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Foreword

This Handbook is one document of the series of ECSS Documents intended to be used as supporting
material for ECSS Standards in space projects and applications. ECSS is a cooperative effort of the
European Space Agency, national space agencies and European industry associations for the purpose
of developing and maintaining common standards.

The material in this Handbook is a collection of data gathered from many projects and technical
journals which provides the reader with description and recommendation on subjects to be
considered when performing the work of Thermal design.

The material for the subjects has been collated from research spanning many years, therefore a subject
may have been revisited or updated by science and industry.

The material is provided as good background on the subjects of thermal design, the reader is
recommended to research whether a subject has been updated further, since the publication of the
material contained herein.

This handbook has been prepared by ESA TEC-MT/QR division, reviewed by the ECSS Executive
Secretariat and approved by the ECSS Technical Authority.

Disclaimer

ECSS does not provide any warranty whatsoever, whether expressed, implied, or statutory, including,
but not limited to, any warranty of merchantability or fitness for a particular purpose or any warranty
that the contents of the item are error-free. In no respect shall ECSS incur any liability for any
damages, including, but not limited to, direct, indirect, special, or consequential damages arising out
of, resulting from, or in any way connected to the use of this document, whether or not based upon
warranty, business agreement, tort, or otherwise; whether or not injury was sustained by persons or
property or otherwise; and whether or not loss was sustained from, or arose out of, the results of, the
item, or any services that may be provided by ECSS.

Published by: ~ ESA Requirements and Standards Division
ESTEC, P.O. Box 299,
2200 AG Noordwijk
The Netherlands
Copyright: 2011 © by the European Space Agency for the members of ECSS
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1
Scope

In this Part 1 of the spacecraft thermal control and design data handbooks, view factors of diffuse and
specular thermal surfaces are discussed.

For diffuse surfaces, calculations are given for radiation emission and absorption between different
configurations of planar, cylindrical, conical, spherical and ellipsoidal surfaces for finite and infinite
surfaces.

For specular surfaces the affect of reflectance on calculations for view factors is included in the
calculations. View factors for specular and diffuse surfaces are also included.
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3

Terms, definitions and symbols

3.1 Terms and definitions

For the purpose of this Standard, the terms and definitions given in ECSS-S-ST-00-01 apply.

3.2 Symbols
Ai

Bi
Fj;

F(i1,i2,...in) (j1,j2,ee.jn)

Fijs

Hi

Ki2

Kmn(i,j ,k,p,q,...)

—

@

m

surface area of the i-th surface, [m?]

energy flux leaving surface, i. often called radiosity,
[W.m™]

view factor from diffuse surface, Ai to diffuse surface,
Aj

view factor from the ensemble of diffuse surfaces, Ai,
Apn,...Ain to the ensemble of diffuse surfaces, Aj,
AjZ,...Ajn

view factor from specular surface Ai to specular
surface Aj

energy flux incident on surface i, [W.m™72]

term which appears in the expression for the view
factor between elements of parallel plates, Ki2 = AiFir

fraction of the radiative energy leaving A» which
reaches A after i perfectly specular reflections from
surface A, j from surface Aj, k from surface As,...

distance between two differential elements, [m]
temperature, [K]

angle from normal to surface i, [angular degrees]
hemispherical emittance of a (diffuse-gray) surface

hemispherical diffuse reflectance of a (diffuse-gray)
surface

10
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ps specular reflectance of a (gray) surface, it is assumed
to be independent of incident angle

c Stefan-Boltzmann constant, S = 5,6697x1078 W.m 2.K™

Other symbols, mainly used to define the geometry of the configurations, are introduced when
required.

11
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4
Diffuse surfaces

4.1 General

The view factor, Fi2, between the diffuse surface A1 and A, is the fraction of the energy leaving the
isothermal surface A: that arrives at Az.

If the receiver surface is infinitesimal, the view factor is infinitesimal for both infinitesimal and finite
emitting surfaces, and is given by the expression

dF, = CoSs S, cos B, dA, 1)

when both surfaces are infinitesimal, and by

dF,, dA, Icosﬂlcosp’ZdAl

[4-2]

when A1 is finite.

If the receiver surface is finite, the view factor is finite for both infinitesimal and finite emitting
surfaces, and is given by the expression

cos 3, cOS
F, = I%d'% [4-3]
A,

when A1 is infinitesimal, and by

,[ ,[COS S, cos f, dA,dA, e

when A1 is finite.

12
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Figure 4-1: Geometric notation for view factors between diffuse surface.
Regardless of which surfaces are considered, their view factors satisfy the following reciprocity
relation:

AiF12= A2Fx
If we consider the diffuse surfaces A1, A2 and As, the view factor between the surfaces A1 and A2+ Az is
Fies=Fu+ F,

when the receiver surface is formed by two surfaces, and

F _ A2F21 + A3F31
(2,30 —
A+ A

[4-5]

when the emitting surface is formed by two surfaces. notice that the notation Fies and Fesn will be
used in the following data sheets.

When an enclosure of N surfaces A1,As,....,An is considered, their view factors satisfy the relation

N
Z F ;= 1 [4-6]

=

for any surface A:. This relationship results from the fact that the overall heat transfer in the enclosure
should be zero.

4.2 Infinitesimal to finite surfaces

4.2.1 Planar to planar

4.2.1.1 Two-dimensional configurations

A plane point source dA1 and any surface A2 generated by an infinitely long line moving parallel to
itself and to the plane dA:.

13
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I"‘.._H ) -
! 1\' ﬂ'*E
I

L T A T |

Formula:

F, = %(cos 0—cosm) [4-7]

References: Hamilton & Morgan (1952) [15], Moon (1961) [26], Kreith (1962) [22]
Comments:
Notice that F12 is independent of the shape of A2 for given values of fand .

View factors for several configurations may be obtained as a particular case of this one. An example is
shown in the next page.

A plane point source dA1 and any infinite plane A2 with the planes of dA1 and A: intersecting at an
angle 6.

Formula:

F, = %(1+ cos6) [4-8]

References: Hamilton & Morgan (1952) [15], Moon (1961) [26], Kreith (1962) [22]

4.2.1.2 Point source to rectangle

A plane source dA1 and a plane rectangle A2 parallel to the plane of dA: (see sketch). The normal to dA:
passes through one corner of Aa.

x=alc
y="blc

Formula:

14
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y

X A1
tan +
1| 1+x2 1+ X2
Fe=o2l Ny [4-9]
i tan

\/1+ y? \/1+ y?

=7 4-10
NI =101

limF, =—~

5 4-11
X—»00 4 1+ y2 [ ]

References: Hamilton & Morgan (1952) [15], Hottel (1954) [17], Jakob (1957) [19], Moon (1961) [26],
Kreith (1962) [22]

AT T 1 T T T T ¥ 1 1
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A
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Maote: non-zi units are used inthis figure

Figure 4-2: Values of F12 as a function of x and y. From Hamilton & Morgan (1952)
[15].
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4.2.1.3 Line source to rectangle

A line source dA: and a plane rectangle Az parallel to the plane of dA1 with dA:1 opposite one edge of

A>.

x=blc
y=alc

Formula:

y

1+ x* tan™
1 A1+ X2

F,=—

X XY yonr X
Jr\/1+y2 o \/1+y2

y

limEg, =—
e o gy

. 1 1 1
IimF, =—| . [1+—
yoo 1 Z[V x* X

References: Hamilton & Morgan (1952) [15], Kreith (1962) [22]

—tanty +

[4-12]

[4-13]

[4-14]

16
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Mate: non-zi unitz are used inthis figure

Figure 4-3: Values of F12 as a function of x and y. From Hamilton & Morgan (1952)
[15]

4214 Point source to coaxial disc or annulus

Infinitesimal surface to finite coaxial disc.

=1

N
b2

!
.
N\

=

H=alk

Formula

F, = [4-15]
214 H?

The following case can be obtained by differentiating the above expression.

Infinitesimal surface to very thin coaxial annulus with finite radius.

17
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H=alk
oH = on/k
Formula
F, = Akl [4-16]
(L+H?)

This expression has been represented in the Figure 4-4.

Reference: Chung & Sumitra (1972) [6].

107 N
5 [ — BHLz f,,/’/:
bl
m'zz //'//
F. ® @ & T |
107 f/é// -
i~ T oz i
L AT NN
A AN
wi ooz a5 ! a5 W

Mote: non-si units are used in this figure

Figure 4-4: F12 vs. H for different values of dH. Infinitesimal surface to very thin
coaxial annulus with finite radius. Calculated by the compiler.

18
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4.2.2 Planar to spherical

One face of an elemental plate to sphere.

H=h/R
cosecar=1+H

Two cases can be distinguished:
L. The upper cap is fully visible from the plate (1 + ar <7/2).
The analytical expression for the view factor is:

cosA
12 = m [4-17]

II. The upper cap is partially visible from the plate (4 + ar. > 7/2).

The self-shielding of the plate destroys the ease of integration of case I. the calculations are carried out
numerically, by means of the following finite polynomial:

F12 = Bo + BicosA+ B2cos24 + Bscos3A + B1cosoA.

The parameters Bi (i =0,...,4) are given in ECSS-E-HB-31-01 Part 3 Clause 5.1

This expression can be used in both cases although the values in the shadowed area in Figure 4-5
below have been calculated by the use of the analytical expression.

References: Cunningham (1961) [8], Kreith (1962) [22], Bannister (1965) [1], Clark & Anderson (1965) [7].

180

Maote: non-si unitz are used inthis figure

Figure 4-5: Values of Fi2 vs. A for different values of H. The analytical expression
(case I) is only valid in the shadowed region. Calculated by the compiler.
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4.2.3 Cylindrical to spherical

Outer area of an infinitesimal cylindrical surface to sphere.

H=hR
Formula:
1 27 6,
F, :—Zjdqzﬁj\/l—(cos@cos/usin Gsin Acosg) sin@dd  [4-18]
T % 0
where
) 1
sing. = 4-19
° 1+H 1l

References: Watts (1965) [50], Clark & Anderson (1965) [7].
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Mate: non-zi unitz are used inthis figure

Figure 4-6: Values of Fiz as a function of H and A. Calculated by the compiler.
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4.2.4 Conical to spherical
Outer area of an infinitesimal conical surface to sphere.

H=h/R

All results presented in the literature are obtained numerically.

References: Clark & Anderson (1965) [7].
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Maote: non-zi units are used inthis figure

Figure 4-7: Values of F12 as a function of H and 4, for 6=10°. Calculated by the
compiler.
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Figure 4-8: Values of F1 as a function of H and 4, for 6= 30°. Calculated by the

compiler.
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Figure 4-9: Values of F12 as a function of H and 4, for 6= 50°. Calculated by the

compiler.
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Figure 4-10: Values of F12 as a function of H and 4, for 6= 80°. Calculated by the
compiler.

4.2.5 Spherical to spherical

4.25.1 Sphere to outer sphere
Infinitesimal sphere to finite sphere.

H=h/R

Formula:

[4-20]

1(_@}

F,==[1
) 1+H

Reference: Watts (1965) [50].
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Figure 4-11: F1z as a function of H in the case of an infinitesimal sphere viewing a
finite sphere. Calculated by the compiler.

4.25.2 Convex hemispherical surface to outer sphere
Convex surface of an infinitesimal hemisphere to sphere.

H=h/R

Formula:

[4-21]
1+H 2 \1+H

_1[1_x/m+cos/l[ 1 ﬂ

Reference: Watts (1965) [50].
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Figure 4-12: F12 as a function of angle A for different values of the dimensionless

distance H. Calculated by the compiler.

4.2.6 Ellipsoidal to spherical

Infinitesimal ellipsoid of revolution to sphere.

H=h/R
=a/b

Formula:

where

12—_

I ¢j A4+tan Asn[A+tan 2cotA)siné'd@ [4-22]

sing, =

4-23
1+H 14-23]
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COSA =C0SH#cos A +sinésin Acos ¢ [4-24]
in-l 1 a2
SIZE[A+%\] if A<1(prolate ellipsoid) [4-25]
1-A

S= 27{A+ In(A"'\/H)

if A>1(oblate ellipsoid) [4-26]
JAZ -1

Reference: Watts (1965) [50].
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Figure 4-13: F1z as a function of 4 and H, for A = 0,5. Calculated by the compiler.
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Figure 4-14: F12 as a function of A4 and H, for A =1,5. Calculated by the compiler.
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Figure 4-15: F12 as a function of A and H, for A = 2. Calculated by the compiler.

27



ECSS-E-HB-31-01 Part 1A
/ E CSS 5 Decembe?rZOll

4.2.7 Planar to conical

Infinitesimal surface of a ring to an inverted coaxial cone.

Two different configurations could arise depending on whether the cone intersects or not the planar

surface.
L =s/(h-s)
M= p/R
w=2tan™" M+L [4-27]
M-L
Configuration 1. Cone and plane dA: intersect. (s <0, p> -stan/).
Configuration 2. Cone and plane dA1 do not intersect. (s > 0).
Formula:
Configuration 1:
F, :—S'nﬂtan‘l( \Ifrlz 2]+
V4 i -
sin fNM*“ - L [4.28]
1. , M-L
+—tan 1/—+ f(M,L,
V4 M+L ( A
IRYE: 2 5 2
(ML, B)= @1-M)tan° g (L2+1)
2J[@+M?)tan? g+ (L+1)°] —4M 2 tan* g a9
an-! M+L (1+M?*)tan® g+ (L +1)?
M-L (@1-M?tan® B+ (L+1)?
Configuration 2:
Case2a: M >L
SCINC V2] v DR = S = +f(M,L,B)  [4-30]
2r 7w sin VM2 — 12 sin VM2 — 12
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Case 2b: M < L (Cone is seen as a disc of radius R. See the sketch).

M2 2 n_ 2
Fﬁ:i 14 (1-M“)tan° g —(L+1) [4.31]

2l zlarM?)tan? g+ (L+12f —aM2 tan* g

Reference: Minning (1977) [25].
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Figure 4-16: Values of Fi2 vs. M for different values of L. Configuration 1, £=10°.
Calculated by the compiler.
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Figure 4-17: Values of Fi2 vs. M for different values of L. Configuration 1, £=20°.
Calculated by the compiler.
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Figure 4-18: Values of Fi2 vs. M for different values of L. Configuration 2, £=10°.

Calculated by the compiler.
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Figure 4-19: Values of Fi2 vs. M for different values of L. Configuration 2, £=20°.

Calculated b

y the compiler.
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4.3 Finite to finite surface

4.3.1 Planar to planar. Two-dimensional configurations

4.3.1.1 Two strips of equal width at any angle

Two infinitely long plates of equal finite width w, having one common edge, and at an included angle
¢ to each other.

Formula:

F,=F, =1-sin—- [4-32]

Reference: Siegel & Howell (1972) [37].

4.3.1.2 Two strips of unequal width normal to each other

Two infinitely long plates of unequal finite with, having one common edge, and at an included angle
¢=90° to each other.

H=h/w

Ay

1
h
i A

—

1

Formula:

FlZ:HFZl:%L—}-H—'\jl‘FHZ:I [4-33]

References: Kreith (1962) [22], Siegel & Howell (1972) [37].
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4.3.1.3 Two parallel strips

Two infinitely long parallel strips of unequal width

Lr L r .
Lz |

, .
h -z |
1 N
x x|
2 72 |

X=x/h
Y=y/h
Z=zlh

Formula:

Y+X-22Y Y+X+22Y
I+ —— | +, 14| —| -
Y 1 2 2

F Fau [4-34]
2X (X—Y—ZZ)Z (x-mzz}2
-1+ — - | —
Reference: Kutateladze & Borishanskii (1966) [23].
When X =Y and Z =0, one obtains:
1
F,=F, = X W1+ X2 —1] [4-35]

References: Kreith (1962) [22], Siegel & Howell (1972) [37].
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Figure 4-20: Values of F12 as a function of X and Y, for Z = 0. Calculated by the

compiler.
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Figure 4-21: Values of F12 as a function of X and Y, for Z = 0,5. Calculated by the
compiler.
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Figure 4-22: Values of F2 as a function of X and Y, for Z = 1. Calculated by the
compiler.

Figure 4-23: Values of F12 as a function of X and Y, for Z = 2. Calculated by the
compiler.
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Figure 4-24: Values of F12 as a function of X and Y, for Z = 5. Calculated by the

compiler.

4.3.2 Planar to planar. Three-dimensional configurations

4.3.2.1 Parallel rectangles of the same dimensions

Parallel, directly opposed rectangles of same width and length

X=alc
Y="blc
— g —!
S
i
I e
I ! | 1
i |
N
Formulae:

2 2 1/2
In{(ldlrx)z(lﬂg)} +X+V1+Y2tan™ X +
o 2 1+ X°+Y V1+Y?

—Xtan? X =YtanlyY

XY =~
+YV1+ X tan”

Y
V1+X?

When X =Y << 1, Fiu=XY/x.

[4-36]

References: Hamilton & Morgan (1952) [15], Jakob (1957) [19], Kreith (1962) [22], Hsu (1967) [18],

Siegel & Howell (1972) [37].
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Maote: non-zi unitz are used inthis figure

Figure 4-25: Values of F12 as a function of X and Y. Calculated by the compiler.

4.3.2.2 Parallel rectangle of unequal dimensions

The following view factors can be deduced by using the results for two parallel directly opposed
rectangles.

Two rectangles in parallel planes with one rectangle directly opposite to portion of the other.

:

d

View factor is:

1
F1(2,4) = E[A(l,a) F(1,3)(2,4) +AF, - A F34] [4-37]

References: Moon (1961) [26], Kreith (1962) [22], Hsu (1967) [18].

Two rectangles of arbitrary size in parallel planes with one edge of a rectangle parallel to one of the
other.

View factor is:
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K(1,2,3,4,5,6,7,8,9)2 - K(l,2,5,6,7,8)2 - K(2,3,4,5,8,9)2 - K(1,2,3,4,5,6,7,8,9)2 -
AFRg :Z - K(1,2,3,4,5,6)2 B K(l,z,s,e)2 - K(2,3,4,5)2 B K(4,5,8,9)2 B K(4,5)2 B K(s,a)2 B [4-38]
- K(s,e)2 - K(4,5,6,7,8,9)2 - K(s,e,m)2 - K(4,5,6)2 - K(z,s,s)2 - K(z,s)2 - Ks2
Where K2 = Amme'
Reference: Hsu (1967) [18].
Finite area on interior of a rectangular channel.
View factor is:
A,
F, = X(F% +Fg+Fp— Fss) [4-39]

Reference: Siegel & Howell (1972) [37].

4.3.2.3 Rectangles with one common edge

Two rectangles A1 and A2 with one common edge and included angle ¢ between the two planes.

Formulae:
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(L+N21+1?)
1+ N?+L*-2NLcos®

4

N2

5 December 2011
SN2 Ny sind | F @ |(NZ 4 L2)4 L2 tant N EOOSP gy Lo NCOSDY,
2 Lsin® N sin ®

r“zq’*m‘zT L2(1+ N2 + L2 ~2NLcos®) |
\

1+ N?

1+ L2JN? +L? - 2NLcos®)

+Ltan” %+ N tan™

N cos®

—2NLCOSCDJ(1+ N?+L°

cos 2d
—2NLcos® [440]

—1

 Nsin@sin 20 S'”CI;S'”ZCI’m{m
+cosq)_|'\/1+z sin d{tan ZCOS(D

—1

A1+ 2z%sin CD

A1+ N?2sin (D
N1+2%sin? @

L —Ncos® }
AJ1+ NZ?sin®*®

z7cos® }
Z

For @=90°,
Ltan‘1£+Ntan‘1—— N2+L2tan‘1;+
1 L VYNZ 412
E T . : 441
oA 1 @+ N2+ )] N2 +12) T [ NP N2+ 12) ] Al
+_|Oge 2 2 2 2 2 2 2 2
4 14N2+12 @+ L2 N2+ %) [[LeNZNZ+L2)
1, 11 ) 1+L2
Em F,=0 , ,L'ﬂl F,= ”[tan 3 +4—Iog (1+ L )——Ioge [4-42]

References: Hamilton & Morgan (1952) [15], Hottel (1954) [17], Jakob (1957) [19], Kreith (1962) [22],

Feingold (1966) [11], Redor (1973) [34].
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Figure 4-26: F12 as a function of L and N for @=30°. Table from Feingold (1966) [11],
figure from Hamilton & Morgan (1952) [15].
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Figure 4-27: Fiz as a function of L and N for @=60°. Table from Feingold (1966) [11],
figure from Hamilton & Morgan (1952) [15].
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Figure 4-28: F12 as a function of L and N for @=90°. Table from Feingold (1966) [11],
figure from Hamilton & Morgan (1952) [15].
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Figure 4-29: F12 as a function of L and N for @=120°. Table from Feingold (1966)
[11], figure from Hamilton & Morgan (1952) [15].
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Figure 4-30: F12 as a function of L and N for @=150°. Table from Feingold (1966)
[11], figure from Hamilton & Morgan (1952) [15].

4.3.2.4 Rectangles placed in intersecting planes

The following view factors can be deduced by using the results for two rectangles with one common
edge.

Two rectangles A1 and Az, with one side of A1 parallel to one side of A2 in planes intersecting at angle
.

View Factor is:

_ A(l,3) F(1,3)(2,4) + As I:34 - A3F3(2,4) - A(l,s) F(1,3)4

F12 Al

[4-43]

References: Kreith (1962) [22].

Two rectangles A1 and Az, with one side of A1 parallel to one side of A2 and one corner of A touches a
corner of A2. Both planes intersect at an angle @.

View Factor is:
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_ A(1,3) I:(1,3)(2,4) - A1F14 - A3F32
2A

F, [4-44]

References: Kreith (1962) [22].

Two rectangles A1 and A6, with one common edge and included angle @ between the two planes.

View Factor is:

F . A(l,s) F(l,S)(2,4) + A(3,5) F(3,5)(4,6) - A1F12 - Aste
3(2,4,6) — 2 As

[4-45]

References: Kreith (1962) [22].

Two rectangles A1 and As". One side of A1 parallel to one side of As’. Both planes intersect at angle @.

View Factor is:

K(l,2,3,4,5,6)2 h K(2,3,4,5)2 - K(l,z,s,e)2 + K(4,5,6)2 - K(1,2,3,4,5,6)(4’,5’,6’) -
AFgy = il Kusewzzase T Kazsese)Kazsasws) T Keewose) T [4-46]
+Kuseaes) TKog ~Kasy =K g =K g0 =Ksog) =K,
Where K(m)(n) = Aman and Km2 = Amme'.

References: Hamilton & Morgan (1952) [15], Kreith (1962) [22].

4.3.2.5 Regular polygons forming the bases of a prism
Two parallel regular polygons forming the bases of a right prism.

L=1/h
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Formula:

F,=1->F, [4-47]

where 7 is the number of sides of the polygon.

The values of Fin can be deduced by using the results corresponding to two rectangles with one
common edge, by applying simple factor algebra.

Reference: Feingold (1966) [11].
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Figure 4-31: Values of F12 as a function of L for different regular polygons. n is the
number of sides of the polygon. From Feingold (1966) [11].

4.3.2.6  Several areas of a prismatic configuration
View factors between various areas in a honeycomb structure.

L=1Ih
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The results being presented have been obtained by combination of the data on two parallel regular
polygons with those concerning two rectangles with one common edge.

Reference: Feingold (1966) [11].
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Figure 4-32: View factors between different faces of a honeycomb cell as a function
of the cell length, L. From Feingold (1966) [11].

4.3.2.7 Parallel coaxial discs

Parallel circular discs with centers along the same normal.

Formula:
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[4-48]

with

[4-49]

References: Hamilton & Morgan (1952) [15], Leuenberger & Person (1956) [24], Jakob (1957) [19],
Eckert & Drake (1959) [9], Kreith (1962) [22], Siegel & Howell (1972) [37].

Comments: The following view factors may be deduced from the previous one.

Directly opposed ring to disc of arbitrary radii.

F12 = Fi3) —Fi3
Reference: Leuenberger & Person (1956) [24].

Parallel, directly opposed plane ring areas

F, = {1"‘%}[':(1,3)(2,4) - |:(1,3)4:|_i

A [F3(2,4) - F34] [4-50]

References: Hamilton & Morgan (1952) [15], Leuenberger & Person (1956) [24], Siegel & Howell (1972)
[37].
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Figure 4-33: Values of F12 as a function of R: and R: in the case of two parallel
coaxial discs. Calculated by the compiler.

4.3.2.8 Rings at opposite ends of a circular cylinder

The following view factor may be obtained from those corresponding to two coaxial cylinders of equal
length.

annular ring to an equal annular ring placed at the opposite end of the cylinder. The view factor is:

Formula:

F, = —%{1——(54 +2F,, -1) [4-51]

For Fus and Fu see clause 4.3.8.1.

References: Leuenberger & Person (1956) [24]; Sparrow, Miller & Jonsson (1962) [43].

4.3.3 Planar to cylindrical. Two-dimensional configurations

4.3.3.1 Planeto circular cylinder

Infinitely long plane of finite width, to parallel infinitely long cylinder.
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c=2r

Formula:

F,= bL[tan 4D an —} [4-52]

where the range of tan™'x is -p/2 to p/2.

References: Hamilton & Morgan (1952) [15], Kreith (1962) [22], Feingold & Gupta (1970) [12], Siegel &
Howell (1972) [37].

Comments: The expressions given by Hamilton & Morgan (1952) [15] and Kreith (1962) [22] are in
error as has been pointed out both by Feingold & Gupta (1970) [12], and Siegel & Howell (1972) [37].

4.3.3.2 Plane to rows of circular cylinders

Infinite plane to first row and second row of an infinite number of parallel staggered tubes having
equal diameters.

K=B/D
Di-n -
& O —lf) &3 ‘Cl) GAN
o
20 O O O O G
Ay
Formula:
-1 2 2
F _Ketan VK?-1-yK2-1 053]

K

F13 has been obtained graphically. No analytical expression is available.

References: Hottel (1954) [17], Jacob (1957) [19].
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Figure 4-34: Values of Fiz and Fi; as a function of the parameter K. From Jakob
(1957) [19].

4.3.4 Planar to cylindrical. three-dimensional configurations

4.3.4.1 Finite length cylinder to outer rectangle
Finite length cylinder to rectangle with two edges parallel to cylinder axis and length equal cylinder.

R=v7/
Z=slr
T=tr
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Formula:
J@-y) +4R? cos™ VAN
T ! 1] 14y 1 y 1-y
F,=—/[2v’|1-—Jcos" —> - — [4-54]
+(1+ y)sm’lv—E(l— y)
where:
2,2
y=R2[1—ZZ—T X ] [4-55]
4
1
V=
Lo T [4-56]

Reference: Leuenberger & Person (1956) [24].

Fiz 2

1.5

E: : — Ty "'"l-.._‘_‘
L 1 | | H‘“E%
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r_"' I
s S :-
‘1"""'--. ‘_‘:I g 1
I - Z=1 A

n | 1 | 11 [1 . 1. | [
. - 1 3 1

Mate: non-zi unitz are used inthis figure

Figure 4-35: F12 as a function of T and R. Calculated by the compiler.
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Mote: non-si units are used in this figure

Figure 4-36: F12 as a function of T and R. Calculated by the compiler.

FTTT [ [ [ TTrri

Maote: non-si unitz are used inthis figure

Figure 4-37: F12 as a function of T and R. Calculated by the compiler.
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4.3.4.2 Inner rectangle to finite-length cylinder
Cylinder and plane of equal length parallel to cylinder axis, plane inside cylinder.

R=v7/
Z=slr

|
{ \

Formula:

Fo=1-1|2tnt2a- = InfL+ 4A%)|-
T 2A

X|:1(A2—X2)|nA+X+(1+ A2 —Xz)ln (A_X)2+l N

A-x (A+xf+1

[4-57]

_if 2[(1—A2+x2)cos’12 —7Z']+ (R222+x2)_1dx

1Rz R2 M+ 22) 4 2 F - 4R?(R?Z% + x?)

COS_1[z(RZzZ+xA)(AJr x)Z—R222+xA]
1z RVR?ZZx|(A+ ) +1]

v cos | 2 (RZ—xANA—xf -R°Z’ - xA
Z|  RJRZZ+x*|(A-x) +1]

where:

A=Ry1-Z77 [4-58]

and, for any argument x:

V4 a V4
——<tan <— 4-59
> 4 > [4-59]

O<cos'é<r [4-60]
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im P :1‘%(\'1*“{2 ‘1) [4-61]

limF, =1 [4-62]

Reference: These expressions have been obtained by the compiler after Leuenberger & Person (1956)

[24].

1 %:'_‘——'—-—-—-— ! R=1_ |
P—— ___-_-_-—"_'—.-——— = ——
\\. ‘--—~i_._H_h__‘ i

B |14~ ] I -—-_._,_‘___‘
[ \\ ] [
Fr Ny ]| -
A \‘i “\H“'-n.. _H-‘_H_‘“-_""‘T'-

|_ |

-\ \ ‘H\ £ R‘""""-H-—_.__h ]
z N - s S —
5 00 -h"“‘--._._‘_!‘_‘_‘_‘_-_‘"_"‘—-—-.._._,__‘_____‘ —]
0. =B -8 -4 -2 a z 2 A B H R

Mate: non-zi unitz are used inthis figure

Figure 4-38: F12 as a function of Z, for different values of the dimensionless radius
R. Calculated by the compiler.

4.3.4.3 Disctoinner surface of a coaxial cylinder

The following view factors may be obtained by use of those for two parallel circular discs with centers
along the same normal.

Disk to the interior surface of a coaxial cylinder of larger or equal radius. The view factor is given by

F12=F13-Fus
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For Fi3 and Fus see clause 4.3.2.7.
Reference: Siegel & Howell (1972) [37]
Particular cases of the previous configuration are:

Entire inner wall of finite cylinder to ends.

Reference: Bien (1966) [2].

Inner surface of cylinder to disc at one end.

Reference: Leuenberger & Person (1956) [24].

4.3.4.4 Ringto inner surface of a coaxial cylinder

The following view factors may be obtained by use of that foe a disc viewing the inner surface of a
coaxial cylinder of larger or equal radius.

Ay

Ring to the inner surface of a coaxial cylinder of larger or equal radius. The view factor is given by

I:12 = {1 + %} F(1,3)2 - % Fs [4-63]

A particular case of the previous configuration is
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Inner surface of cylinder to annulus on one end.

Reference: Leuenberger & Person (1956) [24].

4.3.45 Finite-length coaxial cylinder to enclosed base

The following view factors may be obtained from those for two coaxial cylinder of equal length.

Inner or outer coaxial cylinders of the same length to annular ring placed at one end of the cylinders.
The view factors are:

Fa1 = (1-F2)/2
Fs1 = (1-F5—F3)/2
For Fx2 and Fs3 see clause 4.3.8.1.

References: Leuenberger & Person (1956) [24]; Sparrow, Miller & Jonsson (1962) [43].

4.3.5  Planar to conical
The following view factors may be obtained by use of those for two parallel circular discs.

Disc on the base of a right circular cone to an axisymmetrical portion of the conical surface.

F1»=F13-Fus

For F13 and Fus see clause 4.3.2.7.
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Reference: Buschman & Pittman (1961) [3].

Ring on the base of a right circular cone to an axisymmetrical portion of the conical surface.

[4-64]

Reference: Buschman & Pittman (1961) [3].

The following particular view factor can be obtained from the first one.

Inner surface of frustum of cone to ends.

References: Buschman & Pittman (1961) [3], Bien (1966) [2].
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4.3.6 Spherical to planar

4.3.6.1 Sphere to sector of a coaxial disc

Sphere to sector of disc; normal to center of disc passes through center of sphere.

R2=1/h
h=zn
N
e
Formula:
a 1
F,=—|1-— 4-65
12 A m [ ]
For a=2n
1 1
Fo=7]1- [4-66]

2| J1+R?

Comments: In the first of these two expressions « is measured in radians, although it is given in
degrees in table and figure on the next page.

References: Feingold & Gupta (1970) [12], Siegel & Howell (1972) [37].
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Figure 4-39: F12 as a function of R: for different values of the sector central angel o.
Calculated by the compiler.

4.3.6.2 Sphere to segment of a coaxial disc
Sphere to segment of disc; normal to center of disc passes through center of sphere.

R2=1/h
Z=5slr
h>n

Formula:

1 costZ 1 . ,1-R?z*-27°?
F,=>-———+--sin s
8 271+ R? 4r 1+R,Z

[4-67]

References: Feingold & Gupta (1970) [12], Siegel & Howell (1972) [37].
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Mote: non-si units are used in this figure

Figure 4-40: F12 as a function of Z for different values of R.. Calculated by the
compiler.

43.6.2.1 Sphere to intersecting coaxial disc

Sphere to both sides of an intersecting coaxial disc. The inner circle of the annular disc seats on the
sphere.

i :."i »

:

H=hlr
R =ralr

Formula:

- +—tan 5 5
2 RZ+H2-1
1| @+2H-H’)r  H L HAVR?+H? -1
F,=—1/- + cos +|  [4-68]
27 4 JR2 +H?2 R
2 2
+tan™ R™+H 5 !
1-H

Reference: Chung & Naraghi (1981) [5].
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Maote: non-si unitz are used inthis figure

Figure 4-41: F12 from a sphere to both sides of a coaxial intersecting disc, vs. H, for
different values of R. Calculated by the compiler.

-1 -5 -G =4 -2 ¢ 4z i B A 1

Maote: non-si unitz are used inthis figure

Figure 4-42: F12 from a sphere to the upper side of a coaxial intersecting disc, vs. H
(-1 <H<L1), for different values of R. Calculated by the compiler.

4.3.6.3 Sphere to non-coaxial disc
Sphere to a noncoaxial disc.

R=r/h
Z =0blr2
h>n
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Formula:

a. WhenZ>1

[4-69]

Maote: non-zi units are used inthis figure

Figure 4-43: Values of F12 as a function of Z and R. Calculated by the compiler.

4.3.6.4  Sphere to arbitrary polygon

The following view factors may be obtained from those for a sphere viewing either a segment or a
sector of a coaxial disc.
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Sphere to general triangle with one vertex at the projection of the center of sphere on the plane of
triangle. View factor is:

F12 = [Fies456+F15—F15,6—F135)]/2
Reference: Feingold & Gupta (1970) [12].

The view factor between a sphere and an arbitrary polygon may be obtained from the previous result.

Fie3) = F1p45+F13,67—F1a—F15—F16—F17

Reference: Feingold & Gupta (1970) [12].

4.3.6.5 Axisymmetrical configurations

The following view factors may be obtained by use of those for two parallel circular discs.

Disc on the base of a hemisphere to an axisymmetrical portion of the spherical surface.
Fi2=Fi3-Fus
Reference: Buschman & Pittman (1961) [3].

Ring on base of a hemisphere to an axisymmetrical portion of the spherical surface.
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F, = {1 + i:| I:(1,3)2 - i Faz [4-71]

Reference: Buschman & Pittman (1961) [3].

The following particular view factor can be obtained from the first one.

N7
YA

o
%% .z':iﬁr :

b 7
2 24
1
Axisymmetrical section of hemisphere to the base.
Fi2=1/2.
Reference: Buschman & Pittman (1961) [3].

4.3.7 Cylindrical to cylindrical. two-dimensional configurations

4.3.7.1 Concentric circular cylinders

Two-dimensional concentric cylinders.

Formula:

F=1
Fai=ri/r2
Fo=1-(r1/r2)

References: Hamilton & Morgan (1952) [15], Siegel & Howell (1972) [37].
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4.3.7.2 Parallel cylinders of the same diameter
Infinitely long parallel cylinders having the same diameter.
x=1+5/2r
S
.
Formula:
1 \/2— .41
F,=F, =—|VX°=1+4+sin" ==X [4-72]

Reference: Siegel & Howell (1972) [37].
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Mate: non-zi unitz are used inthis figure

Figure 4-44: F12 as a function of x in the case of two infinitely long parallel
cylinders of the same diameter. Calculated by the compiler.

4.3.8 Cylindrical to cylindrical. axisymmetrical configurations

4.3.8.1 Concentric circular cylinders of the same length
Two concentric cylinders of same finite length.

R=r/n
L=I/n
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Formula:
B 1 J(A+27 —(2R) +
Fy=———1C08" ——— [4-73]
* A 2L cost 2 ipsint i oA
R 2
1 2. ,24/R%*-1
F,=1-—+—tan* "~
L
aR*+ 12, 4(R*—1)+(2/R?|R?-2)
sin 2 2 N [4-74]
L L L2 +4(R%-1)
2| R?-2 x| +AR*+L?
—sin —+—= -
R 2 L
where for any argument &
-(7/2) < sinl& <72
0 <cos'&r
with
A=12+R2-1
B=L?>-R>+1.
. 1
mrolo F, = R [4-75]
i 1
ILTJO F,, = 1_§ [4-76]

References: Hamilton & Morgan (1952) [15], Leuenberger & Person (1956) [24], Siegel & Howell (1972)

[37].
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Figure 4-45: Plot of F1: vs. L for different values of R. From Hamilton & Morgan
(1952) [15]
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Figure 4-46: Plot of F2, vs. R for different values of L. From Hamilton & Morgan
(1952) [15]

4.3.8.2 Concentric circular cylinders of unequal length

The following view factors can be deduced by use of the results for two concentric cylinders of the
same finite length.
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Concentric cylinders of different finite length. The view factors are given by the following expressions:

1
AP 23 = AP =E[K(1*2)2 + K(2,3)2 -K, - Ksz] [4-77]
F.=AF, = L [K K K K ] 4-7
ARy = ARy, _E @232 N@2)?  N23)? 22 [4-78]
where
km2 = AmFmm'.

Reference: Leuenberger & Person (1956) [24].

4.3.8.3  Finite areas in the same circular cylinder

The following view factor may be obtained from those for two parallel circular discs.

[4-79]

Reference: Buschman & Pittman (1961) [3].

The following view factor can be deduces as a particular case of the previous one.
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Portion of inner surface of cylinder to remainder of inner surface.

References: Leuenberger & Person (1956) [24], Buschman & Pittman (1961) [3].

4.3.9 Spherical to cylindrical
Sphere to the inner surface of a coaxial cylinder having equal or larger radius.

R=rvla
Z=Ilr

Formula:

1 1+RZ 1
F,=— - [4-80]

2| J(RZ +1)? +R* 1+R?

Reference: Feingold & Gupta (1970) [12].
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Figure 4-47: F12 as a function of R for different values of Z. Calculated by the

compiler.

4.3.9.1 Sphere to external surface of cylinder

Sphere to external lateral surface of a coaxial cylinder:

H=h/r
Li=N/r
L2=Dfr
H<1
L2>112>0

Formula:

Fo = [£(L,)- £(L)] [4-81]

where
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1-H?2
f(L)=Ltan |——— -
(L) L2+H?-1
— [4-82]
I Sy L
HA/L2 +H? L

Reference: Chung & Naraghi (1981) [5].

L

?i’
- BN

Maote: non-zi units are used inthis figure

Figure 4-48: Values of F1z as a function of H and L: for L: = 1. Calculated by the
compiler.
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4.3.10 Conical to conical

The following view factor may be obtained from those corresponding to two parallel circular discs.

s~ Fas) [4-83]

For Fss, Fzs, F15 and Fas see clause 4.3.2.7.
Reference: Buschman & Pittman (1961) [3].

4.3.11 Conical to spherical

Cone to sphere; axis of cone passes through center of sphere.

S=s/r
D=d/r

All results presented in the literature are obtained numerically.

Reference: Campbell & McConnell (1968) [4].
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Figure 4-49: Values of F2 as a function of S and D, for §=15°. From Campbell &
McConnell (1968) [4].
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Mote: non-si units are used in this figure

Figure 4-50: Values of F12 as a function of S and D, for 6= 30°. From Campbell &
McConnell (1968) [4].

74



5 December 2011

/ E CSS / ECSS-E-HB-31-01 Part 1A
0 _ | |

10"+

S N T Y I S TN . T

S -

Maote: non-si unitz are used inthis figure

Figure 4-51: Values of F12 as a function of S and D, for 6= 45°. From Campbell &

McConnell (1968) [4].
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Figure 4-52: Values of F12 as a function of S and D, for 6= 60°. From Campbell &

McConnell (1968) [4].
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4.3.12 Spherical to spherical

4.3.12.1 Concentric spheres

Concentric spheres; inner to outer sphere; outer to inner sphere; outer sphere to itself.

Formula:

Fr=1

Fa1 = (r1/r2)2

Fa=1- (r1/r2)?

where r1 and 2 are the radii of the spheres A1 and A, respectively.

References: Hamilton & Morgan (1952) [15]; Kreith (1962) [22], Siegel & Howell (1972) [37].

4.3.12.2 Finite areas in the same spherical surface

Finite areas on interior of spherical cavity.

Formula:
Fi2= As/4 >
References: Jakob (1957) [19], Siegel & Howell (1972) [37].

View factor between axisymmetrical sections of hemisphere can be deduced as a particular case of the
previous one.

Reference: Buschman & Pittman (1961) [3].
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4.3.12.3 Sphere to outer sphere
Sphere to sphere.

S=s/n
R=r/r

All results presented in the literature are obtained numerically.

References: Jones (1965) [21], Campbell & McConnell (1968) [4].
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Figure 4-53: Values of F12 as a function of S and R. From Jones (1965) [21].

4.3.12.4 Sphere to cap on another sphere of equal radius
Sphere to cap on another sphere having equal radius and placed in an axisymmetrical fashion.

S=s/r
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All results presented in the literature are obtained numerically.

References: Campbell & McConnell (1968) [4].
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Mote: non-si units are used in this figure

Figure 4-54: Values of F1z as a function of S and €. From Campbell & McConnell
(1968) [4].

4.4 Additional sources of data

This clause contains information on view factors of several diffuse surface configurations not
explicitly included in the previous data sheets.

The reader is referred to the previously listed references whenever possible, only when a new source
is required the reference is given with some detail the first time it appears on each page.
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The tables presented below have been borrowed from Siegel & Howell (1972) [37]. No attempt has
been made to include information which has been published subsequently.

Definition

Sketch

Sources

Elemental area to infinitely long
strip of differential width lying
on parallel generating line.

,w"f:-M

-

Jakob (1957) [19], Siegel &
Howell (1972) [37].

Infinitely long strip of
differential width to similar
strip on parallel generating line.

MZ-M i

Jakob (1957) [19], Siegel &
Howell (1972) [37].

Strip of finite and differential
width to strip of same length on
parallel generating line.

Siegel & Howell (1972) [37].

Corner element of end of square
channel to sectional wall
element on channel.

Siegel & Howell (1972) [37].

Ring element on fin to ring
element on adjacent fin.

Sparrow, Miller & Jonsson
(1962) [43].
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Definition

Sketch

Sources

Band of differential length on
inside of cylinder to differential
ring on cylinder base.

Sparrow, Albers & Eckert (1962)
[40].

Journal of Heat Transfer vol.
84c, No. 1, 1962, pp. 73-81.

Two ring elements on interior
of right circular cylinder.

Siegel & Howell (1972) [37].

Exterior element on tube
surface to exterior element on
adjacent parallel tube of same
diameter.

Sparrow & Jonsson (1963a) [44].

Journal of Heat Transfer vol. 85,
No. 4, 1963, pp. 382-384.

Exterior element on partitioned
tube to similar element on
adjacent parallel tube of same
diameter.

Sparrow & Jonsson (1963a) [44].
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Definition Sketch Sources

Two elements on interior of Sparrow & Jonsson (1963b) [45].

right circular cone. Journal of the Optical Society of

America, vol. 53, No. 7, 1963,
pp. 816-821.

Band on outside of sphere to
band on another sphere.

(R1=Rz), Campbell &
McConnell (1968) [4]; (R1'Rz2),
Grier (1969) [13].

NASA SP-3050, 1969 [28].

Two differential elements on Grier & Sommers (1969) [14].

exterior of toroid. NASA TN D-5006, 1969 [32].

Element on exterior of toroid to Grier & Sommers (1969) [14].
ring element on exterior of

toroid.
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Definition Sketch Sources

Element on exterior of toroid to Grier & Sommers (1969) [14].
hoop element on exterior of
toroid.

Plane strip element of any
length to plane of finite width
and infinite length.

Siegel & Howell (1972) [37].

Strip element of finite length to
plane rectangle that intercepts

Hamilton & Morgan (1952) [15],
Kreith (1962) [22].

plane of strip at angle F and
width one edge parallel to strip.

Area element to any parallel Jakob (1957) [19].

rectangle. p WWF '

L0
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Definition

Sketch

Sources

Plane element to plane
rectangle; planes containing
two surfaces intersect at angle
F.

Hamilton & Morgan (1952) [15]

Kreith (1962) [22].

7

Plane element to right triangle
in plane parallel to plane of
element; normal to element
passes through vertex of
triangle.

Siegel & Howell (1972) [37].

Plane element to plane area
with added triangular area;
element is on corner of
rectangle with one side in

common with plane at angle F.

Hamilton & Morgan (1952) [16],

Kreith (1962) [22].

Same geometry as preceding
with triangle reversed relative
to plane element.

Hamilton & Morgan (1952) [15],

Kreith (1962) [22].
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Plane element to segment of Sparrow & Cess (1966) [41].
disc in plane parallel to "Radiation Heat Transfer",
element. Brooks/Cole Publishing
Company, Belmont, California,
1966.
I
- - .-‘-
Plane element to circular disc Hamilton & Morgan (1952) [15],
on plane parallel to that of Jakob (1957) [19], Kreith (1962)
element. ’1 [22], Siegel & Howell (1972)
[37].

Plane element to circular disc;
planes containing element and
disc intersect at 90°, and centers
of element and disc lie in plane
perpendicular to those
containing areas.

Hamilton & Morgan (1952) [15],
Leuenberger & Person (1956)
[24], Kreith (1962) [22], Siegel &
Howell (1972) [37].

Plane element to ring area in

Siegel & Howell (1972) [37].
plane perpendicular to element. ﬁj
|
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Definition

Sketch

Sources

Strip element of finite length to
perpendicular circular disc
located at one end of strip.

Leuenberger & Person (1956)
[24].

Area element to parallel
elliptical plate.

Moon (1961) [26], Siegel &
Howell (1972) [37].

Radial and wedge elements on
circular disc to disc in parallel
plane.

Leuenberger & Person (1956)
[24].

Infinite cylinder to parallel
infinitely long strip element.

Feingold & Gupta (1970) [12],
Siegel & Howell (1972) [37].
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Definition

Sketch

Sources

Plane of infinite width and
infinite length to infinitely long
strip on the surface of a parallel
cylinder.

N

e
__-EII.__F

"‘1._.-"'rl

Hamilton & Morgan (1952) [15],
Kreith (1962) [22], Siegel &
Howell (1972) [37].

Strip or element on plane
parallel to cylinder axis to
cylinder of finite length.

Leuenberger & Person (1956)
[24].

Plane element to right circular
cylinder of finite length; normal
to element passes through
center of one end of cylinder
and is perpendicular to cylinder
axis.

Hamilton & Morgan (1952) [15],
Kreith (1962) [22], Siegel &
Howell (1972) [37].

Elemental strip of finite length
to parallel cylinder of same
length; normals at ends of strip
pass through cylinder axis.

Hamilton & Morgan (1952) [15],
Leuenberger & Person (1956)
[24], Kreith (1962) [22].
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Infinitely long strip of Sparrow & Eckert (1962) [42].
differential width to parallel
semicylinder.

Journal of Heat Transfer, vol.
84, No. 1, 1968, pp. 12-18.

Infinite strip on any side of any
of three fins to tube or
environment, and infinite strip

Holcomb & Lynch (1967) [16].

Report ORNL-TM-1613, Oak
Ridge National Laboratory,

on tube to fin or environment. 1967

Ring element on interior of
right circular cylinder to end of
cylinder.

Siegel & Howell (1972) [37].

Element and strip element on Leuenberger & Person (1956)
interior of finite cylinder to [24].
interior of cylindrical surface.
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Definition

Sketch

Sources

Area element on interior of
cylinder to base of second
concentric cylinder; cylinders
are one atop other.

Leuenberger & Person (1956)
[24].

Ring element on fin to tube.

Sparrow, Miller & Jonsson
(1962) [43].

Element is at end of wall on
inside of finite length cylinder
enclosing concentric cylinder of
same length; factor is from
element to inside surface of
outer cylinder.

Hamilton & Morgan (1952) [15],
Leuenberger & Person (1956)
[24], Kreith (1962) [22].
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Definition

Sketch

Sources

Elemental strip on inner surface
of outer concentric cylinder to
interior surface of outer
concentric cylinder.

Hamilton & Morgan (1952) [15],
Leuenberger & Person (1956)
[24], Kreith (1962) [22].

Elemental strip on inner surface
of outer concentric cylinder to
either annular end.

Hamilton & Morgan (1952) [15],
Leuenberger & Person (1956)
[24], Kreith (1962) [22].

Element on inside of outer finite
concentric cylinder to inside
cylinder or annular end.

Leuenberger & Person (1956)
[24].
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Definition

Sketch

Sources

Strip element on exterior of
inner finite length concentric
cylinder to inside of outer
cylinder or to annular end.

Leuenberger & Person (1956)
[24].

Strip on plane inside cylinder of
finite length to inside of
cylinder.

Leuenberger & Person (1956)
[24].

Exterior element on tube
surface to finite area on
adjacent parallel tube of same
diameter.

Sparrow & Jonsson (1963a) [44].

Journal of Heat Transfer, vol.
85, No. 4, 1963, pp. 382-384.

Exterior element on tube
surface of partitioned tube to
finite area on adjacent parallel
tube of same diameter.

Sparrow & Jonsson (1963a) [44].

92



[E

ECSS-E-HB-31-01 Part 1A
5 December 2011

Definition

Sketch

Sources

Element on wall of right
circular cone to base of cone.

7
¢

Joerg & McFarland (1962) [20].

Report 562-245, Aerojet-General
Corporation, 1962.

Spherical point source to
rectangle. Point source is on one
corner of rectangle that
intersects with receiving
rectangle at angle F.

Hamilton & Morgan (1952) [15],
Jakob (1957) [19], Kreith (1962)
[22].

Sphere to ring element oriented
normal to sphere axis.

Feingold & Gupta (1970) [12].

Elemental area on sphere to
finite area on second sphere.

Grier (1969) [13].
NASA SP-3050, 1969 [28].
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Sketch

Sources

Area element to axisymmetric
surface-paraboloid, cone,
cylinder (formulation given-
factors are not evaluated).

Morizumi (1964) [27].

AIAA Journal, vol. 2, No. 11,
1964, pp. 2028-2030.

Element on interior (or exterior)
of any axisymmetric body of
revolution to band of finite
length on interior (or exterior).

Robbins (1961) [35].

NASA TN D-586, 1961 [29].
Robbins & Todd (1962) [36].
NASA TN D-878, 1962 [30].

Slender torus to element on
perpendicular axis.

Moon (1961) [26].

Element on exterior of toroid to
toroidal segment of finite
width.

Grier & Sommers (1969) [14].
NASA TN D-5006, 1969 [32].

Element on exterior of toroid to
toroidal band of finite width.

Grier & Sommers (1969) [14].
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Definition

Sketch

Sources

Element and ring element on
exterior of toroid to entire
exterior of toroid.

Grier & Sommers (1969) [14].
Sommers & Grier (1969) [38].

Journal of Heat Transfer, vol.
91, No. 3, 1969, pp. 459-461.

Circular disc to arbitrarily
placed rectangle in parallel
plane.

Tripp, Hwang & Crank (1962)
[48].
Special Report 16, Kansas State

University Bulletin, vol. 46, No.
4,1962.

Circle to arbitrarily placed
rectangle in plane parallel to
normal to circle.

J____
%! et

i —

Tripp, Hwang & Crank (1962)
[48].

Circular disc to parallel right
triangle; normal from center of
circle passes through one acute
vertex.

Tripp, Hwang & Crank (1962)
[48].
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Cylinder to any rectangle in Tripp, Hwang & Crank (1962)
plane perpendicular to cylinder [48].
axis.
Finite area on exterior of Stevenson & Grafton (1961)
cylinder to finite area on plane [47].

parallel to cylinder axis. Report SID-61-91, North

American Aviation (AFASD TR
61-119, pt. 1), 1961.

Cylinder to any rectangle in Tripp, Hwang & Crank (1962)
[48].

Special Report 16, Kansas State
University Bulletin, vol. 46, No.
4,1962.

plane parallel to cylinder axis.
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Finite area on exterior of Stevenson & Grafton (1961)
cylinder to finite area on [47].

skewed plane. Report SID-61-91, North
American Aviation (AFASD TR
61-119, pt. 1), 1961.

Outside surface of cylinder to Tripp, Hwang & Crank (1962)
perpendicular right triangle; [48].

triangle is in plane of cylinder

base with one vertex of triangle

at center of base.

Cylinder and plane of equal Leuenberger & Person (1956)
length parallel to cylinder axis; [24].

plane inside cylinder; all factors
between plane and inner
surface of cylinder.
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Definition

Sketch

Sources

Finite areas on interior of right
circular cylinder.

5
E

Stevenson & Grafton (1961)
[47].

Finite area on exterior of
cylinder to finite area on
exterior of parallel cylinder.

Stevenson & Grafton (1961)
[47].

Report SID-61-91, North
American Aviation (AFASD TR
61-119, pt. 1), 1961.

Concentric cylinders of
different radii, one atop other;
factors between inside of upper
cylinder and inside or base of
lower cylinder.

Leuenberger & Person (1956)
[24].
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Finite area on exterior of inner Stevenson & Grafton (1961)
cylinder to finite area on [47].
interior of concentric outer
cylinder.

Two tubes connected with fin to Sotos & Stockman (1964) [39].
finite thickness; length can be [ NASA TN D-2556, 1964.
finite or infinite; all factors
between finite surfaces
formulated in terms of
integrations between
differential strips.

Two tubes connected with
tapered fins of finite thickness;
tube length can be finite or
infinite; all factors between

Sotos & Stockman (1964) [39].

finite surfaces formulated in
terms of integrations between
differential strips.

Sandwich tube and fin structure Sotos & Stockman (1964) [39].

of infinite or finite length; all NASA TN D-2556, 1964.
factors between finite surfaces
formulated in terms of
integrations between

differential strips.
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Definition

Sketch

Sources

Concentric cylinders connected
by fin of finite thickness; length
finite or infinite; all factors
between finite surfaces
formulated in terms of
integrations between
differential strips.

Sotos & Stockman (1964) [39].

From Moebius strip to itself.

Stasenko (1967) [46].

Akad. Nauk SSSR, Izv.
Energetika Transport, pp. 104-
107, 1967.

Area on sphere to area on
another sphere.

Grier (1969) [13].
NASA SP-3050, 1969 [28].

Band on one sphere to band on
another sphere.

Grier (1969) [13].

Area on sphere to cap on
another sphere.

Grier (1969) [13].
NASA SP-3050, 1969 [28].
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Cap on sphere to band on Grier (1969) [13].
another sphere.

Cap on sphere to cap on
another sphere.

Grier (1969) [13].

Hemisphere to coaxial Wakao, Kato & Furuya (1969)
hemisphere in contact. [49].

Int. J. Heat Mass Transfer, vol.
12, No. 1, 1969, pp. 118-120.

Exterior of toroid to itself. Sommers & Grier (1969) [38].

Journal of Heat Transfer, vol.
91, No. 3, 1969, pp. 459-461.

Segment of finite width on Grier & Sommers (1969) [14].
toroid to exterior of toroid. NASA TN D-5006, 1969 [32].

Toroidal band of finite width to Grier & Sommers (1969) [14].
exterior of toroid.
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Sketch

Sources

Area on surface of sphere to
rectangle in plane
perpendicular to axis of sphere.

i

Iﬁ_.r:_ -

i

Stevenson & Grafton (1961)
[47].

Report SID-61-91, North
American Aviation (AFASD TR
61-119, pt. 1), 1961.

Reference: Siegel & Howell (1972) [37].
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5
Specular surfaces

51 General

The specular view factor, Fs12, between two specularly reflecting gray surfaces A1 and Az is defined,
(Perlmutter & Siegel (1963) [33]) as the fraction of the energy leaving diffusely the isothermal surface
Az the impinges A, either directly or through any number of specular reflections from these or other
gray surfaces of the whole system. Notice that a given amount of energy leaving As, if specularly
reflected, may be counted several times on its arrival to Az, so that F'12 may be larger than one. On the
other hand, the ratio of the energy absorbed by A2 to that emitted by A1 is smaller than one, depending
its value, for a given geometrical system, on the specular reflectance of the surfaces forming the
system.

The above definition of specular view factor shows some peculiarities that were not present in the
definition of diffuse view factors. Such peculiarities are:

1. When calculating the radiant interchange between gray diffuse surfaces, the effect of the
diffuse reflectance of the surfaces is not included in the view factor, since it is accounted
for by means of the radiosity, B, which takes into account both the emitted and the
diffusely reflected radiations.

B = egoT*+ p'H,

H represents the radiant flux incident on the emitting surfaces per unit time and unit
area, and p is the diffuse reflectance. Thus BiAiF1 is the heat arriving directly to A2 from
A1 without being reflected in any surface after the last time it leaves Ai.

On the other hand, when specular surfaces are involved, it is usual to leave unchanged
the factor corresponding to diffuse radiosity, and to include specular reflections in the
view factor Fi2. In any case BiA1F12 measures the heat arriving to A2 from Ai both directly
and through all possible specular inter-reflections, but it should be emphasized that B:
indicates the diffusely-tributed radiant flux leaving A: per unit time and unit area.

A ray, that leaving A1 reaches A: after a reflection from Aj, is accounted for as coming
from A; if this surface is diffuse reflecting and as coming from A: if A;j is specularly
reflecting.

2. The concept of diffuse view factor involves only the emitting surface, Ai, and the
receiving surface, A2, while the parallel concept of specular view factor involves, in
addition to A1 and A, all partially or totally specular surfaces of the system where rays
coming from Ai can be reflected before reaching Ao.

3. It is obvious that, for a given geometrical system, the radiative transfer equation may be
written in a unified fashion in terms of the temperature, optical characteristics of the
surfaces, and view factors, no matter whether some of these surfaces are specular or not,
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provided that the diffuse radiosity and the appropriate view factors are used for the
computation.

For a system of N specular surfaces, having specular reflectances, ps, the specular view factor, Fs,
between two of them is:

o0

= =zzz S5 (o2 (03 (032 (0 Kooy . Ko p,0) 5-1)

i=0 j=0k p=0 g=0

with

lim (o5 f =1 [52]

p?—)O

for every pr.

The factor K12 may be interpreted as the fraction of the radiative energy leaving A1 which reaches A2
after i specular reflections from Ai, j from A, k from As,..., p from Ani, and g from An, under the
assumption that there is no absorption, so that the mirrors do nothing except to change the direction
of the impinging rays. Due to some geometrical constraints, several K factors may vanish.

A reasoning based on the fact that the reversal of the rays arriving to Az from Ai, after reflection from
several surfaces of the system, is exactly equivalent to the system of the rays arriving to A1 from A,
after reflection from the same surfaces, indicates that, independently of what surfaces A1 and Az are
considered, their specular view factors satisfy the reciprocity relation:

A1 Fs12= A2 Fsm

When an enclosure of N surfaces, A1, A, ..., A~ is considered, the specular view factors satisfy the
relation:

N
> -pi)F; =1 [5-3]

j=1

for any surface Ai. This relationship results from the fact that the overall heat transfer in the enclosure
should be zero.
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5.2 Two planar specular surfaces

5.2.1 Two-dimensional configurations

5.2.1.1 Parallel strips of equal width

Two infinitely long directly opposed parallel strips of same finite width.

W
h
A ]
T T U R——
H=w/h
R =,015p25
Formula:
F5=Fn=K@+> R"K(2n+1) [5-4]
n=1
F—1;=F—2§=K(2)+ZR”K(2n+2) [5-5]
> P n=1
where:

K(m)=%(\/H2+m2 —m) [5-6]

n is the number of specular reflections which a ray suffers before the receiving surface.

Reference: These expressions have been obtained by the compiler.
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Figure 5-1: Values of Fi2 as a function of R and H. Calculated by the compiler.
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Figure 5-2: Values of Fru/p2® as a function of R and H. Calculated by the compiler.
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5.2.1.2  Strips of equal width at any angle

Two infinitely long plates of equal finite width, w, having one common edge, and at an included angle
¢ to each other.

R:pIszs
Formula:
nd0_ 1
4 2
F =F§1=1—sinf+ > R" 1—sin(n+ij¢ [5-7]
2 n=1 2
n<%—l
F—1§=F—2§=1—sin¢+ > R"[1-sin(n +1)g] [5-8]
p2 101 n=1

where 7 is the number of specular reflections which a ray suffers before reaching the receiving surface.

When ¢ > 60°, the rays reach the second surface without suffering any specular reflection from the
first. Thus

¢

F,=F, = l—sinE [5-9]

When ¢ > 45°, the rays reach the first surface after suffering at most one specular reflection from the
second. Thus

F: F; .
—s=—2=1-sing [5-10]
P P

References: These expressions have been obtained by the compiler. The cases ¢ = 45°,90° have been
dealt with by Ecker & Sparrow (1961).

Notice that, when ¢ >60°, Fs12 is independent of R.
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Mote: non-si units are used in this figure

Figure 5-3: Values of F12 as a function of R for different values of ¢. Calculated by
the compiler.

Notice that when ¢ > 45°, Fs11/p» is independent of R.
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Mate: non-zi unitz are used inthis figure

Figure 5-4: Values of F11/p:® as a function of R for different values of ¢. Calculated
by the compiler.

5.2.2 Parallel, directly opposed rectangles of same width and
length

X=alc
Z="bla
R= pISsz
Formula:
Fy=F) = K(1)+iR”K(2n +1) [5-11]
n=1
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F—lsle—zf=K(2)+iR”K(2n+2) [5-12]
P2 P n=1

where

1+(X /my +(XZ /m)

b

om? | Xz s . XZIm L XZ |
K(m)= +—y1+(X/m) tan” ———-tan" — |+
M=%z [ (x/m) 1+(X /m) m | [5-13]
2 1+(XZ /m) tan™ XIm___gnr X
m 1+(XZ Im)y m

Mate: non-zi unitz are uzed in this figure

n is the number of specular reflections which a ray suffers before reaching the receiving surface.

References: These expressions have been obtained by the compiler.
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Mate: non-zi unitz are used inthis figure

Figure 5-5: Values of Fs1z as a function of R and X for Z = 1. Calculated by the
compiler.
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Figure 5-6: Values of Fs11/p:* as a function of R and X for Z = 1. Calculated by the
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Figure 5-7: Values of Fs12 as a function of R and X for Z =5. Calculated by the
compiler.

111



ECSS-E-HB-31-01 Part 1A
/ E CSS 5 Decembeir201l
0

T [ TTTI T T JTTITI [ T

10 ‘ — Eﬁﬁf

n = ] =

| £=3 pdP

o[ A1 | ]
o e
1= — %'{//fff—# 0 -

5: A?/w‘f‘ 7]
_Z_I [ L1 / I [ 11hl] I I I IIII_

2 3 B 1 2 3 5 10 20 30 =0 00

Mote: non-si units are used in this figure

Figure 5-8: Values of F11/p2° as a function of R and X for Z = 5. Calculated by the

compiler.
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Figure 5-9: Values of F1: as a function of R and X for Z = 10. Calculated by the
compiler.
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Figure 5-10: Values of Fsui/p2* as a function of R and X for Z = 10. Calculated by the
compiler.
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Figure 5-11: Values of F1: as a function of R and X for Z = 15. Calculated by the
compiler.
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Maote: non-zi units are used inthis figure

Figure 5-12: Values of Fsu/p2® as a function of R and X for Z = 15. Calculated by the

compiler.
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Mate: non-zi unitz are used inthis figure

Figure 5-13: Values of F1: as a function of R and X for Z = 20. Calculated by the
compiler.
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Maote: non-zi units are used inthis figure

Figure 5-14: Values of Fsu/p2® as a function of R and X for Z = 20. Calculated by the
compiler.

5.2.3 Rectangles of same width and length with one common
edge

Two specular finite rectangles of the same dimensions having a common edge and at an included
angle ¢.

L=alb
R =p15pzs

Formula:

)
F=F; =K@+ > R'K(2n+1) (5-14]

n=1

Mate: non-zi unitz are uzed in this figure
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n<£[@—1]
F_lsle_252=K(2)+ 2iR”K(Zn+2)
P Py =i [>-13]

Mate: mon-zi units are used in this figure

In these expressions K(m) is the diffuse view factor between two rectangles having the same width
and length of that considered and at an included angle m¢. The value of this diffuse view factor has
been obtained by using the results by Feingold (1966) [11].

n is the number of specular reflections which a ray suffers before reaching the receiving surface.
Comments:

When ¢ > 60°, the rays reaching the second surface did not suffer any specular reflection by the first.
F=Fo1=K(1).

When ¢ > 45°, the rays reaching the first surface did not suffer more than one specular reflection by
the second.

P P [5-16]

Mate: mon-zi units are used in this figure

Reference: These expressions have been obtained by the compiler.
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Mote: non-si units are used in this figure

Figure 5-15: Values of Fo12 vs. aspect ratio, L, for different values of R. ¢ = 30°.
Calculated by the compiler.
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Figure 5-16: Values of Fru/p°vs. aspect ratio, L, for different values of R . ¢=30°.
Calculated by the compiler.
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Mote: non-si units are used in this figure

Figure 5-17: Values of F12 vs. aspect ratio, L, for different values of R. ¢=45°.
Calculated by the compiler.
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Maote: non-si unitz are used inthis figure

Figure 5-18: Values of F’1z and F11/p° vs. aspect ratio, L, for the limiting values of ¢.
Calculated by the compiler.

5.3 Planar specular and planar diffuse surface

5.3.1 Two dimensional cavities. Cylinders of quadrangular cross

section
/\ A

b
1 Ay

@A:
b

Specular view factors between the different inner surfaces of a cylinder of quadrangular cross section
formed by two specular and two diffuse parallel strips.

The surfaces A1 and A: are specular-reflecting while As and As are diffuse reflecting.
P = prpr

Formula:
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Fi=F)= nzl( )ZM[\/2n+2)zsin2cD+1—(2n+1)sincD—1}+

n=|

+ i( )2n+ [\/ (1-cos®)* +(2n+1)’ sin? ® —(2n+1)sin q):| [5-17]

n=

Mote: non-si unitz are uzed inthis figure

F1;:F251: Z(ps)z 2

n=0

X nl:\/(1+ cos®f +(2n+ 1 sin? @ ++/1—cos® Y +(2n +1) sin? @ —1—2nsin®}+

= n[\/(l—costb)z+(2n+1)25in2q)+\/(l—cosd>)2+(2n—1)zsin2<1>] [5-18]
2

Mote: non-si units are used in this figure

_ 2 in2
1_\/(1 coscDZ) +sin (I)}r

Fa=F3=F,=F,= {

2

(p5)2n1|:\/(1—COS(D)2 +(2n =1 sin? ® +1—4/(2n)’sin? ® +1] N

2

K +(ps)2n|:\/(2n)2 sin? ®+1-1—/(1—cos®)? +(2n +1)’ sin’ (D} [5-19]

2

n=K+1

. i (ps)zn{\/(l—costb)z+(2n—1)zsinZCD—\/(1—cosd>)2+(2n+1)zsin2(1> +sin<1)]

Maote: non-si unitz are used inthis figure

Fh=Fa=Fi=Fi=2 (")’

n=K [\/1+(2n)2 $in? @ +1—+/(L—cos® )’ +(2n +1) sin? d)}r

n=0 2
K-1 2 2 -2 1 2 -2
+Z(ps)zn+1[\/(l+cos®) +(2n+1)°sin 2d> 1-+/(2n +2)sin (D+1+sintl>]+
n=0
, 12 cin? _ 2 [ 2 2 2 [5-20]
(o) 1[\/(2n 1)°sin® @ + (1 cos @) 2\/(1 cos®)’ +(2n+1) sin cD+sincD}r

2

n=K+1 2 2 ein2 _ _ 2 2 cin 2
+(ps)2n+1|:\/(1+COS(D) (2n+1) sin? d —/(1—cos®d ) +(2n+1) sin ®+sin®—1}

Mote: non-zi units are used in this figure

In all these expressions K is the largest integer which is smaller than 1/(2cos@).
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Fiy=Fu=p'(L-sin®)

[5-21]
Mate: non-zi units are used in this figure

Fo =F5=1-(1-p°\Fs +Fy)-Fs

[5-22]
Mate: non-zi unitz are uzed in this figure

Reference: These expressions have been obtained by the compiler.
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Mote: non-si units are used in this figure

Figure 5-19: Values of Fsu vs. ¢ for different values of the specular reflectance, p.
Calculated by the compiler.
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Maote: non-si unitz are used inthis figure

Figure 5-20: Values of F12 vs. ¢ for different values of the specular reflectance, p.
Calculated by the compiler.
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Maote: non-zi units are used inthis figure

Figure 5-21: Values of Fs1 vs. ¢ for different values of the specular reflectance, p.
Calculated by the compiler.
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Mate: non-zi unitz are used inthis figure

Figure 5-22: Values of Fz * vs. ¢ for different values of the specular reflectance, p°.
Calculated by the compiler.

Mate: non-zi unitz are used inthis figure

Figure 5-23: Values of Fs; vs. ¢ for different values of the specular reflectance, p.
Calculated by the compiler.
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Figure 5-24: Values of Fs vs. ¢ for different values of the specular reflectance, p.
Calculated by the compiler.

5.4 Non-planar specular surfaces

54.1 Concentric cylinder or concentric spheres

Concentric cylinders of infinite length, or concentric spheres.

Formula:
Fi= % [5-23]
1-pip;
Fo-— 1
Y 1-pip; [5-24]

Mote: non-si units are used in this figure
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FS_ A1/A2
21 ™ s s
1-pip;

Mate: mon-zi units are used in this figure

S 1 S S
Fp = (1__] ) Fa

)

where A1/Az = r1/r2 for concentric cylinders, and A1/Az2 = (r1/r2)? for concentric spheres.

Reference: These expressions have been obtained by the compiler.

[5-25]

[5-26]
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