

E-10 System Engineering Standards

Hans Peter de Koning - ESA, TEC-SYE ESTEC, 14 March 2017 (with major inputs from Andrea Santovincenzo - ESA, SRE-FMA)

COPYRIGHT NOTICE:

By using the ECSS Training material, developed by ESA, you agree to the following conditions:

1. The training shall take place at your premises and shall be addressed to your staff (internal participants);

2. In case of a training to be given to external participants, the prior ESA written authorisation shall be requested;

3. The ESA Copyright shall always be mentioned on all Training Material used for the purpose of the training and participants shall acknowledge the ESA ownership on such a Copyright;

4. The Training material shall not be used to generate any revenues (i.e. the training and Training Material shall be "free of charge" excl. any expenses for the training organisation);

5. Only non-editable PDF files of the Training Material can be distributed to the participants (nor power point presentations);

6. Any deficiency identified in the Training Material shall be reported to the ECSS secretariat;

7. If the Training Material is modified or translated, the ESA Copyright on such edited Training Material shall be clearly mentioned. A copy of the edited Training Material shall be delivered to ESA for information.

8. You shall always hold harmless, indemnify and keep ESA indemnified against any and all costs, damages and expenses incurred by ESA or for which ESA may become liable, with respect to any claim by third parties related to the use of the Training Material.

Table of Contents

- General Background and Terminology for System Engineering
- Introduction to E-10 sub-branch
- > E-ST-10C: System engineering general requirements
- E-ST-10-06C: Technical requirements specification
- E-ST-10-02C: Verification
- E-ST-10-03C: Testing
- Other E-10 Standards
- E-10 Handbooks and Technical Memoranda
- Outlook: Model-Based System Engineering
- Useful references

General Background

Background What is system engineering?

System

- "set of interrelated or interacting functions constituted to achieve a specified objective" [ECSS-S-ST-00-01C]
- "set of functional elements organized to satisfy user needs" [IEEE P1220]

Requirement

- "documented demand to be complied with" [ECSS-S-ST-00-01C]
- "need or expectation that is stated, generally implied or obligatory" [ISO 9000:2000]

System engineering

 "interdisciplinary approach governing the total technical effort required to transform a requirement into a system solution" [ECSS E-ST-10C]

What is systems engineering? Definition by INCOSE

"Systems Engineering is an interdisciplinary approach and means to enable the realization of successful systems. It focuses on defining customer needs and required functionality early in the development cycle, documenting requirements, then proceeding with design synthesis and system validation while considering the complete problem."

Background – ECSS-S-ST-00-01C Space System Decomposition

Space System: "system that contains at least a space, a ground or a launch segment"

NOTE: Generally a space system is composed of all three segments and is supported by a support segment.

Segment: "set of elements or combination of systems that fulfills a major, self-contained, subset of the space mission objectives"

Four main kinds:

Space, Ground, Launch, Support

Functional vs Physical views, see also next slide

ECSS "Glossary of terms" Concept Map

Background – ECSS-S-ST-00-01C Space System Decomposition

Functional view	Physical view
<pre>function: "intended effect of a product"</pre>	<pre>product: "result of a process" Note: There are four generic product categories: services, software, hardware, processed materials</pre>
system: "set of interrelated or interacting function s constituted to achieve a specified objective"	<pre>element: "combination of integrated equipment, components and parts"</pre>
<pre>subsystem: "part of a system fulfilling one or more of its functions"</pre>	equipment: "integrated set of parts and components" Synonym: unit
Warning: Outside ECSS many standards / handbooks (e.g.) use subsystem as a ohysical decomposition level, of a system, and define system itself as both functional and physical . This can be confusing in international partnership beyond ESA member states. In ECSS a subsystem is a functional view, usually from the perspective of an engineering discipline.	<pre>component: "set of materials, assembled according to defined and controlled processes, which cannot be disassembled without destroying its capability and which performs a simple function that can be evaluated against expected performance requirements" Synonym: part</pre>

ECSS Training Course | ESTEC | 14 March 2017

e

Background - System Decomposition Example from S-ST-00-01C Annex B

space segment s	pace segment system	space segment element	space segment subsystem	space segment equipment (=unit) em	⊂component (=part)	material
			examples			
Da	ata Relay Satellite ystem	spacecraft (physical view)	power	electronic unit (e.g. DHU, PCSU, PDU, ICU)	ASIC	Alumiunium
Na Sy sp	avigation Satellite ystem bacecraft (functional	satellite (physical view)	propulsion	thruster	hybrid	to be taken from Q60 & Q70
vie sa	ew) atellite (functional view)	payload	data handling	valve	integrated circuit	
		platform instrument orbiter lander bay module	thermal structure AOCS Tm&Tc optical RF communication	battery reflector mechanism (when fully assembled) vessel/tank mirror/lenses/filters (assembly) solar array (assembly) antenna (assembly) focal plane assembly telescope (assembly) solar panel (equipped) pressure vessels optical bench RF filters LNA IMUX/OMUX OMT feeds	heat-pipe MLI structural panel optical array pyro components PCB mirror solar cell insert resistor diode transistor capacitor thermistor heater propulsion fluidic	

Background – ECSS-S-ST-00C The Customer-Supplier Model

- Customer and Supplier are roles played by the Actors that cooperate to produce, operate and dispose a Space System
- One Actor (organization) can be a Customer or Supplier or both
- System is a relative concept that may appear anywhere in the Customer-Supplier chain:
 - a Customer's Equipment can be the Supplier's System
- Within one Customer-Supplier relationship the roles of "Information Provider" and "Information Consumer" depend on the direction of the information flow, as denoted with the

arrows

Outside ECSS the Customer-Supplier Chain is also known as the "Supply Chain" or "Extended Enterprise"

Background – ECSS-S-ST-00-01C **The Customer-Supplier Model** Informal Concept Map

slide 12

Example of a Customer-Supplier chain for an ESA space project

Background – ECSS-M-ST-10C System Life Cycle

TO: Need's	Activities		Phases											
identification	Activities	Phase 0	Phase A	Phase B	Phase C	Phase D	Phase E	Phase F						
			ļ ^{mdr}	↓ PRR										
Conceptual	Mission/Function													
design				Į ^{srr} ,	PDR									
	Requirements													
Detailed	Definition					CDR								
design														
[]	Verification					₽ ^{QR}								
Qualification	vennoauon													
and	Production													
Receptance							FRR							
Operations	Utilization							LELR.						
TF: Switch-off or burn-out/break-	Disposal													

Background – ECSS-M-ST-10-01C Project reviews

- Reviews are examinations of the technical status of a project and associated issues at a particular point in time and against a pre-defined set of objectives.
- Reviews are run by a mixed group of insiders and outsiders to the project (but generally within the same entity the project belongs to)
- ESA Reviews assess results from all project participants including: ESA project

Industrial contractors

Any external partners

- Reviews provide recommendations on recovery/re-direction in case of identified issues
- ESA Review recommendations are advisory. Implementation of the recommendations is the responsibility of the ESA Project Manager.
- Number, type and objectives of the Reviews are project-dependent. Generally, there is a number of reviews that are "mandatory" such as SRR, PDR, CDR, FAR

Review	Phase	Main Objectives
Mission Definition Review (MDR) / Preliminary Requirements Review (PRR)	Phase 0 / Phase A	Definition of Mission Baseline and assessment of feasibility of User requirements. Allows solid start of preliminary design.
System Requirements Review (SRR)	Phase B	Freeze of Highest level requirements
Preliminary Design Review (PDR)	Phase B	Freeze of Mission baseline and requirements down to subsystem level. Confirmation of design at System level. Confirmation of AIV plan. It forms the basis for industrial Phase C/D/E offer
Critical Design Review (CDR)	Phase C	Confirmation of detailed design at unit level. Authorisation to complete qualification/built flight units
Qualification Review (QR)	Phase D	Confirmation of System Qualification
Acceptance Review (AR)	Phase D	Acceptance of the System from the Customer
Flight Readiness Review (FRR) / Operational Readiness Review (ORR)	Phase D	Confirmation of readiness to fly NB: Launch Readiness Review is the equivalent review but for the Launcher

Introduction to E-10

System Engineering for ESA project – Use of ECSS

- Several categories of documents to be used at system level in ESA projects
 - ECSS E-10 Standards
 - ECSS E-10 Handbooks
 - ECSS E-10 Technical Memoranda
 - ISO (for debris mitigation and TRL definition)
 - + ESSB Handbooks
 (e.g. ESSB-HB-E-003 ESA pointing error engineering handbook)
- The standards shall be used (possibly after tailoring) to complement a project's own specific requirements documents, which traditionally include:
 - Mission or System Requirements Document (MRD/SRD) see hereafter
 - SOW for tasks description
 - Documents for Interfaces (ICD with Launcher Authority, Payload, Operations, etc.)
 - Specific documents (e.g. Planetary Protection req's, Environment definition, Regulations, etc.)

E-10 Discipline Subbranch

Includes System Engineering proper, but also:

- Space
 Environment /
 Radiation
- Human Factors
 Engineering

ECSS E-10 Standards Scope

The E-10 standards cover the following System Engineering areas:

- 1. General principles, definitions and documentation (incl. DRDs)
- 2. Verification
- 3. Testing
- 4. Requirements
- 5. Interfaces (to be published summer 2015)
- 6. Coordinate Systems
- 7. Space Environment / Radiation
- 8. Human Factors

Several other areas of system engineering (traditionally) are covered by standard in other disciplines, for instance:

- 1. Space Segment Operability (E-ST-70-11C) which defines autonomy and system requirements for operability
- 2. Software (ECSS-E-ST-40C) for the definition of the System inputs to SW
- 3. Testing at subsystem level (e.g. propulsion) covered by the relevant standards

System Engineering E-ST-10C

ECSS-E-ST-10C "System engineering general requirements" Content

- Provides (general) description and guidelines on system engineering tasks
- Provides SE tasks per project phases (as defined in ECSS-M-ST-10, Space project management – Project planning and implementation): it defines what should be available from system viewpoint at the end of each phase
- It provides a list of system engineering documents + DRDs in Annexes (and guideline on project milestones when those shall be available)
- Common misconception: It does not provide System Engineering "best practices" and methodologies (e.g. how to make system budgets, define margins, make trade-offs, system modes, etc.). This is left to each specific project to define.

ECSS-E-ST-10C "System engineering general requirements" System Engineering Functions (Fig. 4-1)

MAIT = manufacturing, assembly, integration and test PM&P = parts, materials and processes

ECSS Training Course | ESTEC | 14 March 2017

ECSS-E-ST-10C "System engineering general requirements" System Engineering Functions Summary

Functions	Tasks
Requirement Engineering	 Elicit, write, organise, flow-down and maintain requirements Validate top-level requirements with users (in Phase 0)
System Analysis	 Define functions / function tree Define and justify physical architecture / product tree Derive end-to-end performance Analyse impacts on cost and schedule Establish all relevant environments Perform trade-offs Define analysis methods, tools and models
Design and Configuration	Elaborate system design and configurationsDefine and manage interfaces
Verification	 Define and perform product verification Ensure that the verification is successfully closed out at each stage
Integration and Control	 Define, plan and manage integrated technical effort amongst all disciplines Define and maintain system budgets (mass, power,) as well as margin policy Ensure availability and exchange of all (system-level, common) engineering data Identify and manage candidate technologies, with TRLs Support risk, change, non-conformances control

ECSS-E-ST-10C: 3 Main Areas of Concern & 1 Central Task "Integration and Control"

ECSS-E-ST-10C: Iterative "Integration and Control"

ECSS Training Course | ESTEC | 14 March 2017

ECSS-E-ST-10C: "Integration and Control" Across the Customer-Supplier Chain

ECSS-E-ST-10C: "Integration and Control" Effort along the System Life-Cycle

ECSS Training Course | ESTEC | 14 March 2017

ECSS-E-ST-10C Annex D (DRD) System Engineering Plan (SEP)

The SEP was formerly often known as the "Design and Development Plan"

The System Engineering Plan defines

"the approach, methods, procedures, resources and organization to co-ordinate and manage all technical activities necessary to specify, design, verify, operate and maintain a system or product in conformance with the customer's requirements"

- Project objectives / constraints / phases / reviews / product evolution
- SE tasks, inputs and outputs
- SE team responsibilities and organization, including coordination between all engineering disciplines
- Procurement approach of all elements / equipment
- Technology development approach
- Verification Plan and AIT Plan, or combined AIV Plar
- Coordinate systems
- Processes, methods, facilities and tools

Depending on the size of the project, constituent plans may be integrated or self-standing

Requirements shall be organized hierarchically – in a Specification Tree - that supports traceability

Typical documentation hierarchy for ESA project (NB: not in E-10):

Requirement types	Responsible	Content	Document Name
User requirements/ Mission objectives	User	Non-technical, high level, general. Gives rationale for the project. Contains mission need statement.	URD or Mission Objectives Document
Mission requirements	ESA	Functional, technical, overall performance. Applies to the Mission	Mission Requirements Document (MRD) (sometimes merged with URD)
System requirements	ESA	Functional, technical, overall performance. Applies to the System	System Requirements Document (SRD)
System requirements	Mission Prime / LSI	Detailed, technical, reflects the (architectural) design. Represents the interpretation of the customer requirements from the developer	System Technical Specification
Lower level (equipment, component) requirements	Lower Tier Supplier	Very specific and detailed: flow-down of system requirements.	Element, subsystem, equipment or component requirements specification
Interface requirements	ESA or Prime	Allows connecting the system with other systems	Interface Requirements Document Can be at any level where an interface needs to be managed.
Operations requirements	Operator	Technical, including constraints, for operations	OIRD

ECSS-E-ST-10C Main SE Deliverables and Organisation

Title	Content
Mission Description Doc	high level description of mission concepts, including preferred concept
Specifications aka RB (Requirements Baseline)	preliminary TS, TS, interface requirements doc
SE Plan	tech plan, tech matrix, verification plan, AIT QM/FM plan, debris mitigation plan, coordinate systems,
DDF (Design Definition File)	function tree, product tree, spec tree, tech budget, TS for next lower level, DDF for next lower level, interface control doc, product user manual,
DJF (Design Justification File)	req traceability wrt next lower level, req justification file, system concept report, trade-off reports, verification control doc, test spec, analysis rep, math model description, correlation rep, test procedure, test rep, verification rep, DJF for next lower level, review-of-design rep, inspection rep, GSE spec's, GSE data pack's

Note 1: In DDF and DJF, "File" should be understood in the meaning of collection of documents / information containers, i.e. not a single computer file. In a digital data repository (e.g. using a modern PLM or version control environment) it can be thought of as a "Top Folder" or a "Repository" or a similar concept.

Note 2: Currently many ESA projects produce instead of a DDF and a DJF a "System Design Report"

ECSS-E-ST-10C Annex A SE documents delivery per review (1/3)

Document title ECSS document		DRD ref	Phase 0 Phase A		Phase B		Phase C Phase D				Phase E				Phase F
Document title	LCSS document	DRD Ter.	MDR	PRR	SRR	PDR	CDR	QR	AR	ORR	FRR	LRR	CRR	ELR	MCR
Mission description document	ECSS-E-ST-10	Annex B	+	+											
Specifications															
Preliminary technical requirements specification	ECSS-E-ST-10-06	Annex A	+	+											
Technical requirements specification	ECSS-E-ST-10-06	Annex A			+										
Interface requirements document	ECSS-E-ST-10	Annex M		+	+	+									
System engineering plan	ECSS-E-ST-10	Annex D	+	+	+	+	+	+	+						
Technology plan	ECSS-E-ST-10	Annex E		+	+	+									
Technology matrix	ECSS-E-ST-10	Annex F		+	+	+									
Verification plan	ECSS-E-ST-10-02	Annex B		+	+	+	+	+	+						
AIT QM/FM plan	ECSS-E-ST-10-03	Annex A				+	+	+	+						
Orbital debris mitigation plan	ISO 24113		+	+	+	+	+	+	+	+	+	+		+	+
Other related plans (as called in ECSS-E-ST- 10 Annex D)				+	+	+	+	+	+						
Coordinate system document	ECSS-E-ST-10-09	Annex A		+	+	+	+	+							

ECSS-E-ST-10C Annex A SE documents delivery per review (2/3)

Document title	ECSS document	DPD ref	Phase 0	Phase A Phase B		Phase C	Phase D			Phase E				Phase F	
Document the	LCSS document	DRD Tel.	MDR	PRR	SRR	PDR	CDR	QR	AR	ORR	FRR	LRR	CRR	ELR	MCR
Design definition file	ECSS-E-ST-10	Annex G		+	+	+	+	+							
Function tree	ECSS-E-ST-10	Annex H		+	+	+									
Product tree	ECSS-M-ST-10	Annex B		+	+	+									
Specification tree	ECSS-E-ST-10	Annex J			+	+									
Technical budget	ECSS-E-ST-10	Annex I		+	+	+	+	+	+						
Preliminary technical requirements specifications for next lower level	ECSS-E-ST-10-06			+	+										
Technical requirements specifications for next lower level	ECSS-E-ST-10-06				+	+									
Design definition file for next lower level						+	+	+	+						
Interface control document	ECSS-E-ST-10-24	Annex A			+	+	+	+	+	+	+	+			
Product User manual / User Manual	ECSS-E-ST-10	Annex P					+	+	+	+	+	+	+	+	+
Design justification file	ECSS-E-ST-10	Annex K		+	+	+	+	+							
Requirements traceability matrix w.r.t. next lower level	ECSS-E-ST-10	Annex N		+	+	+									
Requirement justification file	ECSS-E-ST-10	Annex O	+	+	+	+									
System concept report	ECSS-E-ST-10	Annex C	+	+											
Trade off reports	ECSS-E-ST-10	Annex L	+	+	+	+	+								

ECSS-E-ST-10C Annex A SE documents delivery per review (3/3)

Document title	ECSS document	DRD ref	Phase 0	e 0 Phase A Phase B			Phase C	Phase D			Phase E				Phase F
Document title	EC33 document	DRD Tel.	MDR	PRR	SRR	PDR	CDR	QR	AR	ORR	FRR	LRR	CRR	ELR	MCR
Verification control document	ECSS-E-ST-10-02	Annex C		+(1)	+(1)	+(1)	+	+	+	+	+	+	+	+	+
Test specification	ECSS-E-ST-10-03	Annex D					+	+	+	+	+	+	+	+	+
Analysis report	ECSS-E-ST-10	Annex Q		+	+	+	+	+	+	+	+	+	+	+	+
Mathematical model description					+	+	+	+							
Correlation report							+	+							
Test procedure	ECSS-E-ST-10-03	Annex C					+	+	+	+	+				
Test report	ECSS-E-ST-10-02	Annex D					+	+	+	+	+	+	+	+	+
Verification report	ECSS-E-ST-10-02	Annex H					+	+	+	+	+	+	+	+	+
Design justification file for next lower level							+	+	+						
Review of design report	ECSS-E-ST-10-02	Annex F					+	+							
Inspection report	ECSS-E-ST-10-02	Annex G					+	+	+						
GSE specifications						+	+	+	+						
GSE Data packages							+	+	+						

Note (1) : Document limited to the verification matrix

ECSS-E-ST-10C - System Engineering General Requirements Guidelines for use/tailoring

- The core of the Standard shall be left as is since it gives general principles which are applicable in all cases
- Practical implementation instructions shall be included in SRD or SOW Examples:
 - Specific Product Tree or design constraints
 - Margin philosophy
 - Use of a tool (e.g. DOORS) to manage requirements
 - Use/definition of models
 - Operations implementation
- The documentation deliverables shall be tailored according to project needs / heritage (own project DRL), including proposed delivery dates
 - Example: System Design Report with content part of the Design Definition File and part of the Design Justification File
- DRDs as defined in annexes would typically require some tailoring

Requirements
ECSS-E-ST-10-06C "Technical Requirements Specification" Content

- Provides "requirements on requirements" i.e. how to:
 - Identify and capture requirements
 - Write requirements
 - including how to formulate "good" unambiguous requirements
 - definitions of "shall", "should", "may", words to avoid, ...
 - Classify according to type of requirement
 - functional, operational, physical, design, etc.
- Used to write e.g. SRD and to an extent the Prime System Specification
- Common misconception: It does not provide practical instructions for requirements management
 - E.g. does not prescribe use of tools like DOORS, etc.

ECSS-E-ST-10-06C "Technical Requirements Specification" Types of technical requirements

- Functional requirements
- Mission requirements
- Interface requirements
- Environmental requirements
- Operational requirements
- Human factor requirements
- Integrated logistics support requirements
- Physical requirements
- Product Assurance (PA) induced requirements
- Configuration requirements
- Design requirements (i.e. design constraints)
- Verification requirements

The DRD defines expected contents of a TS:

> Objective:

establishes the intended purpose of a product, its associated constraints and environment, the operational and performance features for each relevant situation of its life profile, and the permissible boundaries in terms of technical requirements

- User's need presentation
- Selected concept / product presentation
- Life profile description
- Environment and constraints description
- Requirements

Verification

ECSS-E-ST-10-02C - Verification Content

- Provides definitions and general requirements on:
 - Verification process
 - Verification planning
 - Verification execution
 - Verification close-out
- Provides in Annexes DRDs of several verification documents and proposes a list of Verification documents deliverable per review
- It is complemented by the Verification guidelines HB (not normative) which give explanations, advices and examples for the preparation and execution of the verification programme and provide extensive explanation on "model philosophy".

Verification

- process which demonstrates through the provision of objective evidence that the product is designed and produced according to its specifications and the agreed deviations and waivers, and is free of defects
- "building the system right"
- Validation
 - process which demonstrates that the product is able to accomplish its intended use in the intended operational environment
 - "building the right system"
 - Validation demonstrates that the space system (including tools, procedures and resources) will be able to fulfil mission requirements
 - It also includes confirmation of product integrity and performance after particular steps of the project life cycle, e.g. pre-launch, inorbit commissioning, post-landing

- ECSS does not mandate system validation
 - Unlike in aeronautics for instance
- The reason is that the way system requirements are written for the space segment already address the suitability of the product to fulfill the needs of its intended use – therefore, in most cases verification encompasses validation
- > The latter is not always true for **ground segment** elements

ECSS-E-ST-10-02C - Verification Process

- The verification process shall be implemented in subsequent stages all along the program life cycle
 - The stages depend upon project characteristics and identify a type of verification
 - Usually, the verification stages are related to project milestones
- > The classical verification stages and milestones are:
 - Development (PDR CDR)
 - Qualification (CDR QR)
 - Acceptance (QR FAR)
 - Pre-launch (FAR Launch) to verify after transportation / storage
 - In-orbit (Commissioning)

ECSS-E-ST-10-02C - Verification Process

- The verification shall be performed incrementally at different verification levels
- The number and type of verification levels depend on the complexity of the project
- > Typical verification levels are:
 - Component (or Part)
 - Subassembly or Module
 - Equipment (or Unit)
 - Subsystem
 - Element
 - System

- e.g. resistor, relay, bearing
- e.g. printed circuit board
 - e.g. valve, battery, electronics box
 - e.g. electrical power, structure, thermal
 - e.g. satellite
 - e.g. manned infrastructure system

ECSS-E-ST-10-02C – Verification Process

- Qualification to verify the design according to project requirements;
- Acceptance to ensure that the product is in agreement with the qualified design, is free from workmanship defects and acceptable for use
- Commissioning verification and validation activities conducted after the launch and before the entry into operational service
 - either on the space segment elements only
 - or on the overall system, including the ground segment elements

ECSS-E-ST-10-02C Verification methods

Verification shall be by one or more of the following verification methods (in order of higher to lower level of confidence):

- Test verification method by measurement of product performance and functions under representative simulated environments
 - is the preferred method
- Analysis verification method performing a theoretical or empirical evaluation using techniques agreed with the Customer – may be analysis by similarity
- Review-of-design verification method using approved records or evidence that unambiguously show that the requirement is met
- **Inspection** visual determination of physical characteristics

However:

- All safety critical functions shall be verified by test.
- Verification of SW shall include testing in the target hardware.
- For each requirement verified only by analysis or review-of-design, a risk assessment shall be conducted to determine the impact (major/minor) of this requirement on the mission.
 If the impact is major, two independent analyses shall be performed (in terms of model used and suppliers).

ECSS-E-ST-10-02C - Qualification and Product categories

		0 0	1
Category	Description	Qualification programme	
A	 Off-the-shelf product without modifications and subjected to a qualification test programme at least as severe as that imposed by the actual project specifications including environment and produced by the same manufacturer or supplier and using the same tools and manufacturing processes and procedures 	None	Notes: <u>Off the shelf</u> : procured from the market.
В	Off-the-shelf product without modifications. However: It has been subjected to a qualification test programme less severe or different to that imposed by the actual project specifications (including environment).	Delta qualification programme, decided on a case by case basis.	<u>Commercial</u> Off-the-Shelf (COTS): procured from the market and not developed for space
С	Off-the-shelf product with modifications. Modification includes changes to design, parts, materials, tools, processes, procedures, supplier, or manufacturer.	Delta or full qualification programme (including testing), decided on a case by case basis depending on the impact of the modification.	application
D	Newly designed and developed product.	Full qualification programme.	

ECSS Training Course | ESTEC | 14 March 2017

ECSS-E-ST-10-02C – Model Philosophy

- > A Model and Test Philosophy needs to be established as:
- Qualification of the design needs extensive testing
- Testing of the flight model only is not efficient as:
 - It is too late in case problems are found
 - It would be very expensive to correct the design when the system is already integrated.
 - It may be detrimental to the lifetime of the spacecraft / unit
- Additional models of the flight hardware are necessary, to allow early testing for effective design qualification
- The models must be representative of the flight hardware for all those parts that need to be tested
- It is found convenient (by experience) to separate at system level, thermal and mechanical design aspects from functional design
 - To qualify thermal and mechanical design, a Structural-Thermal Model (STM) is usually built
 - To qualify functional design, a so called Engineering Model (EM) is usually built

ECSS-E-ST-10-02C - Models Description - 1

Model	Objectives	Representativity	Applicability	Remarks
Mock-Up (MU)	 I/F layout optimization/ assessment Integration procedure validation Accommodation checks 	 Geometrical configuration Layouts Interfaces 	System/element levels	According to their representativity MU's are classified as: • Low fidelity • High fidelity (to be maintained under configuration control)
Development Model (DM)	Confirmation of design feasibility	 Total conformity with functional electrical & S/W req. in agreement with verif. objectives (size, shape & I/Fs could not be representative) 	All levels	 Development testing Sometime it is also called breadboard (BB)
Structural Model (SM)	 Qualification structural design Validation of structural mathematical model 	 Flight standard with respect to structural parameters Equipment structural dummies 	 SS level (structure) Sometime it could be considered system level if involves other SS or is merged with the system test flow 	Qualification testing
Thermal Model (ThM)	 Qualification of thermal design Validation of thermal mathematical model 	 Flight standard with respect to thermal parameters Equipment thermal dummies 	 SS level (thermal control) Sometime it could be considered system level if involves other SS or is merged with the system test flow 	Qualification testing
Structural-Thermal Model (STM)	SM & ThM objectives	SM & ThM representativity Equipment thermo structural SS Training dummies	System level g Course ESTEC 14 Ma	Qualification testing

ESA UNCLASSIFIED - Releasable to the Public

ECSS-E-ST-10-02C - Models Description - 2

Suitcase Model	Simulation of functional & RF performances	 Flight design Commercial parts Functional representativity 	 Equipment level System level 	Space to ground interface testing
Electrical and Functional Model (EFM)	 Functional development S/W development Procedure validation Prepare flight test programme Closed loop tests 	 Functional representativity Commercial parts Simulators of missing parts 	All levels	 Development or qualification testing It could be considered something in between a mock-up and an EM Sometime is called also Integration Model
Engineering Model (EM)	Functional qualification failure survival demonstration & parameter drift checking	 Flight representative in form-fit-function without high reliability parts and usually without redundancy 	All levels	Partial functional qualification testing
Engineering Qualification Model (EQM)	 Functional qualification of design & I/Fs EMC 	 Full flight design MIL-Grade parts procured from the same manufacturer of high reliability parts 	All levels	Functional qualification testing
Qualification Model (QM)	Design qualification	 Full flight design & flight standard 	 Equipment level SS level 	Qualification testing
Life test Model (LTM)	Qualification of lifetime	Flight representative with respect to the qualified function	Equipment level	 Model for mechanisms in a protoflight approach with lifetime requirements
1		ECSS Trair	nna Course ESTE(I I Claub/badt/ble u/seld for

European Space Agency

flight

ECSS-E-ST-10-02C - Models **Description - 3**

Protoning at success (PFDA) Flight use Design qualification Full flight design & flight standard All levels Protoflight quatesting Flight Model (FM) Flight use Full flight design & flight standard All levels Acceptance test flight quatesting Flight Spare (FS) Spare for flight use Full flight design & flight standard Equipment level Acceptance test flight standard Function oriented model Qualification against the applicable flight representative as necessary for the limited qualification objectives All levels Qualification to oriented to a sp function or requirements Training model Flight training baseline data Flight representative with modifications to allow for normal gravity operation All levels Qualification to oriented to specific allow for normal gravity operation Virtual and hybrid models Development and verification of specific as necessary for the applicable verification objectives All levels Often replay Often replay Often replay Often replay Often replay Spects See also ECS0-flight verification objectives 	Proto Giola da Corra C	I	1	1	I
qualificationFlight Model (FM)Flight useFull flight design & flight standardAll levelsAcceptance test flight standardFlight Spare (FS)Spare for flight useFull flight design & flight standardEquipment levelAcceptance test flight standardFunction oriented modelQualification against the applicable functional requirementsFlight representative as necessary for the limited qualification objectivesAll levelsQualification te oriented to a sp function or reqTraining modelFlight training baseline dataFlight representative with modifications to allow for normal gravity operationAll levelsQualification te oriented to spe requirementsVirtual and hybrid modelsDevelopment and verification of specific aspectsVirtual or physical flight representativity as necessary for the applicable verification objectivesAll levels• Composition charge in co the project 1 • Often replat hardware mHuman related modelsQualification against the applicable HTFE requirementsFlight representative as necessary for the limited qualification objectivesAll levelsQualification te oriented to spe requirementsground segment specific modelsVerification process of the ground segment and operationsFlight representative as necessary for the limited qualification objectivesGround segment See also ECSS-f	rrotofight Model (PrM)	Flight useDesign	Full flight design & flight standard	All levels	Protoflight qualification testing
Flight Model (FM)Flight useFull flight design & flight standardAll levelsAcceptance test flight standardFlight Spare (FS)Spare for flight useFull flight design & flight standardEquipment levelAcceptance test 		qualification			
Flight Spare (FS)Spare for flight useFull flight design & flight standardEquipment levelAcceptance test flight standardFunction oriented modelQualification against the applicable functional requirementsFlight representative as necessary for the limited qualification objectivesAll levelsQualification to oriented to a sp function or requirementsTraining modelFlight training baseline dataFlight representative with modifications to allow for normal gravity operationAll levelsQualification te oriented to spe requirementsVirtual and hybrid modelsDevelopment and verification of specific aspectsVirtual or physical flight representativity as necessary for the applicable verification objectivesAll levelsComposition change in co the project l equirementsHuman related modelsQualification against the applicable HFE requirementsFlight representative as necessary for the applicable verification objectivesAll levelsQualification te oriented to spe requirementsground segment specific modelsVerification process of the ground segment and operationsFlight representative as necessary for the applicable verification objectivesAll levelsQualification te oriented to spe requirementsground segment and operationsVerification process of the ground segment and operationsRepresentative as necessary for the applicable verificationGround segment segment sealso ECSS-f	Flight Model (FM)	Flight use	Full flight design & flight standard	All levels	Acceptance testing
Function oriented modelQualification against the applicable functional requirementsFlight representative 	Flight Spare (FS)	Spare for flight use	Full flight design & flight standard	Equipment level	Acceptance testing
Training modelFlight training baseline dataFlight representative with modifications to allow for normal 	Function oriented model	Qualification against the applicable functional requirements	Flight representative as necessary for the limited qualification objectives	All levels	Qualification testing oriented to a specific function or requirement
Virtual and hybrid modelsDevelopment and verification of specific aspectsVirtual or physical flight representativity as necessary for the applicable verification objectivesAll levels• Composition change in co the project level • Often replace hardware meHuman related modelsQualification against the applicable HFE requirementsFlight representative as necessary for the as necessary for the as necessary for the as necessary for the as necessary for the limited qualification objectivesAll levels• Composition change in co the project level • Often replace hardware meHuman related modelsQualification against 	Training model	Flight training baseline data	Flight representative with modifications to allow for normal gravity operation	All levels	Qualification testing oriented to specific HFE requirements
Human related models Qualification against Flight representative as necessary for the limited qualification objectives All levels Qualification te oriented to spectre requirements ground segment specific models Verification process of the ground segment and operations Representative as necessary for the applicable verification Ground segment See also ECSS-I	Virtual and hybrid models	Development and verification of specific aspects	Virtual or physical flight representativity as necessary for the applicable verification objectives	All levels	 Composition may change in course of the project life cycle Often replaces pure hardware models
ground segment specific models Verification process of the ground segment and operations Applicable verification	Human related models	Qualification against the applicable HFE requirements	Flight representative as necessary for the limited qualification objectives	All levels	Qualification testing oriented to specific HFE requirements
ECSS Training Course ESTEC 14 March 2017	ground segment specific models	Verification process of the ground segment and operations	Representative as necessary for the applicable verification	Ground segment	See also ECSS-E-ST-70

Prototype and proto-flight verification approaches

<u>Prototype approach</u>: Verification approach where qualification is achieved on a dedicated full flight-representative system model (generally split between STM and EM) while only acceptance takes place on the flight end item. This applies to equipment level too.

European Space Agency slide 53

<u>Proto-flight approach</u>: Verification approach where qualification and acceptance take place at the same time on the flight end item. This applies to equipment level too.

Proto-flight (PFM)Testing vs Prototype (QM+FM) testing

Pro's

Prototype:

Lower risk (issues discovered early on different model from flight)

Possibility to refurbish QM as spare

Possibility to use the QM or training,

operations, etc.

ProtoFlight:

Lower Cost (single model) Shorter development schedule

Cons

Prototype: Higher Cost

(additional model) Longer schedule Protoflight:

Higher risk to discover issues too late

More complex spares approach

No further model available for operations, troubleshooting, etc.)

The cost and schedule saving of the Protoflight approach often overrules all other considerations.

Protoflight approach is ideal for "standard" missions with high degree of recurrent equipment

ECSS Training Course | ESTEC | 14 March 2017

Proto-flight practical approach

- Generally, risk mitigation for Protoflight Approach consists on:
 - enhancing development testing,
 - increasing the design margins
 - using design tools with high degree of confidence and validation (whenever possible)
 - implementing an adequate spare policy.
- In practice, the most commonly used approach is a hybrid approach:
 - Qualification models (or EQM) are used at lower level (subsystem and equipment level) for the most critical or innovative parts and proto-flight approach is applied at space segment element level
 - A STM (Structural Thermal Model) is defined for the mechanical part. This can then be either refurbished into the PFM (if margins are high) or discarded after use.
 - EM at system level is limited to a degree of Electrical/interfaces/functional representativeness (sometimes called ATB: Avionics Test Bench)
 - System Functional verification is carried out by SVF (Software Verification Facility)

ECSS-E-ST-10-02C - Overall Model Approach – Hybrid Example

ECSS-E-ST-10-02C - Overall Model Approach - Examples

STM: Actual structures and thermal but dummy units

EM/ATB: No structures and no thermal but assembly of EQM/EM (functionally representative) units

ECSS Training Course | ESTEC | 14 March 2017

ECSS-E-ST-10-02C - Overall Model Approach – Examples of ESA projects

<u>XMM</u>

STM

F_M

EM (composed of all the equipment EQMs)

No STM, no EM SW-based spacecraft functional model Most units recurrent, not requiring EQMs

ECSS Training Course | ESTEC | 14 March 2017

ECSS-E-ST-10-02C - Product Matrix

For each unit on the basis of the category, the qualification status and the verification needs, a matrix of models shall be defined.

This forms the basis of the procurement activities

No.	Subsystem/Instrument	Qual. Status	STM	EM	PFM	SP	Remarks
1	Structure	D	1		1	*	* STM Spare
2	Thermal control	D	1	*	1	1	* STM Spare
3	AOCS • Coarse sun sensor • Star tracker • Star tracker electr. • Gyro package • Gyro electronic • Reaction wheel • Wheel drive electronic • Actuator gyro electronic • Elan assembly		2* 3* 3* 1* 4* 1* 1* 1* 2*	1 1 1 1 1 1 1 1 1 1	2 3 1 3 4 1 1 2**		* Dummy * Dummy
	Control electronic	D	1*	1	1**		* Dummy ** PFM
4	RCS • Tanks • Thrusters • Thrusters bracket • Latch valves • Filter • Flow meter • Fill & drain valves • Valve brackets • Pressure transducers • Pipework	B(A) A D A D A D A D D A D	8* 12* 4* 11* 1* 3* 2* 3* 1*	8** 1 4** 1 1 2** 1 1**	8 12 4 11 1 3 2 3 1		* Dummy ** from STM * Dummy * Dummy ** from STM * Dummy * Dummy * Dummy * Dummy * Dummy ** from STM * Dummy ** from STM
5	Power Power control unit Battery regulator unit Battery mgt unit Pyro drive unit Power distribution unit Battery	C A A C D A	1* 1* 1* 1* 2*	1** 1 1** 1 2	1 1 1 1** 2		* Dummy ** EQM * Dummy * Dummy * Dummy ** EQM * Dummy ** PFM * Dummy
6	OBDH • Central terminal unit • Common pulsed distr. unit • Digital bus unit • Intelligent control unit • Mass memory uniturse Es • Remote bus interface	A A C(D) D(C) A ^{EC} 14 Mar	1* 1* 4* 2* 1* 2*201	1 1 2** 1 2	1 4 2** 1 2		* Dummy * Dummy * Dummy * Dummy ** EQM * Dummy ** PFM * Dummy

Assume the Proba-3 mission consisting of 2 small satellites flying in formation in a HEO orbit

- Reaction wheels from a German small satellite mission in LEO are found suitable in terms of performance
 - Which category are they? And which models shall be procured?
- The mission requires laser-based relative attitude and position sensors of unprecedented accuracy
 - Which category are they? And which models shall be procured?
- Coarse Analogue Sun sensors are used for safe mode
 - Which category are they? And which models shall be procured?
- Integrated On-board Computer and PCDU (ADPMS) is a recurrent item from the Proba-V mission
 - Which category is it? And which model shall be procured?

- Verification Plan (part of System Engineering Plan)
 - Contains the overall verification approach, the model philosophy, the product matrix, the verification strategies for the requirements, the verification methods and planning, the verification tools, the verification control methodology, the verification management and organization
- Verification Control Document VCD (part of DJF)
 - Lists the requirements to be verified with the selected methods in the applicable stages at the defined levels. It contains the Verification Matrix
- Test report
 - describes test execution, test and engineering assessment of results and conclusions in the light of the test requirements (including pass-fail criteria)
- DRDs for these documents are in Annexes to 10-02C

- The implementation of the verification process shall be monitored by the Verification Control Board (VCB)
 - a board composed of customer and supplier representatives that ultimately assesses the requirements verification close-out
- The means to monitor the verification progress are the VCD and the verification database

ECSS-E-ST-10-02C - Verification Guidelines for Use/Tailoring

- Guidelines for tailoring are provided in ECSS-E-HB-10-02A (verification guidelines), Annex B
- Requirements that can be tailored and requirements that are recommended NOT to be tailored are indicated
 - Per type of Mission
 - Per phase of Project
 - Per level within product tree
 - Per typical product (HW unit, SW component, Space Element, GSE, Launcher, Ground Segment, Overall System)

ECSS-E-ST-10-02C Verification Requirement				Specific product type						
	per Product/ Mission	per Phase	per Level	Space HW	Space SW	Space element	GSE	Launcher	Ground segment	Overall Svstem
5.1 VERIFICATION PROCESS										
 a. The verification process shall demonstrates that the deliverable product meets the specified customer requirements and is capable of sustaining its operational role through: 1. Verification planning: 2. Verification execution and reporting: 3. Verification control and close-out. 	No	No	No	No	No	No	No	No	No	No
5.2 VERIFICATION PLANNING										
5.2.2 Verification methods										
5.2.2.1 General										
 a. Verification shall be accomplished by one or more of the following verification methods: test (including demonstration); analysis (including similarity); review-of-design; inspection. 	No	No	No	No	No	No	No	No	No	No
b. All safety critical functions shall be verified by test.	No	No	No	No	No	No	No	No	No	No
c. Verification of software shall include testing in the target hardware environment.	No	No	No	No	No	No	No	No	No	No
d. For each requirement verified only by analysis or review-of-design, assessment analysis (part of the VP) shall be conducted to determine the level (major/minor) of the impact of this requirement on the mission	Yes	Yes	No	No	No	No	Yes	No	Yes	No
e. If the impact of the requirement is major, a risk mitigation plan (part of the VP) shall be defined which includes, a cross check based on two independent analyses (in terms of model used and suppliers)	Yes	Yes	No	No	No	No	Yes	No	Yes	No

Testing

- Provides requirements for testing in general and in particular at space segment element (e.g. spacecraft or instrument) and equipment level
- Defines the tests to be performed to qualify and accept for flight all equipment sorted per "types" and all elements
- Defines levels and pass criteria for the above tests
- > Notes:
 - End-to-end System validation is not included and should be project-specific (when required)
 - Subsystem testing is not covered as normally limited to projectspecific functional testing. Sometimes this is reported in the ECSS relevant to the specific disciplines (e.g. propulsion)
 - Tests at components/parts/materials level are covered by ECSS-Q-ST

ECSS-E-ST-10-03C – Test Classification

Per objective:

- Development testing
 - used to validate new design concepts and the application of proven concepts and techniques to a new configuration. It takes place before qualification and shall confirm performance margins, manufacturability, testability, maintainability, etc.
- Qualification Testing
 - is the formal demonstration that the design implementation and manufacturing methods have resulted in hardware and software conforming to the specification requirements
 - (also called prototyping testing in other engineering fields)
- Acceptance Testing
 - to demonstrate conformance to building specification and to act as quality control screens to detect manufacturing defects and workmanship errors
- Protoflight (PFM) Testing
 - is the combination of the qualification and acceptance testing objectives on the first flight model

- It applies mostly to equipment
- > Typical testing performed in the early technology development activities
- The standard does not specify which tests shall be performed for development
 - This is left to the project to define.
- Development Models are built on-purpose for development testing
 - Sometimes also called breadboards a term not used in ECSS
- Qualification testing and associated levels provide a reference but often at early stage, materials and components basic resistance to space environment needs to be tested
 - see ECSS-ST-Q-60- and ECSS-ST-Q-70- series

> Testing tolerances on the most important test parameters are specified:

Test parameters	Tolerances						
1. Temperature	Low High						
above 80K	Tmin +0/-4 K Tmax -0/+4 K						
T< 80 K	Tolerance to be defined case by case						
2. Relative humidity	±10%						
3. Pressure (in vacuum chamber)							
>1,3 hPa	± 15 %						
1,3 10-3 hPa to 1,3hPa	± 30 %						
< 1,3 10-3 hPa	± 80 %						
4. Acceleration (steady state) and static load	-0 / +10 %						
5. Sinusoidal vibration							
Frequency (5 Hz to 2000 Hz)	±2 % (or ±1 Hz whichever is greater)						
Amplitude	±10 %						
Sweep rate (Oct/min)	±5%						
6. Random vibration							
Amplitude (PSD, frequency resolution better than 10Hz)							
20 Hz - 1000 Hz	-1 dB / +3 dB						
1000 Hz - 2000 Hz	± 3 dB						
Random overall g r.m.s.	± 10 %						
7. Acoustic noise							
Sound pressure level, Octave band centre (Hz)							
31,5	-2 dB /+4 dB						
63	-1 dB /+3 dB						
125	-1 dB /+3 dB						
250	-1 dB /+3 dB						
500	-1 dB /+3 dB						
1000	-1 dB /+3 dB						
2000	-1 dB /+3 dB						
Overall	-1 dB /+3 dB						
Sound pressure level homogeneity per octave band	+/- 2 dB						
8. Microvibration							
Acceleration	±10 %						

Test parameters	Tolerances					
Forces or torque	±10 %					
9. Audible noise (for Crewed Element only)						
Sound-power (1/3 octave band centre frequency)						
32,5 Hz - 160 Hz	±3 dB					
160 Hz – 16 kHz	±2 dB					
9. Shock						
Response spectrum amplitude (1/12 octave centre frequency or higher)						
Shock level	- 3 dB/ + 6 dB					
	50 % of the SRS amplitude above 0 dB					
10. Solar flux						
in reference plane	\pm 4 % of the set value					
in reference volume	\pm 6 % of the set value					
11. Infrared flux						
Mean value	± 3 % on reference plane(s)					
12. Test duration	-0/+10 %					

European Space Agency

ESA UNCLASSIFIED - Releasable to the Public

Measurement accuracy for the most important tests are specified (input to test facilities/instrumentation selection):

Test parameters Accuracy			
1. Mass			
Space segment equipment and space segment element	\pm 0,05 % or 1 g whatever is the heavier		
2. Centre of gravity (CoG)			
Space segment equipment	Within a 1 mm radius sphere		
Space segment element	± 2,5 mm along launch axis ± 1 mm along the other 2 axes		
3. Moment of inertia (MoI)			
Space segment equipment and Space segment element	± 3 % for each axis		
4. Leak rate	One magnitude lower than the system specification, in Pa m ³ s ⁻¹ at standard conditions (1013,25 Pa and 288,15 K).		
5. Audible noise (for Crewed Element only)			
32,5 Hz to 160 Hz	± 3 dB		
160 Hz to 16 kHz	± 2 dB		
6. Temperature			
above 80 K	±2 K		
T< 80 K	Accuracy to be defined case by case		
7. Pressure (in vacuum chamber)			
> 1,3 hPa	± 15 %		
1,3 10 ⁻³ hPa to 1,3 hPa	± 30 %		
< 1,3 10-3 hPa	± 80 %		
8. Acceleration (steady state) and static load	± 10 %		
9. Frequency for mechanical tests	± 2 % (or ±1 Hz whichever is greater)		
10. Acoustic noise	± 0,1dB		
11. Strain	± 10 %		
12. EMC	See ECSS-E-ST-20-07 clause 5.2.1.		
13. ESD	See ECSS-E-ST-20-06		
	See ECSS-E-ST-20-07 clause 5.2.1 for ESD test on space segment equipment.		

ECSS-E-ST-10-03C - Equipment Testing – Sequence "Test as you Fly"

Multipaction

Burst test

Life Test

- Equipment testing (either qualification or acceptable) shall follow a pre-defined sequence
- \geq This is based on trying to preserve the order in which environments are encountered during the operational life ("test as you fly"), and detect potential failures and defects as early in the test sequence as possible

ECSS-E-ST-10-03C – Equipment Testing Types of equipment

- Required tests are different depending on "type" of equipment
 - For instance, burst pressure testing does not obviously apply to optical equipment
- Some tests need to be run only depending on specific mission requirements or characteristics
 - e.g. acoustic depending on equipment location, magnetic depending on magnetic cleanliness requirements, etc.
- Some testing may require specific models
 - e.g. burst

	Types of space segment equipment									
a	Electronic, electrical and RF equipment	d	Valve	8	Thruster	j.	Mechanism			
Ь	Antenna	e	Fluid or propulsion equipment	h	Thermal equipment	k	Solar array			
C.	Battery	f	Pressure vessel	i	Optical equipment	1	Solar panel			

The qualification testing shall be conducted on dedicated QMs that are produced from the same drawings, using the same materials, tooling and methods as the flight item.

Test	Reference	Ref. to Level &	A	plica	ibilit	y ver	sus t	pes	of sp	ace se	egme	nt eq	uipn	nent
	clause	Duration	а	b	с	d	e	f	g	h	i	j	k	1
General														
Functional and performance (FFT/RFT)	5.5.1.1		R	R	R	R	R	R	R	R	R	R	R	R
Humidity	5.5.1.2		х	X	X	X	X	х	X	X	X	X	-	X
Life	5.5.1.3	See Table 5-2 No 1	x	x	R	R	x	x	R	x	x	R	-	-
Bum-in	5.5.1.4		х	-	-	X	-	-	X	-	-	-	-	-
Mechanical														
Physical properties	5.5.2.1		R	R	R	R	R	R	R	R	R	R	R	R
Static load	5.5.2.2	See Table 5-2 No 2	х	X	X	X	X	X	X	X	X	X	X	-
Spin	5.5.2.2	See Table 5-2 No 3	х	х	х	Х	Х	х	х	х	х	х	X	-
Transient	5.5.2.2	See Table 5-2 No 4	х	X	X	X	X	х	х	х	х	X	X	-
Random vibration	5.5.2.3	See Table 5-2 No 5	R	x	R	R	R	R	R	R	x	x	x	-
Acoustic	5.5.2.4	See Table 5-2 No 6	-	x	-	-	-	-	-	-	x	x	R	-
Sinusoidal vibration	5.5.2.5	See Table 5-2 No 7	R	R	R	R	R	R	R	R	R	R	R	-
Shock:	5.5.2.6	See Table 5-2 No 8	R	x	R	R	R	x	R	x	R	R	-	-
Micro-vibration generated environment	5.5.2.7		х	х	-	x	x	-	х	-	-	х	-	-
Micro-vibration susceptibility	5.5.2.8	See Table 5-2 No 9	x	-	-	-	-	-	-	-	х	x	-	-
Structural integrity														
Leak	5.5.3.1	See Table 5-2 No 10	х	-	R	R	R	R	X	х	-	-	-	-
Proof pressure	5.5.3.2	See Table 5-2 No 11	х	-	-	R	R	R	R	-	-	-	-	-

Test	Reference	Ref. to Level &	Applicability versus types of space segme									nt eq	equipment			
Test	clause	Duration	a	ь	с	d	e	f	g	h	i	j	k	1		
Pressure cycling	5.5.3.3	See Table 5-2 No 12	x		-	R	R	R	R	-	-	-	-	-		
Design burst pressure	5.5.3.4	See Table 5-2 No 13	х	-	-	R	R	R	R	-	-	-	-	-		
Burst	5.5.3.5	See Table 5-2 No 14	х	-	-	R	R	R	R	-	-	-	-	-		
Thermal																
Thermal vacuum	5.5.4.1 & 5.5.4.2	See Table 5-2 No 15	R	x	R	R	R	x	R	R	R	R	-	R		
Thermal ambient	5.5.4.1 & 5.5.4.3	See Table 5-2 No 16	R	x	R	R	R	x	R	R	R	R	-	-		
Electrical / RF																
EMC	5.5.5.1	See Table 5-2 No 17	R	X	X	X	X	Х	Х	X	Х	Х	Х	Х		
Magnetic	5.5.5.2		x	x	x	x	x	x	х	х	x	x	x	x		
ESD	5.5.5.3	See Table 5-2 No 19	R	x	x	x	x	x	х	x	x	x	x	x		
PIM	5.5.5.4	See Table 5-2 No 19	х	X	-	-	-	-	-	-	-	-	-	-		
Multipaction	5.5.5.5		х	X	-	-	-	-	-	-	-	-	-	-		
Corona and arc discharge	5.5.5.6	See Table 5-2 No 20	R	R	R	-	-	-	-	-	-	-	-	-		
Mission specific																
Audible noise	5.5.6.1		R	-	-	R	R	-	R	-	-	R	-	-		

Key

- R Required
- X To be decided by the customer
- Not required

- The qualification test levels shall exceed the maximum predicted levels by a factor of safety which assures that, even with the worst combination of test tolerances, the flight levels shall not exceed the qualification test levels
- Examples of qualification factors:
 - For mechanical loads: KQ = 1.25 (recommended) over the limit loads, or +3dB for shock, random and acoustic expected spectra
 - For thermal: ±10 0C on design max and min temperatures (operational and non-operational)
- Some launchers require higher qualification factors
 - E.g. Soyuz asks for KQ = 1.3 on limit loads in such cases the KQ from launcher manual is taken as reference

ECSS-E-ST-10-03C – Equipment **Acceptance Tests**

The acceptance testing shall be conducted on all the flight products \succ (including spares)

Test	Reference	Ref. to Level &	А	ppli	plicability versus types of space segment equipment					Application notes					_														
Test	clause	Duration	a	b	c	d	e	f	8	h	i	j	k	1															
General																													
unctional and erformance (FFT/RFT)	5.5.1.1		R	R	R	R	R	R	R	R	R	R	R	R	For k (solar array environmental to	y), the deploy ests (manual d	ment test is mandatory be deployment before the env	fore ar	nd af tental	ter the l tests	e).								
fumidity			-	-	-	-	-	-	-	-	-	-	-																
ife			-		-	-	-	-	-	-	-	-	-																
lum-in	5.5.1.4		x	-	-	x	-	-	x	-	-	-	-	-	To be performed insufficient to de segment equipm	I, if the total d stect material nent lifetime.	luration of the acceptance and workmanship defect	test sec occurri	quen ing ir	ce is n the s	space								
Mechanical																													
'hysical properties	5.5.2.1		R	R	R	R	R	R	R	R	R	R	R	R	Upon agreement calculated.	t with custom	er the CoG and MoI is not	measu	ured	by tes	it. but								
tatic load			-		-	-	-	X	-	-	-	-	-		Constant														
pin			-	-	-	-	-	-	-	-	-	-	-		higher level test	a proor test i (e.g. sinusoid	s performed on pressure v al with full tanks).	essei ii	r no c	overe	sa by								
ransient			-	-	-	-	-	-	-	-	-	-	-	-		(0.0. 00000000													
tandom vibration	5.5.2.3	See Table 5-4 No 1	R	Х	R	R	R	R	R	R	X	X	X		For k (solar array	y), the randon	n vibration test should be	added	to ac	ousti	c test								
Acoustic	5.5.2.4	See Table 5-4 No 2		x				-			x	x	-		for fixed solar ar bracket). For b (antennas) selected depend	ixed solar array mounted directly to the spacecraft side wall (without offset ket). (ontennas), i (optical), j (mechanism), random vibration or acoustic test is ted depending on the type, size and location of the space segment						t							
															Reference	e Ref. to Level &	Applicability versu				us typ	es of s	pace	segm	ent e	quipr	nent	Application notes	
															Test	clause	Duration	a	b	c	d	e f	f g	h	i	j	k	1	
			+	┣	+	+	+	╋	+	+	+	+	+1	Struct	ural integrity														
													ΙĒ	Leak		5.5.3.1	See Table 5-4 No 5	х	-	R	R	RI	λ Χ	-	-	-	-	-	For a (electronic, electrical and RF equipment) required only on sealed or
inusoidal vibration	5.5.2.5	See Table 5-4 No 3	-	-	-	-	-	-	-	-	-	-		Proof p	ressure	5.5.3.2	See Table 5-4 No 6	-		-	R	R	a x	-	-	-	1	-	pressurized space segment equipment. For c (battery) proof pressure, is performed at cell level (i.e. component level).
hock					-	-	-		-		-	-	± 1	Pressur	e cycling			-	-	-			-	-	-	-	-	-	
ficro-vibration													ΤĻ	Design	burst pressure			-	-	-	-		-	-	-	-	-	-	
enerated environment			-	-	-	-	-	-	-	-	-	-	Тħ	Burst						-				-				-	
ficro-vibration suscep.	5.5.2.8	See Table 5-4 No 4	х	-	-	-	-	-	-	-	X	X	ЧĽ	Them	nal														
														Therma	l vacuum	5.5.4.1 & 5.5.4.2	See Table 5-4 No 7	R	х	R	R	R)	R	R	R	R	-	R	
														Therma	l ambient	5.5.4.1 & 5.5.4.3	See Table 5-4 No 8	R	x	R	R	R	R	R	R	R	-	-	Can be combined in thermal vacuum test. Tests not required for batteries that cannot be recharged after testing.
													1	Electr	ical / RF														
													Ē	EMC		5.5.5.1	See Table 5-4 No 9	R	х	Х	X	X)	C X	X	Х	Х	Х	Х	For equipment without electronic test are limited to bonding test.
													1	Magnet	ic	5.5.5.2		x	x	x	X	x	x	x	x	x		x	Magnetic test to be performed if justified by mission needs, in accordance with the EMCCP.
													- D	ESD				-	-	-				-	-	-	-	-	
														PIM		5.5.5.4	See Table 5-4 No 10	X	X	-	-		· X	-	Х	-	-	-	
													- 1	Multipa	action	5.5.5.5		X	X	-	-		-	-	-	-	-	-	
														Corona dischar	and arc ge	5.5.5.6	See Table 5-4 No 11	R	R	R	-		-	-	-	-	-	-	For condition of applicability of test, refer to 5.5.5.6.
													- Ji	Missi	on specific														
													t.	Audible	e noise	5.5.6.1		R	R	-	R	R ·	R		-	R		-	Required for space segment equipment for crewed space segment element.
													- +														_		

European Space Agency

- The acceptance test shall be conducted under environmental conditions no more severe than those expected during the mission
- and it shall not create conditions that exceed safety margins or cause unrealistic modes of failure
- Examples of acceptance factors:
 - For mechanical loads: KA = 1. (recommended) over the limit loads or +0dB for shock, random and acoustic expected spectra
 - For thermal: ±5 0C on design max and min temperatures (operational and non-operational)

ECSS-E-ST-10-03C – Equipment Protoflight Tests, Test Levels and durations

- Protoflight tests are the same as for qualification
 - except for static loads (not required)
 - and destructive tests (burst obviously not for the PFM)

The Protoflight test levels and durations shall be as follows:

- Proto-flight test levels: as qualification levels
- Proto-flight test durations: as acceptance durations
 - e.g. 4 cycles for thermal

ECSS-E-ST-10-03C – Space Segment Element Protoflight Tests

- Taken as an example for Space Segment Element Testing
- > Note that tests are different from the equipment ones

Test	Reference clause	Ref. to Level & Duration & Number of applications	Applicability	Conditions
General				
Optical alignment	6.5.1.1		R	
Functional (FFT / RFT)	6.5.1.2		R	
Performances (PT)	6.5.1.3		R	
Mission (MT)	6.5.1.4		R	
Polarity	6.5.1.5		R	
Launcher Interface	6.5.1.6		x	Mandatory for space segment element interfacing with launcher.
Mechanical				
Physical properties	6.5.2.1		R	
Modal survey	6.5.2.2		х	
Static	6.5.2.3	Table 6-6 No 1	x	Mandatory if not performed at structure subsystem level
Spin	6.5.2.4	Table 6-6 No 2	x	Mandatory for spinning space segment elements with an acceleration greater than 2 g or more to any part of the space segment element
Transient	6.5.2.5	Table 6-6 No 3	х	
Acoustic	6.5.2.6	Table 6-6 No 4	x	Acoustic test may be replaced by random vibration. For a small compact space segment element acoustic testing does not
Random vibration	6.5.2.7	Table 6-6 No 5	x	provide adequate environmental simulation, and random vibration may replace the acoustic test. If acoustic test is performed, random vibration may be avoided.
Sinusoidal vibration	6.5.2.8	Table 6-6 No 6	R	Sinusoidal vibration may be replaced by transient combined with modal survey
Shock	6.5.2.9	Table 6-6 No 7	х	
Micro-vibration susceptibility	6.5.2.10	Table 6-6 No 8	x	
Structural integrity				
Proof pressure	6.5.3.1	Table 6-6 No 9	x	Mandatory for pressurized space segment elements or on pressurized equipment integrated in space segment element for which the test is feasible
Pressure cycling	6.5.3.2	Table 6-6 No 10	x	Mandatory for Pressurized space segment elements that will experience several re-entries.
Design burst pressure	6.5.3.3	Table 6-6 No 11	x	Mandatory for pressurized space segment element to be performed on a dedicated hardware
Leak	6.5.3.4	Table 6-6 No 12	x	Mandatory for pressurized space segment elements or on pressurized

Test	Reference clause	Ref. to Level & Duration & Number of applications	Applicability	Conditions
		••		equipment integrated in space segment element for which the test is feasible
Thermal			1	Leanone se
Thermal vacuum	6.5.4.1 & 6.5.4.2	Table 6-6 No 13	R	
Thermal ambient	6.5. 4 .1 & 6.5. 4 .3	Table 6-6 No 14	x	Applicable to space segment elements that operate under a non- vacuum environment during their lifetime
Thermal balance	6.5.4.4		R	
Electrical / RF				
EMC	6.5.5.2	Table 6-6 No 15	R	
Electromagnetic auto- compatibility	6.5.5.3		R	
PIM	6.5.5.4	Table 6-6 No 16	x	
Magnetic	6.5.5.5		х	
		Mission Speci	fic	
Aero-thermodynamics	6.5.6.1		R	For space segment element performing atmospheric entry
		Crewed Mission S	pecific	
Micro-vibration emission	6.5.7.1		R	
HFE	6.5.7.2		R	
Toxic off gassing	6.5.7.3		R	
Audible noise	6.5.7.4		R	
R Mandatory X To be decided on the basis usage. Note: All tests type are listed inde	of design feature	es, required lifetime, s	ensitivity to env	ironmental exposure, and expected

- the dark grey indicates that the type of test is never required or optional
- the light grey indicates that there is no test level and duration specified in the Table 6-6 since it is not a test where an environment is applied to the item under test

lency

Documents:

- > AIT Plan
 - Describes the AIT process and, with the Verification Plan, gives the process for requirements verification
 - AIT / V&V process is typically a main driver for cost & schedule
- Test specification
 - Purpose of the test, test approach, item-under-test and set-up, required GSE, test tools, test instrumentation and measurement accuracy, test conditions, test sequence, facility, pass/fail criteria, required documentation, participants and test schedule
- > Test Procedure
 - Detailed step-by-step instructions for conducting test activities

Programme:

- Before Test: TRR (Test Readiness Review)
- After Test: PTR (Post Test Review) TRB (Test Review Board)

ECSS-E-ST-10-03C - Testing Guidelines for Use/Tailoring

Other E-10 Standards

- Specifies/recommends most appropriate models and tools to define a range of space natural environments and to assess the induced environments generated by the interaction between the spacecraft and the natural environments
 - (Earth) gravity: EIGEN-GLO4C model is specified complemented by IERS models and JPL Planet and Lunar Ephemerides for perturbations
 - (Earth) Magnetic field (internal and external)
 - Electromagnetic radiation (e.g. thermal)
 - (Earth) atmosphere NRLMSISE-00 model for altitudes < 120 km, JB-2006 model above 120 km (Annex G mentions also Planetary atmospheres)
 - (Earth) plasma (e.g. charged particles) and energetic particles radiation (Annex I gives some planetary environment data)
 - Space debris and meteoroids
 - Contamination

ECSS-E-ST-10-04C - Space Environment Documentation

- The Standard only provide requirements for the preparation of a Radiation Environment Specification and not for an overall Mission Environment Specification
- It is common practice to have a Mission Environment Specification (either prepared by ESA or the Prime) which reports the analysis performed to assess the Spacecraft environment in all phases of the mission (not only in orbit but also on-ground, on the launch pad, etc.)

ECSS-E-ST-10-04C - Space Environment Guidelines for Use/Tailoring

- Generally for Earth-bound missions, all natural and main induced environments are well covered and within each section the standard provides tailoring guidelines
- For interplanetary missions, especially if including a surface mission (e.g. ExoMars, Lunar Lander, etc.), project own environment description and requirements are needed
- Thermal environment is usually specified in more detail by projects/primes for albedo and Earth IR (own tailoring) in comparison to what is in ANNEX F
- In most projects the prime issues as a "Support specification" the specification of all the environment (from AIV to transport to launch to orbit) applicable to the mission

ECSS-E-ST-10-09C - Reference Coordinate System Content

- General definition and guidelines on how to define reference coordinate systems for a space project
- Mandates the preparation already from phase A of a Coordinate Systems Document explaining all the frames to be used
 - May be part of the System Engineering Plan
- Specifies need to define transformations between coordinates and define time unit (as some coordinate systems are time-dependent)
- > There are three Annexes:
 - A: DRD of Coordinate Systems Document (Normative)
 - B: Transformation Tree formats (Informative)
 - C: Existing International Standard
- Hints in Annex A that at least the following systems shall be defined:
 - Inertial System (Heliocentric or Earth centered or both)
 - Orbital System (also sometimes called rotating frame)
 - Mechanically fixed System (also sometimes called body frame)
 - Instrument/Unit-fixed System (one for each unit)

ECSS-E-ST-10-09C - Reference Coordinate System Use/Tailoring

- The Standard does not provide " recommended" Coordinate Systems definition but leaves it to each individual project to define
 - Can choose from International Standards (which are however not of much practical use)
- The Standard does specify the format for describing the coordinate systems and associated transformations (within the Coordinate System Document) and this should be tailored
- Suggest to leave applicable but tailor Annex A depending on project specific needs

Examples of commonly used RCS

The Standard does not provide "recommended" Coordinate Systems definition but leave it to each individual project to define. Here are examples:

Earth Centred Inertial (ECI) used for satellite motion

Origin: Earth centre of mass

X: the intersection between the J2000.0 equatorial plane and the ecliptic plane

Z: the direction of the Earth mean rotation pole at J2000.0

Y: completes the right-handed system

Rotating Orbital Frame used for satellite attitude with respect to mechanically fixed satellite reference frame

Origin: Satellite centre of mass

- +Z: (Yaw) pointing towards the Earth centre
- **+Y**: (Pitch) parallel to the orbit angular momentum vector, pointing in the opposite direction (i.e. orbit anti-normal)
- +X: (Roll) completes the right-handed system

Mechanically-fixed Satellite Coordinate System used to identify attitude and locations onboard the satellite

Origin: Reference Point on the satellite Structure, often at Launcher Interface

- X: Typical direction linked to specific geometric or attitude features of the satellite
- Z: often the launch direction
- Y: completes the right-handed system

- It contains requirements to be taken into account when designing systems with high interaction with Humans (called Human-machine systems)
 - E.g. Human Spaceflight Vehicles
- > It includes:
 - ergonomics,
 - reference for anthropometric characteristics (European),
 - EVA requirements,
 - Requirements for crew space (volume, furniture, etc.)
 - Requirements on human operations (e.g. onboard ISS)

ECSS-E-ST-10-12C – Methods for Calculation of Radiation - Content

- Provides extensive description of the recommended analysis processes for definition of the expected radiation environment and effects on a space mission
- It is complemented by the guidelines HB (not normative) which give explanations, formulas and examples for the calculations.
- Includes:
 - Summary of radiation effects (highly recommended reading !)
 - Calculation methods and margins
 - Shielding approach
 - Details on the main effects:
 - TID (Total Ionizing Dose) / TNID (Total Non-Ionizing Dose)
 - Displacement Damage
 - SEE (Single Event Effects)
 - Sensor backgrounds
 - Biological effects (for human spaceflight)

ECSS-E-ST-10-12C - Methods for Calculation of Radiation - Application

Effect	Parameter	Typical units	Examples	Particles	Sub-system or	Technology	Effect	Sub-system or	Technology	Effect	
Total ionising	Ionising dose in	grays (material)	Threshold voltage shift	Electrons,	component			component			
dose (TED)	Inaterial	rad(material)) or	in CMOS, linear	bremsstrahlung	Integrated	Power MOS	ΠD	Optoelectronics	γ-ray or X-ray	TNID (alkali halides)	
		1 Gy = 100 rad	bipolar (note dose-rate		circuits		SEGR	and sensors (2)	scintillator	Enhanced background	
			sensitivity)				SEB		ү-гау	TNID	
Displacement	Displacement	MeV/g	All photonics, e.g.	Protons,		CMOS	TID		semiconductor ^b	Enhanced background	
uanage	dose (total non-		efficiency, optocoupler	neutrons, ions			SEE (generally)		charged particle	TNID (scintillator: &	
	ionising dose)		transfer ratio			Bipolar	TNID		detectors	semiconductor)	
	Equivalent fluence	cm ⁻²	Reduction in solar cell				SEU			Enhanced background	
	of 10 MeV protons		efficiency				SET			TID (scintillator: &	
Single erent	Errorte per unit	cm ² moreous	Memories	Ione 7>1		Dict (OC	TID		microchannol	Enhanced background	
effects	fluence from linear	MeV-cm ² /mg	microprocessors. Soft	1016 2-1		BICMOS			plates	Enhanced background	
from direct	energy transfer	, i i i i i i i i i i i i i i i i i i i	errors, latch-up, burn-				SEE (concreller)		photomultiplier	Enhanced background	
ionisation	(LET) spectra &		out, gate rupture,			SOL	SEE (generally)		tubes		
	LET		comparators.			301	SEE (generally exc		Other imaging	TNID	
Single event	Events per unit	cm ² versus MeV	As above	Protons,			SEL)		sensors	Enhanced background	
effects from fluence from energy				neutrons,	Optoelectronics	MEMS *	TID		(e.g. InSb, InGaAs, HeCdTe, CaAs		
nuclear reactions	spectra & cross-			ions	and sensors (1)	CCD	TNID		and GaAlAs)		
	particle energy						TID		Gravity wave	Enhanced background	
Payload-specific	Energy-loss spectra,	counts s ⁻¹ MeV ⁻¹	False count rates in	Protons,			Enhanced background		sensors	-	
radiation effects	charge-deposition		detectors, false images	electrons,			(SEE)	Solar cells	Cover glass &	TID	
	spectra		in CCDs	neutrons, ions,		CMOS APS	TNID		bonding materials		
				radioactivity			TID		Cell	TNID	
	charging		Gravity proof-masses	(α, β±, γ)			SEE (generally)	Non-optical	Crystal oscillators	TID	
Biological	Dose equivalent =	sieverts (Sv) or	DNA rupture,	Ions, neutrons,		Photodiodes	TNID	materials	polymers	TID (radiolysis)	
damage	Dose(tissue) x	rems	mutation, cell death	protons,		Thorotabues	TD	Optical	silica glasses	TID	
	Quality Factor,	1 Sv = 100 rem		electrons,			SET	materials	alkali halides	TID	
	Dose(tissue) x			T-lays, X-lays		LEDs	TNID			TNID	
	radiation weighting						TID	Radiobiological	effects	Early effects	
	factor;					laser LEDs	TNID			Stochastic effects	
	Effective dose						TID			Deterministic late effects	
Charging	Charge	coulombs (C)	Phantom commands	Electrons		Opto-couplers	TNID	ŀ		·	
L	1	I	HOIL EOD			_	TID				
							SET		Europ	ean Space Agency	

ESA UNCLASSIFIED – Releasable to the Public

slide 91

ECSS-E-ST-10-24C "Interface Management" (Published 1 June 2015)

Describes the process for interface management and control, which is a critical system activity

 "Interface" consists of two or more "Interface Ends" plus the connection between them

It includes:

- Customer defines the req's which need to be placed on the interface (electrical, mechanical, etc.) in IRD(s)
- Supplier prepares a description of its interface end in a so-called Interface Definition Document (IDD) or Single-end ICD
- Once the interface is designed it is captured and managed via an Interface Control Document (ICD), adopted and "signed" by the managing customer and both interface end suppliers.
- Interface change management, verification and validation.
- Interface Identification Document (IID) to list all interfaces relevant to one project. ECSS Training Course | ESTEC | 14 March 2017
 ECSS Training Course | ESTEC | 14 March 2017

ECSS-E-ST-10-24C "Interface Management" Definitions

- interface boundary where two or more products meet and interact
- interface end one side of an interface
- external interface interface between items under different programme responsibilities
- internal interface interface between items within the same programme responsibility

Generic interface management life cycle

ECSS Training Course | ESTEC | 14 March 2017

Handbooks and Technical Memoranda

ECSS-S-ST-00C, c5.2.2: Handbooks are non-normative documents providing background information, orientation, advice or recommendations related to one specific discipline or to a specific technique, technology, process or activity.

ECSS-S-ST-00C, c5.2.3: Technical memoranda are non-normative documents providing useful information to the space community on a specific subject.

- ECSS-E-HB-10-02A Verification guidelines
 - ECSS-E-HB-10-12A Calculation of radiation and its effects and margin policy handbook
 - ECSS-E-TM-10-10A Logistics engineering
 - ECSS-E-TM-10-20A Product data exchange
 - ECSS-E-TM-10-21A System modeling and simulation
 - ECSS-E-TM-10-23A Space system data repository
 - ECSS-E-TM-10-25A Engineering design model data exchange (CDF)

ECSS System Engineering Handbook

Work on ECSS-E-HB-10 "System engineering handbook" was started but put on hold – currently unsure whether or when it will be finished

► However ...

A lot of guidelines and best practices can be found in the previous version of ECSS-E-ST-10: Part 1B

- As part of a restructuring of the whole of ECSS to version C all guidelines and best practices were moved out of the standards
- ECSS-E-ST-10 Part 1B can still be downloaded from <u>http://ecss.nl/standard/ecss-e-10-part-1b-system-engineering-part-1-requirements-and-process/</u>

- Not part of E-10 series but large impact on system design
- ECSS has adopted the international standard:
 ISO 24113: Space systems Space debris mitigation requirements.
- Only small modifications have been introduced via the Standard: ECSS-U-AS-10C
- Policy in summary:
 - All ESA Space Vehicle including Satellites, Launchers and Inhabited Vehicles shall be disposed of
 - At the end of life they shall be out of "Protected regions" (LEO up to 2000 km and GEO +/-15 deg, +/- 200 km) within 25 years
 - Either moved to non-protected regions or re-entered into Earth atmosphere for break-up and burning
 - Uncontrolled re-entry not allowed if casualty risk > 10-4 (the case of ATV and possibly Envisat)
 - If drift to non-protected regions or re-entry do not happen naturally, active (propulsive) measures needs to be accounted for

Technology Readiness Levels - ISO 16290 Adopted by ECSS through Adoption Notice E-AS-11C

Note: The TRL scale evaluates a given technology in the context of a specific application, not by itself

If a given technology has been flying for a long time it does not mean that it is automatically TRL 9! TRL 9 is achieved only for the *exact same application* with *exactly the same requirements*, otherwise it is

TRL definitions are applicable to both HW and SW

TRI 5

Accompanying Handbook ECSS-E-HB-11A published 1 March 2017

TRL Scale as Defined in ISO 16290

Level	Definition
TRL 1	Basic principles observed and reported
TRL 2	Technology concept and/or application formulated
TRL 3	Analytical and experimental critical function and/or characteristic proof-of-concept
TRL 4	Component and/or breadboard functional verification in laboratory environment
TRL 5	Component and/or breadboard critical function verification in a relevant environment
TRL 6	Model demonstrating the critical functions of the element in a relevant environment
TRL 7	Model demonstrating the element performance for the operational environment
TRL 8	Actual system completed and accepted for flight ("flight qualified")
TRL 9	Actual system "flight proven" through successful mission operations

ECSS Training Course | ESTEC | 14 March 2017

TRL Scale as Adopted through E-AS-11C "Milestone achieved"

Level	Milestone achieved for the element
TRL 1	Potential applications are identified following basic observations but element concept not yet formulated.
TRL 2	Formulation of potential applications and preliminary element concept. No proof of concept yet.
TRL 3	Element concept is elaborated and expected performance is demonstrated through analytical models supported by experimental data/characteristics.
TRL 4	Element functional performance is demonstrated by breadboard testing in laboratory environment.
TRL 5	Critical functions of the element are identified and the associated relevant environment is defined. Breadboards not full-scale are built for verifying the performance through testing in the relevant environment, subject to scaling effects.
TRL 6	Critical functions of the element are verified, performance is demonstrated in the relevant environment and representative model(s) in form, fit and function.
TRL 7	Performance is demonstrated for the operational environment, on the ground or if necessary in space. A representative model, fully reflecting all aspects of the flight model design, is build and tested with adequate margins for demonstrating the performance in the operational environment.
TRL 8	Flight model is qualified and integrated in the final system ready for flight.
TRL 9	Technology is mature. The element is successfully in service for the assigned mission in the actual operational environment.

TRL Scale as Adopted through E-AS-11C "Work achievement"

Level	Work achievement (documented)
TRL 1	Expression of the basic principles intended for use. Identification of potential applications.
TRL 2	Formulation of potential applications. Preliminary conceptual design of the element, providing understanding of how the basic principles would be used.
TRL 3	Preliminary performance requirements (can target several missions) including definition of functional performance requirements. Conceptual design of the element. Experimental data inputs, laboratory-based experiment definition and results. Element analytical models for the proof-of-concept.
TRL 4	Preliminary performance requirements (can target several missions) with definition of functional performance requirements. Conceptual design of the element. Functional performance test plan. Breadboard definition for the functional performance verification. Breadboard test reports.
TRL 5	Preliminary definition of performance requirements and of the relevant environment. Identification and analysis of the element critical functions. Preliminary design of the element, supported by appropriate models for the critical functions verification. Critical function test plan. Analysis of scaling effects. Breadboard definition for the critical function verification. Breadboard test reports.
TRL 6	Definition of performance requirements and of the relevant environment. Identification and analysis of the element critical functions. Design of the element, supported by appropriate models for the critical functions verification. Critical function test plan. Model definition for the critical function verifications. Model test reports.
TRL 7	Definition of performance requirements, including definition of the operational environment. Model definition and realisation. Model test plan. Model test results.
TRL 8	Flight model is built and integrated into the final system. Flight acceptance of the final system.
TRL 9	Commissioning in early operation phase. In-orbit operation report.

- Since about 2006 there has been a growing trend to move to MBSE
- > INCOSE MBSE Initiative started early 21st century
- OMG System Modelling Language (SysML) released 2010
- MBSE tool implementations (COTS and open source) maturing and being put into industrial practice
- Main goal: more efficient and effective system engineering by moving from a document-centric to model-centric approach making use of the capabilities that modern computer tools can offer
 - cf. transition of 2D drawings to 3D CAD over the last 30 years
- Most important expected benefits:
 - One master definition of information = "Single Source of Truth"
 - Any number of views / perspectives on the same information
 All views are inherently consistent: "correct by construction"
 - Integrated version, configuration and traceability control

Model Based System Engineering (MBSE) in an ECSS E-10 context

ECSS-E-TM-10-23 and E-TM-10-25 Towards a Semantic "Space System Data Repository"

slide 104

ECSS Implementations and further development

- Proof-of-concept tool for E-TM-10-23 validation available at Virtual Spacecraft Design site: <u>http://www.vsd-project.org</u>
- Evolution of VSD used in EGS-CC (European Ground System Common Core) project
- E-TM-10-25 implemented in Open Concurrent Design Tool (OCDT) under ESA Community Open Source License, see <u>https://ocdt.esa.int</u>
- OCDT used in daily practice in ESTEC CDF
- ESA contribution (in cooperation with NASA-JPL) for Quantities, Units, Dimension and Values (QUDV) accepted in OMG SysML, same QUDV in E-TM-10-23 and E-TM-10-25, further evolution into OMG SysML v2
- Harmonisation activity "Space System Data Repository" was run in 2015, defining a roadmap for coming years to develop genuine standards / best practices for MBSE for the European Space sector

Useful references

- ECSS at <u>http://www.ecss.nl</u>
- Systems Engineering Body of Knowledge, see <u>http://sebokwiki.org/</u>
- ISO/IEC 15288, Systems and software engineering System life cycle processes, <u>http://en.wikipedia.org/wiki/ISO/IEC_15288</u>
- NASA/SP-2007-6105 Rev1, NASA Systems Engineering Handbook, <u>http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080008301.pdf</u>
- International Council on Systems Engineering (INCOSE), see <u>http://www.incose.org</u>
- INCOSE / OMG Model Based Systems Engineering (MBSE) Initiative, see <u>http://www.omgwiki.org/MBSE/doku.php</u>