

Introduction to Spacecraft Mechanisms via: ECSS-E-ST-33-01C Rev. 1

Florian Liebold 1-Nov-2017

© 2017 by European Space Agency

COPYRIGHT NOTICE

COPYRIGHT NOTICE:

By using the ECSS Training material, developed by ESA, you agree to the following conditions:

- 1. The training shall take place at your premises and shall be addressed to your staff (internal participants);
- 2. In case of a training to be given to external participants, the prior ESA written authorisation shall be requested;
- 3. The ESA Copyright shall always be mentioned on all Training Material used for the purpose of the training and participants shall acknowledge the ESA ownership on such a Copyright;
- 4. The Training material shall not be used to generate any revenues (i.e. the training and Training Material shall be "free of charge" excl. any expenses for the training organisation);
- 5. Only non-editable PDF files of the Training Material can be distributed to the participants (nor power point presentations);
- 6. Any deficiency identified in the Training Material shall be reported to the ECSS secretariat;
- 7. If the Training Material is modified or translated, the ESA Copyright on such edited Training Material shall be clearly mentioned. A copy of the edited Training Material shall be delivered to ESA for information.
- 8. You shall always hold harmless, indemnify and keep ESA indemnified against any and all costs, damages and expenses incurred by ESA or for which ESA may become liable, with respect to any claim by third parties related to the use of the Training Material.

ESA UNCLASSIFIED - For Official Use

Content

1. Terms and Definitions

→ What is a mechanism? Which disciplines are involved?

2. Scope

→ When is the standard applicable? What is it good for?

Requirements

- → Design (dimensioning, material selection, etc.)
- → Verification (analysis and test)

Spacecraft Mechanisms

"Assembly of components that are linked together to intentionally enable a relative motion."

Spacecraft Mechanisms

Actuators

e.g. electric motor, spring, SME, voice coil, piezo-electric, etc.

Transmission

e.g. shafts, couplings, gears, etc.

Bearings

e.g. ball bearings, journal bearings, etc.

Sensors

e.g. optical, magnetic, mechanical, etc.

open / closed loop, uncontrolled

Spacecraft Mechanisms

tribology

discipline that deals with the design, friction, wear and lubrication of interacting surfaces in relative motion to each other

lubrication

ESA UNCLASSIFIED - For Official Use

use of specific material surface properties or an applied material between two contacting or moving surfaces in order to reduce friction, wear or adhesion

ECSS-E-ST-33-01C Rev.1

... specifies the requirements applicable to the

- concept definition
- ➤ development
- >design
- > production
- verification
- >in-orbit operation

of space mechanisms on spacecraft and payloads in order to **meet the mission performance requirements**.

ESA UNCLASSIFIED - For Official Use

ECSS-E-ST-33-01C Rev.1

- 1. Scope
- 2. Normative references
- 3. Terms and definitions
- 4. Requirements
 - 1. Overview
 - 2. General Requirements
 - 3. Mission and Environments
 - 4. Functional
 - 5. Constraints
 - 6. Interfaces
 - 7. Design Requirements
 - 8. Verification
 - 9. Production and Manufacturing
 - 10. Deliverables

ECSS-E-ST-33-01C Rev.1

New revision of ECSS-E-ST-33-01 released in Feb 2017

Changes w.r.t. previous revision:

- Requirements for safety critical mechanisms (i.e. human space flight)
- Alignment with other standards (structures, thermal, PA, etc.)
- New rules on ball bearings

Normative references

ECSS-S-ST-00-01	ECSS system — Glossary of terms
ECSS-E-ST-10-02	Space engineering – Verification
ECSS-E-ST-20	Space engineering – Electrical and electronic
ECSS-E-ST-20-06	Space engineering – Spacecraft charging
ECSS-E-ST-20-07	Space engineering – Electromagnetic compatibility
ECSS-E-ST-31	Space engineering – Thermal control general requirements
ECSS-E-ST-32	Space engineering – Structural
ECSS-E-ST-32-01	Space engineering – Fracture control
ECSS-E-ST-32-10	Space engineering – Structural factors of safety for spaceflight hardware
ECSS-E-ST-33-11	Space engineering – Explosive systems and devices
ECSS-Q-ST-30	Space product assurance - Dependability
ECSS-Q-ST-40	Space product assurance – Safety
ECSS-Q-ST-70	Space product assurance – material, mechanical part and process
ECSS-Q-ST-70-36	Space product assurance – Material selection for controlling stress corrosion cracking
ECSS-Q-ST-70-37	Space product assurance – Determination of the susceptibility of metals to stress corrosion cracking
ECSS-Q-ST-70-71	Space product assurance – Data for selection of space materials and processes
ISO 76 (2006)	Rolling bearings – Static load rating
ISO 128 (1996)	Technical drawings
ISO 677 (1976)	Straight bevel gears for general engineering and for

ESA UNCLASSIFIED - For Official Use ESA | 01/11/2017 | Slide 10

General Requirements: Units

All units to be used:

E.g. kinematic viscosity

= [St] Stokes

 $= 10^{-4} \text{ m}^2 \cdot \text{s}^{-1}$

= 11 🛌 :: •

General Requirements: Maintainability

- → Mechanisms shall be designed to be maintenance free
- → If maintenance is required, it shall be approved by the customer and procedures shall be provided

ESA UNCLASSIFIED - For Official Use

General Requirements: Redundancy

- → single point failure modes shall be identified;
- → single points of failure should be eliminated by redundant components;
- → active elements of mechanisms shall be redundant, such as sensors, motor windings, brushes, actuators, switches and electronics;

Courtesy of Sener (PL)

http://www.componeticsinc.com/

Mission Environment

The mechanism engineering shall consider <u>every mission phase</u> identified for the specific space programme, i.e.:

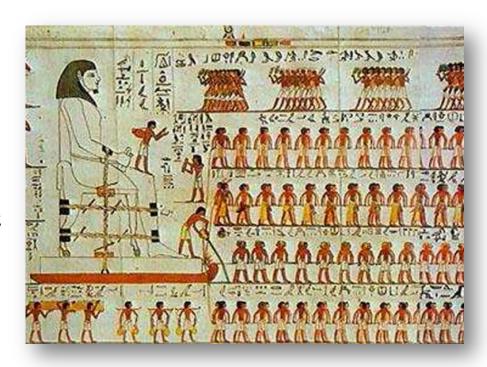
- Assembly and integration (humidity, oxygen)
- → Testing (1 g environment, additional resistive loads)
- → Storage (long term effects)
- → Handling and shipment (loads, accessibility)
- → Launch (mechanical loads)
- → In-orbit operation / hibernation (operational loads, thermal, radiation, EMC, life, etc.)

ESA UNCLASSIFIED - For Official Use

Material selection

... shall be performed in conformance with ECSS-Q-ST-70 (Materials):

- → Corrosion
- → Galvanic corrosion (→ dissimilar metals)
- → Stress corrosion cracking (e.g. 440C, Cronidur X30)
- → Fungus protection
- → Flammable, toxic and unstable materials
- → Induced emissions (stray light protection)
- Radiation
- Atomic oxygen
- Fluid compatibility


ESA UNCLASSIFIED - For Official Use

Design Requirements: Tribology

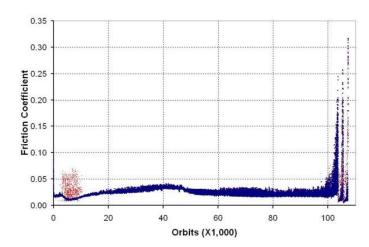
Mechanisms shall:

- be designed with a <u>lubrication</u> <u>function</u> between surfaces
 - → Reduce friction and wear
 - → Increase lifetime
- use only lubricants <u>qualified for the</u> <u>mission</u>
 - Temperatures, ambient pressure, contact pressure, number of cycles, lifetime, relative velocity etc.

ESA UNCLASSIFIED - For Official Use ESA | 01/11/2017 | Slide 16



Design Requirements: Tribology (cont'd)



Qualification of lubricant via:

- → Lifetest (see slides 51 ff.)
- → Component level: bearing / gear test rigs, Pin on disc (POD), Spiral orbit tribometer (SOT)

SOT device by ESTL ESA UNCLASSIFIED - For Official Use

European Space Tribology Laboratory (ESTL):

- operates test facilities
- has data base on qualified lubricants
- provides consultancy

www.esrtechnology.com

Design Requirements: Dry Lubrication

- preferred for operation in high temperature, at low speeds, low number of operational cycles, when cleanliness is an issue (low outgassing rate)
- ... applied through processes such as sputtering, vapor deposition etc.
- ... e.g. MoS2, WS2, graphite, PTFE, lead
- Samples of representative material [...] shall be co-deposited in each process with the flight components so that verification checks can be performed;
- → The thickness and adhesion of the lubricant on samples shall be verified;

ESA UNCLASSIFIED - For Official Use

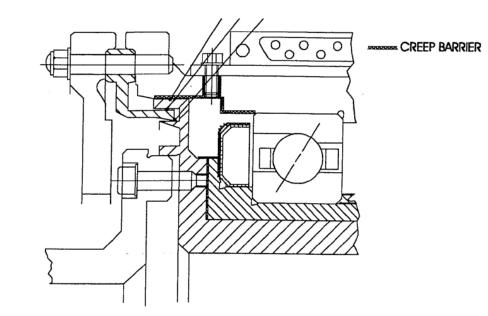
Design Requirements: Fluid Lubrication

- ... for high speed, low friction and high number of operational cycles
- ... wide range of space qualified hydrocarbon and synthetic oils
- → The quantity of lubricant used shall be determined.
- Outgassing, creep and absorption shall be taken into account (including ground effects, i.e. gravity)
- → For rules on outgassing (total / relative mass loss, collected volatile condensable materials):

→ ECSS-Q-ST-70-02

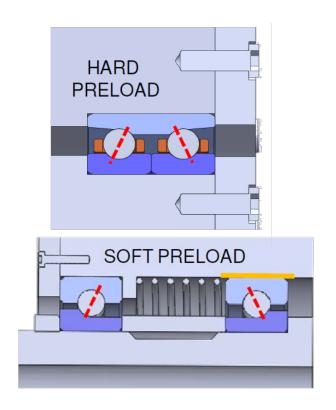
Courtesy of ESTL

ESA UNCLASSIFIED - For Official Use



Design Requirements: Anti-creep barriers

- avoid migration of fluid lubricants to the internal/external sensitive equipment;
- causes a change of the lubricant amount on the parts to be lubricated;
- → integrity of the anti-creep barrier shall be verifiable by indicators.



ESA UNCLASSIFIED - For Official Use

Design Requirements: bearing preload

- Ball bearings shall be preloaded to withstand mechanical environment;
- Preload calculation shall be made available
- Preloading should be applied by solid or flexible preload;
- Preload <u>should</u> be measured after assembly;
- preload should be confirmed after running-in;

ESA UNCLASSIFIED - For Official Use

Design Requirements: structural dimensioning

Mechanisms shall be designed with a **positive margin of safety** against yielding and against ultimate under all environmental conditions and operational load conditions

ECSS-E-ST-32 (structures):

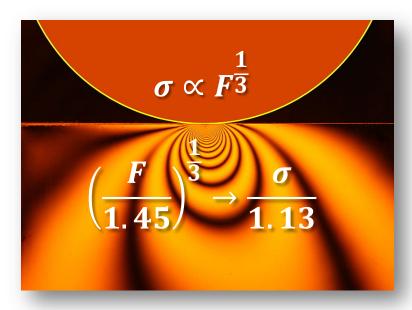
4.5.16 Margin of safety (MOS)

Margins of safety (MOS) shall be calculated by the following formula: a.

$$MOS = \frac{design \ allowable \ load}{design \ limit \ load \times FOS} - 1$$

NOTE Loads can be replaced by stresses if the load-stress relationship is linear.

$$FOS_Y = 1.1$$
$$FOS_U = 1.25$$


(typical values)

ESA UNCLASSIFIED - For Official Use

Design Requirements: ball bearings

- → shall be sized with respect to the maximum allowable peak hertzian contact stress:
- → For the evaluation of the peak hertzian contact stress, a minimum factor of 1.45 shall be applied to the design limit load;

According to **ISO76** (static load rating):

3700 MPa ← 4200 MPa (for hardened steels, e.g. SAE 52100)

3500 MPa ← 4000 MPa (for stainless steels, e.g. 440C)

ESA | 01/11/2017| Slide 23

ESA UNCLASSIFIED - For Official Use

Design Requirements: motorisation

Actuators shall be sized to provide **torques** / **forces** in conformance with:

$$T_{min} = 2 \cdot (1.1 \cdot I + 1.2 \cdot S + 1.5 \cdot H_M + 3 \cdot F_R + 3 \cdot H_Y + 3 \cdot H_A + 3 \cdot H_D) + 1.25 \cdot T_D + T_L$$

$$T_{min} \ge 2 \cdot \sum_{i} (k_i \cdot T_{res,i}) + T_L + 1.25 \cdot T_D$$

- throughout the operational lifetime (ageing, lubricant degradation, creep, etc.)
- over the full range of travel
- worst case environmental and operational conditions (temperatures, mechanical loads)

ESA UNCLASSIFIED - For Official Use

Design Requirements: motorisation (cont'd)

Actuators shall be sized to provide **torques** / **forces** in conformance with:

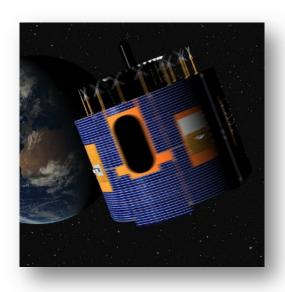
$$T_{min} = 2 \cdot (1.1 \cdot I + 1.2 \cdot S + 1.5 \cdot H_M + 3 \cdot F_R + 3 \cdot H_Y + 3 \cdot H_A + 3 \cdot H_D) + 1.25 \cdot T_D + T_L$$

$$T_{min} \ge 2 \cdot \sum_{i} (k_i \cdot T_{res,i}) + T_L + 1.25 \cdot T_D$$

T_L: Deliverable **output torque of the mechanism** when specified by customer

T_D: **inertial resistance torque** caused by the worst-case acceleration function specified by the customer (i.e. customer specifies a motion rather than a torque)

ESA UNCLASSIFIED - For Official Use



Design Requirements: motorisation (cont'd)

Minimum uncertainty factors for <u>loss terms</u>:

Resistive force or torque contributor	Symbol	Theoretical Factor	Measured Factor	
Inertia	I	1,1	1,1	
Spring	S	1,2	1,1	
Magnetic effects	H _M	1,5	1,1	
Friction	F _R	3	1,5	
Hysteresis	H_Y	3	1,5	
Others (e.g. Harness)	H _A	3	1,5	
Adhesion	H _D	3	3	

- → I \neq T_D, but resistive inertia load due to acceleration of mechanism itself (e.g. spinning spacecraft!)
- → S ≠ actuation torque, but resistive spring load (e.g. latch)

ESA UNCLASSIFIED - For Official Use

Design Requirements: motorisation (cont'd)

If actuation force / torque is supplied by a spring:

- → springs shall be redundant (e.g. 1:2 or 2:3 redumdancy)
- → actuation torque / force shall be multiplied by an uncertainty factor of 0.8 (→ only if ageing measurements are not available)

If actuation force / torque is supplied by an electric motor:

→ Worst case actuation torque / force shall be **measured at operating conditions** (i.e. at representative temperatures, pressures, speeds, loads etc.)

Actuation forces / torques supplied by **devices whose primary function is not** to provide actuation (e.g. harness) shall not be taken into account

ESA UNCLASSIFIED - For Official Use

Spring motorisation example

Example mechanism

- Consider the example simple spring deployment hinge illustration, requirements and characterised resistive contributors shown here:
- This is a rotating mechanism without a specific load requirement at customer level. Thus, the minimum actuation torque is derived using the equation from section 4.7.5.3.1.d of ECSS-E-ST-33-01C, shown below:

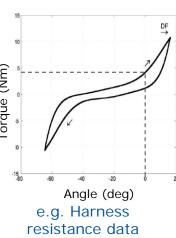
Deployable Harness Damper Springs. Bearing Structure (latch not shown)

The minimum actuation torque (T_{min}) shall be derived by the equation:

$$T_{\min} = 2 \times (1.1I + 1.2S + 1.5H_M + 3F_R + 3H_Y + 3H_A + 3H_D) + 1.25T_D + T_D$$

Relevant Requirements:

- R1. Deployment angle = 60 °
- R2. Deployable CoG distance from Z = 1.5 m
- R3. Deployable mass = 10 kg
- R4. Max global acc = 0.1 m/s^2 (any axis) (note: also be aware of any rotational accelerations)



Spring motorisation example

Example Budget:

Contributor Description	Contributor Origin Values		tor Origin Values Units ECSS Factor		Factored Contribution	Reference	
Deployable inertia	Inertia (I)	1.50	Nm	1.10	1.65	Derived from requirements R2, R3 & R4.	
Bearing Friction	Friction (FR)	0.10	Nm	1.50	0.15	Tested at bearing level. Report xxx.	
Damper	Friction (FR)	0.20	Nm	1.50	0.30	Tested at damper level. Report xxx.	
Latch	Friction (FR)	0.10	Nm	3.00	0.30	Predicted by analysis. Report xxx	
Harness	Other (HA)	4.00	Nm	1.50	6.00	Tested on Harness EM. Report xxx.	
	Magnetic effects	n/a	n/a	n/a	n/a	n/a	
	Hysteresis	n/a	n/a	n/a	n/a	n/a	
	Adhesion	n/a	n/a	n/a	n/a	n/a	
	Dynamic Acceleration	n/a	n/a	n/a	n/a	n/a	
Total Resistance		5.90	Nm		8.40		
Torque including							
motorisation factor				2.00	16.80		
Min required							
torque per spring	Spring		Nm	0.80	21.0		

ESA UNCLASSIFIED - For Official Use

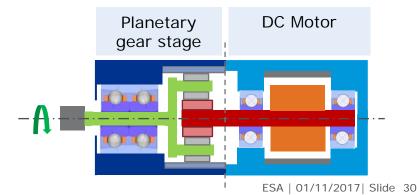
Active motorisation example

Example active mechanism

- Consider the example of a powered actuator using a DC motor and planetary gearbox to provide motion for the requirements defined hereunder
- This is a rotating mechanism with a specific load requirement at customer level. Thus, the minimum actuation torque is derived using the equation from section 4.7.5.3.1.e of ECSS-E-ST-33-01C, shown below:

$$T_{\min} = 2 \times (1.1I + 1.2S + 1.5H_M + 3F_R + 3H_Y + 3H_A + 3H_D) + 1.25T_D + T_L$$

Example Relevant Requirements:


R1. Output Torque = 0.2 Nm

R2. Max commanded speed = 1.5 rads/s

R3. Max command current = 2 A

R4. Max command voltage = 24 V

R5. Temperature range = -20 °C to 30 °C

ESA UNCLASSIFIED - For Official Use

Active motorisation example

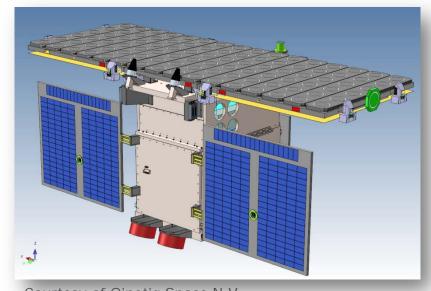
Example actuation budget

Budget for cold case @ -20 °C	Gear ratio from output to moto	r: 8	}				
Contributor Description	Contributor Origin	Units	Unfactored value at output	ECSS Uncertainty Factors	Factored Contribution @ Output	Factored Contribution @ Motor	Reference
Deliverable Output Torque	(T ₁)	Nm	0.20	1.00	0.200	0.02500	Derived from requirement R1
Gearbox output bearings	Friction (FR)	Nm	0.080	1.5	0.120	0.01500	Tested at bearing level. Report xxx.
Planetary gear stage 1 (based on efficiency)	Friction (FR)	Nm	0.040	1.5	0.060	0.00750	Tested at gear level. Report xxx.
Motor Bearings Uncertainty	Friction (FR)	Nm	-	1.5-1=0.5	0.040	0.005	Tested at bearing level. Report xxx.
Total Resistance		Nm	0.200		0.220	0.028	
Motorisation factor		_	2		2	2	
Total inc Motorisation factor		Nm	0.400		0.440	0.055	
Gearbox inertia	Inertial resistance (Td)	Nm	2.458E-04	1.25	3.07E-04	3.84E-05	Actuator design report xxx.

Min required torque	0.055	Nm

- This is a "black box" motor case needing caution
- The budget is calculated from output to input to ensure the consequence of output uncertainty is reflected on gears

ESA UNCLASSIFIED - For Official Use



Design Requirements: end stops

For mechanisms with restricted travel or rotation:

- → Use of regular or emergency mechanical end stops (i.e. don't rely on actuator function, e.g. by electric motor)
- deployment indicators shall not be used as mechanical end stops
- → Requirements on separable contact surfaces do apply (see next slide)

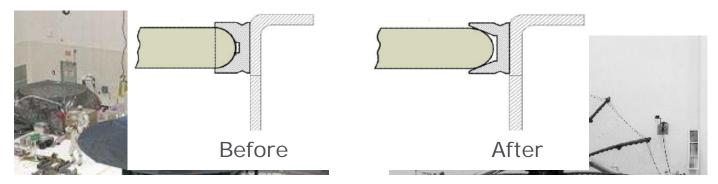
Courtesy of Qinetig Space N.V.

ESA UNCLASSIFIED - For Official Use

Design Requirements: separable contact surfaces

(other than gears, balls and journal bearings)

- maintain adhesion forces below the specified limits
- contact between the mating surfaces shall be characterized
 - → surface roughness, hardness, contact geometry
- the **peak hertzian contact stress** shall be verified to be below 93 % of the yield limit of the weakest material
- avoid potential contact surface property changes
- for metallic surfaces (→ risk of **cold welding!**):
 - minimum **hardness** of 500HV \rightarrow
 - \rightarrow use of **dissimilar metal** (conflict with galvanic corrosion constraints)
 - use of lubricant / dissimilar coatings \rightarrow



Example: NASA's Galileo High Gain Antenna

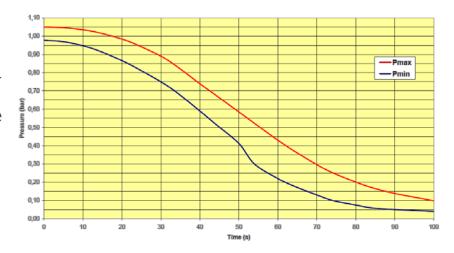
- → Introduction of a "minor" design change
- → Significant increase in hertzian contact pressure (in particular during launch vibrations)
- → Lubrication breakdown
- → Relative motion in vacuum leading to cold welding between pin and socket
- → Partial deployment failure
- → Significantly reduced down-link rate

Design Requirements: Threaded parts

- Use of materials not susceptible to <u>stress corrosion</u> <u>cracking</u>
 - → Material selection according to ECSS-Q-ST-70-36C
- > shall be designed to be <u>fail-safe</u> ≠ safe life
 - → Fracture control requirements in ECSS-E-ST-32-01C Rev.1
- preload shall be justified taking into account scattering of all parameters
 - e.g. manufacturing, lubrication and tightening tolerances

http://www.neaelectronics.com/

ESA UNCLASSIFIED - For Official Use



Design Requirements: Venting

- all closed cavities shall be provided with a <u>venting hole</u>
- prevent particles contamination of bearings, optics and external sensitive components
 - → e.g. by means of filters
- compatibility of the lubricant with the other spacecraft materials

_ = 11 🗠 :: 🗕 +

ESA UNCLASSIFIED - For Official Use

Design Requirements: Grounding

- Each mechanism shall be <u>electrically</u>
 <u>bonded</u> to the spacecraft structure
- a ground <u>bonding strap</u> shall be used between the mechanism housing and the mounting ground plane
- the <u>length-to-width ratio</u> of the bonding strap should be smaller than four
- DC resistance shall be less than 10 $m\Omega$.

ESA UNCLASSIFIED - For Official Use

Design Requirements: Others

Other design requirements, regarding:

- Open and closed loop **control systems** (e.g. gain and phase margins)
- Electrical insulation
- **Strain** on wires
- Mechanical <u>clearances</u> (e.g. MLI support locations)
- Marking and **labelling**
- Flushing and **purging**
- Thermal control (shall be **passive**!)
- Magnetic cleanliness / EMC

Verification Requirements: General

Verification process in conformance with ECSS-E-ST-10-02 (Verification)

Review of design, Inspection, Measurement, Analysis, Test

Verification matrix shall be established

ESA UNCLASSIFIED - For Official Use

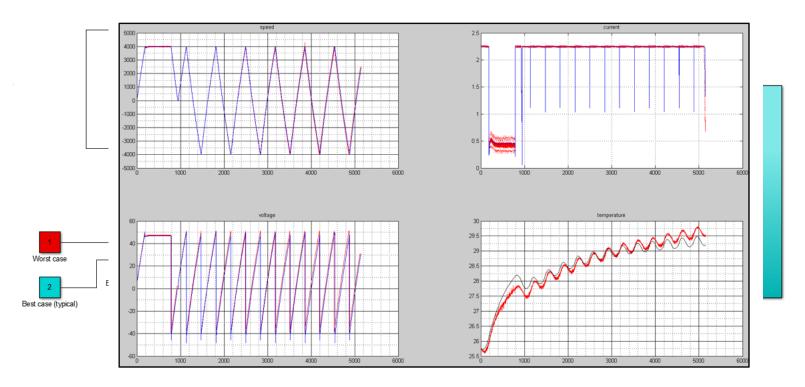
Verification by analysis

... shall cover extreme conditions

- -In flight
- On ground
- Thermal analysis
- ☐ Structural analysis
- Preload budget
- Functional performance analysis
- Hertzian contact analysis
- Functional dimensioning analysis
- Reliability analysis, FMECA
- Gear analysis
- Shock generation and susceptibility

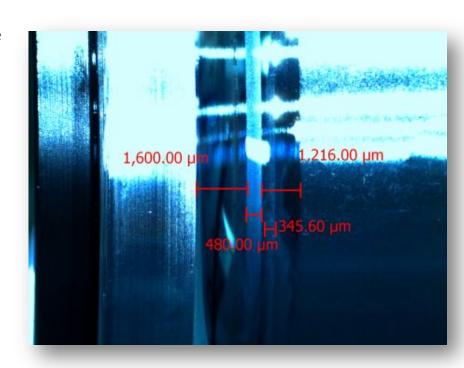
- Disturbance generation and susceptibility
- Analysis of control systems
- Lubrication analysis
- ☐ Lifetime analysis
- Hygroscopic effect analysis
- Magnetic and electromagnetic analysis
- Radiation analysis
- Electrical analysis

ESA UNCLASSIFIED - For Official Use



Functional performance analysis

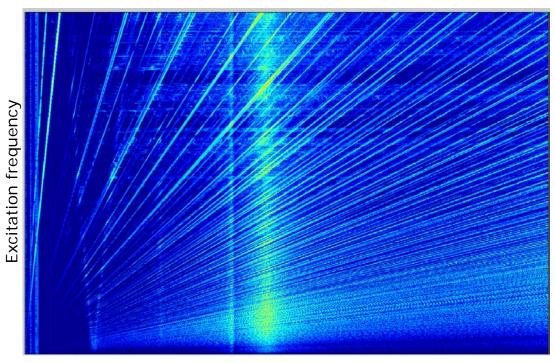
ESA UNCLASSIFIED - For Official Use ESA | 01/11/2017 | Slide 41



Hertzian contact stress analysis

- Analysis of the <u>predicted hertzian</u> <u>contact stress</u> to verify the compliance with the material allowables
- Analysis to verify <u>sizing of ball</u>
 <u>bearings</u> in conformance with the allowable peak hertzian contact stress
 - → Ball bearing analysis tools: CABARET, RBSDyn, KISSsoft, ORBIN
 - → Also for separable contact surfaces, gears, end stops

Disturbance generation and susceptibility



Example: Microvibration generation

- Bearing geometry
- Unbalance
- Structural resonances
 (e.g. FEM model)
- Control frequencies
- Rotor dynamics

$$FTF = \frac{f_r}{2} \cdot \left(1 - \frac{d}{D} \cdot \cos \alpha\right)$$

e.g. Fundamental train frequency

Response frequency

ESA UNCLASSIFIED - For Official Use ESA | 01/11/2017 | Slide 43

Lubrication analysis

Analysis of the choice of lubrication system and its dimensioning for the proposed application and lifetime shall be provided:

- contact stress
- number of cycles
- environmental conditions

$$\frac{dm}{dt} = (p_v - p_p) \sqrt{\frac{M}{2 \cdot \pi \cdot R \cdot T}}$$

e.g. Langmuir equation to analyse oil loss by evaporation

Potential Oil Loss Mechanisms:

Creep, centrifugal forces, evaporation, absorption by porous materials

Magnetic and electromagnetic analysis

Example: Polarised Solenoid (Pin Puller)

= 11

Verification by test

- The tests to be performed shall be
 - Defined in a test plan
 - Agreed by the customer
- conformance to ECSS and mechanisms specification
- conformance to functional dimensioning
- performance in launch and operation configuration
- thermal verification
- structural verification
- characterize the dynamic behavior

- Characterisation testing
- Qualification testing
- Acceptance testing

ESA UNCLASSIFIED - For Official Use

Characterisation testing

- Breadboard model testing during **Phase A or B**
- Gain confidence in technology (no flight representative hardware)
 - Functional performance test
 - Vibration and thermal tests.
 - Tribological lifetime test on critical items (Example: usage of certain lubricant in bearing / gear test rig)

No formal qualification!

Applicability versus types of space segment equipment Application notes Reference Ref. to Level & Test clause Duration General For k (solar array), the deployment test is mandatory before and after the Functional and 5.5.1.1 R R R R performance (FFT/RFT) environmental tests (manual deployment before the environmental tests). Humidity 5.5.1.2 Х Х Х Х Х For k (solar array) and l (solar panel), see ECSS-E-ST-20-08. To be performed on dedicated model. Life 5.5.1.3 See Table 5-2 No 1 Х R R For I (solar panels), the life tests are covered by the ECSS-E-ST-20-08. 5.5.1.4 X Х The test is performed in parallel with other funct. & environm. tests. Burn-in Х Mechanical Upon agreement with customer the CoG and MoI is not measured by test R R 5.5.2.1 R R R R R R

Х

X

R

R

Х Х

Х

х

х

Х

X х X Х

R R R

Х Х

R R R R

Х Х Х

Х Х

X X

х

Х

RΙ

R R R R R R R R

χl

χl

but calculated.

vibration test.

(without offset bracket).

segment equipment.

confirmed during the deployment test.

Leak and pressure tests may be combined.

Test to be performed only if need is identified by analysis.

Test to be performed only if need is identified by analysis.

performed.

One of the three types of test is performed if not covered by the sinusoidal

For k (solar array), the random vibration test should be added to acoustic

For b (antennas), i (optical), j (mechanism), random vibration or, acoustic or

both tests are selected depending on the type, size and location of the space

If it is demonstrated that the susceptibility to shock of the space segment equipment is above the shock environment, the test needs not to be

For k (solar array) shock qualification is performed at components level and

test for fixed solar array mounted directly to the spacecraft side wall

Table 5-1: Space segment equipment - Qualification test baseline

Physical properties Static load

Random vibration

Sinusoidal vibration

Micro-vibration

susceptibility

Leak

generated environment Micro-vibration

Structural integrity

Spin

Transient

Acoustic

Shock

5,5,2,2

5.5.2.2

5,5,2,2

5,5,2,3

5.5.2.4

5,5,2,5

5.5.2.6

5,5,2,7

5.5.2.8

5,5,3,1

See Table 5-2 No 2

See Table 5-2 No 3

See Table 5-2 No 4

See Table 5-2 No 5

See Table 5-2 No 6

See Table 5-2 No 7

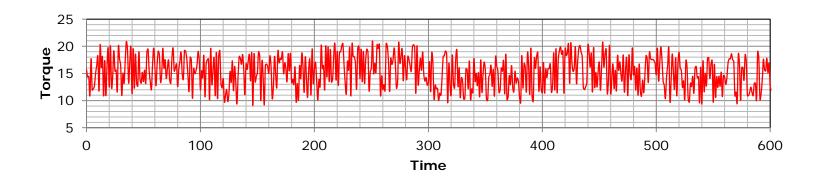
See Table 5-2 No 8

See Table 5-2 No 9

See Table 5-2 No 10

Thermal qualification

- Qualify mechanism performance for operational and non-operational temperature limits (usually <u>predicted</u> <u>limits ±10K</u>)
- Operation of the mechanism in a representative environment under worst-case <u>temperature gradients</u> shall be verified
- → Pressure for TVAC < 10⁻⁵ mbar


ESA UNCLASSIFIED - For Official Use

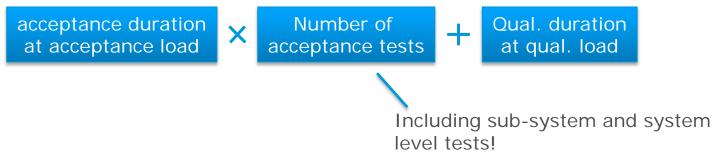
Functional qualification testing

ESA UNCLASSIFIED - For Official Use

- Functional performance testing after mechanical and thermal settling → i.e. run-in, thermal settling
- **Following the exposure** to environmental conditions

Energy and shock

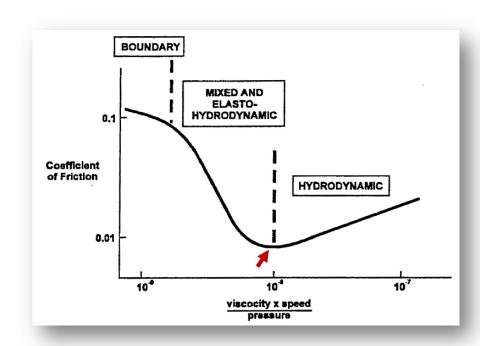
- to withstand release and end **shocks**
- **shock emissions** shall be measured
- Micro-vibration emissions to be tested in representative configuration


Lifetime qualification testing

... shall be performed:

- on a flight representative life test model
- 2. after exposure to flight representative environmental loads

Total vibration test duration:


ESA UNCLASSIFIED - For Official Use

Lifetime qualification testing (cont'd)

lifetime testing shall be representative with respect to:

- Thermal conditions, loading conditions, contact stress, motion profile and speed
- 2. <u>Lubrication regime</u> (see Stribeck curve)
- Very careful with acceleration of life test
- Changes in ambient / operating conditions change lubrication regime

ESA UNCLASSIFIED - For Official Use ESA | 01/11/2017 | Slide 53

Lifetime qualification testing (cont'd)

Life test duration shall be no less than

- → the factored sum of the predicted nominal ground cycles and in-orbit cycles [...]
- → [...] multiplied by the factors

Туре	Number of expected cycles	Factor
Ground testing	1 to 1 000 cycles	4
(minimum is 10!)	1 001 to 100 000 cycles	2
	> 100 000 cycles	1,25
In orbit	1 to 10 cycles	10
	11 to 1 000 cycles	4
	1 001 to 100 000 cycles	2
	> 100 000 cycles	1,25

ESA UNCLASSIFIED - For Official Use

Example I: Solar array deployment mechanism

- Expected in-orbit operations:
- Expected ground test cycles:

$$1 \times 10 + 10 = 20$$

ESA UNCLASSIFIED - For Official Use

Example II: Solar array drive mechanism for LEO

- Expected orbit life: 5 years
- Required on-ground operation: 20 days

LEO orbital period: 90h

Number of in-orbit cycles:
$$5 \times 365.24 \times \frac{24}{1.5} = 29219.2$$

Number of on-ground cycles:
$$20 \times \frac{24}{1.5} = 320$$

Number of life test cycles: $29219 \times 2 + 320 \times 4 \approx 60,000$

ESA UNCLASSIFIED - For Official Use

Qualification testing success criteria

<u>Disassembly and visual inspection of tribological parts:</u>

- No direct contact between metallic parts
- Surface properties of contact surfaces not modified beyond specified limits
- No chemical deterioration beyond the specified limits of fluid lubricants
- Amount and size of wear acceptable (performance, contamination)
- Resistive torques according to 4.7.5.3. (motorization)
- Less than 50% degradation of resistive torques / forces
- Performance according to spec

ESA UNCLASSIFIED - For Official Use

Acceptance testing

- Tests to confirm that flight hardware free from manufacturing defects;
- Test content according to ECSS-E-ST-10-03C, table 5-3;
- Vibration levels and thermal loads which are higher than expected in flight but less than qualification
- Refurbishment should not be performed after successful acceptance testing

Thank you for your attention!

