a_dof.upper stop angle.val < (-360.0 - angle tol)) OR
((360.0 + angle tol) < a dof.upper stop angle.val) THEN
RETURN (FALSE) ;
END IF;
END IF;
IF (EXISTS(a dof.lower stop angle)) AND
(EXISTS (a_dof.upper stop angle)) THEN
IF ((a_dof.upper stop angle.val -
a dof.lower stop angle.val) < angle tol) THEN
RETURN (FALSE) ;
END IF;
END IF;
END IF;
END REPEAT;
IF SIZEOF (sliders) > 3 THEN
RETURN (FALSE) ;
END IF;
IF SIZEOF (rotators) > 3 THEN
RETURN (FALSE) ;
END IF;
RETURN (TRUE) ;
END FUNCTION;

Argument definitions:

— a_joint specifies the skm_kinematic joint of which the degrees of freedom are to be verified.

4.4.5 END_SCHEMA declaration for skm_arm

The following EXPRESS declaration ends the skm_arm schema.

Express specification:

[END_SCHEMA; -- skm_arm

4.5 Space mission aspects (SMA) module

This subclause specifies the units of functionality for the space mission aspects module. There is only one:

1. SMA space mission aspects UoF

Copyright ©1995-2016 European Space Agency page 209

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4.5.1 SCHEMA declaration for sma_arm

The following EXPRESS declaration begins the sma_arm schema.

Express specification:

SCHEMA sma arm;

-- Ids

-—- Copyright (c) 1995-2018 European Space Agency (ESA)
—-— All rights reserved.

4.5.2 Interfaced schema(ta) for sma_arm

The mgm_arm schema uses the nrf_arm schema specified in [STEP-NRF] and the mgm_arm and skm_arm
schemata.

Express specification:

USE FROM nrf arm;
USE FROM mgm_arm;
USE FROM skm arm;

4.5.3 CONSTANT specifications

One constant is defined for the SMA module: SCHEMA OBJECT IDENTIFIER.

Express specification:

CONSTANT
SCHEMA OBJECT IDENTIFIER : STRING :=
"{http://www.purl.org/ESA/step-tas/v6.0/sma_arm.exp}';
-- in formal version to be replaced with
-- '{ iso standard n part(p) version(v) }'

END CONSTANT;

Constant definitions:

SCHEMA_OBJECT_IDENTIFIER provides a built-in way to reference the object identifier of the protocol
for version verification. For the definition and usage of the object identifier see ISO 10303-1 and Annex E.

4.5.4 SMA space mission aspects UoF

The SMA space mission aspects UoF contains the application objects to define all aspects related to the
mission and the environment for the object to be analysed, simulated, tested or operated. These aspects
include space coordinate system and directions, orbit, orientation, pointing, events and environmental
parameters of celestial bodies and interplanetary space.

4.5.4.1 ENTITY sma_space_mission_case

An sma_space_mission_case is a type of nrf_case that defines an analysis, simulation, test or operation case
for a space mission. It may specify subcases to represent a sequence of mission phases. An
sma_space_mission_case defines the applicable space coordinate system, optionally an epoch that sets the

Copyright ©1995-2016 European Space Agency page 210

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

reference for zero mission elapsed time, kinematic articulations if applicable, optionally an orbit_arc and
optionally a set of parameters that characterize the applicable space environment.

An sma_space_mission_case may define a list of subcases that would be executed in sequence to represent
a chain of mission phases. Subcases inherit the settings from their parent case but may override their settings
with subcase specific ones.

The location and orientation of the main body of the object to be analyzed, simulated, tested or operated
(typically a spacecraft), is specified by an sma_kinematic_articulation for the root_item of an

mgm_meshed geometric_model.

Express specification:

ENTITY sma_space_mission_case
SUBTYPE OF (nrf case);
SELF\nrf case.subcases : LIST OF UNIQUE sma_space mission_case;
coordinate system : sma space coordinate system;
reference epoch : OPTIONAL nrf date and time;
articulations : LIST OF UNIQUE sma kinematic articulation;
orbit arc : OPTIONAL sma orbit arc;
sun_direction : OPTIONAL sma pointing to star;
space_environment : OPTIONAL sma space environment;

WHERE
wrl: sma verify kinematic articulations (SELF) ;

END ENTITY;

Attribute definitions:

— subcases specifies a list of next lower level sma_space _mission_case instances.

— coordinate_system specifies the reference space coordinate system for an
sma_space_mission_case.

— reference_epoch optionally specifies the date and time which is the reference instance in time for
zero mission elapsed time.

— articulations specifies a list of sma_kinematic_articulation instances that define dynamic coordinate
system transformations for kinematic joints, i.e. rigid body kinematic movements to be applied to a
geometric item with respect to the coordinate reference system of its next higher level geometric
item or model. Articulations are applied in addition to any static coordinate system transformation
specified in the transformation attribute of the mgm_any _meshed geometric_item for which a
kinematic joint is defined.

— orbit_arc optionally specifies a (part of a) trajectory in space.

— space_environment optionally specifies a collection of parameters that characterize the space
environment external to the object that is represented by the nrf network model that is referenced
in the for_model attribute.

Formal propositions:

— wrl: The articulations shall use appropriate quantity types.
4.5.4.2 ENTITY sma_space_coordinate_system

An sma_space_coordinate_system specifies a reference coordinate system with respect to one or more
relevant celestial bodies for use in the definition of the trajectory and the orientation of the meshed geometric
model that represents a spacecraft (or another object in space).

Copyright ©1995-2016 European Space Agency page 211

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

Express specification:

ENTITY sma_space_coordinate_system;

reference system : nrf enumeration quantity value literal;

inertial direction : OPTIONAL nrf enumeration quantity value literal;
WHERE

wrl: reference system.quantity type.name = 'space coordinate system type';
wr2: (NOT EXISTS (inertial direction)) OR
(inertial direction.quantity type.name = 'standard direction in space');
END ENTITY;

Attribute definitions:

— reference_system specifies an applicable space coordinate system type.

— 1inertial direction optionally specifies an applicable standard direction in space.

Formal propositions:

— wrl: The quantity type of the reference_system shall be a 'space _coordinate system_type'.

— wr2: If it exists, the quantity type of the inertial direction shall be a 'standard direction_in_space'.

Informal propositions:

ipl: The inertial direction is only relevant for a reference system that is (or is considered to be) inertial in
space.

4.5.4.3 ENTITY sma_orbit_arc

An sma_orbit_arc is an abstract supertype that specifies the generic part of the data necessary for the
specification of an orbit arc. It provides a generic mechanism to reference an sma_discretized orbit_arc or an
sma_keplerian orbit_arc.

Express specification:

ENTITY sma_orbit_arc
ABSTRACT SUPERTYPE OF (ONEOF (sma discretized orbit arc, sma keplerian orbit arc));

orbit class : nrf enumeration quantity value literal;

governing celestial body : OPTIONAL sma celestial body;

orbit period : OPTIONAL nrf real quantity value prescription;
WHERE

wrl: orbit class.quantity type.name = 'orbit class';

wr2: nrf verify dimensional exponents (
orbit period.quantity type.quantity category,
0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0);
END ENTITY;

Attribute definitions:

— orbit_class specifies an orbit class name, such as 'general', 'geostationary’, 'sun_synchronous',
'molniya'.

— governing_celestial body optionally specifies the celestial body that governs the orbit arc.

— orbit_period optionally specifies the period of the orbit arc in case it is a closed arc, probably a
circular or an elliptical arc.

Copyright ©1995-2016 European Space Agency page 212

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

Formal propositions:

— wrl: The quantity type of the orbit_class shall be named 'orbit_class'.

— wr2: The dimension of orbit_period shall be 'time’.
4.5.4.4 ENTITY sma_orbit_position_and_velocity

An sma_orbit_position_and_velocity specifies an orbit position and a velocity vector. This is an element of
the ephemeris of an orbit arc. The position and velocity are defined in the coordinate system of the
applicable sma_space_mission_case. The applicable sma_space_mission_case is the one with the orbit arc
that references the sma_orbit_position_and_velocity.

Express specification:

ENTITY sma_orbit position_and velocity;
position : mgm 3d cartesian point;
velocity magnitude : nrf real quantity value prescription;
velocity direction : mgm 3d direction;

WHERE
wrl: velocity magnitude.quantity type.quantity category.name = 'velocity';
wr2: nrf verify dimensional exponents (

velocity magnitude.quantity type.quantity category,

1.0, 0.0, -1.0, 0.0, 0.0, 0.0, 0.0);
END ENTITY;

Attribute definitions:

— position specifies the orbit position in the applicable space coordinate system.
— velocity _magnitude specifies the magnitude of the velocity vector.

— velocity direction specifies the direction of the velocity vector.

Formal propositions:

— wrl: The name of the quantity category of velocity magnitude shall be 'velocity'.

— wr2: The dimension of velocity magnitude shall be length over time.
4.5.4.5 ENTITY sma_discretized_orbit_arc

An sma_discretized_orbit_arc is a type of sma_orbit arc that specifies a general orbit arc in the form of an
ephemeris, i.e. as a list of positions with velocity vectors. This enables support of complex orbits, for
example perturbed orbits. For informational purposes a set of Kepler orbit parameters may be referenced to
indicate an associated unperturbed orbit arc.

Express specification:

ENTITY sma_discretized orbit_ arc
SUBTYPE OF (sma orbit arc);

orbit generator name : nrf label;

positions and velocities : LIST OF sma orbit position and velocity;
centre of governing celestial body : OPTIONAL mgm 3d cartesian point;

kepler parameters : OPTIONAL sma kepler parameter set;

END ENTITY;

Copyright ©1995-2016 European Space Agency page 213

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

Attribute definitions:

— orbit_generator _name specifies the name of the generator that generated the orbit positions and

velocities for the orbit arc.

— positions_and_velocities specifies the ephemeris of orbit positions and velocities that define the

orbit arc.

— centre_of governing_celestial body optionally specifies the location of the centre of the celestial

body that governs the orbit arc.

— kepler _parameters optionally specifies for informational purposes a set of Kepler orbit parameters

that specify the undisturbed orbit arc.

4.5.4.6 ENTITY sma_kepler_parameter_set

An sma_kepler_parameter_set specifies the six classical Kepler parameters to specify an orbit arc: the
semi major axis, the eccentricity, the inclination, the right ascension of the ascending node, the argument of
periapsis and the true anomaly at the start of the arc. In addition also the true anomaly at the end of the arc is

specifies to enable truncation of the arc.

Figure 15 Illustration of parameters for a Keplerian elliptical orbit around a planet, in the typical
“planet_centric_star fixed equatorial” space coordinate system

Express specification:

ENTITY sma_kepler parameter_ set;

semi major axis : nrf real quantity value prescription;
eccentricity : nrf real quantity value prescription;
inclination : nrf real quantity value prescription;
right ascension of ascending node : nrf real quantity value prescription;
argument of periapsis : nrf real quantity value prescription;
true anomaly at start : nrf real quantity value prescription;
true anomaly at end : nrf real quantity value prescription;
WHERE

wrl: nrf verify dimensional exponents (

semi major axis.quantity type.quantity category,
1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) AND
(semi major axis.val > 0.0);

Copyright ©1995-2016 European Space Agency

page 214

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

wr2: nrf verify dimensional exponents (
eccentricity.quantity type.quantity category,
6.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) AND
(eccentricity.val >= 0.0);

wr3: (inclination.quantity type.quantity category.name = 'plane angle') AND
{ -180.0 < inclination.val <= 180.0 };
wrd4: (right ascension of ascending node.quantity type.quantity category.name =

'plane _angle') AND
{ -360.0 < right ascension of ascending node.val <= 360.0 };

wr5: (argument of periapsis.quantity type.quantity category.name = 'plane angle') AN
{ 0.0 <= argument of periapsis.val < 360.0 };

wr6: (true anomaly at start.quantity type.quantity category.name = 'plane angle') AN
{ -360.0 < true anomaly at start.val <= 360.0 };

wr7: (true anomaly at end.quantity type.quantity category.name = 'plane angle') AND

{ true anomaly at start.val <= true anomaly at end.val
<= true_anomaly at start.val + 360.0 };
END_ENTITY;

Attribute definitions:

— semi_major_axis specifies the length of the semi-major axis of the orbit arc.
— eccentricity specifies the eccentricity of the orbit arc.

— inclination specifies the inclination of the orbit arc with respect to the reference plane defined by the
XY plane of the applicable space coordinate system.

— right_ascension_of ascending_node specifies the right ascension angle of the ascending node of the
orbit arc, i.e. the position where the orbit intersects with the reference plane defined by the XY
plane of the applicable space coordinate system and the velocity vector points into the +Z half
space.

— argument of periapsis specifies the true anomaly angle from the ascending node to the position of
the periapsis of the orbit arc.

— true_anomaly at start specifies the true anomaly angle of the start position on the orbit arc
measured from the periapsis position.

— true_anomaly at end specifies the true anomaly angle of the end position on the orbit arc measured
from the periapsis position.

Formal propositions:

— wrl: The semi_major_ axis shall be a positive length quantity type.
— wr2: The eccentricity shall be a non-dimensional non-negative real quantity type.

— wr3: The inclination shall be a 'plane_angle' in the interval from
-180 degree exclusive to 180 degree inclusive.

— wr4: The right _ascension_of ascending node shall be a 'plane _angle' in the interval from
-360 degree exclusive to 360 degree inclusive.

— wr5: The argument_of periapsis shall be a 'plane_angle' in the interval from
0 degree inclusive to 360 degree exclusive.

— wrb6: The true_anomaly at start shall be a 'plane angle' in the interval from
-360 degree exclusive to 360 degree inclusive.

— wr7: The true_anomaly at end shall be a 'plane_angle' in the interval from
true_anomaly_at_start inclusive to true_anomaly at_start plus 360 degree inclusive.

Copyright ©1995-2016 European Space Agency page 215

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4.5.4.7 ENTITY sma_keplerian_orbit_arc

An sma_keplerian_orbit_arc is a type of orbit_arc that specifies an undisturbed basic Keplerian orbital arc.

Express specification:

ENTITY sma_keplerian_orbit arc
SUPERTYPE OF (ONEOF (
sma keplerian orbit arc with evaluation interval,
sma keplerian orbit arc with evaluation positions))
SUBTYPE OF (sma orbit arc);
kepler parameters : sma kepler parameter set;

END ENTITY;

Attribute definitions:

— kepler_parameters specifies a set of Kepler orbit parameters that define the orbit arc.
4.5.4.8 ENTITY sma_keplerian_orbit_arc_with_evaluation_interval

An sma_Kkeplerian_orbit_arc_with_evaluation_interval is a type of sma_keplerian_orbit arc that specifies
an undisturbed basic Keplerian orbital arc with an evaluation interval for analysis purposes.

Express specification:

ENTITY sma _keplerian orbit_arc_with evaluation_ interval
SUBTYPE OF (sma keplerian orbit arc);

evaluation interval : nrf real quantity value prescription;
WHERE
wrl: evaluation interval.quantity type.name IN
['true anomaly plane angle', 'mission elapsed time', 'orbit arc length'];

END ENTITY;

Attribute definitions:

— evaluation_interval specifies the interval for evaluation positions on the orbit arc through a constant
increment in terms of true anomaly, mission elapsed time or distance along the orbit arc. From the
value of evaluation_interval a minimum required set of evaluation positions are defined. This does
not limit any implementation of an evaluation method to add additional evaluation positions, for
example to represent eclipse entry or exit positions. The first evaluation position is by definition the
start position defined by kepler parameters.true_anomaly at start.

Formal propositions:

— wrl: The quantity type name of evaluation_interval shall be 'true_anomaly plane angle',
'mission_elapsed time' or 'orbit_arc length'.

4.5.4.9 ENTITY sma_keplerian_orbit_arc_with_evaluation_positions

An sma_keplerian_orbit_arc_with_evaluation_positions is a type of sma_keplerian_orbit arc that
specifies an undisturbed basic Keplerian orbital arc with a list of evaluation positions.

Express specification:

Copyright ©1995-2016 European Space Agency page 216

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

ENTITY sma_keplerian orbit arc_with_evaluation positions

SUBTYPE OF (sma keplerian orbit arc);

evaluation positions : LIST [1:?] OF nrf real quantity value literal;
WHERE

wrl: sma verify evaluation positions (SELF) ;
END ENTITY;

Attribute definitions:

— evaluation_positions specifies the list of evaluation positions on the orbit arc in terms of true
anomaly, mission elapsed time or distance along the orbit arc.

Formal propositions:

— wrl: The quantity type name of the evaluation positions shall be 'true_anomaly plane angle’,
'mission_elapsed_time' or 'orbit_arc length', and the values of subsequent positions shall be strictly
increasing.

4.5.4.10 ENTITY sma_celestial body class

An sma_celestial_body_class is a specification of a class of sma_celestial body instances, that is: a named
category of celestial bodies which share common characteristics and behaviour.

EXAMPLE 4 - An example of an sma_celestial body_class would be a class with name 'planets'.

Express specification:

ENTITY sma celestial body class
SUBTYPE OF (nrf named observable item class);
END ENTITY;

4.5.4.11 ENTITY sma_celestial_body

An sma_celestial body is a type of nrf named observable item that specifies a celestial body by a basic set
of attributes: id, name, description and mean radius. Additional properties of a celestial body can be added
through the use of nrf datacube or nrf quantity value prescription_for item instances in the initializations
or prescriptions attributes of an sma_space_environment.

EXAMPLE 5 - Examples of additional properties that may be added are the following real quantity types:
'solar_heat flux', 'albedo reflection', 'infra red radiation temperature', 'planet to sun notional distance'.

Express specification:

ENTITY sma_celestial body
SUPERTYPE OF (ONEOF (sma celestial body with orbit))
SUBTYPE OF (nrf named observable item);
SELF\nrf named observable item.item class : sma celestial body class;
mean radius : nrf real quantity value prescription;
UNIQUE
url: id;
ur2: name;
WHERE
wrl: nrf verify dimensional exponents (
mean radius.quantity type.quantity category,
1.0, 0,0, 0,0, 0.0, 0.0, 0.0, ©.,0)

Copyright ©1995-2016 European Space Agency page 217

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

AND (mean radius.val >= 0.0);
END ENTITY;

Attribute definitions:

— item_class specifies the sma_celestial body_class of which the sma_celestial_body is a member.

— mean_radius specifies the mean radius of the spheroid representing the celestial body.

Formal propositions:

— url: The id shall be unique in the dataset.
— ur2: The name shall be unique in the dataset.

— wrl: The mean_radius shall be a non-negative length quantity type.
4.5.4.12 ENTITY sma_celestial body_with_orbit

An sma_celestial body with_orbit is a type of sma_celestial body to which the specification of the orbit
around its governing celestial body is added. This enables the definition of a complex orbital system by a
chain of celestial bodies and orbits.

EXAMPLE 6 - Examples are a planet in its orbit around the Sun or the Moon in its orbit around Earth, and
Earth in its orbit around the Sun.

Express specification:

ENTITY sma_celestial body with orbit

SUBTYPE OF (sma celestial body) ;

orbit : sma orbit arc;
WHERE

wrl: EXISTS (orbit.governing celestial body) ;
END ENTITY;

Attribute definitions:

— orbit specifies the orbit of the celestial body around its governing_celestial body.

Formal propositions:

— wrl: The orbit shall specify the governing_celestial body.
4.5.4.13 ENTITY sma_space_environment

An sma_space_environment specifies the properties that represent the space environment for a space
mission model and case.

Express specification:

ENTITY sma_space_environment;
prescriptions : LIST OF nrf gquantity value prescription for item;
surface material : OPTIONAL nrf material;
bulk material : OPTIONAL nrf material;

INVERSE

Copyright ©1995-2016 European Space Agency page 218

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

containing case : sma space mission case FOR space environment;
END ENTITY;

Attribute definitions:

— prescriptions specifies the quantity value prescriptions for observable items that represent the space
environment.

— surface material optionally specifies the material that represents the surface of the space
environment far away from the model. This may be a 'virtual' material that is only used in order to
enable the specification of surface properties.

— bulk material optionally specifies the material that represents the bulk of the space environment
surrounding the model. This may be a 'virtual' material that is only used in order to enable the
specification of bulk properties.

— containing_case inversely specifies the sma_space mission_case that references this
sma_space_environment.

4.5.4.14 ENTITY sma_kinematic_articulation

An sma_kinematic_articulation is an abstract supertype that provides a generic mechanism to reference an
sma_parametric_kinematic_articulation, an sma_kinematic articulation_with_pointing_constraint or an
sma_fast spinning_kinematic articulation. It specifies an actual kinematic transformation (location and
orientation) of a geometric item for which a kinematic joint is defined. This allows for the representation of
moving rigid bodies.

Express specification:

ENTITY sma_kinematic_articulation
ABSTRACT SUPERTYPE OF (ONEOF (
sma parametric kinematic articulation,
sma kinematic articulation with pointing constraint,
sma fast spinning kinematic articulation));
joint : skm kinematic joint;
END ENTITY;

Attribute definitions:

— joint specifies the skm_kinematic_joint to which the kinematic articulation pertains.

4.5.4.15 ENTITY sma_parametric_kinematic_articulation

An sma_parametric_kinematic_articulation is a type of sma_kinematic_articulation that specifies
kinematic movement by a collection of explicit sliding distance or rotation angle parameters. The number of
parameters must correspond to the degrees of freedom of the associated kinematic joint. The kinematic
articulation is applied after any possible static transformations have been applied to the affected
geometric_item, as specified by the transformation attribute of an mgm_any_meshed geometric_item.

Express specification:

ENTITY sma_parametric kinematic_articulation
SUBTYPE OF (sma kinematic articulation);

parameters : LIST [l:6] OF nrf real quantity value prescription;
WHERE
wrl: SIZEOF (parameters) = SIZEOF (joint.degrees of freedom);

Copyright ©1995-2016 European Space Agency page 219

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

-- wr2: verify for each degree of freedom i:

-- if sliding then parameters[i] is a 'length'

-- 1f revolute then parameters[i] is a 'plane angle'
END ENTITY;

Attribute definitions:

— parameters specifies the list of articulation parameters for each of the degrees_of freedom of the
associated kinematic joint. An articulation parameter (i.e. an element in parameters) is a sliding
distance for an skm_sliding_degree of freedom and a rotation angle for an
skm revolute degree of freedom. Since the parameter values are specified through
nrf real quantity value prescription instances any mathematical expression can be captured.
Typical usage would be the rotation angle as a function of mission elapsed time or true anomaly.

Formal propositions:

— wrl: The number of parameters shall be equal to the number of degrees of freedom for the
associated kinematic joint.

— wr2: TBD.
4.5.4.16 ENTITY sma_kinematic_articulation_with_pointing_constraint

An sma_kinematic_articulation_with_pointing_constraint is a type of sma_kinematic_articulation that
specifies kinematic movement by a pointing constraint for a kinematic joint with one or two revolute degrees
of freedom. For each revolute kinematic joint a pointer (which is a direction vector) is specified in the
coordinate system of the affected geometric item. Also a desired pointing direction is specified. The pointing
constraint requires then to orient the pointer of the geometric item such that the angle between the pointer
and the desired pointing direction is minimized, in other words the pointer is aligned as much as possible
with the desired pointing direction while still fullfilling possible additional constraints specified by rotation
limit stops. This kinematic transformation is applied after any possible static transformations have been
applied to the affected geometric_item, as specified by the transformation attribute of an

mgm_any_meshed geometric_item.

Express specification:

ENTITY sma_kinematic_articulation_with pointing constraint
SUBTYPE OF (sma kinematic articulation);
primary constraint : sma kinematic pointing constraint;
secondary constraint : OPTIONAL sma kinematic pointing constraint;
END ENTITY;

Attribute definitions:

— primary_constraint specifies the primary pointing constraint, which specifies the pointer direction
and the desired pointing direction.

— secondary_constraint optionally specifies the secondary pointing constraint, which specifies the
pointer direction and the desired pointing direction.

Copyright ©1995-2016 European Space Agency page 220

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4.5.4.17 ENTITY sma_kinematic_pointing_constraint

An sma_kinematic_pointing_constraint specifies a pointing constraint for a revolute kinematic joint by
defining an axis of rotation and a pointer direction (both in the local coordinate system of the affected shape),
and a desired pointing direction which can be parametric. Additionally rotation limit stops can be specified.

Express specification:

ENTITY sma kinematic_pointing constraint
SUPERTYPE OF (ONEOF (
sma kinematic cartesian pointing constraint,
sma kinematic pointing to star constraint,
sma kinematic tracked point pointing constraint));

pointer : mgm 3d direction;
desired pointing : nrf enumeration quantity value literal;
WHERE

wrl: sma verify kinematic pointing constraint (SELF) ;
END ENTITY;

Attribute definitions:

— pointer specifies a direction vector with respect to the local coordinate system of the affected
geometric item that defines the local direction that should be aligned as much as possible with the
desired pointing direction under the pointing constraint.

— desired_pointing specifies the direction where the pointer should be pointing under the pointing
constraint.

Formal propositions:

— wrl: The quantity type name of desired pointing shall be 'pointing_in_space' and the possible
desired pointing names shall include the list as defined in function
sma_verify kinematic pointing_constraint.

4.5.4.18 ENTITY sma_kinematic_cartesian_pointing_constraint

An sma_kinematic_cartesian_pointing_constraint is a type of sma_kinematic_pointing_constraint that
specifies a pointing constraint for a revolute kinematic joint through a general cartesian direction vector.

Express specification:

ENTITY sma_kinematic_cartesian _pointing constraint
SUBTYPE OF (sma kinematic pointing constraint);
cartesian pointing : OPTIONAL mgm 3d direction;
WHERE
wrl: desired pointing.quantity type.enumeration items[desired pointing.val].name =
'general';
END ENTITY;

Attribute definitions:

— cartesian_pointing specifies a general pointing direction vector in the coordinate system of the
applicable sma_space mission case.

Formal propositions:

Copyright ©1995-2016 European Space Agency page 221

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

— wrl: The name of the desired pointing shall be 'general'.
4.5.4.19 ENTITY sma_kinematic_pointing_to_star_constraint

An sma_kinematic_pointing_to_star_constraint is a type of sma_kinematic_pointing_constraint that
specifies a pointing constraint for a revolute kinematic joint through a pointing direction to a star using a
right ascension and a declination angle.

Express specification:

ENTITY sma_kinematic_pointing to_star_ constraint
SUBTYPE OF (sma kinematic pointing constraint);

pointing to star : sma pointing to star;
WHERE
wrl: desired pointing.quantity type.enumeration items[desired pointing.val].name =
'to star';

END ENTITY;

Attribute definitions:

— pointing_to_star specifies a pointing direction to a star in the coordinate system of the applicable
sma_space_mission_case.

Formal propositions:

— wrl: The name of the desired pointing shall be 'to_star".
4.5.4.20 ENTITY sma_kinematic_tracked point_pointing_constraint

An sma_kinematic_tracked_point_pointing_constraint is a type of sma_kinematic_pointing_constraint
that specifies a pointing constraint for a revolute kinematic joint by specifying a point to be tracked.

Express specification:

ENTITY sma_kinematic_tracked point_pointing constraint
SUBTYPE OF (sma kinematic pointing constraint);
tracked point : mgm 3d cartesian point;
WHERE
wrl: desired pointing.quantity type.enumeration items[desired pointing.val].name =
'tracked point';
END ENTITY;

Attribute definitions:

— tracked point specifies the location of the point to be tracked in the coordinate system of the
applicable sma_space mission_case. Since it may be specified as an
mgm_parametric_3d_cartesian_point it can be a moving point, for instance as a function of mission
elapsed time.

Formal propositions:

— wrl: The name of the desired pointing shall be 'tracked point'.

Copyright ©1995-2016 European Space Agency page 222

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4.5.4.21 ENTITY sma_fast spinning kinematic_articulation

An sma_fast_spinning_kinematic_articulation is a type of sma_kinematic_articulation that specifies a fast
spinning part. The purpose of this kinematic joint is to model a part that is continuously rotating at constant
angular velocity. The spinning is 'fast' with respect to the typical (thermal) response time of the rotating part,
hence for (thermal) analysis the computation procedure can be simplified by sampling a number of discrete
spin positions and averaging the (thermal) analysis results.

Express specification:

ENTITY sma_ fast spinning kinematic_articulation
SUBTYPE OF (sma kinematic articulation);

rotation axis : mgm 3d direction;
number of spin positions : nrf positive integer;
END ENTITY;

Attribute definitions:

— rotation_axis specifies the axis about which the model is spinning.

— number of spin_positions specifies the number of discrete spin positions that shall be sampled for
analysis purposes.

4.5.4.22 ENTITY sma_pointing_to_star

An sma_pointing_to_star specifies a pointing direction to a star through the spherical right ascension and
spherical declination angles.

Express specification:

ENTITY sma pointing to_star;
star : sma celestial body;
spherical right ascension : nrf real quantity value prescription;
spherical declination : nrf real quantity value prescription;
WHERE
wrl:
(spherical right ascension.quantity type.quantity category.name = 'plane angle')
AND {-360.0 <= spherical right ascension.val <= 360.0};
wr2:
(spherical declination.quantity type.quantity category.name = 'plane angle')
AND {-90.0 <= spherical declination.val <= 90.0};
END ENTITY;

Attribute definitions:

— star specifies the sma_celestial body that represents a star.

— spherical right_ascension specifies the spherical right ascension component of the direction toward
the centre of the star. The angle is defined in the applicable space coordinate system. The right
ascension is the angle in the XY plane from the X axis to the plane defined by the Z axis and the
vector to the centre of the star

— spherical declination specifies the spherical declination component of the direction toward the
centre of the star. The angle is defined in the applicable space coordinate system. The declination is
the angle from the XY plane in the plane defined by the Z axis and the vector to the centre of the
star.

Copyright ©1995-2016 European Space Agency page 223

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

Formal propositions:

— wrl: The spherical right ascension is a 'plane_angle' quantity type and its value is in the interval
from -360 degree inclusive to 360 degree inclusive.

— wrl: The spherical declination is a 'plane_angle' quantity type and its value is in the interval from
-90 degree inclusive to 90 degree inclusive.

4.5.4.23 FUNCTION sma_verify kinematic_pointing_constraint

The function sma_verify kinematic_pointing constraint verifies that the quantity type of the
desired pointing of an sma_kinematic_pointing_constraint is an enumeration quantity type with name
'pointing_in_space' and contains the following enumeration_items as a minimum:

— 'general’
— 'tracked point'
— 'determined by next lower level kinematic articulation'

— 'sun’
— 'equatorial projection_of sun'
— 'vernal equinox’

— 'ecliptic_north_pole'

— 'planet_north_pole'

— 'planet_nadir'

— 'planet_zenith'

— 'orbit_normal'

— 'anti_orbit_normal'

— 'spacecraft_velocity vector'

— 'anti_spacecraft_velocity vector'

— 'to_star'

The precise definitions of these pointings will be specified in the external STEP-TAS dictionary. The
function returns TRUE if the constraints are met and FALSE otherwise.

Express specification:

FUNCTION sma verify kinematic_pointing constraint (

kpc : sma kinematic pointing constraint) : BOOLEAN;
LOCAL
minimum list of pointings : LIST OF STRING := [
'general’,

'tracked point',
'determined by next lower level kinematic articulation',
'sun',
'equatorial projection of sun',
'vernal equinox',
'ecliptic_north pole',
'planet north pole',
'planet nadir',
'planet zenith',
'orbit normal',
'anti orbit normal',

Copyright ©1995-2016 European Space Agency page 224

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

'spacecraft velocity vector',

'anti spacecraft velocity vector',

'to_star'];
pointing quantity type : nrf enumeration quantity type;
found : BOOLEAN;

END LOCAL;
pointing quantity type := kpc.desired pointing.quantity type;
IF NOT (pointing quantity type.name = 'pointing in space') THEN
RETURN (FALSE) ;
END IF;
REPEAT i := 1 TO SIZEOF (minimum list of pointings);
found := FALSE;
REPEAT j := 1 TO SIZEOF (pointing quantity type.enumeration items) WHILE (NOT found

IF minimum list of pointings[i] =
pointing quantity type.enumeration items[]j].name THEN
found := TRUE;
END IF;
END REPEAT;
IF NOT found THEN
RETURN (FALSE) ;
END IF;
END REPEAT;

RETURN (TRUE) ;
END FUNCTION;

Argument definitions:

— kpc specifies the sma_kinematic_pointing_constraint to be verified.

4.5.4.24 FUNCTION sma_verify kinematic_articulations

The function sma_verify_kinematic_articulations verifies that all elements defined in the
sma_kinematic_articulation instances listed in the articulations of an sma_space _mission_case use the
applicable context quantity types. The function returns TRUE if this is the case and FALSE otherwise.

Express specification:

FUNCTION sma_ verify kinematic_articulations(

a case : sma space mission case) : BOOLEAN;
LOCAL
ka : sma kinematic articulation;
END LOCAL;
REPEAT i := 1 TO SIZEOF (a_case.articulations);
ka := a case.articulations[i];
IF 'SMA ARM.SMA PARAMETRIC KINEMATIC ARTICULATION' IN TYPEOF (ka) THEN
REPEAT j := 1 TO SIZEOF (ka.joint.degrees of freedom);

IF 'SMA ARM.SKM SLIDING DEGREE OF FREEDOM'
IN TYPEOF (ka.joint.degrees of freedom[j]) THEN
IF ka.parameters[j].quantity type
:<>: mgm get context quantity type (
a case.for model, 'length') THEN
RETURN (FALSE) ;
END IF;
ELSE
-- it is an mgm rotation
IF ka.parameters[j].quantity type
:<>: mgm get context quantity type (
a case.for model, 'plane angle') THEN
RETURN (FALSE) ;
END IF;

Copyright ©1995-2016 European Space Agency page 225

~.

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

END IF;
END REPEAT;
END IF;
END REPEAT;
RETURN (TRUE) ;
END _FUNCTION;

Argument definitions:

— a_case specifies the sma_space mission_case for which the articulations shall be verified.

4.5.4.25 FUNCTION sma_verify evaluation_positions

The function sma_verify evaluation_positions verifies that all evaluation positions of an
sma_keplerian_orbit_arc_with_evaluation_positions have a quantity type with a name of

'true_anomaly plane angle', 'mission_elapsed time' or 'orbit_arc length' and that all positions use the same
quantity type. Furthermore the function verifies that the values of the subsequent positions are strictly
increasing. The function returns TRUE if all contraints are fulfilled and FALSE otherwise.

Express specification:

FUNCTION sma verify evaluation positions(

koa : sma keplerian orbit arc with evaluation positions) : BOOLEAN;
IF NOT (koa.evaluation positions[l].quantity type.name IN
['true anomaly plane angle', 'mission elapsed time', 'orbit arc length']) THEN
RETURN (FALSE) ;
END IF;
REPEAT i := 2 TO SIZEOF (koa.evaluation positions);

IF NOT (koa.evaluation positions[i].quantity type :=:
koa.evaluation positions[l].quantity type) THEN
RETURN (FALSE) ;
END IF;
IF NOT (koa.evaluation positions[i].val >
koa.evaluation positions[i-1].val) THEN
RETURN (FALSE) ;
END IF;
END REPEAT;
RETURN (TRUE) ;
END FUNCTION;

Argument definitions:

— koa specifies the sma_keplerian_orbit arc_with evaluation_positions for which the
evaluation positions shall be verified.

4.5.5 END_SCHEMA declaration for sma_arm

The following EXPRESS declaration ends the sma_arm schema.

Express specification:

|END_SCHEMA; -— sma_arm

Copyright ©1995-2016 European Space Agency page 226

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

4.6 STEP-TAS procotol

4.6.1 SCHEMA declaration for tas_arm

The following EXPRESS declaration begins the tas arm schema.

Express specification:

SCHEMA tas_arm;

-- $Ids

-- Copyright (c) 1995-2018 European Space Agency (ESA)
-- All rights reserved.

4.6.2 Interfaced schema(ta) for tas_arm

The STEP-TAS protocol consists of the four modules described above: nrf arm schema as specified in
[STEP-NRF], mgm_arm, skm_arm and sma_arm. This implies that so-called /ong form schema of the
tas_arm protocol is the full expansion of the four module schemata.

Express specification:

USE FROM nrf_arm;
USE FROM mgm arm;
USE FROM skm_arm;
USE FROM sma arm;

4.6.3 CONSTANT specifications

There is one constant defined for the TAS protocol: SCHEMA_ OBJECT IDENTIFIER.

Express specification:

CONSTANT
SCHEMA OBJECT IDENTIFIER : STRING :=
"{http://www.purl.org/ESA/step-tas/v6.0/tas_arm.exp}';
-- in formal version to be replaced with
-- '{ iso standard n part(p) version(v) }'

END CONSTANT;

Constant definitions:

SCHEMA_OBJECT_IDENTIFIER provides a built-in way to reference the object identifier of the protocol
for version verification. For the definition and usage of the object identifier see ISO 10303-1 and Annex E.

4.6.4 END SCHEMA declaration for tas_arm

The following EXPRESS declaration ends the tas_arm schema.

Express specification:

[END_SCHEMA; -- tas_arm

Copyright ©1995-2016 European Space Agency page 227

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

S Conformance requirements

5.1 Conformance requirements for STEP-TAS as a whole

Conformance to this application protocol includes satisfying the requirements stated in this part, the
requirements of the implementation method(s) supported and the relevant requirements of the normative

references.

An implementation shall support at least one of the following implementation methods:

— ISO 10303-21.

Requirements with respect to implementation methods specific requirements are specified in Annex C.

The Protocol Implementation Conformance Statement (PICS) proforma lists the options or the combinations
of options that may be included in the implementation. The PICS proforma is provided in Annex D.

This application protocol provides for a number of options that may be supported by an implementation.
These options have been grouped into the following conformance classes:

— CCl1: Thermal radiation and conduction model defined by shell geometry.

— CC2: CC1 plus kinematic model.
— CC3: CCl1 plus constructive geometry.
— CC4: CC3 plus kinematic model.
— CCS5: CCl1 plus space mission aspects.
— CC6: CC4 plus space mission aspects.

— CC7: Results for thermal radiation and conduction model.

— CC8: Thermal lumped parameter model without user-defined logic.

— CC9: CCS8 plus results.

— CCI10: Thermal lumped parameter model with user-defined logic.

— CCI11: CC10 plus results;

— CC12: Thermal test or operation model with results.

Conformance to a particular class requires that all protocol elements defined as part of that class be
supported. The following table defines for each protocol element in which classes it shall be supported: Y for
Yes, shall be supported, N for No, does not need to be supported.

Table 4 — Conformance class elements

protocol element CC1|CC2|CC3|CC4|CC5[CCo[CC|Cccs|coy|ccaoicCrccr:
nrf address Y |Y Y |Y [Y |Y |Y [Y [Y [Y Y Y
nrf algorithmic language N N N N [N N [N N [N |Y Y N
nrf anti symmetric _matrix_quantity type N N N N [N N [N |[Y [Y |Y Y N
nrf_approval Y [Y [Y Y [Y [Y [Y [Y |[Y |Y Y Y
nrf calendar date Y [Y |[Y Y [Y [Y [Y [Y |[Y |Y Y Y
nrf case Y |Y Y |Y [Y |Y |Y [Y [Y [Y Y Y
Copyright ©1995-2016 European Space Agency page 228

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

a
@)
p—
(—]
a
@)
o=y
[

protocol element CC1|CC2|CC3|CC4|CC5|CCo6[CCT|CC8|ICCI CCTI:

nrf case event

nrf case_interval

nrf context dependent unit

nrf conversion_based_unit

nrf coordinated universal time_offset

nrf cyclic_real interpolation table expression

nrf datacube

nrf datacube derivation_relationship

nrf date and time

nrf derivation procedure

nrf derived unit

nrf derived unit element

nrf_enumeration_item

nrf_enumeration quantity type

nrf_enumeration quantity value expression

nrf_enumeration quantity value literal

nrf extended si unit

nrf formal parameter

nrf general tensor quantity type

nrf_integer quantity type

nrf_integer quantity value expression

nrf _integer quantity value literal

nrf local time

nrf material

nrf material class

nrf_model constraint

nrf_model function

nrf _model represents product relationship

nrf named_observable item

nrf named observable item class

nrf named_observable_item_group

nrf named_observable item_group_class

nrf named_observable item _list

nrf network model

nrf network model class

nrf network model nodes_mapping

nrf network node

nrf network node class

nrf network node_mapping

nrf_network node_relationship

nrf network node relationship class

nrf _observable_item_list

nrf organization

nrf organizational address

nrf organizational project

nrf _person

nrf person and organization

nrf personal address

nrf primary physical quantity category

K[R=[R < [< = [<]Z [<[] <[<[Z [Z | <[} <[< Z2 <] Z2] Z <[<[Z2 [<[<[<< Z <[Z[2Z2]|Z][<[<[<<=
K[[<]=[<]Z [<[<< K<< [<< Z [Z2 | <[<< [<] Z <] Z2] Z2 <[<[Z2 [<[<[<< Z[<[Z[Z]|Z][< [<[<[<<
K< [H<[H< [} <[] [K] Z [][] K<<= [<] Z]Z|< [} <[<] Z <] Z] Z[< [<] Z2 <[<[<< Z <[Z[Z]|Z][<[<[<] =< =<
K< [H<[H<[H<[H <K Z [<[]}][] K< K] Z] Z|< [K< [<] Z2 <] Z2]| Z[< [<] Z2[|< <[<< Z <[Z[2Z]Z] <[<[<] <<
K< [H<[H<[H]<[H] <[H]Z [] <[] < K<< K< K] Z [Z2 <K< [<] Z2 <] Z2] Z2 <[<] Z2 <[<< Z <[Z[Z]Z] <] <[<] <<
K=< << Z << << < < < <22 [<[<< <2 [<[Z]|Z2|[< [<[Z [<< =< [<[Z [<] 2| Z]Z]| <] <] =<][=<][=<
K[[<]Z [<[<< Z [Z <[} Z <] Z] Z <[<] Z2 [<[<[<< << Z =< << =< =<
K[R =R R]=[R <[} Z] Z2 <[} <[<] Z << Z <[<] Z <[<[<< << Z [Z] <[<< =< =< =<
K< [H<[HR< R <[H] < [H <[] [<K< << K< K] Z [Z]| <[} <[<] Z << Z <[<] Z [<< <= <= < < = <= =< =<
NN N N E N N E N E N E R EH R R EHEH E RN EH RN SR SR R R E R E RN E R E R
NN N NN N N N N RN SN R R SN RN N N N N N N RN N N N N S R R E
K< [H<[H< R <[] <[K] <[] <K<K K] Z] Z | < [} <[<] Z2 <] Z2] Z[< [<] Z2 <[<< < << << Z < << < <

nrf product

Copyright ©1995-2016 European Space Agency page 229

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

a
@)
p—
(—]
a
@)
o=y
[

protocol element CC1|CC2|CC3|CC4|CC5|CCo6[CCT|CC8|ICCI CCTI:

nrf product context

nrf product definition

nrf product definition context

nrf product next assembly usage relationship

nrf product version

nrf qualified physical quantity category

nrf quantity qualifier

nrf quantity type list

nrf quantity value prescription for item

nrf real interpolation table expression

nrf real lookup table

nrf real quantity type

nrf_real quantity value expression

nrf real quantity value literal

nrf real univariate power series polynomial expression

nrf _root

nrf run

nrf secondary_physical quantity category

nrf security_classification level

nrf state list

nrf_string_quantity_type

nrf _string quantity value expression

nrf string_quantity value literal

nrf symmetric_matrix_quantity type

nrf tensor characteristic

nrf tensor element

nrf tensor quantity value expression

nrf tensor quantity value literal

nrf_tool or_facility

nrf uncertainty probability distribution

nrf uncertainty_specification method

nrf variable

mgm_3d_cartesian_point

mgm_3d_direction

mgm_axis_placement

mgm_axis_transformation sequence

mgm_colour rgb

mgm_compound meshed geometric_item

mgm_cone

mgm_cylinder

mgm_disc

mgm_enclosure

mgm_face

mgm_face pair

mgm_half space_solid

mgm _infinite solid by plane

mgm_infinite solid cylinder

mgm_meshed boolean difference surface

mgm_meshed geometric_item by _submodel

K< [Z]|Z[Z]|z << [<]|< << [[<K< Z]|Z[|Z|< [Z]|Z2|Z]|Z|Z|< [Z|< | Z|<[<|Z2[<|Z[<|Z2[|<]|Z2]|Z|<[<[<[<|[<]=<[<][=<]|~<
KI=<[Z]Z[Z]|zZ2 << << << [[< =< << Z]|Z[Z|=< | Z|Z[|Z]|Z|Z|< [Z|<|Z|<[<|[Z[<|Z[<|Z[<]|[Z]|Z|<|<[<[<[=<]=<][] ==
K< [H<[HR< R < [[<<= <= << Z]|Z [Z]|=< [Z]|Z[|Z]|Z | Z|< [Z|< | Z|<[<[Z[<]|Z[<]|Z[<][Z]|Z|<|<[<]| <[] << <=
K< [H<[H<[H<][R [H <[] [K< K=< Z]|Z [Z|< [Z]|Z[|Z]|Z|Z|< [Z|< | Z|<[<[Z2[<]|Z[<]Z2][<]Z]|Z|<|<[<] <[] << =<]~<
< <|Z|Z|Z]Z|<]|< << << << << < =< Z|Z[Z[|<]|Z|Z|Z|Z|Z|<|Z|<[Z[<]|<|Z|<[Z[<]|Z|<|Z]|Z]|<]|<|< [<[<] <] =<]=<]=<
K<< << << < << <<z Z2 [Z <] Z2|Z2|Z2 | Z]|Z]|<]|Z2|<[|Z[<]|<|Z|<[|Z]|<]|Z|<|Z]| Z]|<]|<|=<[=<[=<]=<]=<]=<]=<
K== R = Z <K< Z]| Z[Z2]|Z2 | Z2 | <[Z <[<< <[<< Z [<[zZ2 [<[Z2]Z <[<[<] << =< =< =<
Z|z|Z|Z|Z|z2|Z|Z[|Z|Z2|Z|Z[|Z|Z[|Z|Z|Z|Z[<|<[<|<[Z|Z[|Z|Z|Z|<|Z|<|Z|<[<|Z[<|<[<|Z[<[<[<[<[<[<]|=<|[=<]=<|=<]=<]=<
Z|z[Z|Z[Z|zZ2[|Z|Z[Z|Z[|Z|Z[|Z|Z[Z|Z|Z|Z[<|<[<]|<|Z|Z[|Z]|Z|Z|<|Z|<|<|<[<[<[<[<[<|Z] << <[] <[] <[<] << =< =<
Z|z[Z|Z2[Z|Z2[|Z|Z[Z|Z2[|Z|Z2[|Z|Z[Z|Z2|Z|Z[<|< << Z|Z[|Z|Z|Z|<|Z|<|Z|<[<|Z[<|[<[< <] << << <[] << << =< <
Z|\Z|Z|Z2|Z|z2|Z|Z|Z|Z|Z|Z|Z|Z|Z|Z | Z|Z[|<|<[<|<[<|<[<]|<[< <[<< << << << < < < << =< =<
Z|z[Z|Z2[Z|Z2[|Z|Z[Z|Z2|Z|Z2[|Z|Z[|Z|Z2|Z|Z[<|< << Z|Z[|Z|Z|Z|<|Z|<|<|<|<[<[<|Z[<|Z[<|Z]|Z|<|<[<|<[<]<][<]=<]~<

mgm_meshed geometric_model

Copyright ©1995-2016 European Space Agency page 230

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

protocol element CC1|CC2[CC3|Ccc4(cas/ceolceTicesicey

a
@)
p—
(—]
a
@)
o=y
[

CCTI:

mgm_meshed_primitive_bounded_surface

mgm_paraboloid

mgm_parametric_3d_cartesian_point

mgm_parametric_3d_direction

mgm_parametric_rotation_with_axes_fixed

mgm_parametric_rotation with axes moving

mgm_parametric_translation

mgm_quadrilateral

mgm_qualified compound meshed primitive bounded surface

mgm_quantity context

mgm_rectangle

mgm _rotation_with_axes_fixed

mgm_rotation with_axes moving

mgm_solid_box

mgm_solid cone

mgm_solid cylinder

mgm_solid paraboloid

mgm_solid_sphere

mgm_solid_triangular prism

mgm_sphere

mgm_translation

mgm_triangle

skm_kinematic_degree_of freedom

skm_kinematic_joint

skm revolute degree of freedom

skm sliding degree of freedom

sma_celestial body

sma_celestial body_class

sma_celestial body with orbit

sma_discretized orbit_arc

sma_fast_spinning_kinematic_articulation

sma kepler parameter set

sma_keplerian_orbit_arc

sma_keplerian_orbit arc_with evaluation interval

sma_keplerian orbit arc with evaluation positions

sma_kinematic articulation with pointing_constraint

sma_kinematic cartesian_pointing_constraint

sma_kinematic_pointing_constraint

sma_kinematic pointing_to_star constraint

sma_kinematic_tracked point pointing_constraint

sma_orbit_position_and_velocity

sma_parametric_kinematic articulation

sma_pointing_to_star

sma_space_coordinate_system

sma_space_environment

< =<|<Z|Z|<|Z]|Z2|Z|Z2|Z|<|< << Z|<]<|<]|<Z]|Z2|Z|Z2|<|<|<]|Z2|Z]|Z2|Z|Z2|Z2|<|<|<|<]|<|<]|Z2]|Z]|Z2]|Z]|Z|<]|<

K<<= < <R R < <R R < <R R K < <R R KR <R R] < << Z [Z 222 <<

SN NSNS E S NSNS ENE N E S N E NS E S N E N E N R E E S R E E I A A GBS

z|Zz|z|z|z|z|Z|Z|Z|Z|Z|Zz|Z|Z|Zz|z|z|Z|Z|Z|Z|Z|Z|Zz|Z|Zz|z|z|Z|Z|Z|Z|Z|Z|Z|Z|Zz|z|z|Z|Z|Z|Z|Z|Z|Z

Z|Z|z|Z|Z|Z|Z|z|Z|Z|Z|Z|z|Z|Z|Z|Z|z|Z|Z|Z|Z|z|Z|Z|Z|Z|z|Z|Z|Z|Z|z|Z|Z|Z|Z|z|Z[|Z|Z|Z|z|Z|Z|Z

Z|Z|z|Z|Z|Z|Z|z|Z|Z|Z|Z|z|Z|Z|Z|Z|z|Z|Z|Z|Z|z|Z|Z|Z|Z|z|Z|Z|Z|Z|z|Z|Z|Z|Z|z|Z|Z|Z|Z|z|Z|Z|Z

Z|Z|z|Zz|Z|Z|Z|z|Z|Z|Z|Z|z|Z|Z|Z|Z|z|Z|Z|Z|Z|z|Z|Z|Z|Z|z|Z|Z|Z|Z|z|Z|Z|Z|Z|z|Z[|Z|Z|Z|z|Z[|Z|Z
Z|Z|z|Z|Z|Z|Z2|z|Z|Z|Z|Z|z|Z|Z|Z|Z|z|Z|Z|Z|Z|z|Z|Z|Z|Z|z|Z|Z|Z|Z|z|Z|Z|Z|Z|z|Z[|Z|Z|Z|z|Z|Z|Z

Z\|\Z|Z\|\Z|<|<|<|Z|Z|Z|Z|Z|Z|<|<|<[|<|<|<|Z|Z|Z|Z|Z|<|<
Z\|\Z|Z|\Z|Z|Z|Z|Z|Z|Z|Z|Z|Z|Z|Z|Z|Z|Z|Z|Z|<|< [} |<[|<|<[<|Z|Z|Z|Z|Z|Z|<|<|<[|<|<[<|Z|Z|Z|Z|Z|<|=<
Z\|\Z|Z|\Z|Z2|<|<|[<|<[<|< << << <<]|<|<|=<|Z|Z|Z]|Z|Z|<|<
Z|Z|z|Z|Z|Z|Z|z|Z|Z|Z|Z|z|Z|Z|Z|Z|z|Z|Z|<|<|<|<[<[<]< << [<[<]< << [<[<]<[<|<[Z]Z]Z2]|Z2]|Z[<[<

sma_space_mission_case

Copyright ©1995-2016 European Space Agency page 231

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

5.2 Conformance requirements for STEP-NRF in isolation

Conformance to this STEP-NRF protocol in isolation, or to an application protocol other than STEP-TAS
that uses it, includes satisfying the requirements stated in this part, the requirements of the implementation
method(s) supported and the relevant requirements of the normative references.

An implementation shall support at least one of the following implementation methods:

— ISO 10303-21.

Requirements with respect to implementation methods specific requirements are specified in Annex C.

The Protocol Implementation Conformance Statement (PICS) proforma lists the options or the combinations
of options that may be included in the implementation. The PICS proforma is provided in Annex D.

This application protocol provides for two options that may be supported by an implementation. These
options have been grouped into the following conformance classes:

— NRF-CCI1: Network-models and results without parseable expressions and algorithms.

— NRF-CC2: Network-models and results with parseable expressions and algorithms.

Note that all of the STEP-TAS conformance classes satisfy NRF-CC1 except for CC10 and CC11 which
satisfy NRF-CC2.

Conformance to a particular class requires that all protocol elements defined as part of that class be
supported. The following table defines for each protocol element in which classes it shall be supported: Y for

Yes, shall be supported, N for No, does not need to be supported.

Table 3: Conformance class elements

protocol element NRF-CC1|NRF-CC2
nrf address Y Y
nrf algorithmic language N Y
nrf anti symmetric matrix_quantity type Y Y
nrf_approval Y Y
nrf calendar date Y Y
nrf case Y Y
nrf case_event Y Y
nrf case interval Y Y
nrf context dependent unit Y Y
nrf conversion based_unit Y Y
nrf coordinated universal time_offset Y Y
nrf cyclic_real interpolation table expression Y Y
nrf datacube Y Y
nrf datacube derivation relationship Y Y
nrf date and time Y Y
nrf derivation procedure Y Y
nrf derived unit Y Y
nrf derived unit element Y Y
nrf_enumeration item Y Y
nrf _enumeration quantity type Y Y
nrf enumeration quantity value expression N Y

Copyright ©1995-2016 European Space Agency page 232

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

protocol element NRF-CC1|NRF-CC2
nrf _enumeration quantity value literal
nrf extended si_unit
nrf formal parameter
nrf general_tensor_quantity_type
nrf_integer quantity type
nrf_integer quantity value expression
nrf_integer quantity value_literal

nrf local time
nrf material
nrf material class

nrf model constraint

nrf_model function

nrf model represents product relationship
nrf named observable_item

nrf named observable item class

nrf named observable item group

nrf named_observable item_group_class
nrf named_observable item _list

nrf network model

nrf network model class

nrf network model nodes_mapping

nrf network node

nrf network node class
nrf_network node mapping

nrf network node relationship

nrf network node relationship class
nrf observable item_list

nrf _organization

nrf organizational address

nrf organizational project

nrf person

nrf person and organization

nrf personal address

nrf primary physical quantity category

nrf product
nrf product context

nrf product definition

nrf product definition context

nrf product next assembly usage relationship
nrf product version

nrf _qualified physical quantity_category

nrf quantity qualifier

nrf quantity type list

nrf quantity value prescription for_item

nrf real interpolation table expression

nrf real lookup table

nrf real quantity type

nrf real quantity value expression

nrf real quantity value literal
nrf real univariate power series_polynomial expression

K Z <R =R =R R R = R = R = R = R R R R R R R R R R R R R R R < Z2 2) < R Z < < 2] < <
ol ool el el Il el ISl ool Sl el Il el IS e el el el Sl e ol Sl el ISl e ol Sl el Sl e ol S e ol Sl e ol Sl el Sl el Sl el S el e el S e S el S e S e e I

Copyright ©1995-2016 European Space Agency page 233

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

protocol element NRF-CC1|NRF-CC2
nrf _root Y Y
nrf run Y Y
nrf secondary_physical quantity category Y Y
nrf security_classification_level Y Y
nrf state_list Y Y
nrf_string quantity type Y Y
nrf string_quantity value expression N Y
nrf string_quantity value literal Y Y
nrf symmetric_matrix quantity type Y Y
nrf _tensor characteristic Y Y
nrf tensor element Y Y
nrf tensor quantity value expression N Y
nrf tensor quantity value literal Y Y
nrf_tool or_facility Y Y
nrf _uncertainty probability_distribution Y Y
nrf uncertainty_specification method Y Y
nrf variable Y Y

Copyright ©1995-2016 European Space Agency

page 234

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

Annex A (normative) ARM EXPRESS
expanded listing

Downloadable from https://exchange.esa.int/restricted/ecss-e-st-31-04/annex-a.zi

Copyright ©1995-2016 European Space Agency page 235

https://exchange.esa.int/restricted/ecss-e-st-31-04/annex-a.zip

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

Annex B (informative) Application protocol
usage guide

B.1 Dictionary of standard pre-defined entities

The STEP-TAS and STEP-NRF protocols are designed to be used in conjunction with a dictionary of
standard pre-defined entities which describe and extend the particular problem domain. The protocols
themselves are intended to describe relatively abstract and generic concepts which are likely to remain
unchanged over time therefore avoiding unnecessary cycles of protocol update and revalidation. The
dictionary may be extended over time independently of the protocol.

The dictionary defines basic additional entities, such as units (e.g. metre, kilogram) and quantity types and
their associated units (e.g. mass, length) as well as domain specific quantities and enumerations. Such
enumerations can be used to differentiate between classes of entities derived from their abstract STEP-TAS
and STEP-NRF counterparts.

All applications that use a particular dictionary have the advantage that they share common names and
definitions for domain-specific entities and therefore significantly reduce the risk of implementation
incompatibilies when exchanging models.

B.2 Use of the STEP-TAS dictionary

An application that implements the STEP-TAS standard shall use the STEP-TAS dictionary and shall have
the capability to load it at runtime. This dictionary is an ISO 10303-21 file ("STEP file") which itself
conforms to the tas_arm SCHEMA.

The most recent STEP-TAS dictionary can be downloaded from:
http://www.purl.org/ESA/step-tas/v6.0/dictionary/tas_arm_dictionary.stp

B.3 Use of the STEP-NRF dictionary

NOTE: There is currently no standalone STEP-NRF-only dictionary because STEP-NRF is an abstract
protocol designed to be a building block for more domain specific protocols with their own dictionaries, such
as STEP-TAS.

Standards using STEP-NRF may make use of a dictionary in conjunction with the nrf arm SCHEMA or a
SCHEMA in which nrf _arm is used. The dictionary is an ISO 10303-21 file ("STEP file") which itself

conforms to the nrf arm SCHEMA or a SCHEMA in which nrf_arm is used. In this dictionary a number of
instances are predefined. An application then loads the dictionary at runtime when it starts to create a dataset.

Instances of the following application objects can be defined in a STEP-NRF dictionary:

— nrf_calendar_date

— nrf context dependent unit

— nrf _conversion based unit

Copyright ©1995-2016 European Space Agency page 236

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

— nrf _coordinated universal time offset

— nrf_date and time

— nrf derived unit

— nrf derived unit element

— nrf_enumeration_item

— nrf_enumeration_quantity type

— nrf_local time

— nrf _material_class

— nrf_network model class

— nrf network node class

— nrf_network _node_relationship_class

— nrf_organization

— nrf organizational address
— nrf_organizational project
— nrf person

— nrf person_and organization
— nrf_quantity qualifier

— nrf real quantity type

— nrf_root
— nrf scalar _quantity category

— nrf_extended si_unit

I'TBD!! List to be completed...

Copyright ©1995-2016 European Space Agency page 237

Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)

Annex C (informative) Bibliography

1. Article explaining physical quantities and units of measurement, including the International System
of Units (SI):
http://en.wikipedia.org/wiki/Units_of measurement
The URL was correct at the time of publication of this standard.

2. Article explaining the Internation System of Units (SI), ISO 31:
http://en.wikipedia.org/wiki/International System of Units
The URL was correct at the time of publication of this standard.

3. Aurticle explaining prefixes for binary data units conforming to IEC 60027-2:
http://en.wikipedia.org/wiki/Binary prefix
The URL was correct at the time of publication of this standard.

4. NIST Technical Note 1297 - 1994 Edition - Guidelines for Evaluating and Expressing the
Uncertainty of NIST Measurement Results
http://www.physics.nist.gov/Pubs/guidelines/contents.html
The URL was correct at the time of publication of this standard.

Copyright ©1995-2016 European Space Agency page 238

http://en.wikipedia.org/wiki/Units_of_measurement
http://en.wikipedia.org/wiki/International_System_of_Units
http://en.wikipedia.org/wiki/Binary_prefix
http://www.physics.nist.gov/Pubs/guidelines/contents.html

	Application Protocol: Exchange of Thermal Model Data for Space Applications (STEP-TAS)
	Table of contents
	Foreword
	Introduction
	General
	Protocol and dictionary

	1 Scope
	1.1 Overall scope of STEP-TAS
	1.2 Specific scope of STEP-NRF
	1.3 Fundamental concepts and assumptions of STEP-NRF
	1.3.1 Activities relevant to analysis, simulation, test and operation
	1.3.2 The results datacube concept

	2 Normative references
	3 Terms, definitions and abbreviations
	3.1 Terms defined in ISO 10303-1
	3.2 Terms Defined in ISO 10303-42
	3.3 Terms Defined in ISO 10303-45
	3.4 Terms defined in the STEP-NRF protocol
	3.5 Terms defined in the STEP-TAS protocol
	3.6 Abbreviations

	4 Information requirements
	4.1 Modular breakdown of the protocol
	4.2 Network-model and results format (NRF) module
	4.2.1 SCHEMA declaration for nrf_arm
	4.2.2 CONSTANT declaration
	4.2.3 NRF General support UoF
	4.2.3.1 TYPE nrf_identifier
	4.2.3.2 FUNCTION nrf_verify_identifier
	4.2.3.3 TYPE nrf_uniform_resource_identifier
	4.2.3.4 TYPE nrf_label
	4.2.3.5 TYPE nrf_non_blank_label
	4.2.3.6 FUNCTION nrf_verify_label
	4.2.3.7 TYPE nrf_text
	4.2.3.8 TYPE nrf_positive_integer
	4.2.3.9 TYPE nrf_non_negative_integer
	4.2.3.10 TYPE nrf_negative_integer
	4.2.3.11 ENTITY nrf_address
	4.2.3.12 ENTITY nrf_organization
	4.2.3.13 ENTITY nrf_organizational_address
	4.2.3.14 ENTITY nrf_organizational_project
	4.2.3.15 ENTITY nrf_person
	4.2.3.16 ENTITY nrf_person_and_organization
	4.2.3.17 ENTITY nrf_personal_address
	4.2.3.18 ENTITY nrf_approval
	4.2.3.19 ENTITY nrf_tool_or_facility
	4.2.3.20 ENTITY nrf_security_classification_level

	4.2.4 NRF Quantities and units UoF
	4.2.4.1 TYPE nrf_unit_symbol_identifier
	4.2.4.2 FUNCTION nrf_verify_unit_symbol_identifier
	4.2.4.3 ENTITY nrf_any_unit
	4.2.4.4 ENTITY nrf_base_unit
	4.2.4.5 ENTITY nrf_extended_si_unit
	4.2.4.6 ENTITY nrf_conversion_based_unit
	4.2.4.7 FUNCTION nrf_verify_no_circular_reference_unit_dependency
	4.2.4.8 ENTITY nrf_context_dependent_unit
	4.2.4.9 ENTITY nrf_derived_unit
	4.2.4.10 ENTITY nrf_derived_unit_element
	4.2.4.11 FUNCTION nrf_verify_dimensional_exponents
	4.2.4.12 FUNCTION nrf_verify_equal_dimensional_exponents_for_quantity_categories
	4.2.4.13 FUNCTION nrf_verify_base_name_and_exponents_for_extended_si_unit
	4.2.4.14 FUNCTION nrf_derive_extended_si_symbol
	4.2.4.15 FUNCTION nrf_derive_derived_unit_symbol
	4.2.4.16 FUNCTION nrf_verify_dimensional_exponents_for_derived_unit
	4.2.4.17 FUNCTION nrf_derive_extended_si_prefix_factor
	4.2.4.18 TYPE nrf_uncertainty_margins_type
	4.2.4.19 ENTITY nrf_uncertainty_probability_distribution
	4.2.4.20 ENTITY nrf_uncertainty_specification_method
	4.2.4.21 ENTITY nrf_physical_quantity_category
	4.2.4.22 ENTITY nrf_basic_physical_quantity_category
	4.2.4.23 ENTITY nrf_primary_physical_quantity_category
	4.2.4.24 ENTITY nrf_secondary_physical_quantity_category
	4.2.4.25 ENTITY nrf_qualified_physical_quantity_category
	4.2.4.26 ENTITY nrf_quantity_qualifier
	4.2.4.27 ENTITY nrf_any_quantity_type
	4.2.4.28 ENTITY nrf_any_scalar_quantity_type
	4.2.4.29 ENTITY nrf_physical_quantity_type
	4.2.4.30 ENTITY nrf_real_quantity_type
	4.2.4.31 ENTITY nrf_integer_quantity_type
	4.2.4.32 ENTITY nrf_string_quantity_type
	4.2.4.33 ENTITY nrf_enumeration_quantity_type
	4.2.4.34 ENTITY nrf_enumeration_item
	4.2.4.35 FUNCTION nrf_verify_unique_names_in_enumeration_item_list
	4.2.4.36 ENTITY nrf_tensor_characteristic
	4.2.4.37 ENTITY nrf_tensor_element
	4.2.4.38 ENTITY nrf_any_tensor_quantity_type
	4.2.4.39 ENTITY nrf_general_tensor_quantity_type
	4.2.4.40 ENTITY nrf_symmetric_matrix_quantity_type
	4.2.4.41 ENTITY nrf_anti_symmetric_matrix_quantity_type
	4.2.4.42 FUNCTION nrf_get_qualified_quantity_name
	4.2.4.43 FUNCTION nrf_get_qualified_quantity_symbol
	4.2.4.44 FUNCTION nrf_get_qualified_quantity_description
	4.2.4.45 FUNCTION nrf_get_required_number_of_elements_in_any_tensor
	4.2.4.46 FUNCTION nrf_get_number_of_real_values_for_real_quantity_type
	4.2.4.47 FUNCTION nrf_get_number_of_real_values_for_integer_quantity_type
	4.2.4.48 FUNCTION nrf_get_number_of_real_values_in_any_tensor
	4.2.4.49 FUNCTION nrf_get_number_of_integer_values_in_any_tensor
	4.2.4.50 ENTITY nrf_quantity_type_list
	4.2.4.51 FUNCTION nrf_derive_number_of_real_values_in_quantity_type_list
	4.2.4.52 FUNCTION nrf_derive_number_of_integer_values_in_quantity_type_list

	4.2.5 NRF Date and time UoF
	4.2.5.1 TYPE nrf_ahead_or_behind
	4.2.5.2 TYPE nrf_year_number
	4.2.5.3 TYPE nrf_month_in_year_number
	4.2.5.4 TYPE nrf_day_in_month_number
	4.2.5.5 TYPE nrf_hour_in_day
	4.2.5.6 TYPE nrf_minute_in_hour
	4.2.5.7 TYPE nrf_second_in_minute
	4.2.5.8 ENTITY nrf_calendar_date
	4.2.5.9 ENTITY nrf_coordinated_universal_time_offset
	4.2.5.10 ENTITY nrf_local_time
	4.2.5.11 ENTITY nrf_date_and_time
	4.2.5.12 FUNCTION nrf_verify_calendar_date
	4.2.5.13 FUNCTION nrf_verify_time
	4.2.5.14 FUNCTION nrf_verify_leap_year

	4.2.6 NRF Parametrics UoF
	4.2.6.1 TYPE nrf_algorithmic_expression
	4.2.6.2 TYPE nrf_algorithmic_statement
	4.2.6.3 ENTITY nrf_algorithmic_language
	4.2.6.4 ENTITY nrf_variable
	4.2.6.5 ENTITY nrf_model_constraint
	4.2.6.6 TYPE nrf_formal_parameter_in_out
	4.2.6.7 ENTITY nrf_formal_parameter
	4.2.6.8 ENTITY nrf_model_function
	4.2.6.9 ENTITY nrf_any_quantity_value_prescription
	4.2.6.10 ENTITY nrf_real_quantity_value_prescription
	4.2.6.11 ENTITY nrf_real_quantity_value_literal
	4.2.6.12 ENTITY nrf_real_quantity_value_expression
	4.2.6.13 ENTITY nrf_real_univariate_power_series_polynomial_expression
	4.2.6.14 TYPE nrf_interpolation_type
	4.2.6.15 ENTITY nrf_real_interpolation_table_expression
	4.2.6.16 ENTITY nrf_cyclic_real_interpolation_table_expression
	4.2.6.17 FUNCTION nrf_verify_independent_quantity_types
	4.2.6.18 ENTITY nrf_real_lookup_table
	4.2.6.19 FUNCTION nrf_verify_number_of_dependent_values_in_real_lookup_table
	4.2.6.20 ENTITY nrf_integer_quantity_value_prescription
	4.2.6.21 ENTITY nrf_integer_quantity_value_literal
	4.2.6.22 ENTITY nrf_integer_quantity_value_expression
	4.2.6.23 ENTITY nrf_string_quantity_value_prescription
	4.2.6.24 ENTITY nrf_string_quantity_value_literal
	4.2.6.25 ENTITY nrf_string_quantity_value_expression
	4.2.6.26 ENTITY nrf_enumeration_quantity_value_prescription
	4.2.6.27 ENTITY nrf_enumeration_quantity_value_literal
	4.2.6.28 ENTITY nrf_enumeration_quantity_value_expression
	4.2.6.29 ENTITY nrf_tensor_quantity_value_prescription
	4.2.6.30 ENTITY nrf_tensor_quantity_value_literal
	4.2.6.31 ENTITY nrf_tensor_quantity_value_expression
	4.2.6.32 ENTITY nrf_quantity_value_prescription_for_item

	4.2.7 NRF Network model representation UoF
	4.2.7.1 ENTITY nrf_observable_item
	4.2.7.2 ENTITY nrf_observable_item_relationship
	4.2.7.3 ENTITY nrf_named_observable_item_class
	4.2.7.4 ENTITY nrf_named_observable_item
	4.2.7.5 ENTITY nrf_observable_item_list
	4.2.7.6 ENTITY nrf_named_observable_item_list
	4.2.7.7 ENTITY nrf_named_observable_item_group_class
	4.2.7.8 ENTITY nrf_named_observable_item_group
	4.2.7.9 ENTITY nrf_network_model_class
	4.2.7.10 ENTITY nrf_network_model
	4.2.7.11 FUNCTION nrf_verify_named_observable_items_in_model_tree
	4.2.7.12 FUNCTION nrf_verify_acyclic_item_group_tree
	4.2.7.13 FUNCTION nrf_verify_nodes_in_network_model
	4.2.7.14 FUNCTION nrf_verify_node_relationships_in_network_model
	4.2.7.15 FUNCTION nrf_verify_acyclic_network_model_tree
	4.2.7.16 FUNCTION nrf_verify_nodes_referenced_in_relationships
	4.2.7.17 FUNCTION nrf_verify_node_in_submodel_tree
	4.2.7.18 FUNCTION nrf_verify_complete_list_of_material_properties
	4.2.7.19 FUNCTION nrf_verify_same_material_property_environment_as_containing_model
	4.2.7.20 FUNCTION nrf_verify_same_item_class_as_containing_model
	4.2.7.21 ENTITY nrf_network_node_class
	4.2.7.22 ENTITY nrf_network_node
	4.2.7.23 ENTITY nrf_network_node_relationship_class
	4.2.7.24 ENTITY nrf_network_node_relationship
	4.2.7.25 ENTITY nrf_model_represents_product_relationship

	4.2.8 NRF Cases, runs and results UoF
	4.2.8.1 ENTITY nrf_root
	4.2.8.2 ENTITY nrf_case
	4.2.8.3 ENTITY nrf_case_event
	4.2.8.4 ENTITY nrf_case_interval
	4.2.8.5 ENTITY nrf_run
	4.2.8.6 TYPE nrf_quantity_sequencing_type
	4.2.8.7 ENTITY nrf_state_list
	4.2.8.8 TYPE nrf_datacube_order_type
	4.2.8.9 ENTITY nrf_datacube
	4.2.8.10 ENTITY nrf_derivation_procedure
	4.2.8.11 ENTITY nrf_datacube_derivation_relationship
	4.2.8.12 ENTITY nrf_network_model_nodes_mapping
	4.2.8.13 ENTITY nrf_network_node_mapping
	4.2.8.14 RULE nrf_root_is_singleton
	4.2.8.15 FUNCTION nrf_verify_initializations
	4.2.8.16 FUNCTION nrf_verify_unique_identifiers
	4.2.8.17 FUNCTION nrf_verify_item_in_model_tree
	4.2.8.18 FUNCTION nrf_verify_acyclic_case_tree
	4.2.8.19 FUNCTION nrf_derive_number_of_states_in_state_list
	4.2.8.20 FUNCTION nrf_verify_state_value_sequencing
	4.2.8.21 RULE nrf_valid_values_in_datacubes
	4.2.8.22 FUNCTION nrf_verify_values_in_datacube
	4.2.8.23 FUNCTION nrf_verify_values_for_quantity_type
	4.2.8.24 FUNCTION nrf_verify_nodes_in_mapping

	4.2.9 NRF Product structure UoF
	4.2.9.1 ENTITY nrf_product
	4.2.9.2 ENTITY nrf_product_context
	4.2.9.3 ENTITY nrf_product_definition
	4.2.9.4 ENTITY nrf_product_definition_context
	4.2.9.5 ENTITY nrf_product_next_assembly_usage_relationship
	4.2.9.6 FUNCTION nrf_verify_acyclic_product_definition_relationship
	4.2.9.7 ENTITY nrf_product_version

	4.2.10 Materials UoF
	4.2.10.1 ENTITY nrf_material_class
	4.2.10.2 ENTITY nrf_material
	4.2.10.3 FUNCTION nrf_get_all_required_quantity_type_names
	4.2.10.4 FUNCTION nrf_verify_acyclic_material_class_tree

	4.2.11 END_SCHEMA declaration for nrf_arm

	4.3 Meshed geometric model (MGM) module
	4.3.1 SCHEMA declaration for mgm_arm
	4.3.2 Interfaced schema(ta) for mgm_arm
	4.3.3 CONSTANT specifications
	4.3.4 MGM visual presentation UoF
	4.3.4.1 TYPE mgm_rgb_component
	4.3.4.2 ENTITY mgm_colour_rgb

	4.3.5 MGM basic geometry objects UoF
	4.3.5.1 ENTITY mgm_3d_cartesian_point
	4.3.5.2 ENTITY mgm_parametric_3d_cartesian_point
	4.3.5.3 ENTITY mgm_3d_direction
	4.3.5.4 ENTITY mgm_parametric_3d_direction
	4.3.5.5 ENTITY mgm_axis_transformation
	4.3.5.6 ENTITY mgm_axis_placement
	4.3.5.7 ENTITY mgm_axis_transformation_sequence
	4.3.5.8 ENTITY mgm_translation_or_rotation
	4.3.5.9 ENTITY mgm_translation
	4.3.5.10 ENTITY mgm_parametric_translation
	4.3.5.11 ENTITY mgm_rotation
	4.3.5.12 ENTITY mgm_rotation_with_axes_fixed
	4.3.5.13 ENTITY mgm_parametric_rotation_with_axes_fixed
	4.3.5.14 ENTITY mgm_rotation_with_axes_moving
	4.3.5.15 ENTITY mgm_parametric_rotation_with_axes_moving
	4.3.5.16 ENTITY mgm_quantity_context
	4.3.5.17 FUNCTION mgm_verify_context_quantity_types
	4.3.5.18 FUNCTION mgm_verify_context_uncertainties
	4.3.5.19 FUNCTION mgm_get_context_quantity_type
	4.3.5.20 FUNCTION mgm_get_context_uncertainty_value
	4.3.5.21 FUNCTION mgm_compute_distance_between_points
	4.3.5.22 RULE mgm_all_plane_angle_quantity_types_in_degree

	4.3.6 MGM meshed geometric model UoF
	4.3.6.1 TYPE mgm_active_side_type
	4.3.6.2 ENTITY mgm_meshed_geometric_model
	4.3.6.3 ENTITY mgm_any_meshed_geometric_item
	4.3.6.4 ENTITY mgm_compound_meshed_geometric_item
	4.3.6.5 ENTITY mgm_meshed_geometric_item_by_submodel
	4.3.6.6 ENTITY mgm_meshed_primitive_bounded_surface
	4.3.6.7 RULE mgm_verify_referencing_of_meshed_geometric_items
	4.3.6.8 FUNCTION mgm_get_items_from_meshed_geometric_item
	4.3.6.9 ENTITY mgm_primitive_bounded_surface
	4.3.6.10 ENTITY mgm_triangle
	4.3.6.11 ENTITY mgm_rectangle
	4.3.6.12 ENTITY mgm_quadrilateral
	4.3.6.13 ENTITY mgm_disc
	4.3.6.14 ENTITY mgm_cylinder
	4.3.6.15 ENTITY mgm_cone
	4.3.6.16 ENTITY mgm_sphere
	4.3.6.17 ENTITY mgm_paraboloid
	4.3.6.18 ENTITY mgm_primitive_solid
	4.3.6.19 ENTITY mgm_infinite_solid_by_plane
	4.3.6.20 ENTITY mgm_infinite_solid_cylinder
	4.3.6.21 ENTITY mgm_solid_cylinder
	4.3.6.22 ENTITY mgm_solid_cone
	4.3.6.23 ENTITY mgm_solid_sphere
	4.3.6.24 ENTITY mgm_solid_paraboloid
	4.3.6.25 ENTITY mgm_solid_box
	4.3.6.26 ENTITY mgm_solid_triangular_prism
	4.3.6.27 ENTITY mgm_qualified_compound_meshed_primitive_bounded_surface
	4.3.6.28 ENTITY mgm_face
	4.3.6.29 ENTITY mgm_face_pair
	4.3.6.30 ENTITY mgm_enclosure
	4.3.6.31 FUNCTION mgm_verify_transformation
	4.3.6.32 FUNCTION mgm_verify_acyclic_compound_meshed_geometric_item_tree
	4.3.6.33 FUNCTION mgm_verify_no_coincident_points
	4.3.6.34 FUNCTION mgm_verify_no_colinear_points
	4.3.6.35 FUNCTION mgm_verify_quadrilateral
	4.3.6.36 FUNCTION mgm_verify_points_span_orthogonal_system
	4.3.6.37 FUNCTION mgm_verify_points_use_context_length_quantity_type
	4.3.6.38 FUNCTION mgm_verify_surface_grid_spacings
	4.3.6.39 FUNCTION mgm_verify_start_and_end_angles
	4.3.6.40 FUNCTION mgm_verify_solid_box
	4.3.6.41 FUNCTION mgm_verify_solid_triangular_prism
	4.3.6.42 RULE mgm_verify_referencing_of_faces
	4.3.6.43 FUNCTION mgm_get_faces_from_meshed_geometric_item
	4.3.6.44 FUNCTION mgm_verify_enclosure_faces

	4.3.7 MGM meshed boolean construction geometry UoF
	4.3.7.1 TYPE mgm_half_space_selector_type
	4.3.7.2 ENTITY tas_half_space_solid
	4.3.7.3 ENTITY mgm_meshed_boolean_difference_surface
	4.3.7.4 FUNCTION mgm_verify_boolean_difference_base_surface

	4.3.8 END_SCHEMA declaration for mgm_arm

	4.4 Space kinematic model (SKM) module
	4.4.1 SCHEMA declaration for skm_arm
	4.4.2 Interfaced schema(ta) for skm_arm
	4.4.3 CONSTANT specifications
	4.4.4 SKM rigid body kinematics UoF
	4.4.4.1 ENTITY skm_kinematic_degree_of_freedom
	4.4.4.2 ENTITY skm_sliding_degree_of_freedom
	4.4.4.3 ENTITY skm_revolute_degree_of_freedom
	4.4.4.4 ENTITY skm_kinematic_joint
	4.4.4.5 FUNCTION skm_verify_degrees_of_freedom

	4.4.5 END_SCHEMA declaration for skm_arm

	4.5 Space mission aspects (SMA) module
	4.5.1 SCHEMA declaration for sma_arm
	4.5.2 Interfaced schema(ta) for sma_arm
	4.5.3 CONSTANT specifications
	4.5.4 SMA space mission aspects UoF
	4.5.4.1 ENTITY sma_space_mission_case
	4.5.4.2 ENTITY sma_space_coordinate_system
	4.5.4.3 ENTITY sma_orbit_arc
	4.5.4.4 ENTITY sma_orbit_position_and_velocity
	4.5.4.5 ENTITY sma_discretized_orbit_arc
	4.5.4.6 ENTITY sma_kepler_parameter_set
	4.5.4.7 ENTITY sma_keplerian_orbit_arc
	4.5.4.8 ENTITY sma_keplerian_orbit_arc_with_evaluation_interval
	4.5.4.9 ENTITY sma_keplerian_orbit_arc_with_evaluation_positions
	4.5.4.10 ENTITY sma_celestial_body_class
	4.5.4.11 ENTITY sma_celestial_body
	4.5.4.12 ENTITY sma_celestial_body_with_orbit
	4.5.4.13 ENTITY sma_space_environment
	4.5.4.14 ENTITY sma_kinematic_articulation
	4.5.4.15 ENTITY sma_parametric_kinematic_articulation
	4.5.4.16 ENTITY sma_kinematic_articulation_with_pointing_constraint
	4.5.4.17 ENTITY sma_kinematic_pointing_constraint
	4.5.4.18 ENTITY sma_kinematic_cartesian_pointing_constraint
	4.5.4.19 ENTITY sma_kinematic_pointing_to_star_constraint
	4.5.4.20 ENTITY sma_kinematic_tracked_point_pointing_constraint
	4.5.4.21 ENTITY sma_fast_spinning_kinematic_articulation
	4.5.4.22 ENTITY sma_pointing_to_star
	4.5.4.23 FUNCTION sma_verify_kinematic_pointing_constraint
	4.5.4.24 FUNCTION sma_verify_kinematic_articulations
	4.5.4.25 FUNCTION sma_verify_evaluation_positions

	4.5.5 END_SCHEMA declaration for sma_arm

	4.6 STEP-TAS procotol
	4.6.1 SCHEMA declaration for tas_arm
	4.6.2 Interfaced schema(ta) for tas_arm
	4.6.3 CONSTANT specifications
	4.6.4 END_SCHEMA declaration for tas_arm

	5 Conformance requirements
	5.1 Conformance requirements for STEP-TAS as a whole
	5.2 Conformance requirements for STEP-NRF in isolation

	Annex A (normative) ARM EXPRESS expanded listing
	Annex B (informative) Application protocol usage guide
	B.1 Dictionary of standard pre-defined entities
	B.2 Use of the STEP-TAS dictionary
	B.3 Use of the STEP-NRF dictionary

	Annex C (informative) Bibliography

