
ECSS-Q-HB-80-03A DIR1 
28 February 2017 

 

Space product 
assurance 
Software dependability and safety 

ECSS Secretariat 
ESA-ESTEC 

Requirements & Standards Division 
Noordwijk, The Netherlands 

This draft is circulated to the ECSS community for Public Review. 
(Duration: 8 weeks) 

Start of Public Review: 1 March 2017 
End of Public Review: 1 May 2017 

 
All DRRs shall be provided using the online DRR Form available from the dedicated 
entry on the ECSS Website ( www.ecss.nl ) 
 
DISCLAIMER (for drafts) 
This document is an ECSS Draft Standard. It is subject to change without any notice 
and may not be referred to as an ECSS document until published as such. 

http://www.ecss.nl/


ECSS-Q-HB-80-03A DIR1 
28 February 2017 

Foreword 

This Handbook is one document of the series of ECSS Documents intended to be used as supporting 
material for ECSS Standards in space projects and applications. ECSS is a cooperative effort of the 
European Space Agency, national space agencies and European industry associations for the purpose 
of developing and maintaining common standards. 

The material in this Handbook is defined in terms of description and recommendation how to select 
and apply software dependability and safety methods and techniques. 

 

This handbook has been prepared by the ECSS-Q-HB-80-03A Rev.1 Working Group, reviewed by the 
ECSS Executive Secretariat and approved by the ECSS Technical Authority. 

Disclaimer 

ECSS does not provide any warranty whatsoever, whether expressed, implied, or statutory, including, 
but not limited to, any warranty of merchantability or fitness for a particular purpose or any warranty 
that the contents of the item are error-free. In no respect shall ECSS incur any liability for any 
damages, including, but not limited to, direct, indirect, special, or consequential damages arising out 
of, resulting from, or in any way connected to the use of this document, whether or not based upon 
warranty, business agreement, tort, or otherwise; whether or not injury was sustained by persons or 
property or otherwise; and whether or not loss was sustained from, or arose out of, the results of, the 
item, or any services that can be provided by ECSS. 

Published by:  ESA Requirements and Standards Division 
 ESTEC, P.O. Box 299, 
 2200 AG Noordwijk 
 The Netherlands 
Copyright:  2012 © by the European Space Agency for the members of ECSS 

2 



ECSS-Q-HB-80-03A DIR1 
28 February 2017 

Change log 

 

Previous Steps  

 Parallel Assessment performed by TAAR1 (J-P. Hulier), Feb 2017 

Current Step  

ECSS-Q-HB-80-03A DIR1 

28 February 2017 

Draft for Public Review. 

Next Steps  

 DRR implementation by WG 

 DRR Feedback 

 TA Vote for publication 
 

3 



ECSS-Q-HB-80-03A DIR1 
28 February 2017 

 Table of contents 

Change log ................................................................................................................. 3 

Introduction ................................................................................................................ 6 

1 Scope ....................................................................................................................... 7 

2 References .............................................................................................................. 8 

3 Terms, definitions and abbreviated terms ............................................................ 9 

3.1 Terms from other documents .................................................................................... 9 

3.2 Abbreviated terms..................................................................................................... 9 

4 Principles .............................................................................................................. 10 

4.1 General concepts ................................................................................................... 10 

4.1.1 Software failures and faults ....................................................................... 10 

4.1.2 Software reliability ..................................................................................... 10 

4.1.3 Software maintainability ............................................................................ 11 

4.1.4 Software availability .................................................................................. 11 

4.1.5 Software safety ......................................................................................... 12 

4.1.6 System level and software level ................................................................ 12 

4.1.7 Fault prevention, removal, tolerance, and forecasting ............................... 12 

4.2 Relation to other ECSS Standards and Handbooks ................................................ 13 

5 Software dependability and safety programme ................................................. 14 

5.1 Introduction ............................................................................................................. 14 

5.2 Software dependability and safety workflow............................................................ 14 

5.2.1 General ..................................................................................................... 14 

5.2.2 Software dependability and safety requirements ....................................... 15 

5.2.3 Software criticality classification ................................................................ 16 

5.2.4 Handling of critical software ...................................................................... 22 

5.2.5 Hardware-Software Interaction Analysis .................................................... 22 

6 Software dependability and safety  methods and techniques .......................... 24 

6.1 Introduction ............................................................................................................. 24 

4 



ECSS-Q-HB-80-03A DIR1 
28 February 2017 

6.2 SFMEA (Software Failure Modes and Effects Analysis) .......................................... 24 

6.2.1 Purpose .................................................................................................... 24 

6.2.2 Procedure ................................................................................................. 25 

6.2.3 Costs and benefits .................................................................................... 28 

6.3 SFTA (Software Fault Tree Analysis) ...................................................................... 28 

6.3.1 Purpose .................................................................................................... 28 

6.3.2 Procedure ................................................................................................. 29 

6.3.3 Costs and benefits .................................................................................... 29 

6.4 SCCA (Software Common Cause Analysis)............................................................ 30 

6.5 Engineering methods and techniques supporting software dependability and 
safety ...................................................................................................................... 31 

6.6 Software availability and maintainability techniques ................................................ 31 

6.6.1 Software maintainability ............................................................................ 31 

6.6.2 Software availability .................................................................................. 33 

6.7 Software failure propagation prevention .................................................................. 34 

6.8 Defensive programming .......................................................................................... 36 

Annex A Software dependability and safety documentation ............................... 38 

A.1 Introduction ............................................................................................................. 38 

A.2 Software criticality analysis report ........................................................................... 38 

A.2.1 Criticality classification of software products.............................................. 39 

A.2.2 Criticality classification of software components ........................................ 40 

A.2.3 Software dependability and safety analysis report ..................................... 40 

Bibliography ............................................................................................................. 42 

 

Figures 
Figure 5-1 – Software dependability and safety framework .................................................. 15 

Figure 5-2 – Software dependability and safety requirements .............................................. 15 

Figure 5-3 – System-level software criticality classification ................................................... 17 

Figure 5-4 - Software-level software criticality classification ................................................. 20 

Figure 5-5 – Feedback from software-level to system-level analyses ................................... 21 

Figure 5-6 – Hardware-Software Interaction Analysis ........................................................... 23 

Figure 6-1: Failure, error, failure propagation ....................................................................... 34 

 

5 



ECSS-Q-HB-80-03A DIR1 
28 February 2017 

Introduction 

Dependability and safety are issues of paramount importance in the development and operations of 
space systems. The contribution of software to system dependability and safety is a key factor, 
especially in view of the growing complexity of the software used in space critical applications, 
together with the increasing cost and schedule constraints. Hence, the need for more dependable and 
safe software has led to the publication of this Handbook, meant to provide guidelines on the 
implementation of the software dependability and safety requirements defined in ECSS-Q-ST-80C and 
on the application of some methods and techniques for software dependability and safety. 

Analyses and activities aiming at assessing and ensuring the system dependability and safety are 
carried out since the early stages of the development, and software needs to be properly addressed by 
these system-level activities. Hardware and software products are classified based on their criticality, 
in order to focus engineering and product assurance activities on the most critical items. At later 
stages, the inherent complexity of software calls for application of specific methods and techniques, 
aiming at refining the software criticality classification and supporting the implementation and 
verification of measures for critical software handling. 

This handbook provides an overall description of the entire software dependability and safety 
workflow, considering the different development levels and phases and the customer-supplier 
relationships, with reference to the dependability and safety requirements defined in ECSS-Q-ST-80C. 
Some individual software RAMS techniques are also presented. They have been selected from the list 
of methods and techniques mentioned in different national and international standards and literature, 
from which a choice has been made based on their relevance to the requirements defined in the ECSS 
Standards. 

 

 

6 



ECSS-Q-HB-80-03A DIR1 
28 February 2017 

1 
Scope 

This Handbook provides guidance on the application of the dependability and safety requirements 
relevant to software defined in ECSS-Q-ST-80C. 

This Handbook provides support for the selection and application of software dependability and 
safety methods and techniques that can be used in the development of software-intensive space 
systems.  

This Handbook covers all of the different kinds of software for which ECSS-Q-ST-80C is applicable. 
Although the overall software dependability and safety workflow description is mainly targeted to 
the development of spacecraft, the described approach can be adapted to projects of different nature 
(e.g. launchers, ground systems).   

The methods and techniques described in the scope of this Handbook are limited to assessment 
aspects, not including development and implementation techniques for dependability and safety (e.g. 
fault tolerance techniques, or development methods like coding standards, etc.). 

 

7 



ECSS-Q-HB-80-03A DIR1 
28 February 2017 

2 
References 

For each document or Standard listed, a mnemonic (used to refer to that source throughout this 
document) is proposed in the left column, and then the complete reference is provided in the right one. 

 

[ECSS-Q-30] ECSS-Q-ST-30C – Space product assurance - Dependability 

[ECSS-Q-30-02] ECSS-Q-ST-30-02C – Space product assurance – Failure modes, effects 
and criticality analysis (FMECA/FMEA) 

[ECSS-Q-30-09] ECSS-Q-ST-30-09C – Space product assurance – Availability analysis 

[ECSS-Q-40] ECSS-Q-ST-40C – Space product assurance – Safety 

[ECSS-Q-40-12] ECSS-Q-ST-40-12C – Space product assurance – Fault tree analysis – 
Adoption notice ECSS/IEC 61025 

[ECSS-Q-80] ECSS-Q-ST-80C – Space product assurance – Software product 
assurance  

[ECSS-Q-80-04] ECSS-Q-HB-80-04A – Space product assurance – Software metrication 
programme definition and implementation  

[ECSS-E-HB-40] ECSS-E-HB-40A – Space engineering – Software guidelines  

[ECSS-S-ST-00-01] ECSS-S-ST-00-01C – ECSS – Glossary of terms 

 

8 



ECSS-Q-HB-80-03A DIR1 
28 February 2017 

3 
Terms, definitions and abbreviated terms 

3.1 Terms from other documents 
a. For the purpose of this document, the terms and definitions from ECSS-S-ST-00-01 and ECSS-Q-

ST-80 apply. 

3.2 Abbreviated terms 
For the purpose of this document, the abbreviated terms from ECSS-S-ST-00-01 and the following 
apply: 

 

Abbreviation Meaning 

LEOP launch and early orbit phase 

RAMS reliability, availability, maintainability and safety 

FMECA Failure Modes, Effects and Criticality Analysis 

(S)FMEA (Software) Failure Modes and Effects Analysis 

(S)FTA (Software) Fault Tree Analysis 

HSIA Hardware/Software Interaction Analysis 

ISVV Independent Software verification and Validation 

CPU Central Processing Unit 

 

9 



ECSS-Q-HB-80-03A DIR1 
28 February 2017 

4 
Principles 

4.1 General concepts 

4.1.1 Software failures and faults 
Several definitions of  failure,  fault and  error in relation to software exist in literature (see e.g. 
[NASA-8719], [Laprie92]).  

The most common approach is the following: a human mistake made in requirements specification, 
design specification or coding can result in a fault to be present (latent) in a software item. This hidden 
defect, under particular circumstances, can manifest itself as an error (a discrepancy between an 
expected value or action and the actual one) which, in turn, can lead to a failure, i.e. an 
unexpected/unintended behaviour of the system. 

Different terms are used in different Standards. [ECSS-S-ST-00-01] defines "failure" as the "event 
resulting in an item being no longer able to perform its required function", while "fault" is the "state of 
an item characterized by inability to perform as required". According to [ECSS-S-ST-00-01], a fault can 
be the cause of a failure, but it can also be caused by a failure.  [ECSS-Q-80] mentions both "software 
faults" and "software failures" [ECSS-Q-40] uses the term "software errors". [NASA-8719] refers to 
"software hazards". [JPL D-28444] and [ED-153] use "software failures". This handbook uses the terms 
"software fault" and "software error" as defined above, but "software-caused failures" rather than just 
"software failures", for better clarity. 

Software-caused failures differ from hardware-caused failures in many respects. For instance, 
software is not subject to wear or energy-related phenomena which are often the cause of hardware 
failures. This could lead to think that "software failures" do not exist as such, because the software 
always does what it is programmed to do. Actually, software-caused failures occur. They are due to 
conceptual mistakes in requirements definition, design or coding that result in faults residing in the 
code, ready to manifest themselves in specific conditions. Therefore, software faults are systematic, 
but the conditions that lead them to cause failures are extremely difficult to predict. Software-caused 
failures, much as hardware ones, often appear to occur randomly.  

In addition, it is worth noting that software-caused failures lead sometimes to catastrophic 
consequences, as the space community has experienced several times in the past decades.  

4.1.2 Software reliability 
Software reliability, i.e. the capability of the software to perform a required function under given 
conditions for a given time interval, is a key issue for space applications. Software-caused failures can 
result in critical degradation of system performance, up to complete mission loss.  

10 



ECSS-Q-HB-80-03A DIR1 
28 February 2017 

Activities meant to increase the reliability of the software encompass the whole system and software 
life cycle. Software reliability requirements are derived from system reliability requirements, and 
responded to through the implementation of specific engineering and product assurance measures. 

System reliability requirements for space application are stated both in qualitative and quantitative 
terms. While consolidated reliability models exist for hardware that allow to analytically demonstrate 
compliance with quantitative reliability requirements, the validity of the software reliability models 
proposed by field engineers over the years is subject to an ongoing debate within industry, academia 
and international standards community. One major obstacle to the usability of software reliability 
models is the number and nature of the assumptions to be made in order to apply the mathematical 
calculations on which the models are based. Those assumptions have proven to be not fully justified 
for the vast majority of bespoke software like space application software (see [IMECS2009]), therefore 
invalidating the models themselves. As a conclusion, the use of software reliability models to justify 
compliance with applicable reliability requirements is not advisable, hence software reliability models 
are not addressed in this handbook. 

4.1.3 Software maintainability 
Software maintainability is the capability of the software to be retained or restored to a state in which 
it can perform a required function, when maintenance is performed. In other words, the 
maintainability of the software relates to the ease with which the software can be modified and put 
back into operation. 

Software maintainability is an issue for all space application software, but it is of extreme importance 
for on-board software involved in critical functions. Most of the flight software is nowadays 
modifiable and uploadable from ground, but in case of software faults the time needed to upgrade the 
software can be a major concern. An example can be a failure caused by a satellite software 
component that leads the satellite into safe mode. Often, the safe mode can only be maintained for a 
limited period of time, up to some days. This means that the maintenance team has only limited time, 
to identify the cause of the failure, update the software, validate it and upload it. It is clear that in 
these cases the easiness of analyzing the software documentation and code, in order to quickly find 
the fault and correct it, is a key issue. 

Software maintainability is also linked to the potential obsolescence of development and operational 
platforms and tools. For software with a long planned lifetime, it is important to consider since the 
early phases of development the capability to operate and modify the software at the latest stages of 
the operational life, possibly in different, evolved environments. 

4.1.4 Software availability 
Software availability is the capability of the software to be in a state to perform a required function at 
a given instant of time or over a given time interval. Software availability is a function of software 
reliability and maintainability: frequent software-caused failures and long times of maintenance 
reduce the probability that the software be available and operational at a certain time or for a certain 
period of time. 

System availability depends on software availability, and this is especially true for software intensive 
systems, such as ground applications (like e.g. mission control systems or payload data ground 
systems). The dependability requirements for this kind of systems are often expressed in terms of their 
availability, e.g. availability of generated data.  

11 



ECSS-Q-HB-80-03A DIR1 
28 February 2017 

4.1.5 Software safety 
Safety is a system property. Software in itself cannot cause or prevent harm to human beings, system 
loss or damage to environment. However, software is a main component of the system, and therefore 
contributes to its safety. The contribution of software to the system safety is called software safety 
[NASA-8719]. 

It is worth recalling that reliability and safety are two different concepts, although related. Reliability 
is concerned with every possible software-caused failure, whereas safety is concerned only with those 
that can result in actual system hazards. Not all software-caused failures can raise safety problems, 
and not all software that functions according to its specification is safe. A boot software that fails to 
start up the satellite’s main instrument can be judged as totally unreliable, but perfectly safe. On the 
other hand, since hazards are often caused by system failures, safety and dependability are linked, 
and [ECSS-Q-30] requires the project dependability programme to be established in conjunction with 
the safety programme. 

[ECSS-Q-40] defines "safety‐critical" the software whose "loss or degradation of its function, or its 
incorrect or inadvertent operation, can result in catastrophic or critical consequences". The activities 
that lead to the identification of safety-critical software are addressed in this handbook. 

4.1.6 System level and software level 
Software is an integral component of space systems. Software requirements are derived from system 
requirements, and the software is eventually qualified when integrated into the target system. 
Software is also a complex artefact, that follows a dedicated life cycle and for whose development 
particular skills are required and specific methods and techniques are applied. 

System development and software development typically occur at different engineering and 
management levels, also from the organizational and contractual point of view. For instance, the 
development of the platform application software of a satellite is often subcontracted to a different 
company than the Prime contractor. 

This also affects software dependability and safety aspects, much like for the relation between system 
and subsystems/equipment. It is true that software RAMS cannot be considered in isolation from the 
system, and this holds in particular for software safety. However, there are safety- and dependability-
related activities performed at system level by system-level engineers considering the system as a 
whole, and there are other activities carried out at software level by software experts, focusing on 
software characteristics. The different roles, skills and organizational levels cannot be neglected or 
denied. It is important to  ensure that a sufficient level of iterations and integration is established 
between system- and software-level dependability and safety activities at all development stages. 

4.1.7 Fault prevention, removal, tolerance, and forecasting 
The means to achieve software dependability and safety can be classified into four major groups of 
techniques: fault prevention, removal, tolerance, forecasting. 

Fault prevention aims to prevent the introduction of faults in the final product. This is mainly achieved 
through the application of strict rules during the requirements definition, design and production of 
the software (e.g. application of well-established development methods, and rigorous design and 
coding standards). 

Fault removal is meant to detect faults and remove them from the software. Verification and validation 
are the principal - although not unique - means applied for fault removal. 

12 



ECSS-Q-HB-80-03A DIR1 
28 February 2017 

Fault tolerance is intended to avoid that the presence of software faults leads to system failure, by 
tolerating the errors caused by faults and keeping the system functioning. It relies primarily on error 
detection and recovery, attained by different means, such exception handling or failure propagation 
avoidance. 

Fault forecasting (or fault analysis) aims to estimate the present number, the future incidence, and the 
likely consequences of faults. In general terms, this estimation can be qualitative, e.g. through 
techniques such as FMEA and FTA, and quantitative (e.g. by statistical models) even though it is 
recalled that only qualitative estimation is addressed in this handbook (see 4.1.2). 

Within the ECSS framework, the product assurance Standards address software fault prevention (e.g. 
[ECSS-Q-80] requires the application of development methods and standards), fault tolerance (e.g. 
[ECSS-Q-30] and [ECSS-Q-40] address the definition and verification of fault tolerance requirements), 
and fault forecasting (e.g. [ECSS-Q-30], [ECSS-Q-40] and [ECSS-Q-80] require the application of FTA 
and FMEA at different levels). Fault removal is mainly covered by the engineering Standards, which 
define requirements for the verification and validation of software products. 

4.2 Relation to other ECSS Standards and Handbooks 
This handbook interfaces with other ECSS documents through ECSS-Q-ST-80. Main purpose of this 
handbook is to provide guidance on the implementation of ECSS-Q-ST-80 requirements on software 
dependability and safety. 

The software RAMS requirements of ECSS-Q-ST-80 are strictly linked to the dependability 
requirements defined in ECSS-Q-ST-30 and the safety requirements defined in ECSS-Q-ST-40. As a 
consequence, this handbook makes reference to the implementation of ECSS-Q-ST-30 and ECSS-Q-ST-
40 requirements relevant to software, within the boundaries imposed by the ECSS-Q-ST-80 
requirements. 

ECSS-Q-ST-80 interfaces with ECSS-E-ST-40, which defines software engineering requirements. This 
handbook makes reference to software engineering activities relevant to the verification and 
validation of software dependability and safety requirements, in accordance with ECSS-E-ST-40 
requirements. 

13 



ECSS-Q-HB-80-03A DIR1 
28 February 2017 

5 
Software dependability and safety 

programme 

5.1 Introduction 
This section 5 describes the overall software dependability and safety programme, i.e. the complete set 
of activities performed to ensure that dependability and safety requirements applicable to software 
are specified and complied with. 

Focus is on product assurance analyses and activities performed at software level, although system-
level and software engineering activities related to software RAMS are addressed as well for 
completeness. 

Different types of space applications exist (e.g. spacecraft, launchers, ground segments) which call for 
specific software dependability and safety programmes. The discussion presented in this clause leaves 
to the users the task to fully adapt the described processes to the development of different kinds of 
space applications. 

5.2 Software dependability and safety workflow 

5.2.1 General 
Figure 5-1 provides an overview of the whole software dependability and safety framework, as 
derived from the requirements defined in the ECSS-Q-ST-30, ECSS-Q-ST-40, ECSS-Q-ST-80 and ECSS-
E-ST-40 Standards. 

NOTE  The connections drawn in Figure 1 do not represent the entirety of 
the information flow relevant to the software dependability and 
safety framework. For instance, software requirement specification 
and software design are obviously input to the SW RAMS 
analyses; however, this link is not shown in order not to confuse 
the diagram. 

In the following sections, the different activities depicted in Figure 5-1 are described, with reference to 
the relevant ECSS requirements. 

14 



ECSS-Q-HB-80-03A DIR1 
28 February 2017 

 

Figure 5-1 – Software dependability and safety framework 

5.2.2 Software dependability and safety requirements 

5.2.2.1 General 
System-level dependability and safety requirements for software are defined as part of the 
specification of system requirements allocated to software ([ECSS-E-40] clause 5.2.2.1). They are 
derived from the intended use of the system and from the results of the system dependability and 
safety analyses. 

 

Figure 5-2 – Software dependability and safety requirements 

5.2.2.2 System-level safety requirements for software 
[ECSS-Q-40] requires that system-level safety requirements be defined during the early phases of the 
project ([ECSS-Q-40] clauses 5.7.1.1, 5.7.1.2 and 5.7.1.3). These requirements are derived from 
preliminary and advanced safety analyses, as well as from lesson learnt and safety requirements 
associated with similar previous missions. The system-level safety requirements include, or need to be 
translated into safety requirements for the software. 

Critical system failures info
Feared events

Critical SW products

RAMS requirements

Input

HSIA
information

Input

Critical SW components
Corrective actions

Feedback
Recommendations

System level
Software level

Safety
Analyses

Dependability
Analyses

System-level SW 
requirements 
specification

SW RAMS 
Analyses

Software  
requirements 
specification

Identification of
critical software  

handling measures

Software design
Software verification, 
testing and validation

Input

Safety
Analyses

Dependability
Analyses

System-level SW 
requirements 
specification

15 



ECSS-Q-HB-80-03A DIR1 
28 February 2017 

The system safety requirements can be of programmatic type, e.g. addressing the need to perform 
specific analyses at subsystem level, and of technical type, imposing e.g. probabilistic safety targets in 
conformance with the requirements given by launch safety authorities. The system safety 
requirements allocated to software mostly correspond to the need of eventually identifying safety-
critical software components, through software criticality classification, and apply to them the suitable 
engineering and product assurance measures (see 5.2.3). 

[ECSS-Q-40] is a source itself of safety-related requirements for software. It requires that no software 
error causes additional failures with hazardous effects, or propagate to cause the hazardous operation 
of interfacing hardware (clause 6.4.2.3). 

5.2.2.3 System-level dependability requirements for software 
[ECSS-Q-30] clause 5.2 requires that dependability requirements are specified as part of the overall 
project requirements in the technical specification. These requirements are then apportioned, in a top‐
down process, to establish dependability requirements for lower level elements, including software.  

[ECSS-Q-30] clause 5.2 also lists a set of system-level requirement types relevant to dependability. 
Several of these types of requirements affect software; in particular:  

• quantitative dependability requirements and qualitative dependability requirements 
(identification and classification of undesirable events), under specified environmental 
conditions; 

• the degree of tolerance to hardware failures or software malfunctions; 

• the detection, isolation, diagnosis of system failures and the system recovery, i.e. its restoration 
to an acceptable state; 

• the requirement for the prevention of failures crossing interfaces with unacceptable 
consequences (failure propagation avoidance). 

While safety requirements express a set of mandatory needs, because e.g. related to human life and 
health, dependability requirements are traded off with other characteristics of the system, such as 
mass, size, cost and performance. The result is a set of requirements, both qualitative and quantitative, 
that correspond to the customer’s acceptable level of risks for mission success. 

Software dependability requirements reflect this approach. In particular, concerning quantitative 
software dependability requirements, the available methods and techniques do not often allow to 
demonstrate compliance with those requirements in an analytical fashion, contrary to what happens 
with hardware requirements (see discussion on software reliability models in section 4.1.2 of this 
document). [ECSS-Q-30] requirement 6.4.1b points out that it is not possible to quantitatively assess 
the dependability of software functions, and only a qualitative assessment can be made, as the 
dependability of software is influenced by the software development processes. Therefore, in line with 
the concept of acceptable risk that lies behind the specification of the dependability requirements, it is 
important that the supplier  overcome this obstacle by demonstrating that suitable measures have 
been put in place to minimize the risk for the software of not meeting the applicable dependability 
requirements. 

5.2.3 Software criticality classification 

5.2.3.1 General 
[ECSS-Q-40] and [ECSS-Q-30] require that system functions be classified based on their criticality (see 
clauses 6.4.1 and 5.4.1 respectively). 

16 



ECSS-Q-HB-80-03A DIR1 
28 February 2017 

The criticality classification required by [ECSS-Q-40] and [ECSS-Q-30] is based on the severity of the 
consequences of system hazardous events and system failures. The severity categories Catastrophic, 
Critical, Major and Minor/Negligible are defined in a table which is shared by the two Standards 
([ECSS-Q-40] Table 6-1, [ECSS-Q-30] Table 5-1). Safety is only concerned with the two highest level of 
the severity scale, whereas dependability spans across the three lowest severity categories. 

System functions and products are classified for the following reasons: 

• From the safety point of view, the criticality classification corresponds to the identification of 
the safety-critical items, i.e. those items who can lead to hazardous events of Catastrophic and 
Critical severity, and to which hazard elimination, minimization and control is applied, in 
accordance with the [ECSS-Q-40] requirements. 

• From the dependability point of view, the classification is used to focus efforts on the most 
critical areas during the different project phases ([ECSS-Q-30] clause 5.4). 

 

Figure 5-3 – System-level software criticality classification 

5.2.3.2 System-level software criticality classification 
[ECSS-Q-40] clause 6.5.6 and [ECSS-Q-30] clause 5.4.2 require the assignment of criticality categories 
to software products. The software criticality category is assigned to a software product based on the 
criticality of the function(s) implemented, taking into consideration the overall system design. 

If a software product implements different system functions, software criticality classification 
considers the one among them with the highest criticality. 

The association between criticality of function implemented and software criticality category to be 
assigned is described in [ECSS-Q-40] Table 6.3 and [ECSS-Q-30] Table 5.3. If a software product is the 
only system element implementing a certain function, than the criticality category to be assigned is 
directly linked to the function criticality: software category A for function category I, software 
category B for function category II, and so on. 

In case compensating provisions exist, the software can be assigned a lower criticality category w.r.t. 
the one corresponding to the (most critical) function implemented. Compensating provisions are items 
that can prevent or mitigate software-caused failures, e.g. inhibits, monitors, back-ups, operational 
procedures. Examples of compensating provisions are, for instance: 

• For thermal control software, hardware thermostats that prevent the commanded temperature 
from exceeding certain thresholds, independently of the temperature commanded by the 
software. 

Critical system failures information
Feared events

Critical SW products

Safety
Analyses

Dependability
Analyses

SW RAMS 
Analyses

17 



ECSS-Q-HB-80-03A DIR1 
28 February 2017 

• A software monitor ("safety bag") that constantly checks the outputs of a certain software 
product and prevents specified output values from being sent to the interfacing system 
elements. 

• An operational procedure that, through specific and detailed checks, prevents dangerous 
commands from being sent by a software product to a space system. 

Compensating provisions allow to reduce the software criticality category of one level with respect to 
the case where the software is the sole means to implement the function. This reduction is broadly 
referred to as "software criticality downgrading", although the expression is not fully correct, because 
the criticality assignment is performed based on an overall assessment of the system design. 

In case the compensating provisions are implemented (also) in software, the software contained in the 
compensating provision keeps the criticality category corresponding to the criticality of the function 
implemented (i.e. its criticality is not downgraded). 

The note to [ECSS-Q-40] Table 6.3 and [ECSS-Q-30] Table 5.3 stresses the need for a sound function 
decomposition, which is key to a sensible software criticality classification. 

[ECSS-Q-40] and [ECSS-Q-30] impose clear conditions on the consideration of compensating 
provisions as a means for software criticality downgrading. In particular, a demonstration of the 
effectiveness and timeliness of the compensating provisions in preventing or mitigating software 
faults consequences is required. This is to avoid simplistic justifications for criticality reduction. For 
instance, "the software can be patched" is often adduced as an explanation for certain criticality 
classifications. With reference to this specific type of compensating provision, possible in-flight 
modifications of software is considered only as a valid method for the sake of software criticality 
reduction if the supplier can reasonably demonstrate that the software patching can be performed in 
all conditions and in time to prevent that the hazards and feared events leading to the initial software 
criticality categorization materialize. For example, if a postulated failure of the software product 
under analysis can cause a satellite to go into safe mode, and the satellite can survive in safe mode for 
7 days only, the patching of that software product can be considered as a valid compensating 
provision for the postulated failure only if it can be demonstrated that in all cases the identification of 
the failure root cause, the generation of the corrected software, its verification and upload to the 
satellite can be performed within 7 days from the failure occurrence. 

It is important to note that the initial and then ultimate criticality classification of software products is 
performed at system level. Software is part of the system, and the severity of the consequences of 
software-triggered hazardous events and software-caused failures are evaluated at system level.  

This concept is reflected in [ECSS-Q-80] clauses 6.2.2.1, where reference is made to [ECSS-Q-30] and 
[ECSS-Q-40] for the system-level analyses leading to the criticality classification of software products 
based on the severity of failures consequences. 

It is important to note that the criticality classification of the software at system level is performed on 
software "products", i.e. without decomposing the software into components. There are several 
reasons for that: 

• the initial criticality classification of system functions and products is performed during the 
early phases of the project, when details about the software architecture are typically not 
available; 

• in general, there is an organizational separation between the personnel who perform the 
system-level RAMS analyses and the software development team(s), often including different 
contractual levels; 

• in many cases system-level RAMS engineers do not have sufficient knowledge of software to 
perform the criticality classification at software design component level. 

18 



ECSS-Q-HB-80-03A DIR1 
28 February 2017 

The system-level software criticality classification has particular implications for the customer-
supplier relationship. [ECSS-Q-80] clause 5.4.4 requires that, at each level of the customer-supplier 
chain, the customer provide the supplier with the criticality classification of the software products to 
be developed, together with information about the failures that can be caused at higher levels by those 
software products. This is because the supplier needs to know, in particular: 

• the criticality category of the software being procured, in order to correctly estimate the costs of 
its development/procurement; 

• the severity of the software potential failures identified at system level, and any useful 
information about those failures, so that software-level analyses can use these data for a correct 
criticality classification at software component level.  

The timing aspects of system-level software criticality classification with respect to the customer-
supplier relationship needs also to be carefully considered. Failing to identify the software criticality 
category in the procurement documentation can result for the customer in a subsequent cost increase 
and development delay, therefore it is important that the criticality category of the software items 
being procured be determined before the issuing of the procurement documents. With this respect, the 
need might arise to establish a provisional software criticality classification used in the bidding phase 
and then confirmed when the system-level RAMS analyses are consolidated.  

5.2.3.3 Software-level software criticality classification 
[ECSS-Q-80] clause 6.2.2.2 requires the supplier to perform a software criticality analysis of software 
products in order to determine the criticality of individual software components.  

The terms "software product" and "software component" are used to designate different levels of 
software decomposition. Software products are normally made of several software components and 
sub-components (see definition in [ECSS-Q-80] clause 3.2.28). As an example, the criticality analysis at 
system level classifies the thermal control software and the star tracker software of a satellite as 
software products of criticality category B. Each of these software products is made of several 
components, and not necessarily all of them contribute to the overall product’s criticality. 

The software-level criticality classification is principally meant to identify which software components 
are critical, i.e. which software components can fail in such a way to cause, or contribute to cause, 
critical failures at system level. This allows to focus the project effort on those critical components. In 
accordance with [ECSS-E-40] and [ECSS-Q-80] requirements, the critical software components are 
subjected to more demanding engineering and product assurance activities (e.g. Independent 
Software Verification and Validation) which would normally be very expensive, in terms of budget, 
manpower and time, if applied to the whole software product. With reference to the example above, 
the software-level criticality classification can result in categorizing e.g. only one component of the 
star tracker software, in charge of bootstrap and memory management, as software of criticality 
category B, thereby reducing significantly the effort spent to comply with the project requirements 
applicable to critical software, if compared with the system-level result "star tracker software = 
software of criticality category B".  

19 



ECSS-Q-HB-80-03A DIR1 
28 February 2017 

 

Figure 5-4 - Software-level software criticality classification 

[ECSS-Q-80] clause 6.2.2.3 requires that the criticality classification of software is performed by 
applying a set of methods and techniques that are identified by the supplier and agreed with the 
customer. Guidance for the selection and application of suitable methods and techniques at software 
development stages is provided in section 6.  

[ECSS-Q-80] clause 6.2.2.4 requires that, once the critical software has been identified, the supplier 
endeavours to reduce the number of critical software components, by applying suitable engineering 
techniques. Less critical components means less effort spent in risk mitigation measures.  

For this concept to hold, [ECSS-Q-80] clause 6.2.2.5 requires that measures are defined and 
implemented to prevent software components of lower criticality from causing failures of software 
components of higher criticality (see [ECSS-Q-80] clause 6.2.2.5; [Ozarin]). If it cannot be prevented 
that a certain behaviour of a software component initially classified as non-critical (based on the 
analysis of its functional failures) causes a software component classified as critical to fail, then both 
software components are classified to the criticality category of the critical one.  

It is important to consider that in this case  the low-criticality software component might cause the 
high-criticality component to fail either because of failure propagation (e.g. in case the two 
components share the same memory address space and the first component unduly overwrites data 
belonging to the second) or because of a usage of shared resources that is "nominal" (i.e. compliant 
with requirements) for the low-criticality component, but  might cause malfunctions in the high-
criticality one (e.g. burst of data transmission by the first component on a shared network, causing the 
second component not to meet a certain deadline). 

To be noted that, in case a low-criticality component, behaving according to its requirements, causes a 
failure of a high-criticality component due to shared resources, then the raising of its criticality 
category would not in itself solve the problem. However the problem could be solved either by: 

1. Amending the requirements of the low-criticality component to constrain its behaviour with 
respect to the shared resources, or  

2. Putting in place proper measures  (either at software or at system level) to prevent the high-
criticality one from failing. 

Other types of failure propagation might not be relevant to the software criticality classification 
requirements ([ECSS-Q-80] clause 6.2.2.5), as for instance the case where the first component generates 
wrong data and provides them to the second component, without causing the latter to fail or not to 
fulfil its requirements. 

Input

Critical SW components
Corrective actions

SW RAMS 
Analyses

Software  
requirements 
specification

Identification of
critical software  

handling measures

Software design
Software verification, 
testing and validation

20 



ECSS-Q-HB-80-03A DIR1 
28 February 2017 

 

Figure 5-5 – Feedback from software-level to system-level analyses 

The results of the software criticality classification are documented in a software dependability and 
safety analysis report. [ECSS-Q-80] clause 6.2.2.8 requires that this report is fed back and integrated 
into the system-level analyses, similarly to what happens for FME(C)As performed at subsystem or 
equipment levels w.r.t. the higher level FME(C)As (see [ECSS-Q-30-02] clause 4.5). Two types of 
information contained in the report can be of prominent interest for the system: 

• The software-level criticality analysis can lead to the identification of software-caused failures 
that might have a critical impact on the system, and that have not been considered by the 
system-level analyses. This can result e.g. in a change of criticality of the software products, or 
in a modification of the system design. 

• The software-level criticality analysis can lead to specific recommendations for the system-level 
activities. For instance, it can result that the majority of the software components is classified as 
critical, because the system architecture does not allow to segregate the critical software. A 
recommendation could then be made to modify the system design, e.g. introducing two 
separate processors, one for the critical software and one for the non-critical software. 

[ECSS-Q-80] clause 6.2.2.7 requires that the software dependability and safety analysis report is 
verified at each milestone, to confirm that the criticality categories assigned to software components 
are still valid. It could happen, for instance, that a modification of the system or software design, or 
the results of the feeding of the report to system level, call for an update of the software criticality 
analysis. 

The need of having a provisional criticality classification of software at system level for contractual 
reasons (see section 5.2.3.2) can materialize also at software level, in particular for the Independent 
Software Verification and Validation (ISVV) business agreement (see section 5.2.4), which is required 
by [ECSS-Q-80] for software of criticality A and B. It is crucial to have the ISVV supplier involved in 
the early phases of the software development, and this can lead to a situation where, at the point in 
time when the business agreement is drawn up, the software criticality classification is not finalized, 
and most likely the software-level criticality classification is still to come. Since the amount of highly 
critical software to be subjected to ISVV is clearly a driver for the estimation of effort by the ISVV 
supplier, a preliminary software criticality categorization can be used in the ISVV  business 
agreement, to be subsequently refined by a full-fledged software-level criticality analysis. This 
approach, of course, implies the need for a significant level of flexibility on the ISVV supplier side. 

Feedback
Recommendations

System level
Software level

Safety
Analyses

Dependability
Analyses

SW RAMS 
Analyses

21 



ECSS-Q-HB-80-03A DIR1 
28 February 2017 

As depicted in Figure 5-4, the activities performed as part of the software criticality analysis can 
provide direct input for the software technical specification. The identification of some potential 
software failure modes by a SFMEA, for instance, can trigger the definition of new or modified 
software requirements meant to overcome or reduce the effects associated with those potential failure 
modes. 

It is important to note that in some cases the effort required to perform a software-level criticality 
classification, together with the one necessary to prevent failure propagation between software of 
different criticality categories, can lead the supplier to make the decision to skip these activities and 
keep the criticality category assigned at system level for the entire software product. This choice can 
be agreed with the customer, provided that the project requirements applicable to critical software are 
applied to the whole software product. 

5.2.4 Handling of critical software 
According to [ECSS-Q-80] clause 3.2.7, critical software is software of criticality category A, B or C. As 
mentioned, critical software is subjected to specific engineering and product assurance measures, 
aiming at assuring its dependability and safety, i.e. at reducing the risks associated with its criticality 
to an acceptable level. 

[ECSS-Q-80] Table D-2, the tailoring matrix based on software criticality, identifies the full set of 
[ECSS-Q-80] requirements that are applicable to category A, B and C software, therefore to critical 
software. Similarly, [ECSS-E-40] Table R-1 lists the software engineering requirements applicable to 
the different criticality categories. 

In addition, the supplier is required to propose and agree with the customer a set of activities to be 
performed on the critical software. [ECSS-Q-80] clause 6.2.3.2 provides a list of potential critical 
software handling measures, including software prevention techniques, software fault tolerance 
mechanisms, etc. Those measures can be suitable for certain software and not for other; therefore, the 
list included in the Standard is not mandatory. 

On the other hand, there are other requirements in [ECSS-Q-80] clause 6.2.3 that are mandatory for the 
critical software, relevant for instance to regression testing, unreachable code and testing of 
instrumented code.  

Two major requirements for highly critical software are contained in [ECSS-Q-80] clauses 6.2.6.13 and 
6.3.5.28: Independent Software Verification and Validation, performed by a third party, is required for 
category A and B software (see applicability matrix, [ECSS-Q-80] Table D-2). These challenging 
requirements are partly softened by their respective notes, where the possibility of having a less 
rigorous level of independence, e.g. an independent team in the same organization, is contemplated. 
The notes clarify that any relaxation of those requirements is a customer’s prerogative. 

The criticality classification of software components is also a driver for the definition of the test 
coverage goals. [ECSS-E-40] clause 5.8.3.5 provides a list of code coverage goals based on software 
criticality. For instance, 100 % code statement and decision coverage is mandatory for category A and 
B software. This requirement needs to be read together with [ECSS-Q-80] clause 6.3.5.2, which 
requires that customer and supplier agree upon a set of test coverage goals, based on software 
criticality, for the different test levels (unit, integration, validation against technical specification and 
against requirement baseline).  

5.2.5 Hardware-Software Interaction Analysis 
[ECSS-Q-30] clause 6.4.2.3 defines the purpose of the Hardware-Software Interaction Analysis (HSIA): 
to ensure that the software reacts in an acceptable way to hardware failure. This system-level analysis 

22 



ECSS-Q-HB-80-03A DIR1 
28 February 2017 

can be seen as a complementary activity with respect to the software criticality analysis: while the 
former is focused on hardware failures and the corresponding software reactions, the latter looks at 
the effects of software-caused failures on the system, and therefore on the hardware. 

Since [ECSS-Q-30] requires that the Hardware-Software Interaction Analysis be executed at the level 
of the software technical specification, the software supplier is actively involved in the performance of 
the HSIA. As the owner of the technical specification, the supplier is required to ensure that, for each 
potential hardware failure that might affect software, a set of requirements exist to define the software 
behaviour in the occurrence of that hardware failure ([ECSS-Q-80] clause 6.2.2.8).  

 

Figure 5-6 – Hardware-Software Interaction Analysis 

The two-way arrow depicted in Figure 5-6 is meant to represent the flow of information between the 
HSIA, which is a system level analysis, and the specification of software requirements. On one hand, 
software requirements, as well as potential hardware failures, are input to the HSIA; on the other 
hand, the HSIA can trigger the definition of new software requirements, in case it is verified that the 
software reaction to specific hardware failures is not or not adequately specified. 

[ECSS-Q-30-02] clause 7 provides detailed requirements for the performance of the HSIA.  

[ECSS-Q-80] clause 6.2.2.9 is meant to stress the need that, as part of the software verification and 
validation, the results of the Hardware-Software Interaction Analysis be verified, i.e. that the software 
requirements specifying the software behaviour in the event of each hardware failure actually ensure 
that the software reaction is as expected and does not lead to any additional system failure. 

The HSIA is a system-level analysis that requires a significant support from software developers. The 
situation where different software suppliers contribute to the development of a software product 
deserves special consideration. A typical case is the platform software of a satellite, which is split into 
basic software, developed by the supplier of the CPU hardware, and application software, developed 
by a software development organization. The ultimate responsibility for the production of the HSIA is 
with the system developer, i.e. Prime contractor. It is often the case, however, that the Prime 
organization has not enough visibility on the hardware and software features to generate a thorough 
and detailed HSIA. Most likely, the basic and application software suppliers are required to massively 
contribute to the analysis. In order to avoid misunderstandings and discharge of responsibility, it is 
important that projects  define clear requirements for the production of a Hardware-Software 
Interaction Analysis in a multi-layer, multi-supplier set up, so that the contribution to the analysis 
required from the individual suppliers is clearly identified, and the Prime is aware of his task to 
ensure full integration of suppliers’ contributions. 

HSIA
information

System level
Software level

Dependability
Analyses

Software  
requirements 
specification

23 



ECSS-Q-HB-80-03A DIR1 
28 February 2017 

6 
Software dependability and safety  

methods and techniques 

6.1 Introduction 
This clause provides support and background information regarding some software dependability 
and safety methods and techniques. 

Several techniques exist that can be applied to increase the contribution of the software to the 
dependability and safety of the system. As described in section 4.1.7, these techniques can be grouped 
into fault prevention, removal, tolerance, and forecasting. 

The methods and techniques described in this handbook are the ones which are directly or indirectly 
linked to the ECSS-Q-ST-80C requirements on software dependability and safety. Engineering 
techniques such as software dependability and safety testing are described in [ECSS-E-HB-40] and 
therefore they are not extensively described in this handbook. Similarly, fault prevention methods, 
such as the establishment of design and coding standards, or code metrics thresholds, and software 
fault tolerance methods, such as partitioning and safety bags, are not described in this clause. 

6.2 SFMEA (Software Failure Modes and Effects 
Analysis) 

6.2.1 Purpose 
The SFMEA (Software Failure Modes and Effects Analysis) is an adaptation to the software of the 
FMEA (Failure Modes and Effects Analysis). 

The main purpose of the SFMEA is to identify potential software-caused failures, through a systematic 
and documented analysis of the credible ways in which a software component can fail, the causes for 
each failure mode, and the effects of each failure (including the severity of its consequences). It can 
also be used as a support to the allocation of criticality category to the analysed software component, 
based on the severity of the consequences of the potential failure modes (a software failure mode 
corresponds to a software error, according to the terminology introduced in section 4.1.1). However it 
is important not to confuse this notion of "criticality" with this same term used in FMECA where it is 
applied not to the item under analysis, but to its failure modes, and where it is a combination of the 
severity of consequences and probability of occurrence (the latter being excluded from the notion of 
criticality applied to software). 

The SFMEA can be carried out at different software development levels for different purposes: at 
requirements/architectural design level for a Software Criticality Analysis, at lower level as a fault 
forecasting technique (see section 6.2.2.2; [Lutz-Shaw]). 

24 



ECSS-Q-HB-80-03A DIR1 
28 February 2017 

6.2.2 Procedure 

6.2.2.1 General 
As mentioned in the note of [ECSS-Q-80] clause 6.2.2.3 [ECSS-Q-30-02] provides implementation 
requirements and a step-by-step procedure for the implementation of a Failure Modes and Effects 
Analysis. Therefore, the procedure is not repeated in this handbook. 

However, in order to apply [ECSS-Q-30-02] for the execution of a SFMEA, specific considerations need 
to be taken into account. The following sections address these considerations and the resulting 
modifications to the [ECSS-Q-30-02] approach for a SMFEA. 

6.2.2.2 Software level 
The detailed requirement 4.6.f for the system FMEA contained in [ECSS-Q-30-02] specifies that the 
software is analysed using only the functional approach.  

The SFMEA is instead a software-level analysis, and as such it is performed at different level of 
software decomposition, from the specification down to the architectural design, detailed design and 
even source code, if necessary. 

If the SFMEA is one of the techniques applied in a Software Criticality Analysis (ref. [ECSS-Q-80] 
clause 6.2.2.3) to determine the criticality of individual software components, then it is normally 
performed at specification/architectural design level. It is important that the level of software 
decomposition  is the lowest one for which it makes sense to assign different criticality categories to 
different software components. It is also important that the potential failure propagation between 
components of different criticality (ref. [ECSS-Q-80] clause 6.2.3.1) and the possibility to introduce 
segregation and partitioning between components  are taken into consideration when deciding the 
software decomposition level to which the SFMEA is performed. In fact, there is no point in 
classifying two software components at different criticality categories if failure propagation between 
them cannot be prevented (see section 5.2.3.3) 

The SFMEA can be executed at a lower level (e.g. detailed design) as a means to improve and/or to 
verify the dependability and safety of critical software (ref. [ECSS-Q-80] clause 6.2.3.2). In this case, if 
SFMEA is applied, the criticality classification of failures can be used to prioritize them (see e.g. [JPL 
D-28444]). For the performance of this detailed SFMEA, [FMEA-IEEE-2000] requires existence of a 
design description of the software at least at the level of pseudo-code. The fault of each variable and 
algorithm of the software can then be postulated, and the effect of the corresponding errors trough the 
code and the output signal can be traced, in order to determine whether the propagation of these 
errors to the system can have intolerable consequences. The ultimate goal of this detailed analysis is to 
ensure that all potential software failure modes of the already designed critical software are analysed, 
and that corrective actions are implemented to eliminate or reduce the probability of occurrence of the 
software errors, and/or to compensate/mitigate their consequences on the system. 

For highly critical applications, it might be necessary to confirm assumptions made during early 
phases of the project by cross-checking with the actual implementation of the code. 

6.2.2.3 Failure modes 
Although not always straightforward, an effort is made to identify independent items within the 
software, and to analyse those. It is important to identify failure modes in relation with the 
functionalities of the item being analysed, i.e. no/wrong implementation of a software requirement, or 
no/wrong implementation of a functionality of an architectural software component. 

In general, failure modes  are postulated considering at least the following events: 

25 



ECSS-Q-HB-80-03A DIR1 
28 February 2017 

• functionality not performed; 

• functionality performed wrongly (e.g. wrong/null data provided, wrong effect); 

• functionality performed with wrong timing (e.g. too late). 

The following aspects  are important   to be considered also when analysing the different failure 
modes: 

• The persistence of the error causing the failure mode. The cause can be transient or permanent. 
Transient errors (and thereby failures) are errors that can show up in particular situations, and 
that do not recur if the software is restarted (e.g. due to overloads or deadlocks). Transient 
errors are difficult to discover and analyse than permanent errors (e.g. a division by zero). 
Corrective actions and recommendations for transient and permanent errors can differ. Separate 
failure mode analyses  is produced in order to reflect these differences. 

• Nature of the software application to be analysed. As an example,  it is important  that data 
driven systems are carefully analysed focusing on the data that can be the cause of common 
mode failures (data inconsistency, common databases). The causes of failures of data driven 
systems are different than in-service based ones. The SFMEA analysis covers any data 
interfering with the software application under analysis, whether the data comes from external 
sources (often called interface analysis) or from other applications. 

6.2.2.4 Failure effects 
[ECSS-Q-30-02] 4.6b and 4.6c specify how failure effects and failure propagation  are documented in 
the system FMEA. An interpretation of these requirements is necessary for the SFMEA. 

In general, the SFMEA can be seen as a lower level FMEA (ref. [ECSS-Q-30-02] clause 4.5) performed 
by a different organization than the one at system level (level 0), in a customer-supplier relationship. 
According to [ECSS-Q-30-02] requirements 4.5b and 4.5c, the customer is expected to provide the 
software supplier with information about the critical system failures that can be caused by procured 
software, and the supplier is required to use this information when performing the analysis at his 
level. This is reflected in [ECSS-Q-80] clause 5.4.4. 

When filling up the SFMEA column related to local effects and end effects, the software supplier can 
identify failure effects at software component and product level, but in a general case he is not able to 
establish what effects can that failure have on the system, because he could be unaware of prevention 
or mitigation devices implemented at system level. Therefore, it is important that the software 
supplier proceed as follows: 

a. If the effects of the software failure mode do not cross the boundaries of the software product 
being analysed, then only local effects are documented. 

b. If the effects of the software failure mode propagate through the interfaces of the software 
product, and it can be established that the software failure mode under analysis can be a cause 
of a system failure identified by the customer ([ECSS-Q-80] requirement 5.4.4a.2), then that 
system failure can be used to document the end effects of the software failure mode. 

c. If the effects of the software failure mode propagate through the interfaces of the software 
product, but no match can be established with any system failure identified by the customer 
([ECSS-Q-80] requirement 5.4.4a.2), then the final effects of the software failure mode  is 
denoted as "Propagates through interfaces". This information  is provided back for integration 
into the system-level FMEA (see [ECSS-Q-30-02] requirement 4.5a, and [ECSS-Q-80] clause 
6.2.2.7). For practical reasons, it is important to document the results of this integration, i.e. the 
identification of any critical end effects that the software failure mode under analysis could 
cause at system level, at a later stage in the SFMEA itself, so that the SFMEA can provide a 

26 



ECSS-Q-HB-80-03A DIR1 
28 February 2017 

complete picture of the software-caused failure effects and can be directly used for software 
criticality classification (see section 6.2.2.5). 

6.2.2.5 Severity, probability and criticality 
For a system FMEA, according to [ECSS-Q-30-02] clause 4.2 requires that the severity of each failure 
mode are classified based on its consequences on the system, disregarding any existing compensating 
provisions. 

For the failure analysis of software in a SFMEA, suppliers are encouraged to take the following into 
account, leading to a slightly different approach. 

As described in section 6.2.2.3 above, the final effects of a software error on the system cannot always 
be determined at SFMEA level. The performer of the SFMEA, who is often at a lower organizational 
level than the system level, might  not be aware of prevention or compensation measures that could 
mitigate the final consequences of the software failure. Therefore, an interaction with the system level 
is generally necessary.  

With reference to the bullets of section 6.2.2.3 and to [ECSS-Q-80] Annex D.1, the severity classification 
of software failure modes  it is important to perform as follows: 

a. If the effects of the software failure mode do not cross the boundaries of the software product 
being analysed and do not affect the system, then the software failure mode can be classified as 
level 4. 

b. If the effects of the software failure mode propagate through the interfaces of the software 
product, and it can be established that the software failure mode under analysis can be a cause 
of a system failure identified by the customer (see [ECSS-Q-80] requirement 5.4.4a.2, and section 
5.2.3.2 of this handbook), then the severity level assigned at system level is used to assign a 
severity level to the corresponding software failure mode, according to [ECSS-Q-80] Annex D.1. 

c. If the effects of the software failure mode propagate through the interfaces of the software 
product, but no match can be established with any system failure identified by the customer 
([ECSS-Q-80] requirement 5.4.4a.2), then the severity level of the software failure mode is 
denoted as "Propagates through interfaces". This information then  provided back for 
integration into the system-level FME(C)A (see [ECSS-Q-30-02] requirement 4.5a, and [ECSS-Q-
80] clause 6.2.2.7), for an overall evaluation of failure consequences at system level, and 
criticality category assignment through [ECSS-Q-80] Annex D.1.  

It is important that the results of the integration of the SFMEA with system-level analyses, i.e. the 
severity classification of the software failure modes based of their final effects at system level, 
considering any prevention/compensation mechanism,  are documented in the SFMEA itself.  

The SFMEA can then be directly used for software criticality classification, by assigning to each 
software component the criticality category corresponding to the severity of the failure mode, among 
all the potential failure modes of that software component, which has the highest severity level. 
Considerations of potential failure propagation between software components  are made for the final 
assignment of criticality category (see section 6.2.2.2). 

6.2.2.6 Observable symptoms 
The observable symptoms of the failure are documented in the SFMEA. If the software or system does 
not provide any mechanism to observe the corresponding failures, then some remarks and 
recommendations are preliminarily noted. A description by which occurrence of the failure mode is 
detected or observed is recorded. This can represent a trigger for defining maintainability 
requirements for the software. 

27 



ECSS-Q-HB-80-03A DIR1 
28 February 2017 

6.2.2.7 Recommendations 
 

It is important to provide recommendations depending on the purpose of the analysis. 

If the SFMEA is primarily performed to identify critical software components, then recommendations  
are related to the means to reduce the risks associated with the software criticality. To this end, 
recommendations can include addition of new requirements, or suggestions for design measures at 
system level or software level (e.g. for segregation and partitioning). These recommendations are used 
when integrating the SFMEA with the system-level analyses (see [ECSS-Q-80] requirement 6.2.2.7a.2). 

When the SFMEA is applied (generally to critical software) as a measure for fault forecasting, then the 
recommendations are aimed at the actual elimination of the consequences of the critical failures, and 
therefore the recommendations  are uniquely identified and traced, in order to verify that suitable 
design and verification measures have been put in place in order to eliminate the failure consequences 
or reduce them to an acceptable level. 

6.2.3 Costs and benefits 
The main advantages of the SFMEA are: 

• It is systematic. 

• It can reveal potential system failures caused by software, not detected by system-level 
analyses. 

• It can be used to identify the critical software components and thereby give guidance on where 
to focus the development, verification and product assurance effort. 

• It can be used to drive and justify design and verification decisions. 

• The same tools available for FMEA can be used (with the adaptations described in section 6.2.2). 

The main disadvantages of the SFMEA are: 

• It does not consider multiple failures. 

• It can be time consuming and tedious; its difficulty increases with the complexity of the 
software being analysed. 

• To be correctly and usefully performed, it requires specific skills, spanning from RAMS to 
software engineering to thorough understanding of the system operation. 

6.3 SFTA (Software Fault Tree Analysis) 

6.3.1 Purpose 
The SFTA (Software Fault Tree Analysis) is an extension of the FTA (Fault Tree Analysis), applied to 
software. 

A fault tree is an organized graphical representation of the conditions that cause, or contribute to, the 
occurrence of a defined undesirable outcome, referred to as the "top event", or "feared event". 

The main purpose of the SFTA is to identify potential deficiencies in the software requirements, 
design or implementation that could lead to undesired events at the next software integration level. 

28 



ECSS-Q-HB-80-03A DIR1 
28 February 2017 

The SFTA can be carried out at different software development levels for different purposes: at 
requirements/architectural design level for a Software Criticality Analysis, at lower level as a fault 
forecasting technique (see section 6.2.2.2; [Towhidnejad]). 

6.3.2 Procedure 
The SFTA can be performed by applying the procedure described in [IEC-61025], adopted by [ECSS-
Q-40-12]. 

It is important to select the top events constituting the root of the trees among the system level failures 
which can be caused by software. These can be for instance the results of a FTA or FME(C)A executed 
at system level. Since the SFTA, as compared to the SFMEA, does not help identify new potential 
system failures, the scope of the analysis can be limited, addressing only top events corresponding to 
critical system failures. 

Once system-level analyses have established that a software product is a contributor to a potential 
system failure (top event), then the SFTA can be used to identify the software components, within that 
software product, whose behaviour can lead to (i.e. can be the cause of) the occurrence of the top 
event. If the top event is a critical failure (as classified by system-level analyses, see section 5.2.3.2), 
then the software components whose behaviour can contribute to that top event are classified as 
critical software. 

The events which make up the tree are decomposed into lower-level events that can be combined 
through the logical gates defined in the method. The decomposition and combination of events 
terminates when the lowest granularity of the analysis is reached, depending on the scope and 
purpose of the SFTA. For a software criticality analysis, the SFTA is normally performed down to the 
level of events corresponding to errors of the software components whose criticality is being assessed.  

The "leaf" events of a SFTA can be in general matched with a subset of the failure modes identified by 
a SFMEA executed on the same software product at the same decomposition level.  

In case the software under analysis is of data-driven nature, the SFTA addresses all the data which are 
processed by the software, whether internally or externally generated; special consideration  are given 
to data which can cause common-cause failures. 

It is important that the SFTA, as opposite to the SFMEA, analyses both individual events and 
combination of events. At system level, the analysis of combination of failures through the FTA is 
typically required when potential catastrophic consequences of system failures are envisaged ([ECSS-
Q-40] clause 6.4.2.1), or in general to ensure that the design conforms to the failure tolerance 
requirements for combinations of failures ([ECSS-Q-30] clause 6.4.2.5). At software level, SFTA is 
applied regardless of system failure tolerance requirements, because the method is suitable to support 
the identification of critical software components and design weaknesses also in absence of safety 
implications. 

Recommendations for the software and system design and validation can be directly drawn from the 
results of the SFTA, concerning for example the isolation of software components which can 
contribute to system critical failures, or indications for areas to be subject to robustness testing. 

6.3.3 Costs and benefits 
The main advantages of the SFTA are: 

• It is systematic. 

29 



ECSS-Q-HB-80-03A DIR1 
28 February 2017 

• It can be used to identify the critical software components and thereby give guidance on where 
to focus the development, verification and product assurance effort. 

• It considers multiple failures. 

• It can be used to drive and justify design and verification decisions. 

• An entire fault tree does not need to be completed for the analysis to be useful. 

• Tools exist to support the development of a SFTA. 

The main disadvantages of the SFTA are: 

• It cannot reveal potential system failures caused by software, not detected by system-level 
analyses (therefore, it applied in combination with other techniques). 

• It is difficult to introduce timing and causal dependency in the analysis (dynamic behaviour). 

• It can be time consuming and tedious; its difficulty increases with the complexity of the 
software being analysed. 

• To be correctly and usefully performed, it requires specific skills, spanning from RAMS to 
software engineering to thorough understanding of the system operation. 

6.4 SCCA (Software Common Cause Analysis) 
The note to [ECSS-Q-80] clause 6.2.2.3 mentions the Software Common Cause Analysis (SCCA) as one 
of the methods and techniques that can be applied for a software dependability and safety analysis. 

The Software Common Cause Analysis is an adaptation of the Common Cause Analysis to software. 
The Common Cause Analysis is required by [ECSS-Q-40] and [ECSS-Q-30] as a means to verify that 
the root cause of potential failure modes do not affect or negate the effectiveness of failure tolerance 
measures, such as redundancy. For instance, in a redundant configuration, if both the main and the 
redundant items are thermally coupled with a source of heat, a failure of the heater could damage 
both items, invalidating redundancy as a failure tolerance mechanism for that configuration.  

The Common Cause Analysis is performed in association with other analyses (e.g. FTA, FME(C)A) 
through the definition and application of check-lists (see [ECSS-Q-30] Annexes I and L). 

Software is per se a source of common-cause failures: if the same software is used in a redundant set-
up, a software fault that causes a failure in the main item, under the same circumstances, causes the 
same failure in the redundant item. This also applies to the typical spacecraft configuration of 
Nominal Mode software and Safe Mode software: any component which is common to the Nominal 
and Safe Mode software is a potential initiator of common-cause failures. 

The need for a Common Cause Analysis at software level (SCCA) could arise in case of N-version 
programming, i.e. when diverse versions of the same software, developed independently, are used to 
perform a certain function. The use of N-version programming as a fault tolerance mechanism is 
controversial (see [IEEE-Trans-89], [DASC-93]) and it is not listed among the methods recommended 
by the ECSS Standards.  

In the need of performing a Software Common Cause Analysis, the same approach described in 
[ECSS-Q-40] clause 7.5.4.4, and [ECSS-Q-30] clause 6.4.2.6, can be applied, with the creation of a 
specific check-list for common-cause failures (see e.g. [SCCA-SAFECOMP]). 

30 



ECSS-Q-HB-80-03A DIR1 
28 February 2017 

6.5 Engineering methods and techniques supporting 
software dependability and safety 

In the ECSS framework, several of the actual methods and techniques that are used to improve 
software dependability and safety belong to the software engineering discipline, and are therefore 
described in the [ECSS-E-HB-40] handbook. 

Testing is one of the primary means to ensure the dependability and safety of the software. The 
amount of testing performed on a software item is related to its criticality. [ECSS-E-40] clause 5.8.3.5 
and [ECSS-Q-80] clause 6.3.5.2 require the achievement of different test coverage goals, depending on 
the software criticality category.  

The tests required by [ECSS-E-40] and [ECSS-Q-80] are performed to verify the correct 
implementation of the design and requirement specifications. Additional types of test exist that can be 
used to improve the dependability and safety of the software. These include, for instance, robustness 
testing, which is used to demonstrate the ability of the software to function correctly in the presence of 
invalid inputs or stressful environmental conditions. 

Among the engineering methods and techniques that can be applied to assess the dependability and 
safety of the software, it is worth mentioning the data flow analysis, control flow analysis and 
schedulability analysis. 

A detailed description of the mentioned engineering methods and techniques supporting software 
dependability and safety can be found in the [ECSS-E-HB-40] handbook. 

6.6 Software availability and maintainability techniques 

6.6.1 Software maintainability 
Software maintainability is mainly related to the quality of software documentation and source code. 
[ECSS-E-40] and [ECSS-Q-80] require that maintainability requirements be defined and implemented 
(see e.g. [ECSS-E-40] clause 5.4.2.1; [ECSS-Q-80] clause 6.3.2.4). It is important to use maintainability is 
one of the characteristics of a software quality model, to specify the software quality requirements (see 
[ECSS-Q-80] clause 5.2.7). 

In order to ensure software maintainability, the following activities are carried out during software 
development. 

a. System-level software maintainability requirements are specified by the customer in the 
requirements baseline.  

Sometimes the translation of system maintainability requirements into software ones is not 
straightforward, especially for what concerns quantitative requirements, which are often 
specified for ground segments. A typical system maintainability requirement could be, for 
instance: "in case of malfunction, the Mean Time To Restore shall be less than X time". The fulfilment 
of this requirement by the software components of the system is hard to demonstrate. While the 
time needed e.g. for a switchover to a redundant hardware subsystem can be estimated and 
then measured, the isolation, identification and correction of a software fault, including testing 
and installation of the updated software, could require a time which cannot be established a 
priori. However, the system developer  is in endeavour to specify, in the software requirements 
baseline, the level of maintainability that the software is required to exhibit, considering in 
particular the expected operational lifetime and environment. 

b. Design and coding standards are defined, submitted for customer approval and enforced.  

31 



ECSS-Q-HB-80-03A DIR1 
28 February 2017 

The application of suitable design and coding standards is a primary means to achieve software 
maintainability. The design and coding standards reflect the applicable maintainability 
requirements and are enforced in the supplier organization since the beginning of the 
development. 

c. It is important to include the maintainability characteristic and the corresponding sub-
characteristics (see [ECSS-Q-80-04]) in the software quality model, together with the relative 
metrics, in line with the system maintainability requirements.  

The quality model maintainability sub-characteristics and metrics deal, for instance, with size 
and complexity of the code, adherence to coding standards, testability of requirements and 
modularity of design. All these factors influence the capability of the software to be modified 
with reasonable effort and in a limited amount of time. The threshold for the maintainability-
related metrics are specified taking into account of the system maintainability requirements: the 
higher the degree of maintainability required, the more stringent the metric thresholds. 

d. It is important to specify maintainability requirements in the software technical specification 
(see [ECSS-Q-80] clause 6.3.2.4), and their implementation verified. 

The quality model and metrics, described in the product assurance plan, and the design and 
coding standards represent key programmatic elements for the software development, whose 
application needs to be verified. However, the core of the requirements against which the 
software is validated is defined in the technical specification, and in particular in the software 
requirements specification. This is why [ECSS-Q-80] requires that non-functional requirements, 
and in particular maintainability requirements, are defined in the SRS. In accordance with 
[ECSS-Q-80] clause 5.2.7.1, these software maintainability requirements (see Note below) are 
specified by using the elements of the project quality model(s). If maintainability is a 
requirement for the system, and the relevant characteristics, sub-characteristics and metrics are 
included in the quality model(s), then the achievement of the maintainability metrics thresholds 
become a software requirement. In general, metrics are used only as indicators. However, if the 
supplier can demonstrate that the software requirements specifying the achievement of certain 
metrics threshold goals are fulfilled, then this would help support the claim that the system 
maintainability requirements are also met by the software. Commercial and open-source tools 
exist that support the verification of the correct implementation of those software requirements. 

NOTE  The term "Quality requirements" is used in [ECSS-Q-80] clause 
5.2.7.1, in a broad sense, and includes dependability requirements. 

e. The maintainability of the software against the potential obsolescence of the development and 
operational environments, as well as the obsolescence of the software itself with respect to the 
target platform, are ensured, especially for software with a long planned lifetime. 

[ECSS-Q-80] addresses this issue in clause 7.2.2.3, highlighting the need to design the software 
with minimum dependency on the underlying platform, in order to aid portability. This can be 
achieved, for instance, by applying measures such as introducing a layer between the body of 
the software and the underlying operating system/hardware, enforcing coding rules that 
prevent the use of language features dependent on a certain environment, not re-using libraries 
available only for specific environments.  
The impact of obsolescence on system and software maintainability appears as a rather new 
topic in literature (see [IEEE-Trans-07], [CIRP-37-10]), often driven by military needs (e.g. the 
DMSMS issue: Diminishing Manufacturing Sources and Material Shortages). It is important to 
consider besides the design techniques mentioned above, the following measures to mitigate 
the effects of obsolescence on software maintainability: 
• Select and set up the development environment to be as much as possible flexible against 

changes in the target environment. 

32 



ECSS-Q-HB-80-03A DIR1 
28 February 2017 

• Extend the maintenance business agreements with hardware and COTS software 
vendors, possibly resorting to software license downgrade (expand or extend the 
authorized use of an older product by purchasing additional licenses of the latest version 
and applying those licenses to the older products). 

• Ensure that proper documentation (including source code) is available for maintenance, 
possibly including escrow agreements with original suppliers to cover proprietary 
information.  

• Plan for maintaining the skills and knowledge necessary for the software maintenance 
within the organization and, as appropriate, fully transfer the knowledge to a third-party 
maintenance organization. 

It is important to consider the viability of the measures to mitigate software obsolescence at the 
early stages in the development cycle of space software, both for flight and ground segment, 
especially for long-life applications. 

f. Software maintainability is supported by several other activities required by the [ECSS-Q-80] 
Standard, which are meant to improve the quality of the documentation and of the 
development and testing environment. 

Although "maintainability" is not explicitly mentioned, several [ECSS-Q-80] requirements have 
the effect of increasing the maintainability of the software products (e.g. [ECSS-Q-80] clauses 
6.3.3.7, 6.3.5.3, 6.3.5.12, 7.2.3.1, 7.2.3.4). If maintainability is a primary goal characteristic of the 
software being developed, then a correct and exhaustive implementation of those requirements 
is crucial. 
In addition, a thorough and accurate configuration management of the source software code, 
development/testing environment and documentation, in accordance with [ECSS-Q-80] clause 
6.2.4.1, is necessary in order to ensure the maintainability of the software. 

6.6.2 Software availability 
As mentioned in section 4.1.3, software availability is a function of software reliability and 
maintainability. The more reliable is the software and the shorter the time needed for its maintenance, 
the higher is the probability that the software is available when required. 

Software availability requirements derive from system availability requirements. As described in 
[ECSS-Q-30-09] clause 5.2, there are different ways to specify system availability requirements, e.g. 
availability during mission lifetime for a specified service, or percentage of successfully delivered 
products. [ECSS-Q-30-09] 5.1.2c. requires that each availability requirements specified in a 
quantitative form. While analytical and statistical methods can be applied for the availability 
assessment of hardware products, the bespoke nature of most of space software items does not allow 
the use of these methods to assess the compliance of software with quantitative availability 
requirements. As a matter of fact, the availability assessment documents for spacecraft do not usually 
cover the on-board software. 

Nevertheless, the contribution of software to system (un)availability can be significant, especially for 
software intensive systems. For example, for a Payload Data Ground Segment, which is mainly 
composed of software and commercial workstations, a primary dependability requirement can be: 
"The PDGS shall deliver 98,5 % of the processed data […] in time and complete. The above requirements shall 
not be degraded for more than one day". To claim compliance which such a requirement, the supplier in 
the first instance is able to demonstrate that suitable engineering and product assurance measures 
have been put in place to provide confidence in the capability of the software to meet the imposed 
availability requirements. The assessment of the suitability of those measures can only be left to 
engineering judgement and customer approval, but certain criteria can be used to guide the software 
availability assessment. 

33 



ECSS-Q-HB-80-03A DIR1 
28 February 2017 

a. It is important to evaluate the consequences of the software unavailability. This would basically 
correspond to analyse the effects of software-caused failures leading to the unavailability of the 
function(s) implemented by software, and to estimate the worst potential consequences (see 
[ECSS-Q-30-02] requirement 4.1f.4). If the time needed to restore the failed software function(s) 
is considerable, this could lead to major mission degradation (e.g. data processing facility not 
available to provide emergency- or security-related Earth observation data within a useful 
time). In some cases, the software unavailability in particular system states or modes (e.g. for a 
ground segment during satellite’s LEOP) could jeopardize a mission. The classification of 
software unavailability based on its worst potential consequences can be used to determine the 
criticality of the software, and therefore to select the applicable engineering and product 
assurance requirements. 

b. Reliability is a major contributor to availability. Improving the reliability of the software 
increases its availability. The engineering methods mentioned in section 6.4 are applied to an 
extent which is commensurate with the degree of system availability required. It is important 
that, for a given system, even though the worst consequences of any individual system failures 
are negligible, frequent software-caused failures (requiring analysis, correction, verification and 
installation) could have a significant impact on system availability. 

c. The other major contributor to availability is maintainability. The considerations made in 
section 6.6.1 are applied in connection with the applicable availability requirements. For 
example, if a high degree of system availability is required, it is important that the supplier is 
able to show that the software maintainability metrics (see [ECSS-Q-80-04]) are in a good shape, 
and that the configuration management of the software allows to readily rolling back to a 
functioning software configuration, in case a software upgrade does not work properly. 

6.7 Software failure propagation prevention 
The propagation of failures through software interfaces is one of the main concerns for software 
dependability and safety. Besides the propagation to the interfacing hardware, which is the way 
software errors can manifest themselves as system failures, the propagation to other software 
components or systems is a major threat to system dependability and safety, and suitable measures  
are put in place to prevent this from happening. 

As mentioned in section 5.2.2.3, software failure propagation has a direct influence on the possibility 
of classifying software components at different criticality categories (see Figure 6-1).  

Lower criticality SW component

Fault Error Failure Fault
Activation Activation

Higher criticality

SW compontent

Propagation

Causation

 

Figure 6-1: Failure, error, failure propagation 

In fact, [ECSS-Q-80] clearly requires that, if a software component can cause the failure of a software 
component of high criticality, then both components are classified at the high criticality category. The 
reason for this is pretty obvious: it would make little sense to concentrate the development and 
verification effort on the higher-criticality components only, knowing that the low-criticality 

34 



ECSS-Q-HB-80-03A DIR1 
28 February 2017 

components can anyhow make the higher criticality components fail and possibly lead to the same 
consequences which the applied effort is trying to prevent. 

Table 6-1: Software failure propagation taxonomy 
Type of interaction General failure type in 

low-criticality software 
Impact of propagation in high-

criticality software 

Synchronous 
component's 
interaction 

Value Failure Silent propagation unless software-
dependent measures are applied 

Timing Failure Tolerated or causes deadline miss 

Exception (unhandled or 
raised) 

Exception propagation 

Aborted Abortion of calling thread 

Asynchronous 
component's 
interaction 

Value Failure Silent propagation unless software-
dependent measures are applied 

Timing Failure Tolerated or causes deadline miss or 
timeout exception 

Exception (unhandled) No returned value (if one expected) 

Aborted No returned value (if one expected) 

Resource sharing 
Resource violation Arbitrary (including system crash) 

Resource hogging Tolerated or causes deadline miss 

 

Table 6-1 provides a taxonomy of potential software failure propagation events related to software 
criticality classification, based on the type of interactions between software items, the potential failure 
types and the impact on the software towards which the failure propagates. A detailed description of 
these failure propagation events is provided in the outputs of the [SFPP] study. 

In order to be able to classify the two software components at different criticality categories, the 
supplier is required by [ECSS-Q-80] to demonstrate that failure propagation from low-criticality 
component to the high-criticality component is prevented. To this end, the supplier can analyse the 
failure types listed in Table and identify corresponding failure propagation prevention measures. 
These can be grouped in two main categories: 

a. External factors: factors related to the environment in which the program executes (e.g. 
hardware, operating system, run-time support system) that can support the handling of some 
failures (e.g. their prevention, detection, etc.). 

b. Application: pure software-based mechanisms that can handle (e.g. detect and support recovery 
from) some of the failure types identified. 

The selection of the external factors plays a fundamental role in the possibility to prevent failure 
propagation across software components, especially if these are meant to be located on the same 
processing platform (e.g. single processor board). The potential influence of external factors on failure 
manifestation/propagation can be summarised as follows: 

a. Programming language: 

1. Value failure detection (e.g. strong typing). 

2. Timing failure detection (e.g. timeouts on inter-thread communication). 

35 



ECSS-Q-HB-80-03A DIR1 
28 February 2017 

3. Exception handling. 

4. Asynchronous notification. 

b. Operating system/Hypervisor: 

1. Memory management (e.g. separate memory spaces for different processes). 

2. Exception handling (e.g. division by 0). 

3. Partitioning support. 

c. Processing platform (processor, mass memory unit, etc.): 

1. Support to operating system (e.g. for memory management). 

2. Identification of resource conflicts. 

These external factors, to be used in combination, can influence both the software failure propagation 
effects and the software-based mechanisms suitable for the propagation prevention. The latter can 
include techniques such as: 

a. Safety bag 

b. Exception handlers 

c. Timeout/watchdog on return 

d. WCET overrun detection 

It is important that, as documented in [SFPP], typical on-board environments used in current 
European space applications (e.g. processor board based on ERC32/LEON2/LEON3 + RTEMS 
operating system + C programming language) do not support failure propagation prevention to an 
extent allowing to claim compliance with the relevant [ECSS-Q-80] requirements. In particular, neither 
resource violation nor resource hogging failures can be prevented in these kinds of configuration.  

A promising solution to ensure failure propagation prevention across different-criticality software 
components is the use of a hypervisor compliant with the ARINC 653 Standard, or anyway a 
separation kernel that allows different partitions to run on the same processor platform and be fully 
separated in time and space (memory). In this case, of course, the hypervisor or separation kernel are 
developed and validated at the highest criticality category of the software it is intended to support.  

6.8 Defensive programming 
"Defensive programming" is mentioned in clause 6.2.3 of [ECSS-Q-80] as a potential handling measure 
for critical software. There is no unanimous definition of defensive programming in the international 
literature and Standards.  

The NASA Software Safety Guidebook [NASA-8719-GB], for instance, defines defensive programming 
as "a collection of methods, techniques, and algorithms designed to prevent faults from becoming 
failures", and the faults (defects) to be considered "can be in your own software (e.g. incorrect logic), 
another program in the system (e.g. sends invalid message), hardware faults (e.g. sensor returns bad 
value), and operator error (e.g. mistyping command)".  

According to [EN-50128], the goal of defensive programming is "to produce programs which detect 
anomalous control flow, data flow or data values during their execution and react to these in a 
predetermined and acceptable manner". 

It is clear from the above excerpts that the scope of defensive programming is subject to interpretation 
and, depending on its wideness, requires involvement of different project roles and system 

36 



ECSS-Q-HB-80-03A DIR1 
28 February 2017 

knowledge. In addition, defensive programming is much dependant on the programming language 
used (e.g. applications written in C language require a proactive check on access to array elements, 
whereas ADA programs can rely on the language-defined exception mechanisms in case of array 
index constraint violations). 

Defensive programming measures can be specified and implemented with no specific knowledge of 
the behaviour of the software and surrounding environment. For instance, for a C function that 
receives a pointer as input and it is required to use the content of the variable referenced by that 
pointer, a defensive programming technique would be to check that the pointer is not NULL and, if 
so, return an error code.  

Defensive programming techniques "at code level" can also be applied to make the software more 
robust against control flow disruptions. For instance, specific checks can be injected in software units 
to ensure that they are only executed when certain conditions are met (e.g. bit pattern filled in by 
higher-level units), and, if not, error codes are returned. This would prevent critical software functions 
to be wrongly invoked because of issues in the software control flow. 

The above examples would be effective in avoiding that faults become failures (e.g. software crash), 
but the relevant techniques cannot be used in isolation. The calling functions are able to handle the 
returned error codes and cope with the fact that the called functions could not perform their 
processing. This implies that an overall strategy is arranged to manage abnormal situations, convey 
error codes to the correct handling levels and determine the system reaction to errors detected by 
defensive programming techniques (e.g. graceful degradation). 

This is even more relevant when, as in [NASA-8719-GB], the scope of defensive programming is 
extended to e.g. hardware faults, like a sensor returning a bad value. Defensive programming 
techniques at code level cannot cope with this kind of events alone. What sensor values are "bad"? 
Where are they documented? What the software does if a "bad" value is returned? Besides defensive 
programming, this is a matter of hardware-software ICD, HSIA, FDIR and relevant requirements 
contained in technical specifications. 

Some basic defensive programming techniques that could be applied in the development of critical 
software for space applications are:  

a. Check procedure parameters for range (and type and dimension, when applicable) before using 
them. 

b. Range check variables before using them. 

c. Check variables for plausibility before using them. 

It is important that many good coding practices, not specific to critical software handling  (e.g. use 
macros instead of hardcoded numbers in C, or ensure that no warnings are generated when compiling 
and linking the code),  are part of coding standards for space applications. 

37 



ECSS-Q-HB-80-03A DIR1 
28 February 2017 

Annex A 
Software dependability and safety 

documentation 

A.1 Introduction 
[ECSS-Q-80] clause 6.2.2 requires the generation of the following documentation: 

a. criticality classification of software products; 

b. criticality classification of software components; 

c. software dependability and safety analysis report. 

No DRD (Document Requirement Definition) for this documentation is included in the Standard. The 
following sections provide an example of how to organize the information required by [ECSS-Q-80] 
clause 6.2.2 into actual project documents. 

A.2 Software criticality analysis report 
The [ECSS-Q-80] requirements are generally made applicable to the first level supplier (system level), 
who in turns make them applicable to the lower level suppliers through the Software product 
assurance requirements for suppliers (see [ECSS-Q-80] clause 5.4.2). This means that the requirements 
of [ECSS-Q-80] clause 6.2.2 are made applicable to the software suppliers at different organizational 
levels, and all of them have to produce the relevant documentation. However, depending on their 
responsibilities in the customer-supplier chain, different information needs to be provided. 

In particular, the first level supplier (generally defined "the customer" in [ECSS-Q-80] and [ECSS-E-40] 
or the "Prime", or the "system-level supplier"), i.e. the organizational unit which manages, assembles 
and delivers the system to the final customer, is responsible for the expected output of [ECSS-Q-80] 
clause 6.2.2.1 ("Criticality classification of software products"). The lower level suppliers ("software-
level suppliers"), who develop and deliver software products to their customers and, in the last 
instance, to the first level supplier, are responsible for the expected output of [ECSS-Q-80] clauses 
6.2.2.2 to 6.2.2.7 ("Software dependability and safety analysis report" and "Criticality classification of 
software components"; see also the process described in section 5.2.3 of this handbook). 

All the above mentioned documentation is relevant to the criticality classification of the software and 
to the measures applied to handle this criticality. This means that all the suppliers have to generate a 
Software Criticality Analysis Report (SCAR), with different information depending on their position 
in the organizational structure. 

[ECSS-Q-80] clause 6.2.2.6 requires that this report is updated at each milestone, taking into 
consideration the interactions between system and software level. 

38 



ECSS-Q-HB-80-03A DIR1 
28 February 2017 

The following sections correspond to the three main chapters of a possible Software Criticality 
Analysis Report in a typical contractual situation where a first-level supplier is in charge of the system 
development and one or more lower-level suppliers develop different software products. 

On top of the chapters described in the following sections, it is important that the SCAR contain an 
introductory part describing: 

• the system context; 

• the applicable documents; 

• the requirements driving the generation of the Report; 

• the criticality categories applied; 

• any other relevant information. 

A.2.1 Criticality classification of software products 

A.2.1.1 System-level supplier 
The system-level supplier provides in this section the information relevant to the classification of 
software products performed at system level. This  include: 

d. Reference to the system-level analyses that have been carried out for the criticality classification 
of the software products. 

e. For each software product: 

1. The identification of the individual software product. 

2. The criticality category assigned. 

3. The list of (or reference to) the potential system failure modes or undesired events that 
led to the criticality classification of the software product.  

NOTE  A reference to the original analyses is  made only if the retrieval of 
information relevant to the software products criticality 
classification is straightforward. It is anyway preferable to provide 
this information, suitably grouped, directly in the SCAR. 

4. For each system failure mode or undesired event: 

(a) The description of the failure/undesired event. 

(b) Its effects on the system. 

(c) The severity of the consequences. 

(d) Existing prevention/compensation provisions that mitigate the consequences of the 
failure/undesired event. 

(e) The criticality category assigned to the failure/undesired event. 

A.2.1.2 Software-level supplier 
The software-level supplier includes in this chapter (a reference to) the information received from his 
customer about the criticality classification of the product(s) to be developed. This information in the 
form is described in A.2.1.1. 

39 



ECSS-Q-HB-80-03A DIR1 
28 February 2017 

A.2.2 Criticality classification of software components 

A.2.2.1 System-level supplier 
The system-level supplier  provides in this chapter a summary of the results of the software 
component criticality classification performed by the software-level suppliers. This includes: 

f. A collation of the results of the criticality classification of software components performed by 
the software-level suppliers (e.g. a table with the criticality classification of the individual 
software components, grouped by software product). 

g. Summary of the actions undertaken to reduce the number of critical software components and 
mitigate the risks associated with the critical software. 

A.2.2.2 Software-level supplier 
The software-level supplier provides in this chapter the results of the software component criticality 
classification. This includes: 

h. A description of the approach taken for the software component criticality classification, 
including analyses performed and assumptions made. 

i. The criticality classification of the software components belonging to the product(s) being 
developed. 

j. The actions undertaken to reduce the number of critical software components. 

k. The description of the engineering measures applied to reduce the number of critical software 
components and mitigate the risks associated with the critical software. 

A.2.3 Software dependability and safety analysis report 

A.2.3.1 System-level supplier 
The system-level supplier provides in this chapter: 

l. A summary of the software dependability and safety analyses performed by software-level 
suppliers. 

m. A detailed reference to the documents containing the results of the analyses described in 
A.2.3.1l. 

n. All the information relevant to the interactions with software-level suppliers for the integration 
of their software dependability and safety analyses into the system-level analyses, including: 

1. Criticality classification of the software-caused failures identified by software-level 
suppliers which cross software boundaries, based on their final effects on the system, 
taking into account any interactions with other system elements. 

2. Rationale for the criticality classification provided in bullet 1. 

3. Disposition and verification of any recommendations contained in the software-level 
dependability and safety analyses that might affect the system. 

A.2.3.2 Software-level supplier 
The software-level suppliers  includes in this chapter the results of the software dependability and 
safety analyses performed.  

40 



ECSS-Q-HB-80-03A DIR1 
28 February 2017 

It is important to provide the main results and conclusions of the analyses first, including major 
recommendations for corrective and preventive actions at software and system level, followed by the 
bulk of the analysis documentation (e.g. SFTA or SFMEA worksheets). The analyses include the input 
deriving from the interactions with system-level suppliers for the integration of these software 
dependability and safety analyses into the system-level analyses. 

41 



ECSS-Q-HB-80-03A DIR1 
28 February 2017 

Bibliography 

[IEC-61025] CEI/IEC 61025:2006 – Fault Tree Analysis (FTA) 

[Laprie92] J.C. Laprie, Dependability: Basic Concepts and Terminology 
Springer-Verlag, 1992. ISBN 0387822968 

[NASA-8719] NASA-STD-8719.13B w/Change 1 – Software Safety – 8 July 2004 

[JPL D-28444] Jet Propulsion Laboratory - Pasadena, California - Software Fault 
Analysis Handbook (Software Fault Tree Analysis (SFTA) & 
Software Failure Modes, Effects and Criticality Analysis (SFMECA)) 

[Eurocontrol] Eurocontrol Experimental Centre – EEC Note 01/04 – Review of 
techniques to support the EATMP safety assessment methodology 

[ED-153] EUROCAE – ED-153- Guidelines for ANS software safety assurance 

[Ozarin] Nathaniel Ozarin - The Role of Software Failure Modes and Effects 
Analysis for Interfaces in Safety- and Mission-Critical Systems - 
SysCon 2008 - IEEE International Systems Conference 

[Lutz-Shaw] Robyn R. Lutz and Hui-Yin Shaw - Applying Adaptive Safety 
Analysis Techniques - Jet Propulsion Laboratory - California 
Institute of Technology 

[Towhidnejad] Massood Towhidnejad1, Dolores R. Wallace, Albert M. Gallo - Fault 
Tree Analysis for Software Design - Proceedings of the 27th  Annual 
NASA Goddard/IEEE Software Engineering Workshop 

[IMECS2009] Khaled M. S. Faqih - What is Hampering the Performance of 
Software Reliability Models? A literature review - Proceedings of the 
International MultiConference of Engineers and Computer Scientists 
2009 

[IEEE-Trans-89] Susan S. Brilliant, John C. Knight, and Nancy G. Leveson - The 
Consistent Comparison Problem in N-Version Software - IEEE 
Transactions on software engineering. Vol. 15. No. 11, November 
1989 

[DASC-93] Laura L. Pullum - A new adjudicator for fault tolerant software 
applications correctly resulting in multiple solutions - Digital 
Avionics Systems Conference, 1993. 12th DASC., AIAA/IEEE 

[SCCA-
SAFECOMP] 

Rainer Faller  - Specification of a Software Common Cause Analysis 
Method - SAFECOMP '07 Proceedings of the 26th International 

42 



ECSS-Q-HB-80-03A DIR1 
28 February 2017 

Conference on Computer Safety, Reliability, and Security 

[FMEA-IEEE-
2000] 

Peter L. Goddard - Software MEA Techniques - Proceedings of 
Annual reliability and maintainability symposium, 2000 

[SFPP] SWC/12-040/SFPP/PR - Guidelines And Recommendations For 
Prevention Of Software Failure Propagation – October 2013 - ESA 
Study Contract Report 

[NASA-8719-GB] NASA-GB-8719.13 – Software Safety Guidebook – 31 March 2004 

[EN-50128] IEC 62279: Railway applications - Communications, signalling and 
processing systems - Software for railway control and protection 
systems (EN 50128) – March 2001 

[IEEE-Trans-07] Peter Sandborn Software Obsolescence – Complicating the Part and 
Technology Obsolescence Management Problem - IEEE Trans on 
Components and Packaging Technologies, Vol. 30, No. 4, pp. 886-
888, December 2007 

[CIRP-37-10] Key Challenges in Managing Software Obsolescence for Industrial 
Product-Service Systems (IPS2) - CIRP IPS2 Conference 2010 

 

43 


	Software dependability and safety
	1  Scope
	2  References
	3  Terms, definitions and abbreviated terms
	3.1 Terms from other documents
	3.2 Abbreviated terms

	4  Principles
	4.1 General concepts
	4.1.1 Software failures and faults
	4.1.2 Software reliability
	4.1.3 Software maintainability
	4.1.4 Software availability
	1.1.1
	4.1.5 Software safety
	4.1.6 System level and software level
	4.1.7 Fault prevention, removal, tolerance, and forecasting

	4.2 Relation to other ECSS Standards and Handbooks

	5  Software dependability and safety programme
	5.1 Introduction
	5.2 Software dependability and safety workflow
	5.2.1 General
	5.2.2 Software dependability and safety requirements
	5.2.2.1 General
	5.2.2.2 System-level safety requirements for software
	5.2.2.3 System-level dependability requirements for software

	5.2.3 Software criticality classification
	5.2.3.1 General
	5.2.3.2 System-level software criticality classification
	5.2.3.3 Software-level software criticality classification

	5.2.4 Handling of critical software
	5.2.5 Hardware-Software Interaction Analysis


	6  Software dependability and safety  methods and techniques
	6.1 Introduction
	6.2 SFMEA (Software Failure Modes and Effects Analysis)
	6.2.1 Purpose
	6.2.2 Procedure
	6.2.2.1 General
	6.2.2.2 Software level
	1.1.1.1
	6.2.2.3 Failure modes
	6.2.2.4 Failure effects
	6.2.2.5 Severity, probability and criticality
	6.2.2.6 Observable symptoms
	6.2.2.7 Recommendations

	6.2.3 Costs and benefits

	6.3 SFTA (Software Fault Tree Analysis)
	6.3.1 Purpose
	6.3.2 Procedure
	6.3.3 Costs and benefits

	6.4 SCCA (Software Common Cause Analysis)
	6.5 Engineering methods and techniques supporting software dependability and safety
	6.6 Software availability and maintainability techniques
	6.6.1 Software maintainability
	6.6.2 Software availability

	6.7 Software failure propagation prevention
	6.8 Defensive programming


