
ECSS-E-ST-40-07C
2 March 2020

Space engineering
Simulation modelling platform

ECSS Secretariat
ESA-ESTEC

Requirements & Standards Division
Noordwijk, The Netherlands

ECSS-E-ST-40-07C
2 March 2020

2

Foreword

This Standard is one of the series of ECSS Standards intended to be applied together for the
management, engineering and product assurance in space projects and applications. ECSS is a
cooperative effort of the European Space Agency, national space agencies and European industry
associations for the purpose of developing and maintaining common standards. Requirements in this
Standard are defined in terms of what shall be accomplished, rather than in terms of how to organize
and perform the necessary work. This allows existing organizational structures and methods to be
applied where they are effective, and for the structures and methods to evolve as necessary without
rewriting the standards.

This Standard has been prepared by the ECSS-E-ST-40-07C Working Group, reviewed by the ECSS
Executive Secretariat and approved by the ECSS Technical Authority.

Disclaimer

ECSS does not provide any warranty whatsoever, whether expressed, implied, or statutory, including,
but not limited to, any warranty of merchantability or fitness for a particular purpose or any warranty
that the contents of the item are error-free. In no respect shall ECSS incur any liability for any
damages, including, but not limited to, direct, indirect, special, or consequential damages arising out
of, resulting from, or in any way connected to the use of this Standard, whether or not based upon
warranty, business agreement, tort, or otherwise; whether or not injury was sustained by persons or
property or otherwise; and whether or not loss was sustained from, or arose out of, the results of, the
item, or any services that may be provided by ECSS.

Published by: ESA Requirements and Standards Division
 ESTEC, P.O. Box 299,
 2200 AG Noordwijk
 The Netherlands
Copyright: 2020© by the European Space Agency for the members of ECSS

ECSS-E-ST-40-07C
2 March 2020

3

Change log

ECSS-E-ST-40-07C

2 March 2020

First issue

ECSS-E-ST-40-07C
2 March 2020

4

Table of contents

Change log ... 3

Introduction .. 9

1 Scope ... 10

2 Normative references ... 11

3 Terms, definitions and abbreviated terms .. 12

3.1 Terms from other standards .. 12

3.2 Terms specific to the present standard ... 12

3.3 Abbreviated terms... 17

3.4 Nomenclature ... 17

4 Principles .. 18

4.1 Objectives ... 18

4.2 Common Concepts and common types .. 18

4.3 Architecture .. 19

4.4 Time handling principle ... 20

4.5 Simulation lifecycle ... 21

4.6 Simulation method .. 22

4.6.1 Discrete-event simulation (DES) ... 22

4.6.2 Parallelization and distribution ... 23

4.6.3 Inter component communication ... 23

4.7 Models, Services and Components .. 24

4.7.1 Objects .. 24

4.7.2 Components.. 26

4.7.3 Factories ... 28

4.7.4 Models and Services ... 28

4.8 Publication and Persistence .. 29

4.9 Dynamic invocation ... 30

4.10 Components meta data .. 32

4.10.1 Catalogue ... 32

ECSS-E-ST-40-07C
2 March 2020

5

4.10.2 Package .. 32

4.10.3 Configuration ... 33

4.11 Model exchanges considerations .. 33

4.11.1 Overview ... 33

4.11.2 SMP Bundle .. 33

5 Interface requirements ... 34

5.1 Common ... 34

5.1.1 Primitive Types specification ... 34

5.1.2 Time Kinds .. 36

5.1.3 Path string ... 37

5.1.4 Universally Unique Identifiers (UUID) .. 38

5.1.5 Exception specification .. 38

5.2 Components and Objects interfaces ... 38

5.2.1 Object Specification (IObject) .. 38

5.2.2 Collection Specification (ICollection) ... 39

5.2.3 Component Specification .. 40

5.2.4 Aggregation... 43

5.2.5 Composition .. 46

5.2.6 Events ... 48

5.2.7 Entry points ... 51

5.2.8 Dynamic Invocation ... 51

5.2.9 Persistence (IPersist) .. 55

5.2.10 Failures ... 56

5.2.11 Field interfaces .. 57

5.2.12 Requirements on utilization of Simulation Environments interfaces by
components .. 63

5.3 Simulation Environment interfaces .. 64

5.3.1 Logger (ILogger interface) ... 64

5.3.2 Time Keeper (ITimeKeeper) .. 66

5.3.3 Scheduler (IScheduler) ... 68

5.3.4 Event Manager (IEventManager) .. 76

5.3.5 Resolver (IResolver) ... 80

5.3.6 Link Registry (ILinkRegistry) ... 81

5.3.7 Simulator (ISimulator) ... 83

5.3.8 Persistence ... 95

5.3.9 Publication .. 96

5.3.10 Type Registry .. 103

ECSS-E-ST-40-07C
2 March 2020

6

5.3.11 Component Factory (IFactory) .. 108

5.4 Meta data ... 109

5.4.1 Catalogue ... 109

5.4.2 Package .. 113

5.4.3 Configuration data ... 113

6 Implementation mapping ... 114

6.1 Catalogue to C++ ... 114

6.1.1 Mapping templates .. 114

6.1.2 Namespaces and files ... 117

6.1.3 Element and Type Visibility Kind ... 117

6.1.4 Mapping of elements ... 118

6.1.5 Basic Value Types .. 127

6.1.6 Compound Value Types .. 129

6.1.7 Reference Types ... 131

6.2 Package to library ... 134

6.2.1 Mapping templates .. 134

6.2.2 Common to Unix and Windows ... 134

6.2.3 Unix (Shared object) ... 135

6.2.4 Addendum for Windows Dynamic Link Library (DLL) 136

6.2.5 SMP Bundle .. 137

Annex A (normative) Catalogue file - DRD .. 138

A.1 Catalogue DRD .. 138

A.1.1 Requirement identification and source document 138

A.1.2 Purpose and objective ... 138

A.2 Expected response ... 138

A.2.1 Scope and content .. 138

A.2.2 Special remarks .. 138

Annex B (normative) Package file - DRD ... 139

B.1 Package DRD ... 139

B.1.1 Requirement identification and source document 139

B.1.2 Purpose and objective ... 139

B.2 Expected response ... 139

B.2.1 Scope and content .. 139

B.2.2 Special remarks .. 139

Annex C (normative) Configuration file - DRD .. 140

C.1 Configuration DRD .. 140

ECSS-E-ST-40-07C
2 March 2020

7

C.1.1 Requirement identification and source document 140

C.1.2 Purpose and objective ... 140

C.2 Expected response ... 140

C.2.1 Scope and content .. 140

C.2.2 Special remarks .. 140

Annex D (normative) Manifest file - DRD ... 141

D.1 Configuration DRD .. 141

D.1.1 Requirement identification and source document 141

D.1.2 Purpose and objective ... 141

D.2 Expected response ... 141

D.2.1 Scope and content .. 141

D.2.2 Special remarks .. 143

Bibliography ... 144

Figures
Figure 4-1: Common Concepts and Type System .. 19

Figure 4-2: SMP Architecture ... 19

Figure 4-3: SMP State machine .. 21

Figure 4-4: Object mechanisms .. 25

Figure 4-5: Overview of components hierarchy .. 26

Figure 4-6: Component Mechanisms .. 27

Figure 4-7: Component State machine ... 27

Figure 4-8: Sequence of calls for dynamic invocation ... 31

Tables
Table 4-1: Overview of simulation states .. 22

Table 4-2: ViewKind values .. 29

Table 5-1: Primitive Types .. 34

Table 5-2: Component states ... 40

Table 5-3: Semantically equivalent types for connections ... 62

Table 5-4: Default Log Message Kinds ... 65

Table 5-5: Condition for emitting predefined global events ... 79

Table 6-1: C++ declaration templates ... 115

Table 6-2: C++ definition templates .. 117

Table 6-3: C++ mapping for the Visibility kind attribute ... 117

Table 6-4: C++ mapping of Association depending on ByPointer attribute.......................... 120

ECSS-E-ST-40-07C
2 March 2020

8

Table 6-5: C++ mapping for the Direction kind attribute .. 121

Table 6-6: C++ mapping for Property depending on ByPointer attribute 122

Table 6-7: C++ mapping for the Operator attribute kinds .. 125

Table 6-8: C++ declaration templates for packages .. 134
Table D-1 : SMP Manifest Key ... 142

ECSS-E-ST-40-07C
2 March 2020

9

Introduction

Space programmes have developed simulation software for a number of years,
which are used for a variety of applications including analysis, engineering
operations preparation and training. Typically, different departments perform
developments of these simulators, running on several different platforms and
using different computer languages. A variety of subcontractors are involved in
these projects and as a result a wide range of simulation software are often
developed. This standard addresses the issues related to portability and reuse
of simulation models. It is based on the work performed by ESA in the
development of the Simulator Model Portability Standards SMP1 and SMP2
starting from the mid-end of the nineties.

This standard integrates the ECSS-E-ST-40 with additional requirements which
are specific to the development of simulation software. The formulation of this
standard takes into account:

• The existing ISO 9000 family of documents, and

• The Simulation Model Portability specification version 1.2.

The intended readership of this standard is the simulator software customer
and supplier.

ECSS-E-ST-40-07C
2 March 2020

10

1
Scope

ECSS-E-ST-40-07 is a standard based on ECSS-E-ST-40 for the engineering of
simulation software.

ECSS-E-ST-40-07 complements ECSS-E-ST-40 in being more specific to
simulation software. Simulation software include both Simulation
environments and simulation models. The standard enables the effective reuse
of simulation models within and between space projects and their stakeholders.
In particular, the standard supports model reuse across different simulation
environments and exchange between different organizations and missions.

This standard can be used as an additional standard to ECSS-E-ST-40 providing
the additional requirements which are specific to simulation software.

This standard may be tailored for the specific characteristic and constrains of a
space project in conformance with ECSS-S-ST-00.

Applicability

This standard lays down requirements for simulation software including both
Simulation environments and simulation models. The requirements cover
simulation models’ interfaces and simulation environment interfaces for the
purpose of model re-use and exchange to allow simulation models to be run in
any conformant simulation environment.

A consequence of being compliant to this standard for a model is the possibility
of being reused in several simulation facilities or even in several projects.
However, adherence to this standard does not imply or guarantees model
reusability, it is only a precondition. Other characteristics of the model, to be
defined outside this standard, such as its functional interfaces and behaviour,
its configuration data as well as quality, suitability and performance, etc. are
also heavily affecting the potential for a model to be reused. In addition,
agreements need to be reached on simulation environments compatibility,
model validation status as well as legal issues and export control restrictions.

Therefore, this standard enables but does not mandate, impose nor guarantee
successful model re-use and exchange.

Model reuse in this standard is meant both at source-code and binary level,
with the latter restricted to a fixed platform.

ECSS-E-ST-40-07C
2 March 2020

11

2
Normative references

The following normative documents contain provisions which, through
reference in this text, constitute provisions of this ECSS Standard. For dated
references, subsequent amendments to, or revision of any of these publications
do not apply. However, parties to agreements based on this ECSS Standard are
encouraged to investigate the possibility of applying the more recent editions of
the normative documents indicated below. For undated references, the latest
edition of the publication referred to applies.

ECSS-S-ST-00-01 ECSS system - Glossary of terms

ECSS-E-ST-40 Space engineering - Software general requirements

[SMP_FILES] ECSS_SMP_Issue1(2March2020).zip – SMP C++
Header files, SMP XML schemas and SMP Catalogue.
(Available from ECSS website)

https://www.w3.org/
TR/xmlschema11-2/

XML schema specification

http://www.opengro
up.org

The UUID specification from Open Group.

https://www.osgi.org
/developer/specificati
ons/

OSGi Specifications

https://www.w3.org/TR/xmlschema11-2/
https://www.w3.org/TR/xmlschema11-2/
http://www.opengroup.org/
http://www.opengroup.org/
https://www.osgi.org/developer/specifications/
https://www.osgi.org/developer/specifications/
https://www.osgi.org/developer/specifications/

ECSS-E-ST-40-07C
2 March 2020

12

3
Terms, definitions and abbreviated terms

3.1 Terms from other standards
a. For the purpose of this Standard, the terms and definitions from ECSS-S-

ST-00-01 and ECSS-E-ST-40 apply.

b. For the purpose of this Standard, the terms and definitions from
ECSS‐E‐ST‐70 apply, in particular the following term:

1. mission

3.2 Terms specific to the present standard
In the following list of terms, underlined words are further defined in the same
list.

3.2.1 aggregate
relationship between two components implemented by storing their references

NOTE Each component in such a relationship keeps its
own lifecycle and it does not dependent on that
of other components.

3.2.2 association
relationship between two instances of any data-type, where each instance has
its own lifecycle and there is no owner

3.2.3 breakpoint
unambiguous state of a simulation

3.2.4 component
building block of a simulation that can be instantiated and that has a well-
defined contract to its environment

3.2.5 composite
component implementing composition

3.2.6 composition
hierarchical relationship where child component is destroyed if the parent
component is destroyed

ECSS-E-ST-40-07C
2 March 2020

13

3.2.7 configuration
specification of values for fields of components

3.2.8 constructor
specific operation of a component, bearing the same name of the component,
whose purpose is to allocate and build an instance of said component

3.2.9 consumer
component that can receive data in one of its input fields from an output field
of another component

3.2.10 container
typed collection of child components

3.2.11 contract
set of interfaces, operations, fields, entry points, event sinks, event sources and
all the associated constraints, used to interact with a component

3.2.12 data transfer
copy of value from an output field to an input field

3.2.13 entry point
operation without parameters that does not return a value, which can be added
to the scheduler or event manager service

3.2.14 epoch time
absolute time of the simulation

3.2.15 event
see “simulation event”

3.2.16 event manager
component that implements the IEventManager interface

NOTE The IEventManager interface is specified in
clause 5.3.4.

3.2.17 event sink
receiver of specific notifications, owned by a component and subscribed via a
subscription mechanism

3.2.18 event source
emitter of specific notifications, owned by a component and offering a
subscription mechanism

3.2.19 exception
non-recoverable error that can occur when calling into an operation or property

ECSS-E-ST-40-07C
2 March 2020

14

3.2.20 field
feature characterised by a value type and holding a value

3.2.21 input field
field explicitly marked for receiving values as a result of a data transfer

3.2.22 interface
named set of properties and operations

3.2.23 logger
component that implements the ILogger interface

NOTE The ILogger interface is specified in clause
5.3.1.

3.2.24 mission time
relative time measuring elapsed time from a mission specific point in time

3.2.25 model
component that implements the IModel interface

NOTE The IModel interface is specified in clause
5.2.3.2.

3.2.26 model implementation
executable code implementing a model

3.2.27 model instance
occurrence of a model implementation

3.2.28 output field
field explicitly marked for being the source of a value in a data transfer

3.2.29 operation
declaration of a behavioural feature of a component or an interface with the
option to define parameters, return value and raised exceptions

3.2.30 package
collection of types, where each one is either a value type or a component

3.2.31 platform
set of subsystems/technologies that provide a coherent set of functionality
through APIs and specified usage patterns

3.2.32 primitive type
type that can no longer be de-composed and that is pre-defined by the standard

NOTE The available primitive types are listed in Table
5-1: Primitive Types.

ECSS-E-ST-40-07C
2 March 2020

15

3.2.33 property
typed feature of a class, an interface or a component that can be accessed by two
operations, the setter and the getter, not necessarily both present

3.2.34 provider
component that can send data of one of its output fields to an input field of
another component

3.2.35 reference
pointer to a component

NOTE When dealing with the C++ mapping, the term
reference has a meaning specific to that
language, whereas in the rest of this standard it
means point to a component (but it cannot for
instance be a pointer to a class).

3.2.36 resolver
component that implements the IResolver interface

NOTE The IResolver interface is specified in clause
5.3.5.

3.2.37 schedule
planned time ordered execution of entry points

3.2.38 scheduler
component that implements the IScheduler interface

NOTE The IScheduler interface is specified in clause
5.3.3.

3.2.39 service
component that implements the IService interface

NOTE The IService interface is specified in clause
5.2.3.3.

3.2.40 simple field
field of a type that maps directly to a primitive type

3.2.41 simulation environment
platform implementing the standard E-40-07 services (event manager, link
registry, logger, resolver, scheduler and time keeper) and the ISimulator
interface

3.2.42 simulation event
call to an entry point by either scheduler or event manager

NOTE The term “event” is synonymous.

ECSS-E-ST-40-07C
2 March 2020

16

3.2.43 simulation time
relative time since start of simulation

3.2.44 simulator
collection of services and hierarchy of model instances together with a
simulation environment

3.2.45 simulation
single execution of a simulator

3.2.46 simulation service
service instance resolvable by name in the global scope of the simulation
environment

3.2.47 source
component that owns one or more references, one or more event links, or one or
more output fields

NOTE The term “source component” is synonymous.

3.2.48 source component
See source

3.2.49 target
component that implements one or more interfaces, provides one or more event
sinks, or one or more input fields

NOTE The term “target component” is synonymous.

3.2.50 target component
see “target”

3.2.51 time keeper
component that implements the ITimeKeeper interface

NOTE The ITimeKeeper interface is specified in clause
5.3.2.

3.2.52 value
state of a value type

3.2.53 value type
set of values which a variable can possess

3.2.54 Zulu time
the computer clock time, also called wall clock time

ECSS-E-ST-40-07C
2 March 2020

17

3.3 Abbreviated terms
For the purpose of this Standard, the abbreviated terms and symbols from
ECSS-S-ST-00-01 and the following apply:

Abbreviation Meaning

DES Discrete-Event Simulation

SMDL Simulation Model Definition Language

SMP Simulation Modelling Platform

URI Uniform Resource Identifier

URL Uniform Resource Locator

UUID Universally Unique IDentifier

3.4 Nomenclature
The following nomenclature applies throughout this document:

a. The word “shall” is used in this Standard to express requirements. All
the requirements are expressed with the word “shall”.

b. The word “should” is used in this Standard to express recommendations.
All the recommendations are expressed with the word “should”.

NOTE It is expected that, during tailoring,
recommendations in this document are either
converted into requirements or tailored out.

c. The words “may” and “need not” are used in this Standard to express
positive and negative permissions, respectively. All the positive
permissions are expressed with the word “may”. All the negative
permissions are expressed with the words “need not”.

d. The word “can” is used in this Standard to express capabilities or
possibilities, and therefore, if not accompanied by one of the previous
words, it implies descriptive text.

NOTE In ECSS “may” and “can” have completely
different meanings: “may” is normative
(permission), and “can” is descriptive.

e. The present and past tenses are used in this Standard to express
statements of fact, and therefore they imply descriptive text.

ECSS-E-ST-40-07C
2 March 2020

18

4
Principles

4.1 Objectives
The main objective of this standard is to enable the effective reuse of simulation
models and applications within and between space projects and their
stakeholders. In particular, the standard supports model reuse across different
simulation environments and exchange between different organizations and
missions.

The portability of models between different simulation environments is
supported by defining a standard interface between the simulation
environment and the models. Models can therefore be plugged into a different
simulation environment without requiring any modification to the model
source code.

The portability of models between different operating systems and hardware
takes into consideration dependencies such as avoiding calls to operating
specific APIs or use of hardware specific features. The guidelines to the model
developer, on how to avoid developing models with such dependencies, is
outside the scope of this standard.

4.2 Common Concepts and common types
The main purpose of SMP is to promote platform independence,
interoperability and reuse of simulation models. This is done by defining;

• Common Concepts: All SMP models fulfil common high-level concepts
addressing fundamental modelling issues. This enables the development
of models on an abstract level, which is essential for independence from
simulation environments and reuse of models;

• Common Type System: All SMP models are built upon a common type
system. This enables different models to have a common understanding
of the syntax and semantics of basic types, which is essential for
interoperability between different models.

In other words, models are using common concepts and a common type system
to become interoperable. Thus, models ‘live’ in between these two common
layers as shown in Figure 4-1.

ECSS-E-ST-40-07C
2 March 2020

19

SMP: Common Concepts

Model A
Model B

SMP: Common Type System

Figure 4-1: Common Concepts and Type System

4.3 Architecture
The SMP architecture covers two types of components;

• Simulation Models provide application specific behaviour;

• Simulation Environments provide Simulation Services.

This architecture is depicted in Figure 4-2.

Simulation

Model 1 Model 2 Model N

Simulation Environment

Simulation Services

Scheduler Time Keeper Logger

Event Manager

…

Link Registry Resolver

Figure 4-2: SMP Architecture

An SMP compliant simulation environment provides the following six
simulation services:

• Logger: Allows logging messages (see clause 5.3.1);

• Time Keeper: Provides the four different SMP time kinds (see clause 4.4
and 5.3.2);

• Scheduler: Allows calls of entry points based on timed or cyclic events
(see clause 5.3.3);

• Event Manager: Provides mechanisms for global asynchronous events
(see clause 5.3.4);

ECSS-E-ST-40-07C
2 March 2020

20

• Resolver: Provides the ability to get a reference to any model within a
simulation (see clause 5.3.5);

• Link Registry: Maintains a list of the links between model instances (see
clause 5.3.6).

In addition, it supports other concepts laid out in this standard via some
dedicated interfaces:

• Simulation state machine controlling interface (see clause 4.5 and 5.3.7);

• Interfaces allowing Self-persistence as described in clause 4.8 (see also
IStorageReader in clause 5.3.8.1 and IStorageWriter in clause 5.3.8.2);

• Publication: A set of interfaces allowing models to publish their state to
the simulation environment (see clause 5.3.9);

• Type registry: A registry allowing components to register types that later
can be used for publication (see clause 5.3.10);

• Component Factory: Ability to create components via a factory (see
clause 5.3.11).

The arrows in Figure 4-2 indicate interaction between components. In SMP,
communication is performed via interfaces. Two different types of interfaces
can be identified in this architecture:

• Interfaces between components and the Simulation Environment, and

• Inter-component communication interfaces.

4.4 Time handling principle
SMP defines four different time scales, referred to as time kinds (see clause 5.1.2
for exact specification):

• Simulation Time: Relative time since start of simulation, starting at 0
when the simulation is setup.

• Zulu Time: Zulu Time is the computer clock time, also called wall clock
time.

• Epoch Time: The absolute time of the simulation.

• Mission Time: Mission time is a relative time, i.e. it measures elapsed
time from a mission specific point in time.

SMP defines both Epoch and Mission Time as a fixed offset from Simulation
Time. The Offset is set via calls to the SMP time keeper service and the two time
kinds progress linearly with Simulation time. SMP does not define how
Simulation time progress with respect to Zulu time. Typical examples of such a
correlation is:

• Real‐Time: The simulation time progresses with real-time, where
real‐time is typically defined by the computer clock.

• Accelerated: The simulation time progresses relative to real‐time using a
constant acceleration factor. This factor can be larger than 1.0, which
relates to ʺfaster than real‐timeʺ, smaller than 1.0, which means ʺslower
than real‐timeʺ, or 1.0, which coincides with real‐time.

ECSS-E-ST-40-07C
2 March 2020

21

• Free Running: The simulation time progresses as fast as possible, and is
not related to real‐time. Typically, the speed is coordinated with the
timed events of the scheduler, which underlines the close relationship
between these two services (Time Keeper and Scheduler).

SMP does not mandate which of these modes a simulation environment
supports.

4.5 Simulation lifecycle
Any SMP simulation goes via a lifecycle as defined in Figure 4-3. The
simulation environment is responsible to ensure that this state diagram is
followed. It is controlled via the ISimulator interface (see clause 5.3.7).

Figure 4-3: SMP State machine

Each state in Figure 4-3 has its own purpose and behaviour as explained in
Table 4-1. Notice that some state transitions are automatically performed by the
Simulation Environment as indicated in Figure 4-3, while others need explicit
calls to the ISimulator interface.

ECSS-E-ST-40-07C
2 March 2020

22

Table 4-1: Overview of simulation states
Name Description

Building In Building state, the model hierarchy is created. In this state, Publish() and
Configure() can be called any time to call the corresponding Publish() and Configure()
operations of each component.

Connecting In Connecting state, the simulation environment traverses the model hierarchy and
calls the Connect() method of each component.

Initialising In Initialising state, the simulation environment executes all initialization entry points
in the order they have been added to the simulator using the ISimulator
AddInitEntryPoint() method (see 5.3.7).

Standby The simulation environment does not progress simulation time. Only entry points
registered relative to Zulu time are executed.

Executing The simulation environment does progress simulation time. Entry points registered
with any of the available time kinds are executed.

Storing In Storing state, the simulation environment first stores the values of all fields
published with the State attribute to storage (typically a file). Afterwards, the Store()
method of all components (Models and Services) implementing the optional IPersist
interface is called, to allow custom storing of additional information.

Restoring In Restoring state, the simulation environment first restores the values of all fields
published with the State attribute from storage. Afterwards, the Restore() method of
all components implementing the optional IPersist interface is called, to allow custom
restoring of additional information.

Reconnecting In Reconnecting state, the simulation environment makes sure that models that have
been added to the simulator after leaving the Building state are properly published,
configured and connected.

Exiting In Exiting state, the simulation environment is properly terminating a running
simulation.

Aborting In this state, the simulation environment attempts a simulation shut-down, whereby
the simulation can stop executing as the users expect, without guaranties for actual
release of resources.

4.6 Simulation method

4.6.1 Discrete-event simulation (DES)
SMP is built on discrete-event simulation (DES) theory where the behaviour of
a system is modelled as a discrete sequence of events in time. Each event that
marks a change in the state of the systems occurs at a particular instant in time.
The simulation can jump in time from one event to the next since no change in
the system occurs between consecutive events.

The main elements in SMP that support this approach are:

• The simulation components schedule EntryPoints (see clause 5.2.7.1) on
the SMP scheduler (see clause 5.3.3) for execution of events.

• The Simulation state is captured in the persisted data.

ECSS-E-ST-40-07C
2 March 2020

23

4.6.2 Parallelization and distribution
SMP assumes a single scheduler executing its events in sequence. All
components are loaded inside the same address space allowing direct
communication between them. The standard however does not prevent
parallelization or distribution to be built into layers on top of the standard.

4.6.3 Inter component communication

4.6.3.1 Overview
SMP supports the following main method of communication between
components:

• Direct interface based communication

• Data flow based communication

• Event based communication

4.6.3.2 Interface based communication
An interface‐based design adds interfaces as the standard mechanisms for inter-
model communication. This isolates the definition of an interface (the
“contract”) from its implementation. In an interface‐based design, a model
provides any number of interfaces. An Interface defines a contract between
models. Every model implementing the interface provides all the functionality
of the interface, so that every model, which consumes this interface can rely on
the interface implementation. As interfaces are a mechanism to de‐couple
models, they do not give access to fields, but only to operations. With special
operations (i.e. use of Properties. See definition 3.2.33 "property") that read or
write a single value, access to fields can be added.

4.6.3.3 Data flow based communication

4.6.3.3.1 Overview

In a data flow based communication, two components exchange the value of a
field. The Provider component transfers an Output field value into an Input
field of the Consumer component. The Output field is said to be connected to
the Input field through a Dataflow connection.

The dataflow communication can be automatic, i.e. whenever the Output field
is updated by its owning component, the value is immediately propagated to
the connected Input field. The output fields which take part in an automatic
dataflow based communication implement IDataflowField (see 5.2.11.7).

The dataflow communication can be scheduled, i.e. when the Output field is
updated by its owning component, the value is not automatically propagated to
the connected Input field. The transfer is only performed on request, e.g.
cyclically by the Simulation Environment.

It is neither mandated when an Output field pushes its value into connected
Input fields, nor whether an Input field performs any specific action after it has
been updated. An Input field can be implemented in a way that it notifies its

ECSS-E-ST-40-07C
2 March 2020

24

containing model about a change, which can be used to trigger certain
behaviour in the Consumer component.

4.6.3.3.2 Data types consideration

When two fields are involved in a dataflow connection, compatibility of the
field types ensures correct transfer of data between the provider model and the
consumer model.

Two levels of type compatibility are specified for the fields:

a. Strict compatibility: both fields are typed by the same type as identified
by their type UUID published in the Type Registry. In this case, it is
obvious that the fields can be connected via a dataflow connection.

b. Equivalence: the types are equivalent as per their semantics or physical
representation. For example, when type 1 is a user-defined type Voltage
mapped on a Smp::Float64 and type 2 is an user-defined type Tension
mapped on Smp::Float64. As both type 1 and type 2 are Smp::Float64,
they are said “equivalent”. Dataflow connection is allowed as there is no
issue to transfer information between type 1 and type 2.

4.6.3.4 Event Based communication
For an event‐based design the components are modelled using Event Sinks (see
5.2.6.1) and Event Sources (see 5.2.6.2). Events issued by the source are received
by all sinks subscribed to receive the corresponding event.

4.7 Models, Services and Components

4.7.1 Objects
An object is the base class for all SMP elements. It provides the basic features of
a name, description and parent to all SMP elements. This implies that all SMP
elements are organized in a hierarchical structure and always able to traverse
upwards towards its root. The elements inheriting directly from Object are:

• Entry Points (IEntryPoint) as void operations that can be called by the
scheduler and event manager services;

• Entry Point Publisher (IEntryPointPublisher) for publishing of entry
points;

• Event Sinks (IEventSink) and Event Sources (IEventSource) for event
based communication between objects;

• Composites (IComposite) and Containers (IContainer) to build the object
hierarchy;

• Collection (ICollect) allowing to collect SMP elements in a collection;

• References (IReference) allowing objects reference other components;

• Components (IComponent) implementing the simulation behaviour;

• Types (IType) to be used for the definition of fields;

ECSS-E-ST-40-07C
2 March 2020

25

• Factory (IFactory) that creates components;

• Persistent Objects (IPersist) that can store and restore their state. IPersist
is the basis for the following important elements:
− Fields (IField) to hold the simulation state and data;
− Failures (IFailure) to allow objects to represent a failure in a

system.

Figure 4-4: Object mechanisms

ECSS-E-ST-40-07C
2 March 2020

26

4.7.2 Components

Figure 4-5: Overview of components hierarchy

The functionality of an SMP based simulator is implemented in elements that
implement the IComponent (see 5.2.3.1) interface. A component represents an
implementation of a self-contained feature with well-defined interfaces to other
components. At initialization time, a simulation is built by assembling a set of
instances of components. In addition, to implementing the IComponent
interface, a number of additional optional component mechanisms are specified
(see Figure 4-6):

• Component aggregation (IAggregate),

• Inter-component events (IEventProvider and IEventConsumer),

• Dynamic invocation (IDynamicInvocation),

• Link management features (ILinkingComponent),

See clause 5.2 for details on Component Mechanisms.

The Simulator itself is an object, in particular a composite. All its direct children
are components, namely models and services.

ECSS-E-ST-40-07C
2 March 2020

27

Figure 4-6: Component Mechanisms

All SMP components goes via a lifecycle as defined in Figure 4-7. Each
component is responsible to ensure that this state diagram is followed. It is
controlled via the IComponent interface (see clause 5.2.3.1).

Figure 4-7: Component State machine

Each state in Figure 4-7 has its own purpose and behaviour as explained in
Table 5-2.

ECSS-E-ST-40-07C
2 March 2020

28

4.7.3 Factories
A Factory is an Object that creates Components. The type of the Component
instantiated by the Factory is identified by a Universally Unique Identifier
(UUID). The UUID is a 128-bit number which for practical purposes is unique,
without depending for uniqueness on a central registration authority or
coordination between the parties generating them. The purpose of the Factory
is to hide the implementation details of how a Component is instantiated. For
example, the base class of the Component implementation is hidden by the
Factory.

A Factory is an Object that implements the IFactory interface. The Factory is
registered with the simulator by calling the ISimulator::RegisterFactory method.
Instances of the Component identified by the Component’s UUID can then be
created by calling the ISimulator::CreateInstance method which uses the
registered Factory to instantiate the Component.

4.7.4 Models and Services
Two main flavours of components are specified by SMP: Models and Services.
The main differences are:

• Models implement the IModel interface while Services implement the
IServices interface. Both interfaces are empty and do not add any
additional capabilities, but the difference allows to efficiently
differentiate models and services.

• Models are added to the simulation in a hierarchical tree, while services
live in the global scope of the simulation.

• The Models can be fallible by implementing the IFallibleModel interface
but Services are not.

• Models are added to the Simulations via the ISimulator AddModel
method, while Services are added via the AddService method.

• It is possible to get a reference to a service from the ISimulator interface
via the GetService method by its name. This implies that all components
in a simulation can easily obtain a reference to a service.

• Services can only be added to the simulation during the first startup in
building phase, while models can be dynamically added also later in
stand-by state.

The mandatory features of an SMP runtime environment are specified as
services. See clause 5.3 and Figure 4-5.

ECSS-E-ST-40-07C
2 March 2020

29

4.8 Publication and Persistence
SMP components publish their state information to the simulation environment
to:

• Allow visualization of the simulation state.

• Allow the simulation environment to interact with the state of the
component.

• Allow the simulation environment to store and restore the state of the
component via the SMP persistence mechanism.

All published fields are annotated with a set of attributes provided by the SMP
component to the Simulation Environment:

• A View Kind attribute indicating which kind of user this information is
intended for. The values and intended interpretation of these values by
the Simulation Environment is given in Table 4-2.

• If the field is part of the breakpoint or not (State attribute of field).

• If it is an Input, or an Output, or an Input/Output field (Input and Output
attributes of field).

Additional meta information can also be provided via the SMP Catalogue (see
5.4.1).

Table 4-2: ViewKind values
Name Intended interpretation

VK_None The element is not made visible to the user.

VK_Debug The element is made visible for debugging purposes. The element is not
visible to end users. If the simulation environment supports the selection of
different user roles, then the element is intended to be visible to ʺDebugʺ
users only.

VK_Expert The element is made visible for expert users.

The element is not visible to end users. If the simulation environment
supports the selection of different user roles, then the element is intended to
be visible to ʺDebugʺ and ʺExpertʺ users.

VK_All The element is made visible to all users. (this is the default)

From the list of published fields, the simulation environment is able to
determine the state of a simulation and store it into a breakpoint (or to restore it
when needed). This is called persistence. Persistence of SMP components can be
handled in one of two ways:

• External Persistence: The simulation environment stores and restores the
model’s state by directly accessing the fields that are published to the
simulation environment, i.e. via the IPublication (See 5.3.9.1) interface.

• Self‐Persistence: The component can implement the IPersist (See 5.2.9)
interface, which allows it to perform special operations during store and
restore in addition to external persistence. Typically, self-persistence
allows the persistence of dynamic data structure (e.g. events on the

ECSS-E-ST-40-07C
2 March 2020

30

simulation schedule). Two approaches exist in this case for models to
store their data:
− Its state or parts of it can be stored/restored in the storage that is

provided by the simulation environment via the IStorageReader
(see 5.3.8.1) and IStorageWriter (see 5.3.8.2) interfaces provided by
the simulation environment.

− The component can query the filename and location of the storage
file from the environment via the IStorageReader (see 5.3.8.1) and
IStorageWriter (see 5.3.8.2) interfaces and store additional files in
the same location. This mechanism is usually only needed by
specialised models, for example embedded models that need to
load on‐board software from a specific file.

SMP Runtime Environments supports both External and Self-Persistence. For
models and components, only external persistence (via the Store() and Restore()
methods of the ISimulator interface) is a mandatory feature, while self-
persistence is an additional optional mechanism.

4.9 Dynamic invocation
SMP supports dynamic invocation allowing interaction between simulation
environments and simulation models. This is typically used during execution
allowing to control a simulation via scripting. It is a mechanism that makes the
operations of a component available via a standardised interface.

In order to allow calling a named method with any number of parameters, a
request object is created which contains all information for the method
invocation. This request object is also used to transfer back a return value. The
dynamic invocation concept standardises the request objects (IRequest
interface, see 5.2.8.2). In addition, two methods are provided as part of
IDynamicInvocation to create and delete request objects. However, it is not
mandatory to use these methods, as request objects can as well be created and
deleted using another implementation. A reason for doing this could be to
minimise the number of round‐trips between a client (that calls a method) and a
component that implements IDynamicInvocation. The sequence diagram in
Figure 4-8 shows all steps involved when using the CreateRequest() and
DeleteRequest() methods.

ECSS-E-ST-40-07C
2 March 2020

31

Model : IDynamicInvocationClient : IComponent Request : IRequest

Create ()2:

GetParameterValue(index=index)6:

SetReturnValue(value=value)8:

return9:

return13:

destroy12:

return3:

Invoke Native Operation7:

CreateRequest(operationName=operationName)1:

SetParameterValue(index=index, value=value)4:

Invoke ()5:

GetReturnValue()10:

DeleteRequest()11:

Figure 4-8: Sequence of calls for dynamic invocation

The sequence diagram in Figure 4-8, using a Client component and a Model
implementing IDynamicInvocation, contains the following steps:
1. The client calls the CreateRequest() operation of the component to create

a request object for the operation, passing it the name of the operation.
2. The component creates a request object for the operation, using the

default values of all parameters.
3. The component returns the Request object via its IRequest interface to the

client.
4. The client calls the SetParameterValue() operation of the Request object

to set parameters to non‐default values.
5. The client calls the Invoke() operation of the component to invoke the

corresponding operation.
6. The component calls the GetParameterValue() operation of the Request

object to get parameters.
7. The component calls its internal operation that corresponds to the

invoked operation.
8. The component calls the SetReturnValue() operation of the Request object

to set the return value.
9. The component returns control to the client.
10. The client calls the GetReturnValue() operation of the Request object to

get the return value.
11. The client calls the DeleteRequest() operation of the component to delete

the Request object.
12. The component destroys the request object.
13. The component returns control to the client.

ECSS-E-ST-40-07C
2 March 2020

32

4.10 Components meta data

4.10.1 Catalogue
Meta data for SMP objects are stored in XML documents called the Catalogue.
Having the SMP objects described in XML catalogues allows taking benefit
from the XML language, for example:

• Generation of the catalogues from UML diagrams

• Generation of models documentation from the catalogue

• Generation of models skeleton code from the catalogue (See clause 6.1).

The content of a catalogue is hierarchically ordered in namespaces that may be
nested. Inside each namespace many uniquely named instance of the following
SMP features can be found:

• Types definitions including:
− Constants, Fields and Properties
− Exceptions
− Data Types

• Interfaces specifications

• Component and model specifications including:
− Event Sinks and sources
− Fields and properties
− Entry Points
− Operations
− Containment and inheritance
− Interfaces, associations and references

• Attributes that can be attached to elements:
− Fallible and Forcible
− Min and Max limits for types
− View/ViewKind information determines the visibility of the

element

For all the elements above, meta data can be added like the description of each
element or the engineering unit for type definitions. From this, it can be seen
that the Catalogue definition provides a rich capability to describe the complete
external interface of all SMP components. In fact, the interfaces as described in
the SMP standard can as well be expressed in a catalogue. (See ecss.smp.smpcat
as referenced in clause 5.4.1.2.1a).

4.10.2 Package
A package describes how implementations of types defined in catalogues are
packaged. This includes not only models, which may have different
implementations in different packages, but as well all other user‐defined types.

ECSS-E-ST-40-07C
2 March 2020

33

4.10.3 Configuration
A configuration document allows specifying arbitrary field values of
component instances in the simulation hierarchy. This can be used to initialise
or reinitialise the simulation.

4.11 Model exchanges considerations

4.11.1 Overview
One of the primary goal of SMP is to allow model exchanges based on the
Package concept.

Model source code exchange are considered easier than binary exchange as
some considerations are important to be taken into account when exchanging
binary models.

The mapping of a Package to C++ defines which symbols a static or dynamic
library of SMP has to expose. This enables binary distribution of models, where
only the catalogues and/or header files (for the compiler) and the libraries (for
the linker) are provided, but no implementation source code. Nevertheless,
binary compatibility depends on a number of other constraints, which may
even vary between operating systems and compilers.

4.11.2 SMP Bundle
For distribution of a binary package SMP bundles are used. A SMP Bundle is an
archive (e.g. a tar file on Linux, or a zip file on Windows) which provides the
following elements:

• One or more SMDL packages.

• One or more package dynamic libraries, directly related to the SMDL
packages.

• One or more package static libraries, directly related to the SMDL
packages.

• All the SMP catalogues related to the SMDL packages.

• Optionally include other artefacts (SMDL configurations) and/or the
related source code for all or parts of the included SMDL packages.

The related structure of folders and files within the bundle, and the names of
folders and files are not standardised.

The added value of a Bundle is the additional SMP.MF Bundle Manifest file.

This Manifest is an ASCII file (aligned with the OSGi bundle manifest format)
which contains key-value pairs with important meta data for the bundle.

ECSS-E-ST-40-07C
2 March 2020

34

5
Interface requirements

5.1 Common

5.1.1 Primitive Types specification
a. All SMP fields, parameters, constants and properties shall be of either a

Primitive Type as per PrimitiveTypes.h in [SMP_FILES], or a User
Defined Type published to the Type Library.

NOTE This specification is compliant with the types
specified in Table 5-1.

b. Mapping between SMP types, XML types and ISO/ANSI C++ types shall
be as per Table 5-1.

NOTE C++ mapping for primitive types is provided by
PrimitiveTypes.h in [SMP_FILES].

Table 5-1: Primitive Types
SMP Type XML mapping C++ mapping Description
Char8 xsd:string char 8 bit character type to represent textual

characters

String8 xsd:string const char* 8-bit character strings based on UTF-8
encoding, which is commonly used in XML

Bool xsd:boolean bool Bool is a binary logical type with values
true or false

Int8 xsd:byte int8_t 8 bit signed integer

UInt8 xsd:unsignedByte uint8_t 8 bit unsigned integer

Int16 xsd:short int16_t 16 bit signed integer

UInt16 xsd:unsignedShort uint16_t 16 bit unsigned integer

Int32 xsd:int int32_t 32 bit signed integer

UInt32 xsd:unsignedInt uint32_t 32 bit unsigned integer

Int64 xsd:long int64_t 64 bit signed integer

UInt64 xsd:unsignedLong uint64_t 64 bit unsigned integer

Float32 xsd:float float IEEE 754 single-precision floating-point
type with a length of 32 bits.

ECSS-E-ST-40-07C
2 March 2020

35

SMP Type XML mapping C++ mapping Description
Float64 xsd:double double IEEE 754 double-precision floating-point

type with a length of 64 bits.

Duration xsd:duration int64_t

Duration in nanoseconds.

See 5.1.1c for detailed specification.

DateTime xsd:dateTime int64_t Absolute time in nanoseconds.

See 5.1.1d for detailed specification

c. The Duration type as per Table 5-1 shall be used for specifying a
duration, as follows:
1. It is expressed in nanoseconds;

2. It is stored in a signed 64 bit integer;

3. Positive values correspond to positive durations;

4. Negative values correspond to negative durations.
NOTE 1 Nanoseconds is the lowest level of granularity

supported for time in SMP.
NOTE 2 The duration type allows specifying values

roughly between ‐290 years and 290 years.
NOTE 3 The duration type allows expression of relative

time, hence “negative duration” implies a
relative time in the past.

d. The DateTime type as per Table 5-1 shall be used for absolute time
values, as follows:

1. It is expressed in nanoseconds, relative to the reference time of
01.01.2000, 12:00, Modified Julian Date (MJD) 2000+0.5;

2. It is stored in a signed 64 bit integer;

3. Positive values correspond to times after the reference time;

4. Negative values correspond to time values before the reference
time.

NOTE 1 Nanoseconds is the lowest level of granularity
supported for time in SMP.

NOTE 2 DateTime allows specifying time values
roughly between 1710 and 2290.

e. A SMP Simple Field shall be of a type that maps directly to a Primitive
Type.

f. The AnySimple type shall hold a Primitive Type as per AnySimple.h in
[SMP_FILES].

g. The AnySimpleArray type shall be an array of AnySimples as per
AnySimpleArray.h in [SMP_FILES].

ECSS-E-ST-40-07C
2 March 2020

36

5.1.2 Time Kinds
a. Simulation time shall be used for keeping the progress of time with

respect to the start of the simulation, with the following properties:

1. Simulation time is a non-negative Duration type;

2. Simulation time is initialised to 0 at the beginning of the Building
state as per Table 4-1;

3. Simulation time changes only when:

(a) The simulation is progressing in the Executing state;

(b) As a result of a restore of a breakpoint in restoring state;

(c) As a result of ITimeKeeper SetSimulationTime.

4. It is not specified how quickly simulation time is progressed when
the simulator is in Executing state;

5. Simulation time is stored and restored in the storing and restoring
states;

b. Mission time shall be used for keeping the progress of relative time with
respect to a Mission Start time, with the following properties:

1. Mission time is initialised to 0 at the beginning of the Building
state as per Table 4-1;

2. Mission Time is calculated as a fixed offset between the current
Epoch time and the given Mission start time according to the
following formula: MissionTime = EpochTime – MissionStartTime;

3. The Mission time progresses with Epoch time, which progresses
with Simulation time, and is hence affected by the ITimeKeeper
SetEpochTime method.

4. The Mission time offset from Epoch time, the Mission start time
changes by calls to:

(a) the ITimeKeeper SetMissionTime method;

(b) the ITimeKeeper SetMissionStartTime method.

5. Mission time only progresses when the simulation environment is
in Executing state;

6. Mission time is stored and restored in the storing and restoring
states;

7. Mission time is stored as a Duration type.

c. Zulu time shall be time dependent on the system clock of the host
machine or an external clock source expressed using the DateTime type.

NOTE High Real Time systems sometimes uses an
external clock source instead of the local system
clock of host machine.

d. Epoch time shall be time dependent on the Simulation time with a fixed
offset using the DateTime type.

NOTE 1 Epoch time progresses with Simulation time.
NOTE 2 Epoch time is changed with the ITimeKeeper

SetEpochTime (See 5.3.2).

ECSS-E-ST-40-07C
2 March 2020

37

5.1.3 Path string
a. An SMP path string shall be a representation of a valid route from an

SMP object in the hierarchy to another SMP object.
NOTE 1 Examples of valid path strings:

• /Satellite/Receivers/Receiver1
• /Logger
• /Logger/
• ../../Transmitters/Transmitter4
• ./Satellite/../Satellite//Receivers/

NOTE 2 Examples of invalid path strings:
• “/..”, parent of root object do not exist
• “…”, meaning of triple dots not defined.

b. Both Absolute and Relative path strings shall be supported and
distinguished as follows:

1. Paths starting with a delimiter are absolute paths from the
simulation root object.

2. Paths not starting with a delimiter are relative paths from the
current object.

c. The delimiter between component names in the path string shall be ”/”.

d. The delimiters between components and its children objects that are not
components shall be either “/” or “.”.

NOTE This allows “Component.Operation()” to be
used as path.

e. Trailing delimiters shall be allowed in path strings.

f. It shall be possible to reference the parent object by the “..” string.

g. It shall be possible to reference the current object by:

1. the “.” string

2. an empty string “”

NOTE This allows the following to be used as path to
operations of current object:
• .Operation()
• ./Operation()

h. The path string shall allow an element in an array to be identified by
“[n]” trailing the array name where “n” is the zero based element index,
with no delimiter.

NOTE This allows the following to be used for
addressing element 2 of an array “MyArray” in
MyModel:
• MyModel/MyArray[2]
• MyModel.MyArray[2]

ECSS-E-ST-40-07C
2 March 2020

38

5.1.4 Universally Unique Identifiers (UUID)
a. All SMP types shall have a unique UUID as per Uuid.h in [SMP_FILES].

NOTE 1 The UUID follows the specification from Open
Group
(http://pubs.opengroup.org/onlinepubs/9629399
/apdxa.htm)

NOTE 2 The UUID is a 128 bit long unique identifier.
NOTE 3 The UUID allows for example to:

• Uniquely identify types defined in
catalogues so that can be bound with
implementations defined within packages.

• Uniquely identify linked elements within a
Catalogue.

5.1.5 Exception specification
a. All SMP exceptions shall inherit from the Exception class as per

Exception.h in [SMP_FILES] providing the following information:

1. The description of the exception;

2. The name of the exception;

3. The exception message;

4. The sender of the exception when the exception originates from an
SMP Object.

NOTE This covers both exceptions defined in this
standard and user defined exceptions.

5.2 Components and Objects interfaces

5.2.1 Object Specification (IObject)
a. All SMP objects shall provide the following features as per IObject.h in

[SMP_FILES]:

1. If the object is not an array element, a name of the object as follows:

(a) Not be empty;

(b) Start with a letter;

(c) Contain only letters, digits, and underscore (ʺ_ʺ);

(d) Not be an ISO/ANSI C++ keyword.

2. If the object is an array element, the name shall be the array name
appended by “[i]“ where “i” is a zero based element index;

3. A description of the object;

4. The parent object as follows:

(a) An IObject pointer to the parent if the object has a parent;

ECSS-E-ST-40-07C
2 March 2020

39

(b) A nullptr if the object does not have a parent.
NOTE 1 The Object description may be empty.
NOTE 2 All SMP elements inherit from the IObject

interface including:
• Entry Points
• Event Sinks and Sources
• Fields
• Containers
• References
• Failures
• Components
• Composites
• Collections
• Factories
• Types

NOTE 3 to item 5.2.1a.1(d): See ISO/IEC 9899:2011 [C11
Standard] and ISO/IEC 14882:2011 [C++11
Standard] for the actual list of keywords.

b. All SMP objects with the same parent that are to be resolved by the
Resolver shall have a unique name.

NOTE Containers and References cannot be resolved
via the resolver, hence they do not need a
unique name.

c. The validity of the SMP name shall be checked when an SMP object is
created, with the following behaviour:

1. If an object with an invalid name is created, it throws a
InvalidObjectName exception as per InvalidObjectName.h in
[SMP_FILES].

5.2.2 Collection Specification (ICollection)
a. All SMP Collections of SMP elements shall implement the ICollection

interface as per ICollection.h in [SMP_FILES].

b. The ICollection at method shall return the element with the given
position or name, with the following behaviour:

1. If no element exists with the given position or name, it returns
nullptr.

c. The ICollection size method shall return the number of elements in the
collection.

ECSS-E-ST-40-07C
2 March 2020

40

5.2.3 Component Specification

5.2.3.1 Component (IComponent)
a. All SMP Components shall implement the IComponent interface as per

IComponent.h in [SMP_FILES].

b. The IComponent GetState method shall return the current state of the
component as per ComponentStateKind.h in [SMP_FILES], specified in
Table 5-2.

Table 5-2: Component states
Name Description

CSK_Created The Created state is the initial state of a component. Component creation
is done by an external mechanism, e.g. by factories.

This state is entered automatically after the component has been created.

This state is left via the Publish() state transition.

CSK_Publishing In Publishing state, the component is allowed to publish features. This
includes publication of fields, operations and properties. In addition, the
component is allowed to create other components.

This state is entered via the Publish() state transition.

This state is left via the Configure() state transition.

CSK_Configured In Configured state, the component has performed initial configuration.
This configuration can be done by external components, or internally by
the component itself, e.g. by reading data from an external source.

This state is entered via the Configure() state transition.

This state is left via the Connect() state transition

CSK_Connected In Connected state, the component is connected to the simulator. In this
state, neither publication nor creation of other components is allowed
anymore. Configuration performed via loading of SMDL configuration
file and/or calling of initialisation entry point are performed in this state.

This state is entered via the Connect() state transition.

This state is left via the Disconnect() state transition or on simulation
termination.

CSK_Disconnected In Disconnected state, the component is disconnected from the simulator,
and all references to it are deleted, so that it can be deleted.

This state is entered via the Disconnect() state transition.

This is the final state of a component, and only left on deletion.

ECSS-E-ST-40-07C
2 March 2020

41

c. The IComponent Publish method shall be used by components to publish
all publishable fields, properties and operations, with the following
argument and behaviour:

1. Argument:

(a) “receiver” giving a pointer to the IPublication instance for
the component.

2. Behaviour:

(a) If the component is not in Created state, then it throws an
InvalidComponentState exception as per
InvalidComponentState.h in [SMP_FILES];

(b) If the component is in Created state, then it enters the
Publishing state;

(c) After entering Publishing state, it publishes its fields,
properties and operations using the provided receiver
argument;

(d) While in publishing state, it can create new components;
NOTE 1 Components can override the implementation

of operations and properties from their parents,
hence it is possible that the same property and
operation are published multiple times. In this
case, the last call to published overrides the
previous calls.

NOTE 2 Newly created components are in Created state.
The simulator is responsible for the triggering
of state transitions of new components.

d. The IComponent Configure method shall be used to perform initial
configuration of the component, with the following arguments and
behaviour:

1. Arguments:

(a) “logger” giving a pointer to the ILogger instance for the
component, to provide the possibility to log messages
during its configuration;

(b) “linkRegistry” giving a pointer the ILinkRegistry instance
for the component, to provide the possibility to register
links.

2. Behaviour:

(a) If the component is not in Publishing state, it throws an
InvalidComponentState exception as per
InvalidComponentState.h in [SMP_FILES];

(b) If the component is in Publishing state, it creates and
configures other features and even other components using
the field values of its published fields as sole source of
configuration information for the creation of such
components;

(c) After completing the configuration actions, the component
enters Configured state.

ECSS-E-ST-40-07C
2 March 2020

42

e. The IComponent Connect method shall allow the components to connect
to the simulator environment and other components, with the following
argument and behaviour:

1. Argument:
(a) “simulator” giving a pointer to the ISimulator interface as

per ISimlator.h in [SMP_FILES] to access services from the
simulation environment.

2. Behaviour:
(a) If the Component is not in Configured state, it throws an

InvalidComponentState exception as per
InvalidComponentState.h in [SMP_FILES];

(b) If called in Configured state, the component enters
Connected state;

(c) After entering Connected state, it connects to simulation
services used by the component, if any.

NOTE It is guaranteed that all models have been
created, published and configured before the
Connect method of any component is called.

f. The IComponent Disconnect method shall disconnect the component
from the simulation environment and any other components, with the
following behaviour:

1. If the Component is not in Connected state, it throws an
InvalidComponentState exception as per InvalidComponentState.h
in [SMP_FILES];

2. If called in Connected state, the component enters Disconnected
state;

3. After entering Disconnected state, the component disconnects from
simulation services by deleting all references of these services to
the component.

g. The IComponent GetField method shall provide access to the IField
interface for fields of the component, taking the following argument and
behaviour:

1. Argument:
(a) “fullName” giving the path of the field for whom it returns

the IField interface.

2. Behaviour:
(a) If the passed fullName does not exist, it throws an

InvalidFieldName exception as per InvalidFieldName.h in
[SMP_FILES];

(b) If the passed field name exists and it is a field of simple type
it returns its ISimpleField interface;

(c) If the passed field name exists and it is an array field it
returns its IArrayField or ISimpleArrayField interface;

(d) If the passed field name exists and it is a structure field it
returns its IStructureField interface.

NOTE This includes fields of structures and items of arrays.

ECSS-E-ST-40-07C
2 March 2020

43

h. The IComponent GetFields method shall return a collection of the
component fields as per FieldCollection in IField.h in [SMP_FILES].

i. The IComponent GetUuid method shall return a reference to the Uuid of
the component, as per Uuid.h in [SMP_FILES].

5.2.3.2 Model (IModel)
a. All SMP Components which contain the implementation of the

simulations functional behaviour shall implement the IModel interface as
per IModel.h in [SMP_FILES].

5.2.3.3 Service (IService)
a. All SMP components which implement a service to be used by other SMP

models shall implement the IService interface as per IService.h in
[SMP_FILES].

NOTE This includes both standard services specified
in this standard and user defined services.

b. All SMP components which implement the IService interface shall ensure
their state is fully persisted in a simulation breakpoint and restored on
Restore.

5.2.3.4 Linking Component (ILinkingComponent)
a. All SMP Components which require dynamic removal of links at runtime

shall implement the ILinkingComponent interface as per
ILinkingComponent.h in [SMP_FILES].

b. The ILinkingComponent RemoveLinks method shall remove all links to
the passed component stored in the LinkingComponent itself, taking the
following argument:

1. “target” giving the reference to the linked component.

NOTE The result of this removal is that the
LinkingComponent can no longer access the
target component removed.

5.2.4 Aggregation

5.2.4.1 Aggregation interface (IAggregate)
a. All SMP Components which are referencing other components shall

implement the IAggregate interface as per IAggregate.h in [SMP_FILES].

NOTE The IReference interface is the referencing
mechanism used by the aggregation interface.

b. The IAggregate GetReference method shall return the reference matching
the given name, with the following argument and behaviour:

1. Argument:

(a) “name” giving name identifying the reference.

ECSS-E-ST-40-07C
2 March 2020

44

2. Behaviour:

(a) If no reference matching the given name is found, it returns
a nullptr reference.

c. The IAggregate GetReferences method shall return an ordered collection
of all references, with the following behaviour:

1. If the aggregation does not hold any reference, it returns an empty
collection;

2. If at least one reference is contained, it returns a collection ordered
according to the order in which the references have been added to
the aggregate.

5.2.4.2 Reference Interface (IReference)
a. All references returned by an aggregate shall implement the IReference

interface as per IReference.h in [SMP_FILES].

NOTE A reference is a named object.

b. The IReference GetComponent method shall return a reference to the
component matching the given name with the following argument and
behaviour:

1. Argument:

(a) “name” giving the name of the referenced component to be
returned.

2. Behaviour:

(a) If no component matching the given name argument is
found, it returns a nullptr reference;

(b) If multiple components matching the given name argument
are found, it returns one of the references.

NOTE Multiple components with the same name, but
with a different parent (and hence path) can
end up in a single reference. In this case,
retrieving a component by name is not safe, as
any of the components that match the name can
be returned.

c. The IReference GetComponents method shall return an ordered
collection of all the referenced components with the following behaviour:

1. If no component is referenced, it returns an empty collection;

2. If at least one component is contained, it returns a collection
ordered according to the order in which the components have been
added using the AddComponent method.

d. The IReference AddComponent method shall add a component to the
collection of referenced components, with the following argument and
behaviour:

1. Argument:

(a) “component” giving a reference to the component to be
added.

ECSS-E-ST-40-07C
2 March 2020

45

2. Behaviour:

(a) If the maximum supported number of referenced
components is reached, it throws a ReferenceFull exception
as per ReferenceFull.h in [SMP_FILES];

(b) If the reference interface implementation is expecting the
given component to inherit from another type it throws an
InvalidObjectType exception as per InvalidObjectType.h in
[ZIPFLE].

NOTE A (typed) reference can attempt to type-cast a
component to a specific type, to ensure that all
components within the reference inherit from
this common base type.

e. The IReference RemoveComponent method shall remove a component
from the collection of referenced components, with the following
argument and behaviour:

1. Argument:

(a) “component” giving a reference to the component to be
removed.

2. Behaviour:

(a) If the minimum number of component(s) referenced by this
object is reached, it throws a CannotRemove exception as
per CannotRemove.h in [SMP_FILES];

(b) If the component to remove is not referenced, it throws a
NotReferenced exception as per NotReferenced.h in
[SMP_FILES].

NOTE RemoveComponent ensures that the right
component is identified also if several
components with the same name exist in the
reference, as it takes a reference to the
component as argument, and not the name.

f. The IReference GetCount method shall return the number of components
in the collection of referenced components.

g. The IReference GetUpper method shall return the upper limit, with the
following behaviour:

1. If a maximum number has been defined, it returns the maximum
number;

2. If no maximum number has been defined, it returns -1.

NOTE The usage of -1 is consistent with the use of
upper bounds in UML, where a value of -1
represents no limit (typically shown as *)

h. The IReference GetLower method shall return the minimum number of
components in the collection or 0 when not defined.

NOTE The lower bound can be used to validate a
model hierarchy. If a collection specifies a
Lower value above its current Count, then it is

ECSS-E-ST-40-07C
2 March 2020

46

not properly configured. An external
component can use this information to validate
the configuration before executing it.

5.2.5 Composition

5.2.5.1 Composition interface (IComposite)
a. All SMP Objects which contain Components shall implement the

IComposite interface as per IComposite.h in [SMP_FILES].
NOTE 1 The IContainer interface (see 5.2.5.1c.2) is the

component container used by the composition
interface.

NOTE 2 Composition is the counter part of the IObject
GetParent() method and allows traversing the
tree of components from parent to child
components.

b. The IComposite GetContainer method shall return the container
matching the given name with the following argument and behaviour:

1. Argument:

(a) “name” giving the name of the container to be returned.

2. Behaviour:

(a) If no container matching the given argument name is found,
it returns a nullptr reference.

c. The IComposite GetContainers method shall return an ordered collection
of all the containers with the following behaviour:

1. If the composite does not hold any container, it returns an empty
collection.

2. If at least one container is contained, it returns a collection ordered
according to the order in which the containers have been added to
the composite.

5.2.5.2 Container interface (IContainer)
a. All SMP Objects which represent a composition of child Components

shall implement the IContainer interface as per IContainer.h in
[SMP_FILES].

NOTE 1 The container components life-cycle coincides
with its parent one.

NOTE 2 The container is a named Object as per 5.2.1.
NOTE 3 The container allows adding children to a

parent object.
NOTE 4 Each container holds objects of only one type.

b. The IContainer GetComponent method shall return the component
matching the given name, with the following argument and behaviour:

1. Argument:

ECSS-E-ST-40-07C
2 March 2020

47

(a) “name” giving the name of the component to be returned.

2. Behaviour:

(a) If no component matching the given name is found, it
returns nullptr.

NOTE As the container does not support component
name duplication, it is not possible to get
naming conflict when performing query.

c. The IContainer GetComponents method shall return an ordered
collection of all the contained components with the following behaviour:

1. If no component is contained, it returns an empty collection;

2. If at least one component is contained, it returns a collection
ordered according to the order in which the components have been
added using the AddComponent method.

d. The IContainer AddComponent method shall add a component to the
collection of contained components, with the following argument and
behaviour:

1. Argument:

(a) “component” giving the component to be added.

2. Behaviour:

(a) If the maximum supported number of components is
reached, it throws a ContainerFull exception as per
ContainerFull.h in [SMP_FILES];

(b) If a component with the same name and parent already
exists, it throws a DuplicateName exception as per
DuplicateName.h in [SMP_FILES];

(c) If the container interface implementation is expecting the
given component to inherit from another type, it throws an
InvalidObjectType exception as per InvalidObjectType.h in
[SMP_FILES].

NOTE A (typed) container can attempt to type-cast a
component to a specific type, to ensure that all
components within the container inherit from
this common base type.

e. The IContainer GetCount method shall return the number of components
contained in the collection.

f. The IContainer GetUpper method shall return the maximum number of
components in the collection, with the following behaviour:

1. If the maximum number of elements for the collection has been
defined, it returns the maximum number;

2. If the maximum number of elements for the collection has not been
defined, it returns -1.

NOTE The usage of -1 is consistent with the use of
upper bounds in UML, where a value of -1
represents no limit (typically shown as *).

ECSS-E-ST-40-07C
2 March 2020

48

g. The IContainer GetLower method shall return the minimum number of
components in the collection or 0 when not defined.

NOTE The lower bound can be used to validate a
model hierarchy. If a collection specifies a
Lower value above its current Count, then it is
not properly configured. An external
component can use this information to validate
the configuration before executing it.

h. The IContainer DeleteComponent method shall delete a component from
the collection of contained components, with the following argument and
behaviour:

1. Argument:

(a) "component" giving a reference to the component to be
deleted.

2. Behaviour:

(a) If the minimum number of component(s) contained by this
object is reached, it throws a CannotDelete expection as per
CannotDelete.h in [SMP_FILES];

(b) If the component to delete is not contained, it throws a
NotContained exception as per NotContained.h in
[SMP_FILES];

(c) If the component to delete is included, and the minimum
number is not reached, then the component is removed from
the collection, and its destructor is called.

5.2.6 Events

5.2.6.1 Sink of events interface (IEventSink)
a. All SMP Objects which receive event notifications shall implement the

IEventSink interface as per IEventSink.h in [SMP_FILES].

NOTE The specification of event sinks ensures that
notifications from the event sources they are
subscribed to can be managed.

b. The IEventSink GetEventArgType method shall provide the primitive
type kind of the argument expected by the event sink when it is notified
about a given event, with the following behaviour:

1. If no argument is expected, it returns PTK_None.
NOTE 1 See 5.2.6.1c for the specification of how event

sinks are notified.
NOTE 2 This operation allows for type checking when

subscribing (see 5.2.6.2b) event sinks to event
sources.

c. The IEventSink Notify method shall inform the object about the event,
with the following arguments:

ECSS-E-ST-40-07C
2 March 2020

49

1. “sender” giving the reference to the event source calling the
method;

2. “arg” giving context data together with the event notification.

NOTE See 5.2.6.2d for the specification of how event
sources call this method.

5.2.6.2 Source of events interface (IEventSource)
a. All SMP Objects which represent the source of event notifications shall

implement the IEventSource interface as per IEventSource.h in
[SMP_FILES].

NOTE The specification of event sources ensures that
event sinks (see 5.2.6.1) that wish to receive
their notifications can subscribe to them.

b. The IEventSource Subscribe method shall add the given event sink to the
list of subscribed event sinks, with the following argument and
behaviour:

1. Argument:

(a) “eventSink” giving the reference to the event.

2. Behaviour:

(a) If the given event sink is already subscribed to the event
source, it throws an EventSinkAlreadySubscribed exception
as per EventSinkAlreadySubscribed.h in [SMP_FILES];

(b) If the primitive type kind of the argument expected by the
event sink is not semantically equivalent to the one of the
event source as per Table 5-3, it throws an InvalidEventSink
exception as per InvalidEventSink.h in [SMP_FILES].

NOTE Any event sink can only be subscribed once to
each event source.

c. The IEventSource Unsubscribe method shall remove the given event sink
from the list of subscribed event sinks, with the following argument and
behaviour:

1. Argument:

(a) “eventSink” giving the event to be unsubscribed.

2. Behaviour:

(a) If the given event sink is not subscribed to the event source,
it throws an EventSinkNotSubscribed exception as per
EventSinkNotSubscribed.h in [SMP_FILES].

NOTE Any event sink can only be unsubscribed if it
has been subscribed before.

d. When the event source emits the event, it shall call the Notify method of
all the subscribed event sinks in the same order as the sinks have been
subscribed.

NOTE See 5.2.6.1 for specification of the event sinks
interface.

ECSS-E-ST-40-07C
2 March 2020

50

5.2.6.3 Consumer of events interface (IEventConsumer)
a. All SMP Components which hold event sinks and want to allow external

access to them shall implement the IEventConsumer interface as per
IEventConsumer.h in [SMP_FILES].

NOTE The publication of event sinks ensures that they
can subscribe to other component’s event
sources.

b. The IEventConsumer GetEventSinks method shall return a collection of
all the contained event sinks, with the following behaviour:

1. If no event sink is contained, it returns an empty collection.

c. The IEventConsumer GetEventSink method shall return the component’s
event sink corresponding to the given name, with the following
argument and behaviour:

1. Argument:

(a) “name” giving the name of the Event Sink.

2. Behaviour:

(a) If no event sink with the given name exists, it returns
nullptr.

5.2.6.4 Provider of events interface (IEventProvider)
a. All SMP Components which hold event sources and want to allow

external access to them shall implement the IEventProvider interface as
per IEventProvider.h in [SMP_FILES].

NOTE The publication of event sources ensures that
other component’s event sinks can subscribe to
them.

b. The IEventProvider GetEventSources method shall return a collection of
all the contained event sources, with the following behaviour:

1. If no event source is contained, it returns an empty collection.

c. The IEventProvider GetEventSource method shall return the
component’s event source corresponding to the given name, with the
following argument and behaviour:

1. Argument:

(a) “name” giving the name of event source to be returned

2. Behaviour:

(a) If no event source with the given name exists, it returns
nullptr.

ECSS-E-ST-40-07C
2 March 2020

51

5.2.7 Entry points

5.2.7.1 Entry points calling interface (IEntryPoint)
a. All SMP Objects which represent a schedulable entry point shall

implement the IEntryPoint interface as per IEntryPoint.h in [SMP_FILES].

NOTE The specification of entry points ensures that
the scheduler or the event manager can trigger
them when the relevant events are emitted.

b. The IEntryPoint Execute method shall be called when the triggering
event is emitted.

5.2.7.2 Entry Points publisher interface
(IEntryPointPublisher)

a. All SMP components which hold entry points and want to allow external
access to them shall implement the IEntryPointPublisher interface as per
IEntryPointPublisher.h in [SMP_FILES].

b. The IEntryPointPublisher GetEntryPoints method shall return a
collection of all the contained entry points, with the following behaviour:

1. If no entry point is contained, it returns an empty collection.

c. The IEntryPointPublisher GetEntryPoint method shall return the
component’s entry point corresponding to the given name, with the
following argument and behaviour:

1. Argument:

(a) “name” giving the name of the EntryPoint to be returned.

2. Behaviour:

(a) If no entry point with the given name exists, it returns
nullptr.

NOTE The “name” always identifies a unique
EntryPoint, as a component cannot have several
EntryPoints with same name.

5.2.8 Dynamic Invocation

5.2.8.1 Dynamic invocation interface (IDynamicInvocation)
a. All SMP Components which allow the simulation environment to invoke

operations on them shall implement the IDynamicInvocation interface as
per IDynamicInvocation.h in [SMP_FILES].

b. All operations of simulation components callable through dynamic
invocation shall be registered by the component using the IPublication
interface.

NOTE See 5.2.12.2d for specification of the
IPublication PublishOperation method to be
used. Parameters of operations need to be of

ECSS-E-ST-40-07C
2 March 2020

52

types registered in the type registry, which
excludes operations with parameters of other
types from dynamic invocation.

c. The IDynamicInvocation CreateRequest method shall return an instance
of a request class for identifying the given operation, with the following
argument and behaviour:

1. Argument

(a) “operationName” giving the name of the callable method.

2. Behaviour:

(a) If the operation with the given name is not callable through
dynamic invocation, it returns nullptr;

(b) If the operation with the given name is callable through
dynamic invocation, a fully populated request object with all
parameters of the operation shall be created and returned.

NOTE 1 The behaviour of this mechanism in the context
of operation overloading is not specified.

NOTE 2 The calling object is responsible for memory
management of the request object, and for its
deletion via DeleteRequest.

d. The IDynamicInvocation Invoke method shall invoke the method
referenced, with the following argument and behaviour:

1. Argument:

(a) “request” giving the identification of the callable method, as
a fully populated request object implementing IRequest (see
5.2.8.2).

2. Behaviour:

(a) If the operation specified by the request parameter is not
callable through dynamic invocation, it throws an
InvalidOperationName exception as per
InvalidOperationName.h in [SMP_FILES];

(b) If the number of arguments specified by the request object
does not match the number of parameters of the callable
operation, it throws an InvalidParameterCount exception as
per InvalidParameterCount.h in [SMP_FILES];

(c) If the types of the arguments specified by the request object
do not match the types of parameters of the callable
operation, it throws an InvalidParameterType exception as
per InvalidParameterType.h in [SMP_FILES];

(d) If called with a valid request object, it calls the operation
identified in the request, passing the parameters provided in
the request which are of parameter direction In or InOut;

(e) After invoking the request, it stores the parameter values of
parameters with parameter direction InOut, Out or Return
into the requests object.

ECSS-E-ST-40-07C
2 March 2020

53

NOTE The Invoke operation is a void operation as the
result of the invocation is stored in the IRequest
object (see 5.2.8.2.

e. The IDynamicInvocation DeleteRequest method shall release all
resources associated to the given request instance.

f. All requests created with IDynamicInvocation CreateRequest shall be
deleted with a call to IDynamicInvocation DeleteRequest.

g. The IDynamicInvocation GetProperties method shall return a collection
of the invokable properties of the component as per PropertyCollection
in IProperty.h in [SMP_FILES].

h. The IDynamicInvocation GetOperations method shall return a collection
of the invokable operations of the component as per OperationCollection
in IOperation.h in [SMP_FILES].

5.2.8.2 IRequest
a. All SMP Request objects which are used in dynamic invocation shall

implement the IRequest interface as per IRequest.h in [SMP_FILES].

b. The IRequest GetOperationName method shall return the name of the
callable operation represented by the request object.

NOTE Requests are usually created by calling the
CreateRequest method of Dynamic Invocation
(see 5.2.8.1) so the name returned is the string
given to the CreateRequest method.

c. The IRequest GetParameterCount method shall return the number of
parameters of the request object.

NOTE This operation only considers parameters of
direction in, out or in/out, but not of type
return.

d. The IRequest GetParameterIndex method shall return the index of a
specified parameter, with the following argument and behaviour:

1. Argument:

(a) “name” giving the name of the parameter for which the
index is returned.

2. Behaviour:

(a) If the name corresponds to the name of a parameter in the
parameter collection, it returns the 0-based index of the
parameter in this collection;

(b) If no parameter with the given name exists, it returns -1.

NOTE This operation only considers parameters of
direction in, out or in/out, but not of type
return.

e. The IRequest SetParameterValue method shall store the value for a
parameter, with the following arguments and behaviour:

1. Arguments:

ECSS-E-ST-40-07C
2 March 2020

54

(a) “index” giving the location of the parameter to be set;

(b) “value” giving the new value of the parameter.

2. Behaviour:

(a) If the index is less than zero, it throws an
InvalidParameterIndex exception as per
InvalidParameterIndex in [SMP_FILES];

(b) If the index is greater than or equal to the number of
parameters of the request object, it throws an
InvalidParameterIndex exception as per
InvalidParameterIndex in [SMP_FILES];

(c) If the type of the given value is different than the type of the
parameter at the given index, it throws an
InvalidParameterValue exception as per
InvalidParameterValue.h in [SMP_FILES];

(d) If both index and value are valid, it stores the new value into
the parameter with the given index, so that its new value
can be returned with future calls to GetParameterValue.

NOTE This operation only considers parameters of
direction in, out or in/out, but not of type
return.

f. The IRequest GetParameterValue method shall return the value stored at
the given index in the parameters collection, with the following argument
and behaviour:

1. Argument:

(a) “index” of the parameter for which the value is returned.

2. Behaviour:

(a) If the given index is less than zero, it throws an
InvalidParameterIndex exception as per
InvalidParameterIndex.h in [SMP_FILES];

(b) If the index is greater than or equal to the number of
parameters of the request object, it throws an
InvalidParameterIndex exception as per
InvalidParameterIndex.h in [SMP_FILES];

(c) If the index is valid, it returns the current value of the
parameter.

NOTE 1 The current value is either the initial value from
creation of the request object, or the value
provided to the last successful call of the
SetParameterValue method for the same index.

NOTE 2 This operation only considers parameters of
direction in, out or in/out, but not of type
return.

ECSS-E-ST-40-07C
2 March 2020

55

g. The IRequest SetReturnValue method shall allow to set a return value in
the request with the following argument and behaviour:

1. Argument:

(a) “value” giving the new value to be set for the return
parameter.

2. Behaviour:

(a) If the operation does not return a value, it throws a
VoidOperation exception as per VoidOperation.h in
[SMP_FILES];

(b) If the type of the provided value does not match the type of
the return value of the operation, it throws an
InvalidReturnValue exception as per InvalidReturnValue.h
in [SMP_FILES];

(c) If the operation does return a value of the given type, the
return value is stored into the request object, so that it can be
retrieved with later calls to GetReturnValue.

h. The IRequest GetReturnValue method shall return the return value of the
callable operation in the request, with the following behaviour:

1. If the operation does not return a value, it throws a VoidOperation
exception as per VoidOperation.h in [SMP_FILES];

2. If the operation does return a value, it returns the current value of
the return parameter.

NOTE The current value is either the initial value from
creation of the request object, or the value
provided to the last successful SetReturnValue
call.

5.2.9 Persistence (IPersist)
a. All SMP Objects which need self-persistence of data shall implement the

IPersist interface as per IPersist.h in [SMP_FILES].

NOTE Self-persistence is an optional interface as
external persistence by the simulation
environment is sufficient for most components.

b. All Simulation objects which implement self-persistence shall read from
the IStorageReader interface exactly the same amount of data and in the
same order as it writes it to the IStorageWriter interface.

c. The IPersist Restore method shall read persisted data from storage
through the IStorageReader interface with the following argument and
behaviour:

1. Argument:

(a) “reader” giving a pointer to a IStorageReader interface
where data can be read from.

2. Behaviour:

ECSS-E-ST-40-07C
2 March 2020

56

(a) The operation restores exactly the same amount of data from
the reader that was stored by the writer on Store;

(b) If the operation cannot restore the data, it throws a
CannotRestore exception as per CannotRestore.h in
[SMP_FILES].

d. The IPersist Store method shall write persisted data to the storage
through the IStorageWriter interface with the following argument and
behaviour:

1. Argument:

(a) “writer” giving a pointer to a IStorageWriter interface where
data can be written to.

2. Behaviour:

(a) The operation stores exactly the amount of data to the writer
than what it restores from a reader on Restore;

(b) If the operation cannot store the data, it throws a
CannotStore exception as per CannotStore.h in
[SMP_FILES].

5.2.10 Failures

5.2.10.1 Failure interface (IFailure)
a. All SMP Objects which represent a failure shall implement the IFailure

interface as per IFailure.h in [SMP_FILES].

b. The IFailure Fail method shall set the state of the failure to “failed”.

c. The IFailure Unfail method shall set the state of the failure to “not failed”.

d. The IFailure IsFailed method shall return the failure state of the failure
with the following behaviour:

1. If the state is “failed”, it returns true;

2. If the state is not “failed”, it returns false.

5.2.10.2 Model failure state interface (IFallibleModel)
a. All Simulation models which can be failed through a list of possible

failures shall implement the IFallibleModel interface as per
IFallibleModel.h in [SMP_FILES].

NOTE 1 This is an optional interface.
NOTE 2 The simulation environment does not

automatically persist the state of each failure, as
it is the responsibility of the models to store the
failure state in persisted data.

b. The IFallibleModel GetFailures method shall return the list of possible
failures for this simulation model.

c. The IFallibleModel GetFailure method shall return a failure instance from
the list of possible failures, with the following argument and behaviour:

ECSS-E-ST-40-07C
2 March 2020

57

1. Argument:

(a) “name” giving the name of the failure.

2. Behaviour:

(a) If none of the failures in the list of possible failures matches
the given name, it returns nullptr.

(b) If a failure matching the given name exists, it returns the
pointer to the IFailure instance.

d. The IFallibleModel IsFailed method shall return the failure state of the
model, with the following behaviour:

1. If at least one of the failures returns true for its IFailure::IsFailed
among the list of possible failures for this simulation model, it
returns true;

2. If none of the failures returns true for its IFailure::IsFailed among
the list of possible failures for this simulation model, it returns
false.

5.2.11 Field interfaces

5.2.11.1 ISimpleField
a. All SMP Fields which represent a primitive type shall implement the

ISimpleField interface as per ISimpleField.h in [SMP_FILES].

b. The ISimpleField GetValue method shall return the field value stored in
an AnySimple as per AnySimple.h in [SMP_FILES].

c. The ISimpleField SetValue method shall store the value in the field with
the following argument and behaviour:

1. Argument:

(a) “value” giving the new value to the field as an AnySimple
as per AnySimple.h in [SMP_FILES].

2. Behaviour:

(a) If the given value simple type kind does not match the
simple type kind of the field, then it throws the
InvalidFieldValue exception as per InvalidFieldValue.h in
[SMP_FILES];

(b) If the given value simple type kind does match the simple
type kind of the field, then it changes the field value to the
given value.

d. The ISimpleField GetPrimitiveTypeKind method shall return the
primitive type kind of the field.

ECSS-E-ST-40-07C
2 March 2020

58

5.2.11.2 IStructureField
a. All SMP Fields which represent a structured data shall implement the

IStructureField interface as per IStructureField.h in [SMP_FILES].

b. The IStructureField GetField shall return the field as an IField, with the
following argument and behaviour:

1. Argument:

(a) “name” given the field name for which the IField interface is
returned.

2. Behaviour:

(a) If the field name is unknown to the structure, it returns
nullptr.

c. The IStructureField GetFields shall return the list of fields of the structure
as per FieldCollection in IField.h in [SMP_FILES].

5.2.11.3 IArrayField
a. All SMP fields which represent an array where each array item is to be

retrieved individually as a Field shall implement the IArrayField
interface as per IArrayField.h in [SMP_FILES].

b. The IArrayField GetField shall return the array item as an IField as per
IField.h in [SMP_FILES] with the following argument and behaviour:

1. Argument:

(a) “index” giving the location of the item for which the IField
pointer is returned.

2. Behaviour:

(a) If the given index is outside the array size, it throws an
InvalidArrayIndex as per InvalidArrayIndex.h in
[SMP_FILES].

(b) Otherwise, return the array item at the given index as an
IField

c. The IArrayField GetSize method shall return the number of array items.

5.2.11.4 ISimpleArrayField
a. All SMP fields which represent an array of simple type items where

individual array items are not to be retrieved as Field shall implement the
ISimpleArrayField interface as per ISimpleArrayField.h in [SMP_FILES].

NOTE This enables an efficient implementation
especially of large arrays as a single object,
rather than having each array item represented
by an individual object. The implications are
that such array items cannot be retrieved as
Object or Field, e.g. via GetField(), and are
hence not available in operations that require
individual objects or fields.

ECSS-E-ST-40-07C
2 March 2020

59

b. The ISimpleArrayField GetSize method shall return the number of array
items.

c. The ISimpleArrayField GetValue shall return the corresponding array
item value stored in an AnySimple as per AnySimple.h in [SMP_FILES]
with the following argument and behaviour:

1. Argument:

(a) “index” giving the location of the item for witch the value is
returned.

2. Behaviour:

(a) If the given index is outside the array size, it throws an
InvalidArrayIndex as per InvalidArrayIndex.h in
[SMP_FILES].

(b) Otherwise, return the item value corresponding to the given
index as an AnySimple.

d. The ISimpleArrayField SetValue shall set the corresponding array item
value stored with the following arguments and behaviour:

1. Arguments:

(a) “index” giving the location of the item for witch the value is
set;

(b) “value” giving the new value for the array item.

2. Behaviour:

(a) If the given index is outside the array size, it throws an
InvalidArrayIndex as per InvalidArrayIndex.h in
[SMP_FILES].

(b) If the given value simple type kind does not match the
simple type kind of the corresponding array item, then it
throws an InvalidFieldValue as per InvalidFieldValue.h in
[SMP_FILES].

(c) If the given value simple type kind does match the simple
type kind of the corresponding array item, then it stores the
given AnySimple value into the item value corresponding to
the given index.

e. The ISimpleArrayField GetValues method shall return all the array item
values stored in an AnySimpleArray as per AnySimpleArray.h in
[SMP_FILES] with the following arguments and behaviour:

1. Arguments:

(a) “length” giving the length of the return array for values;

(b) “values” giving an array of allocated storage for which the
return values are put.

2. Behaviour:

(a) If the given value array size does not match the ArrayField
size, it throws an InvalidArraySize as per
InvalidArraySize.h in [SMP_FILES].

(b) Otherwise, copy all the item values into the given
AnySimpleArray.

ECSS-E-ST-40-07C
2 March 2020

60

f. The ISimpleArrayField SetValues method shall allow setting all values of
an array with the following arguments and behaviour:

1. Arguments:

(a) “length” giving the length of the array with values to be set;

(b) “values” giving an array of values to be set in the array.

2. Behaviour:

(a) If the given length does not match the ArrayField length, it
throws a InvalidArraySize as per InvalidArraySize.h in
[SMP_FILES];

(b) If any of the given values simple type kind does not match
the array item simple type kind, then it throws an
InvalidFieldValue as per InvalidFieldValue.h in
[SMP_FILES].

(c) If any of the given values simple type kind does match the
array item simple type kind, then it stores the given values
into the corresponding array item values.

5.2.11.5 IField
a. All SMP fields shall implement the IField interface as per IField.h in

[SMP_FILES].

b. The IField GetView method shall return the View Kind for the field.

NOTE See Table 4-2 for specification of View Kind.

c. The IField IsState method shall return true if the field State property is
true, false otherwise.

d. The IField IsInput method shall return true if the field is an Input field,
false otherwise.

e. The IField IsOutput method shall return true if the field is an Output
field, false otherwise.

f. The IField GetType shall return the associated field type or nullptr if the
field type has not been published in the Type Registry.

5.2.11.6 IForcibleField
a. All SMP simple fields which allow forcing of the field value shall

implement the IForcibleField interface as per IForcibleField.h in
[SMP_FILES].

b. The IForcibleField Force method shall force the field value so that it does
not change until Unforce is called with the following argument and
behaviour:

1. Argument:

(a) “value” giving the forced value to be returned by GetValue
until Unforce is called.

ECSS-E-ST-40-07C
2 March 2020

61

2. Behaviour:

(a) If the given value simple kind does not match the field
simple type kind, then it throws an InvalidFieldValue as per
InvalidFieldValue.h in [SMP_FILES];

(b) If the given value simple kind does match the field simple
type kind, then it stores the given value as the value to
return by GetValue.

NOTE The handling of the forced field value within a
model is undefined.

c. The IForcibleField Unforce method shall remove the forcing or freezing
condition on the field so that GetValue called on the field returns the
current field value.

NOTE The handling of the forced field value within a
model is undefined.

d. The IForcibleField Freeze method shall force the field to its current field
value so that it no longer changes until Unforce is called.

e. The IForcibleField IsForced shall return true if field is forced or freezed,
otherwise it returns false.

5.2.11.7 IDataflowField
a. All SMP fields which support actively pushing their values to connected

fields shall implement the IDataflowField interface as per
IDataflowField.h in [SMP_FILES].

NOTE Dataflow connections are allowed for array
items, structure fields and any sub-field of
complex type fields.

b. The IDataflowField Connect method shall connect the field to an input
field to create a dataflow connection between the two fields giving the
following argument and behaviour:

1. Argument:

(a) “target” giving the input field this output data flow field is
connected to.

2. Behaviour:

(a) If the target is already connected to this output field, it
throws a FieldAlreadyConnected exception as per
FieldAlreadyConnected.h in [SMP_FILES];

(b) If Connect is called several times for an output field, it
connect the output field to a list of input fields allowing the
same output to push values to several input fields;

(c) If the input and output field have the same type UUID, then
the connection is considered to be strict compatible and it
connects successfully;

(d) If the input and output field are of semantically equivalent
types as per Table 5-3, then the connection is considered to
be of equivalent types and it connects successfully;

ECSS-E-ST-40-07C
2 March 2020

62

(e) If the input and output are of non-equivalent and non-strict
compatible types, it throws an InvalidTarget exception as
per InvalidTarget.h in [SMP_FILES];

(f) If connection is successful, it invokes the Push methods
immediately, triggering an update of the connected input
field with the current value of the output field.

NOTE 1 The specification of semantically equivalent
type ensures that no information can be lost in
transfer of data from output to input.

NOTE 2 The input field is a passive part of the transfer
since the output is pushing the values to the
input.

NOTE 3 The input field can be connected to several
output fields.

NOTE 4 The call of the Push allows to synchronise the
Input value with the Output value immediately
after the connection is established.

NOTE 5 For arrays and structs, each array and struct
element can implement IDataFlowField. In this
case, each element can be connected with its
own Connect call.

c. The IDataflowField Push method shall push the field value to all
connected input fields.

NOTE 1 This is also called propagation of the value to
all the connected consumer models.

NOTE 2 Since the responsibility of calling the Push
operation is delegated to the component
owning the field, the propagation happens
“automatic” as seen from the viewpoint of the
simulation environment, hence this interaction
method is called “automatic data propagation”.

Table 5-3: Semantically equivalent types for connections
Type Semantically equivalent types

Char8 Char8

String String of same length

Bool Bool

Signed integers Signed integer with same size

Unsigned integers Unsigned integer with same size

Float Float with same size

Array Array with same length and each element are of
semantically equivalent types.

ECSS-E-ST-40-07C
2 March 2020

63

Type Semantically equivalent types
Struct Struct with:

• identical number of elements
• same order of elements
• each element is of semantically equivalent types

Duration Duration

DateTime DateTime

Enumeration Same enumeration type definition

5.2.12 Requirements on utilization of Simulation
Environments interfaces by components

5.2.12.1 ILogger interface utilization
a. LogMessageKind type as per Services/LogMessageKind.h in

[SMP_FILES] shall be used to store the Log Message Kind as returned
from the results of ILogger::QueryLogMessageKind

NOTE The LogMessageKind returned is guaranteed to
be always the same, even after a simulation
state save or restore.

b. All SMP models and services shall use the predefined LogMessageKinds
as defined in Table 5-4 for messages of message type Information, Event,
Warning, Error or Debug .

5.2.12.2 IPublication interface
a. All Arrays published as a single array via the IPublication PublishArray

method shall be without any padding.

NOTE This implies that array element with index i (0-
based) is assumed to be stored at address of
index 0 + i*sizeof(primitiveType).

b. When publishing arrays via the IPublication PublishArray method that
require each element to be published individually, the following steps
shall be followed:

1. Call the IPublication PublishArray method giving the following
arguments:

(a) Name of array

(b) Description of Array

2. The PublishArray method returns a pointer to a IPublication
interface

3. Use the returned IPublication interface to publish each of the
elements of the array.

NOTE In case of a multi-dimensional array, step 1-3 in
5.2.12.2b can be repeated iteratively.

ECSS-E-ST-40-07C
2 March 2020

64

c. When publishing a structure via the IPublication PublishStructure
method, the following steps shall be followed:

1. Call the IPublication PublishStructure method giving the following
arguments:

(a) Name of Structure

(b) Description of Structure

2. The PublishStructure method returns a pointer to a IPublication
interface

3. Use the returned IPublication interface to publish each of the
elements of the structure.

NOTE In case of nested structures, steps 1-3 above can
be repeated iteratively.

d. The IPublication PublishOperation method shall allow publishing an
operation as per following procedure:

1. Call the IPublication PublishOperation method giving the
following arguments:

(a) Name of Operation

(b) Description of Operation

(c) Its view state

2. The IPublication PublishOperation method returns a pointer to a
IPublicationOperation interface

3. Use the returned IPublicationOperation interface to publish each of
the parameters and the return value of the operation.

NOTE See clause 5.3.9.2 for specification of the
IPublicationOperation interface

5.2.12.3 ISimulator interface
a. All user defined services shall be added to the simulation using the

ISimulator AddService method.

5.3 Simulation Environment interfaces

5.3.1 Logger (ILogger interface)
a. The Simulation Environment shall provide a component implementing

the ILogger interfaces as per Services/ILogger.h in [SMP_FILES].

b. The component implementing the ILogger interface shall maintain a list
mapping the defined Log Message Kinds names and IDs, including and
eventually extending Table 5-4.

c. The ILogger QueryLogMessageKind method shall translate from the
name of the message kind to the identifier of the message kind, with the
following argument and behaviour:

ECSS-E-ST-40-07C
2 March 2020

65

1. Argument:

(a) “messageKindName” giving a case sensitive string
containing the name of the log message kind.

2. Behaviour:

(a) If the given name matches one of the predefined
LogMessageKind as specified in Table 5-4, it returns the
corresponding LogMessageKind ID as per Table 5-4;

(b) If the given name does not match any LogMessageKind in
Table 5-4 nor any of the log message kinds in the maintained
mapping, it returns a new LogMessageKind ID as a unique
identifier matching the given name;

(c) If the given name does not match any LogMessageKind in
Table 5-4 but it matches one of the entries in the maintained
mapping of log message kinds, it returns the corresponding
LogMessageKind ID from the mapping.

Table 5-4: Default Log Message Kinds
Name ID Description

Debug 4 To be used for messages that can help during investigations
of anomalous behaviours, but that regular users in nominal
situations are not interested in seeing.

Error 3 To be used for error messages that the simulation or the
model developer thinks are to be conveyed to the user when
anomalous situations happen, that almost surely can lead to
an anomalous simulation.

Warning 2 To be used for messages that the simulation or the model
developer thinks are to be conveyed to the user when
anomalous situations happen, that deserves users’ attention,
but that non necessarily lead to an anomalous simulation.

Event 1 To be used for log messages that the simulation or the model
developer thinks are to be conveyed to the user upon certain
events (the definition of ’event’ is open and simulation or
model developer driven).

Information 0 The message contains general information.

d. The list mapping the defined log message kinds to the defined
LogMessageKind IDs shall be part of persisted data and saved/restored
to/from breakpoints.

e. The list of log message kinds mapping shall be restored upon breakpoint
restoring.

NOTE This implies that the list of log message kinds
and associated names are part of the
breakpoints and that models can store log
message kinds they need and not continuously
ask which LogMessageKind corresponds to a

ECSS-E-ST-40-07C
2 March 2020

66

given LogMessageKind name. This leads to
more efficient implementations.

f. The ILogger Log method shall log a message, with the following
arguments:

1. “sender” giving the originator of the message;

2. “message” giving the text to be logged;

3. “kind” giving the registered log message kind for this message as
returned from ILogger::QueryLogMessageKind method.

(a) If the LogMessageKind ID was not previously registered by
using ILogger::QueryLogMessageKind, then it registers the
passed LogMessageKind with text set to the passed number,
followed by the sender’s Name and the string “undefined
log message kind”.

NOTE This implicit registration of a new
LogMessageKind ID allows to quickly identify
models in a simulation that are logging using
custom unregistered LogMessageKinds.

5.3.2 Time Keeper (ITimeKeeper)
a. The simulation environment shall provide a component implementing

the ITimeKeeper interface as per ITimeKeeper.h in [SMP_FILES].
NOTE 1 The ITimeKeeper gives access to the Time

Keeper Service.
NOTE 2 The ITimeKeeper is used to maintain all the

simulation times.

b. The ITimeKeeper SetEpochTime method shall set the simulation Epoch
Time, with the following argument and behaviour:

1. Argument:

(a) “epochTime” giving the new epoch time;

2. Behaviour:

(a) After setting the EpochTime, it emits a
SMP_EpochTimeChanged global SMP event.

NOTE 1 See Table 5-5 for details on EpochTimeChanged
global Event.

NOTE 2 This method changes the offset between the
Simulation time and the Epoch time.

c. The ITimeKeeper SetMissionStartTime method shall set a new start time
for Mission time, with the following argument and behaviour:

1. Argument:

(a) “missionStart” giving the new Epoch time for which the
Mission time is zero.

2. Behaviour:

(a) After changing the MissionStartTime, it emits the
SMP_MissionTimeChanged global SMP Event.

ECSS-E-ST-40-07C
2 March 2020

67

NOTE This method changes the offset between the
Epoch time and the Mission time.

d. The ITimeKeeper SetMissionTime method shall set the Mission time,
with the following argument and behaviour:

1. Argument:

(a) “MissionTime” giving the new Mission time at the current
Epoch time.

2. Behaviour:

(a) After changing the MissionTime, it emits the
SMP_MissionTimeChanged global SMP Event.

NOTE This method changes the offset between the
Epoch time and the Mission time.

e. The ITimeKeeper SetSimulationTime method shall advance the
Simulation time, the following argument and behaviour:

1. Argument:

(a) “SimulationTime” giving the new simulation time

2. Behaviour:

(a) If SetSimulationTime method is called outside a
PreSimTimeChange as per Table 5-5, then the method
returns without updating the Simulation Time;

(b) If the given simulation time is less than the current
simulation time, it throws an InvalidSimulationTime as per
Services/InvalidSimulationTime.h in [SMP_FILES] and the
Simulation Time is not updated;

(c) If the new simulation time is larger than the time of the next
event on the scheduler, it throws an InvalidSimulationTime
as per Services/InvalidSimulationTime.h in [SMP_FILES]
and the Simulation Time is not updated;

(d) If SetSimulationTime method is called inside a
PreSimTimeChange event as per Table 5-5, then the
simulation time is updated to the given simulation time.

NOTE 1 SetSimulationTime method should only called
during a PreSimTimeChange global event as
per Table 5-5.

NOTE 2 SetSimulationTime method does not result in
emissions of PreSimTimeChange and
PostSimTimeChange global events as per Table
5-5.

f. When the Time Keeper updates the Simulation time in response to the
Scheduler executing a new event, the update shall be performed as per
the following procedure:

1. First the PreSimTimeChange event is emitted;

2. If applicable, the simulation environment performs any activities
related to maintain synchronization with Zulu time;

ECSS-E-ST-40-07C
2 March 2020

68

3. Then the Simulation time is changed to the time of the Event that is
about to be executed;

4. Finally, the PostSimTimeChange event is emitted.
NOTE 1 Depending on the timing constraints of the

simulation, the Simulation Environment may
perform actions (like delays) to keep the
desired correlation between simulation time
and Zulu time after the PreSimTimeChange
event and the update of the Simulation Time
for next event. How this synchronization is
performed is outside the scope of this standard.

NOTE 2 This method only sets the Simulation time
between the current time and the time that is
about to be set by the procedure described
above.

g. The ITimeKeeper GetSimulationTime method shall return the Simulation
time.

h. The ITimeKeeper GetEpochTime method shall return the current Epoch
time.

i. The ITimeKeeper GetMissionTime method shall return the Mission time.

j. The TimeKeeper GetMissionStartTime method shall return the Mission
Start Time.

k. The ITimeKeeper GetZuluTime method shall return the Zulu time.

5.3.3 Scheduler (IScheduler)
a. The simulation environment shall provide a Scheduler implementing the

IScheduler in Services/IScheduler.h in [SMP_FILES].

b. The Scheduler shall allow Events to be added to the scheduler with a
repeat count with the following behaviour:

1. An Event with repeat=0 is non-cyclic and executes only once;

2. An Event with repeat=0 is removed automatically after its
triggering;

3. An Event with repeat>0 is cyclic, and repeats ‘repeat’ times;

4. An Event with repeat>0 is removed automatically after it has been
triggered ‘repeat+1’ times;

5. An Event with repeat<0 is cyclic forever;

6. An Event with repeat<0 is never removed from the scheduler
unless explicitly requested using the RemoveEvent() method.

c. The Scheduler shall allow to specify the cycle time between each call for
cyclic Events with the following behaviour:

1. For non-cyclic Events, the cycle time parameter is stored, but not
used;

2. For cyclic Events, the cycle time is a positive duration;

ECSS-E-ST-40-07C
2 March 2020

69

3. For cyclic Events, an InvalidCylceTime exception as per
Services/InvalidCycleTime.h in [SMP_FILES] is thrown if the cycle
time is negative or zero.

NOTE The cycle time can become relevant if a
subsequent call to SetEventCount is received
before the Event is removed from the
scheduler.

d. Events added to the scheduler by AddSimulationTimeEvent,
AddMissionTimeEvent, AddEpochTimeEvent and AddZuluTimeEvent
shall be executed according to a “first posted, first executed” strategy
where the posting order of Events are determined based on the order of
the Add call.

NOTE This implies that the posting order is not
affected by a change in Epoch time or Mission
Time.

e. The IScheduler AddSimulationTimeEvent method shall add an Event to
the scheduler, with the following arguments and behaviour:

1. Arguments:

(a) “entryPoint” giving the Entry Point to be called when the
Event is executed;

(b) “simulationTime” giving the relative time from now until
the first call of the Entry Point;

(c) “cycleTime“ giving the cycle time of the Event as specified
in 5.3.3c;

(d) “repeat“ giving the Event repetition count as specified in
5.3.3b.

2. Behaviour:

(a) If the Simulation Time is less than zero, it throws an
InvalidEventTime exception as per
Services/InvalidEventTime.h in [SMP_FILES], the Event is
not added to the scheduler and never executed.

(b) If Repeat is not zero and CycleTime is not positive, it throws
an InvalidCycleTme exception as per
Services/InvalidCycleTime.h in [SMP_FILES], the Event is
not added to the scheduler and never executed;

(c) After adding the new Event to the scheduler, it returns the
EventId as per Services/EventId.h in [SMP_FILES]
identifying the added Event.

NOTE The execution order follows the general priority
rules given in requirement 5.3.3d.

f. The IScheduler AddMissionTimeEvent method shall add an Event to the
scheduler with the following arguments and behaviour:

1. Arguments:

(a) “entryPoint“ giving the Entry Point to be called when the
Event is executed;

ECSS-E-ST-40-07C
2 March 2020

70

(b) “missionTime“ giving the mission time of the first call of the
Entry Point;

(c) “cycleTime“ giving the cycle time of the Event as specified
in 5.3.3c;

(d) “repeat“ giving the Event repetition count as specified in
5.3.3b.

2. Behaviour:

(a) If the Mission Time is less than the current mission time, it
throws an InvalidEventTime exception as per
Servives/InvalidEventTime.h in [SMP_FILES], the Event is
not added to the scheduler and never executed;

(b) If Repeat is not zero and CycleTime is not positive, it throws
an InvalidCycleTime exception as per
Services/InvalidCycleTime.h in [SMP_FILES], the Event is
not added to the scheduler and never executed;

(c) After adding the new Event to the scheduler, it returns the
EventId as per Services/EventId.h in [SMP_FILES]
identifying the added Event.

NOTE The execution order follows the general priority
rules given in requirement 5.3.3d.

g. The IScheduler AddEpochTimeEvent method shall add an Event to the
scheduler, with the following arguments and behaviour:

1. Arguments:

(a) “entryPoint“ giving the Entry Point to be called when the
Event is executed;

(b) “epochTime“ giving the epoch time of the first call of the
Entry Point;

(c) “cycleTime“ giving the cycle time of the Event as specified
in 5.3.3c;

(d) “repeat“ giving the Event repetition count as specified in
5.3.3b.

2. Behaviour:

(a) If the Epoch Time is less than the current epoch time it
throws an InvalidEventTime exception as per
Services/InvalidEventTime.h in [SMP_FILES], the Event is
not added to the scheduler and never executed;

(b) If Repeat is not zero and CycleTime is not positive, it throws
an InvalidCycleTime exception as per
Services/InvalidCycleTime.h in [SMP_FILES], the Event is
not added to the scheduler and never executed;

(c) After adding the new Event to the scheduler, it returns the
EventId as per Services/EventId.h in [SMP_FILES]
identifying the added Event.

NOTE The execution order follows the general priority
rules given in requirement 5.3.3d.

ECSS-E-ST-40-07C
2 March 2020

71

h. The IScheduler AddZuluTimeEvent method shall add an Event to the
scheduler, with the following arguments and behaviour:

1. Arguments:

(a) “entryPoint“ giving the Entry Point to be called when the
Event is executed;

(b) “zuluTime“ giving the Zulu time of the first call of the Entry
Point;

(c) “cycleTime“ giving the cycle time of the Event as specified
in 5.3.3c;

(d) “repeat“ giving the Event repetition count as specified in
5.3.3b.

2. Behaviour:

(a) If the given Zulu Time is less than the current Zulu time, it
throws an InvalidEventTime exception as per
Services/InvalidEventTime.h in [SMP_FILES], the Event is
not added to the scheduler and never executed;

(b) If Repeat is not zero and CycleTime is not positive, it throws
an InvalidCycleTime exception as per
Services/InvalidCycleTime.h in [SMP_FILES], the Event is
not added to the scheduler and never executed;

(c) After adding the new Event to the scheduler, it returns the
EventId as per Services/EventId.h in [SMP_FILES]
identifying the added Event.

NOTE The execution order follows the general priority
rules given in requirement 5.3.3d.

i. The IScheduler AddImmediateEvent method shall add an immediate
simulation time event to the scheduler with the current simulation time
as execution time returning an EventId as per Services/EventId.h in
[SMP_FILES], with the following argument and behaviour:

1. Argument:

(a) “entryPoint” giving the Entry Point to be called when the
Event is executed.

2. Behaviour:

(a) The scheduled event is inserted at the front of the list of
events scheduled for the current simulation time making it
the next event to be executed;

(b) After adding the new Event to the scheduler, it returns the
EventId identifying the added Event.

NOTE 1 Calls to AddImmediateEvent differs to calls to
AddSimulationTimeEvent method with
repeat=0, cycleTime=0 and simulationTime=0
since the event is scheduled at the font instead
of the end of the list of scheduled events for the
current simulation time.

NOTE 2 It cannot be assumed that Events added via
AddImmediateEvent are the next Event

ECSS-E-ST-40-07C
2 March 2020

72

executed, as other Events can be scheduled
with AddImmediateEvent prior to its
execution, hence executed first.

NOTE 3 To execute an entry point immediately without
going through the scheduler, the Execute()
method of the EntryPoint can be called directly.

j. The EventId returned when adding an event shall be unique throughout
the entire duration of the simulation implying that EventIds cannot be
reused after the Event has been executed.

NOTE The EventId must only be unique within the
Scheduler context; the Event Manager service
uses the same EventId type, but uniqueness
across services is not required.

k. The IScheduler RemoveEvent method shall remove an already scheduled
Event from the Scheduler, with the following argument and behaviour:

1. Argument:

(a) “eventId” giving the unique identifier of the Event.

2. Behaviour:

(a) If the given EventId does not identify an even currently in
the Scheduler, it throws an InvalidEventId exception as per
InvalidEventId.h in [SMP_FILES];

(b) If the EventId is identical to the current executing Event in
the schedule, then the call is functionally equivalent to
setting the repeat count to 0 via the SetEventCount.

NOTE Setting the repeat count to 0 implies that the
Event is removed from the scheduler
immediately after it is executed.

l. The IScheduler SetEventSimulationTime method shall update the
Simulation time of the next execution of an Event with the following
arguments and behaviour:

1. Arguments:

(a) “eventId” giving the unique identifier of the Event;

(b) “simulationTime” giving the relative time from now until
the next execution of the Event.

2. Behaviour:

(a) If the Simulation Time is negative, the Event is never
executed but instead removed immediately from the
scheduler;

(b) If the given EventId is not currently on the scheduler, it
throws an InvalidEventId exception as per InvalidEventId.h
in [SMP_FILES];

(c) If the Event identified by the given EventId is not scheduled
on Simulation time, it throws an InvalidEventId exception as
per InvalidEventId.h in [SMP_FILES];

ECSS-E-ST-40-07C
2 March 2020

73

(d) When the Simulation time of the next execution of an Event
is updated, it takes effect on all future repeats of this Event
as per the remaining “repeat” count and respecting the
given cycle-time between each repeat.

NOTE Events scheduled with AddImmediateEvent
are also considered to be scheduled based on
Simulation Time.

m. The IScheduler SetEventMissionTime method shall update the Mission
time of the next execution of an Event with the following arguments and
behaviour:

1. Arguments:

(a) “eventId” giving the unique identifier of the Event;

(b) “missionTime” giving the time of the next execution of the
Event.

2. Behaviour:

(a) If the given EventId is not currently on the scheduler, it
throws an InvalidEventId exception as per InvalidEventId.h
in [SMP_FILES];

(b) If the Event identified by the given EventId is not scheduled
on Mission time, it throws an InvalidEventId exception as
per InvalidEventId.h in [SMP_FILES];

(c) If the mission time is before the current mission time, the
Event is never executed but instead removed immediately
from the scheduler;

(d) When the Mission time of the next execution of an Event is
updated, it takes effect on all future repeats of this Event as
per the remaining “repeat” count and respecting the given
cycle-time between each repeat.

n. The IScheduler SetEventEpochTime method shall update the Epoch time
of the next execution of an Event, with the following arguments and
behaviour:

1. Arguments:

(a) “eventId” giving the unique identifier of the Event;

(b) “epochTime” giving the time of the next execution of the
Event.

2. Behaviour:

(a) If the given EventId is not currently on the scheduler, it
throws an InvalidEventId exception as per
Services/InvalidEventId.h in [SMP_FILES];

(b) If the Event identified by the given EventId is not scheduled
on Epoch time, it throws an InvalidEventId exception as per
Services/InvalidEventId.h in [SMP_FILES];

(c) If the epoch time is before the current epoch time, the Event
is never executed but instead removed immediately from
the scheduler;

ECSS-E-ST-40-07C
2 March 2020

74

(d) When the Epoch time of the next execution of an Event is
updated, it takes effect on all future repeats of this Event as
per the remaining “repeat” count and respecting the given
cycle-time between each repeat.

o. The IScheduler SetEventZuluTime method shall update the Zulu time of
the next execution of an Event, with the following arguments and
behaviour:

1. Arguments:

(a) “eventId” giving the unique identifier of the Event;

(b) “zuluTime” giving the time of the next execution of the
Event.

2. Behaviour:

(a) If the given EventId is not currently on the scheduler, it
throws an InvalidEventId exception as per
Services/InvalidEventId.h in [SMP_FILES];

(b) If the Event identified by the given EventId is not scheduled
on Zulu time, it throws an InvalidEventId exception as per
Services/InvalidEventId.h in [SMP_FILES];

(c) If the Zulu time is before the current Zulu time, the Event is
never executed but instead removed immediately from the
scheduler;

(d) When the Zulu time of the next execution of an Event is
updated, it takes effect on all future repeats of this Event as
per the remaining “repeat” count and respecting the given
cycle-time between each repeat.

p. The IScheduler SetEventCycleTime method shall allow to update the
cycle time of an already scheduled Event, with the following arguments
and behaviour:

1. Arguments:

(a) “eventId” giving the unique identifier of the Event;

(b) “cycleTime” giving the new cycle time of the Event as
specified in 5.3.3c;

2. Behaviour:

(a) If the given EventId is not currently on the scheduler, it
throws an InvalidEventId exception as per
Services/InvalidEventId.h in [SMP_FILES];

(b) If the Repeat count of the Event is not zero and CycleTime is
not positive, it throws an InvalidCycleTime exception as per
Services/InvalidCycleTime.h in [SMP_FILES] and the
CycleTime is not updated.

NOTE The CycleTime can be set also for immediate
events and events with repeat count equal to 0,
as the repeat can be updated with
SetEventCount afterwards.

ECSS-E-ST-40-07C
2 March 2020

75

q. The IScheduler SetEventCount method shall allow to update the repeat
count of an Event already scheduled with the following arguments and
behaviour:

1. Arguments:

(a) “eventId” as a unique identifier of the Event;

(b) “count” giving the number of the Event repetitions as
specified in 5.3.3b.

2. Behaviour:

(a) If the given EventId that is not currently on the scheduler, it
throws an InvalidEventId exception as per
Services/InvalidEventId.h in [SMP_FILES];

(b) If Count is not zero and CycleTime of the Event is zero, it
throws an InvalidCycleTime exception as per
Services/InvalidCycleTime.h in [SMP_FILES] and the Count
is not updated;

(c) If the given Count is greater than 0 and the given EventId is
identical to the one currently executing, then the scheduler
executes the Event for the given Count, excluding the
current execution;

(d) If the given Count is 0, the Event is removed immediately
after its execution is finished.

r. The IScheduler GetCurrentEventId method shall return an EventId as per
Services/EventId.h in [SMP_FILES], with the following behaviour:

1. If an Event is currently executing, it returns the EventId of the
currently executing Event;

2. If no scheduled Event is currently executing, it returns -1.

NOTE A scheduled Event may not be executing if the
GetCurrentEventId is called as part of the SMP
global events (See clause 5.3.4)

s. The IScheduler GetNextScheduledEventTime method shall return the
Simulation Time of the execution of the next scheduled Simulation Time,
Epoch Time or Mission Time Event.

NOTE 1 Events scheduled in Zulu Time are not
considered, as these Events do not have a fixed
defined Simulation Time.

NOTE 2 In case of Zulu Events executed, other Events
may schedule Events prior to the time returned,
hence the Scheduler does not guarantee that no
other Events may be executed prior to the time
returned from GetNextScheduledEvent().

t. The complete state of the Scheduler, with the exception of Events
scheduled using ZuluTime, shall be part of persisted data and
saved/restored to/from breakpoints.

u. When the SMP_EpochTimeChanged global SMP event is emitted, the
events already scheduled with Epoch time shall behave as follows:

ECSS-E-ST-40-07C
2 March 2020

76

(a) Non-cyclic events with Epoch Time equal to or in the future
of the new Epoch Time, are executed according to the Epoch
Time they were originally scheduled;

(b) Non-cyclic events with Epoch Time prior the new Epoch
Time, are removed from the scheduler and not executed;

(c) For Cyclic Events, any repeat that falls prior the new Epoch
Time is not executed and any positive repeat count is
reduced according to the number of skipped executions;

(d) For Cyclic Events, any repeat that are equal or after the new
Epoch Time is executed according to the original Epoch
Time of the repeats.

v. When the SMP_MissionTimeChanged global SMP event is emitted, the
events already scheduled with Mission time shall behave as follows:

(a) Non-cyclic events with Mission time equal to or in the future
of the new Mission Time, are executed according to the
Mission Time they were originally scheduled;

(b) Non-cyclic events with Mission time prior the new Mission
Time, are removed from the scheduler and not executed;

(c) For Cyclic Events, any repeat that falls prior the new Epoch
Time is not executed and any positive repeat count is
reduced according to the number of skipped executions;

(d) For Cyclic Events, any repeat that are equal or after the new
Mission Time is executed according to the original Mission
Time of the repeats.

w. When the simulator is in Standby state, the scheduler shall behave as
follows:

1. Events scheduled on simulation time including immediate Events,
epoch and mission time are not processed;

2. Events scheduled on Zulu time are executed.

5.3.4 Event Manager (IEventManager)
a. The simulation environment shall provide an Event Manager

implementing the IEventManager interface as Services/IEventManager.h
in [SMP_FILES].

b. The IEventManager QueryEventId method shall return the Event
identifier for an Event, with the following argument and behaviour:

1. Argument:

(a) “eventName” giving the name of the Event.

2. Behaviour:

(a) If called with an empty name, it throws an
InvalidEventName exception as per
Services/InvalidEventName.h in [SMP_FILES];

ECSS-E-ST-40-07C
2 March 2020

77

(b) If called with the name of one of the pre-defined Event types
as in Table 5-5 , it returns the corresponding EventId as in
Table 5-5;

(c) If called with a non-empty event name different from all
pre-defined event types as in Table 5-5, it returns an event
identifier different from all pre-defined event identifiers in
Table 5-5;

(d) If called with the same name again in the context of a
restored simulation, it returns always the same event
identifier.

NOTE This implies that the EventManager maintains a
global list of events that is persisted in the
breakpoint and restored when needed.

c. The Event Manager shall maintain a list of pairs of unique event
identifiers and entry points.

NOTE The event identifier must only be unique within
the Event Manager context; the Scheduler
service uses the same EventId type, but
uniqueness across services is not required.

d. The Event Manager shall initialise the list of pairs to be empty at creation
time.

e. The IEventManager Subscribe method shall allow to subscribe an entry
point to a global event identifier, with the following arguments and
behaviour:

1. Arguments:

(a) “event” giving the ID of the event to be subscribed;

(b) “entryPoint” giving a pointer to the entry point to be called
when the event is emitted.

2. Behaviour:

(a) If called with a pair of event identifier and entry point that is
not currently in the internal list, it adds this pair to the
internal list;

(b) If called with a pair of event identifier and entry point that is
already in the internal list, it throws an
EntryPointAlreadySubscribed exception as per
Services/EntryPointAlreadySubscribed.h in [SMP_FILES];

(c) If called with an event ID that does not exist, it throws an
InvalidEventId exception as per Services/InvalidEventId.h in
[SMP_FILES].

f. The IEventManager Unsubscribe method shall remove a pair from the
list, with the following arguments and behaviour:

1. Arguments:

(a) “event” giving the ID of the event to be unsubscribed;

(b) “entryPoint” giving a pointer to the entry point to be
unsubscribed.

ECSS-E-ST-40-07C
2 March 2020

78

2. Behaviour:

(a) If called with a pair of event identifier and entry point that is
currently in the internal list, it removes this pair to the
internal list;

(b) If called with a pair of event identifier and entry point that is
not in the internal list, it throws an
EntryPointNotSubscribed exception as per
Services/EntryPointNotSubscribed.h in [SMP_FILES];

(c) If called with an invalid event id, it throws an
InvalidEventId exception as per Services/InvalidEventId.h in
[SMP_FILES].

g. The IEventManager Emit method shall emit a specific global event to all
the subscribed entry points, with the following arguments and
behaviour:

1. Arguments:

(a) “eventId” giving the ID of the event to be emitted;

(b) “synchronous” giving if the event is emitted synchronous to
all subscribed entry points.

2. Behaviour:

(a) If called with an event identifier for which pairs with entry
points exist in the list, then these entry points are called;

(b) If more than one entry point is called, then the order of the
calls are not guaranteed;

(c) If called with the synchronous flag set to false, the calls to
the entry points are asynchronous, such that the call to the
Emit method is not blocked from returning while waiting
for calls to subscribed entry points to return;

(d) If called with the synchronous flag set to true, the calls to the
entry points are synchronous, such that the call to the Emit
method is blocked from returning until the calls to all
subscribed entry points return.

h. The SMP predefined global events shall only be emitted in the conditions
outlined in Table 5-5 and only by the Simulation Environment.

i. The SMP predefined global events shall be emitted with the synchronous
flag set as per Table 5-5.

ECSS-E-ST-40-07C
2 March 2020

79

Table 5-5: Condition for emitting predefined global events
Name EventId Condition for emitting Synchronous

flag
SMP_LeaveConnecting 1 When leaving the Connecting state with

an automatic state transition to
Initializing state

True

SMP_EnterInitialising 2 When entering the Initialising state with
an automatic state transition from
Connecting state, or with the Initialise()
state transition.

True

SMP_LeaveInitialising 3 When leaving the Initialising state with an
automatic state transition to Standby
state.

True

SMP_EnterStandby 4 When entering the Standby state with:

• an automatic state transition from
Initialising, Storing or Restoring state,

• the Hold() state transition command
from Executing state.

True

SMP_LeaveStandby 5 When leaving the Standby state with:

• the Run() state transition command to
Executing state.

• the Store() state transition command
to Storing state,

• the Restore() state transition
command to Restoring state

• the Initialise() state transition
command to Initialising state

True

SMP_EnterExecuting 6 When entering the Executing state with
the Run() state transition command from
Standby state

True

SMP_LeaveExecuting 7 When leaving the Executing state with the
Hold() state transition command to
Standby state.

True

SMP_EnterStoring 8 When entering the Storing state with the
Store() state transition command from
Standby state

True

SMP_LeaveStoring 9 When leaving the Storing state with an
automatic state transition to Standby state

True

SMP_EnterRestoring 10 When entering the Restoring state with
the Restore() state transition command
from Standby state

True

SMP_LeaveRestoring 11 When leaving the Restoring state with an
automatic state transition to Standby state

True

ECSS-E-ST-40-07C
2 March 2020

80

Name EventId Condition for emitting Synchronous
flag

SMP_EnterExiting 12 When entering the Exiting state with the
Exit() state transition command from
Standby state

True

SMP_EnterAborting 13 When entering the Aborting state with the
Abort() state transition command from
any other state

True

SMP_EpochTimeChanged 14 When changing the epoch time with the
SetEpochTime() method of the time
keeper service

True

SMP_MissionTimeChanged 15 When changing the mission time with one
of the SetMissionTime() and
SetMissionStartTime() methods of the
time keeper service.

True

SMP_EnterReconnecting 16 When entering the Reconnecting state
with the Reconnect() state transition from
Standby state

True

SMP_LeaveReconnecting 17 When leaving the Reconnecting state with
an automatic state transition to Standby
state.

True

SMP_PreSimTimeChange 18 When all events have been executed by
the Scheduler for a specific Simulation
Time, but before the TimeKeeper changes
the Simulation time to the time of next
event.

False

SMP_PostSimTimeChange 19 When the simulation time has been
changed by the Time Keeper, but before
any events have been executed by the
Scheduler.

False

5.3.5 Resolver (IResolver)
a. The simulation environment shall provide a component implementing

the IResolver interface as Services/IResolver.h in [SMP_FILES].

b. The IResolver ResolveAbsolute method shall return a reference to a
Component, Field, Failure, Container, Reference, Event Sink, Event
Source or Entry Point object in the simulation, with the following
argument and behaviour:

1. Argument:

(a) “absolutePath” giving the absolute path string of the object.

2. Behaviour:

(a) If the “absolutePath” does not give the path to an object, it
returns nullptr;

(b) If no object with the given path can be found, it returns
nullptr;

ECSS-E-ST-40-07C
2 March 2020

81

(c) If “absolutePath” resolves to an object, it returns the IObject
reference to the object.

NOTE 1 To allow keeping names as short as possible,
and avoid dependency on the name of the
simulator itself, absolute paths contain the
name of either a top level Model or Service, but
not the name of the simulator, although the
simulator itself is the top-level object.

NOTE 2 The specification of path string is given in
clause 5.1.3.

c. The Resolver ResolveRelative method shall return a reference to an object
in the simulation with the following arguments and behaviour:

1. Arguments:

(a) “relativePath” giving a path string representing the relative
path to the object;

(b) “sender” giving the reference to the Component issuing the
request.

2. Behaviour:

(a) If “relativePath” does not resolve to any object, it returns
nullptr;

(b) If “relativePath” resolves to an object, it returns an IObject
reference to the object.

NOTE The specification of path string is given in
clause 5.1.3.

5.3.6 Link Registry (ILinkRegistry)
a. The simulation environment shall provide a Link Registry service

implementing the ILinkRegistry interface as Services/ILinkRegistry.h in
[SMP_FILES].

NOTE 1 The link registry maintains a global collection
of links between components, supports adding,
fetching and removing all links to a given
target.

NOTE 2 The links include Interface Links, Event Links
and Field Links.

b. The ILinkRegistry AddLink method shall increment the link count
between two components, with the following arguments and behaviour:

1. Arguments:

(a) “source” giving the source component;

(b) “target” giving the target component.

2. Behaviour

(a) The link count between both components is incremented by
one, taking note of a new link that has been created.

ECSS-E-ST-40-07C
2 March 2020

82

NOTE This method can be called several times with
the same arguments, when a source component
has several links to the same target component.

c. The ILinkRegistry GetLinkCount method shall return the link count
between the given source and target, with the following arguments:

1. “source” giving the source component;

2. “target” giving the target component.

d. The ILinkRegistry RemoveLink method shall decrement the link count
between the two components, with the following arguments and
behaviour:

1. Arguments:
(a) “source” giving the source component;
(b) “target” giving the target component.

2. Behaviour:
(a) If the link count between both components is positive, it is

decremented by one, taking note that a link has been
removed, and true is returned.

(b) If the link count between both components is 0, false is
returned.

NOTE 1 Existing links have been previously added to
the service using the AddLink() method.

NOTE 2 This method can be called several times with
the same arguments, when several links from
the source component to the same target
component are removed.

e. The ILinkRegistry GetLinkSources method shall return the collection of
source components for which a link to the given target component has
been added to the registry.

f. The ILinkRegistry CanRemove method shall return whether all source
components linking to the given target can be asked to remove their
link(s), with the following argument and behaviour:

1. Argument:

(a) “target” giving the target component of the link.

2. Behaviour:
(a) If all source components linking to the given target can be

asked to remove their link(s), it returns true;
(b) If at least one of the source components linking to the given

target cannot be asked to remove its link(s), it returns false.

NOTE Components can be asked to remove their links
if they implement the optional
ILinkingComponent interface.

g. The ILinkRegistry RemoveLinks method shall call the RemoveLinks
method of all source components that implement the optional
ILinkingComponent interface with the following argument:
1. “target” giving the component from which all links to be removed.

ECSS-E-ST-40-07C
2 March 2020

83

5.3.7 Simulator (ISimulator)
a. The simulation environment shall provide a Simulator Object

implementing the ISimulator interface as ISimulator.h in [SMP_FILES].
NOTE 1 The ISimulator gives access to the simulation

environment state and state transitions.
NOTE 2 The ISimulator interface provides methods to

add models and to add and retrieve simulation
services.

b. The Simulator Object shall have two containers as follows:

1. One “Models” container that holds simulation models with no
upper limit on the number of Models to hold;

2. One “Services” container that holds simulation services with no
upper limit on the number of Services to hold.

c. The ISimulator interface shall be used to setup the simulation as per the
following procedure:

1. First the Publish method is called;

2. After returning from the Publish call, the Configure method is
called;

3. After returning from the Configure method, the Connect method is
called;

4. After returning from the Connect method, the Initialise method is
called.

d. The ISimulator Publish method shall call the Publish() method of all
service and model instances in the component hierarchy that are in
Created state within the simulation as per following procedure:

1. If the simulation is not in Building state, then it returns and no
action is taken;

2. If Publish method is called during the execution of the global event
SMP_LeavingBuilding, then it returns and no action is taken;

3. If the simulation is in Building state, it issues the global event
“SMP_LeavingBuilding” via the Event Manager.

4. After returning from the SMP_LeavingBuilding global event, it
changes the simulation state to Publishing state.

5. After entering Publishing state, it issues the global event
“SMP_EnterPublishing” via the Event Manager.

6. After returning from the “SMP_EnterPublishing” global event, it
traverses through the "Service" container of the simulator, as
follows:

(a) It calls the Publish() operation of each component in
CSK_Created state;

(b) After calling Publish() on a service, it calls Publish()
immediately on all its child components recursively.

ECSS-E-ST-40-07C
2 March 2020

84

7. After completing the “Service” container, it traverses through the
"Models" container of the simulator as follows:

(a) It calls the Publish() operation of each component in
CSK_Created state;

(b) After calling Publish on a model, it calls Publish
immediately on all its child components recursively.

8. After all Publish() operations have been executed, it issues the
global event “SMP_LeavingPublishing” via the Event Manager;

9. After returning from the “SMP_LeavingPublishing” global event,
it changes the simulation state to Building state;

10. Finally, it issues the global event “SMP_EnteringBuilding” via the
Event Manager.

e. The ISimulator Configure method shall call the Configure() method of all
service and model instances in the component hierarchy that are in
Publishing state as per following procedure:

1. If the simulation is not in Building state, then it returns and no
action is taken;

2. If Configure method is called during the execution of the global
event SMP_LeavingBuilding, then it returns and no action is taken;

3. If the simulation is in Building state, it issues the global event
“SMP_LeavingBuilding” via the Event Manager;

4. After returning from the SMP_LeavingBuilding global event, it
changes the simulation state to “Configuring” state;

5. After entering Configuring state, it issues the global event
“SMP_EnterConfiguring” via the Event Manager;

6. After returning from the “SMP_EnterConfiguring” global event, it
traverses through the "Services" container of the simulator. For
each component, it performs the following procedure:

(a) If the component is still in CSK_Created state, it first calls
the Publish() operation;

(b) If the component is in CSK_Publishing state, it calls the
Configure() operation;

(c) Then it immediately performs the same operation(s)
recursively on all child components of the component.

7. After configuring the Services, it traverses through the "Models"
container of the simulator. For each component, it performs the
following procedure:

(a) If the component is in CSK_Created state, it first calls the
Publish() operation;

(b) If the component is in CSK_Publishing state, it calls the
Configure() operation;

(c) Then it immediately performs the same operation(s)
recursively on all child components of the component.

8. After all Configure() operations have been executed, it issues the
global event “SMP_LeavingConfiguring” via the Event Manager;

ECSS-E-ST-40-07C
2 March 2020

85

9. After returning from the “SMP_LeavingConfiguring” global event,
it changes the simulation state to Building state;

10. Finally, it issues the global event “SMP_EnteringBuilding” via the
Event Manager.

f. The ISimulator Connect method shall call the Connect() method of all
service and model instances in the component hierarchy that are in
Configure state as per following procedure:

1. If the simulation is not in Building state, then it returns and no
action is taken;

2. If Connect method is called during the execution of the global
event SMP_LeavingBuilding, then it returns and no action is taken;

3. If the simulation is in Building state, it issues the global event
“SMP_LeavingBuilding” via the Event Manager;

4. After returning from the SMP_LeavingBuilding global event, it
changes the simulation state to Connecting state;

5. After entering Connecting state, it issues the global event
“SMP_EnterConnecting” via the Event Manager;

6. After returning from the “SMP_EnterConnecting” global event, it
traverses through the "Services" container of the simulator and
performs the following actions:

(a) If the component is in CSK_Created state, it calls the
Publish() operation;

(b) If the component is in CSK_Publishing state, it calls the
Configure() operation;

(c) If the component is in CSK_Configure state, it calls the
Connect() operation;

(d) Afterwards, it performs the same operation(s) recursively on
all child components of the component.

7. After connecting the services, the operation traverses through the
"Models" container of the simulator performing the following
actions:

(a) If the component is in CSK_Created state, it calls the
Publish() operation;

(b) If the component is in CSK_Publishing state, it calls the
Configure() operation;

(c) If the component is in CSK_Configure state, it calls the
Connect() operation;

(d) Afterwards, it performs the same operation(s) recursively on
all child components of the component.

8. After all Connect() operations have been executed, it issues the
global event “SMP_LeavingConnecting” via the Event Manager;

9. After returning from the “SMP_LeavingConnecting” global event,
it changes the simulation state to Initialising state;

10. After entering Initialising state, it issues the global event
“SMP_EnterInitialising” via the Event Manager;

ECSS-E-ST-40-07C
2 March 2020

86

11. After returning from the “SMP_EnterInitialising” global event, it
calls the initialising entry points for all models that has registered
an initialising entry point via the ISimulator AddInitEntryPoint
method in the order the entry points where added;

12. After executing the entry points, it removes the entry points from
the list so that in case Initialise is called again, the same Initialise
entry point is not called twice;

13. After calling all initialising entry points, it issues the global event
“SMP_LeaveInitialising” via the Event Manager;

14. After returning from the “SMP_LeaveInitialising” global event, it
changes the simulation state to Standby state;

15. Finally the global event “SMP_EnteringStandby” is issued via the
Event Manager.

g. The ISimulator Initialise method shall call all initialization entry points
within the simulation as per the following procedure:

1. If the simulation is not in Standby state, then it returns and no
action is taken;

2. If Initialise method is called during the execution of the global
event SMP_LeavingStandby, then it returns and no action is taken;

3. If the simulation is in Standby state, it issues the global event
“SMP_LeavingStandby” via the Event Manager;

4. After returning from the SMP_LeavingStandby global event, the
simulator state changes to Initialising state;

5. After entering Initializing state, it issues the global event
“SMP_EnterInitialising” via the Event Manager;

6. After returning from the SMP_EnterInitialising global event, it
executes all entry points added via the ISimulator
AddInitEntryPoint() method in the order they have been added by
the AddInitEntryPoint() call;

7. After executing the entry points, it removes the entry points from
the list so that in case Initialise is called again, the same Initialise
entry point is not called twice;

8. After all entry points has been executed, it issues the global event
“SMP_LeavingInitialising” via the Event Manager;

9. After returning from the “SMP_LeavingInitialising” global event,
it changes the simulation state to Standby state;

10. Finally, it issues the global event “SMP_EnteringStandby” via the
Event Manager.

h. The ISimulator Run method shall change the state from Standby to
Executing as per following procedure:

1. If the simulation is not in Standby state, then it returns and no
action is taken;

2. If Run method is called during the execution of the global event
SMP_LeavingStandby, then it returns and no action is taken;

ECSS-E-ST-40-07C
2 March 2020

87

3. If Run method is called during the execution of the global event
SMP_EnterStandby, then it returns and no action is taken;

4. If the simulation is in Standby state, it issues the global event
“SMP_LeavingStandby” via the Event Manager;

5. After returning from the SMP_LeavingStandby global event, it
changes the simulation state to “Executing” state;

6. After entering Executing state, it issues the global event
“SMP_EnterExecuting” via the Event Manager.

i. The ISimulator Hold method shall change the state from Executing to
Standby with the following argument and procedure:

1. Argument:

(a) “hardHold” giving if the Simulation is halting immediately.

2. Procedure:

(a) If the simulation is not in Executing state, then it returns and
no action is taken;

(b) If called during the execution of the global event
SMP_LeavingExecuting, then it returns and no action is
taken;

(c) If called during the execution of the global event
SMP_EnterExecuting, then it returns and no action is taken;

(d) If the simulation is in Executing state, it waits until the
current executing event, if any, completes;

(e) After the current executing event is completed and if the
hardHold argument is “false”, it executes all events
scheduled for the current simulation time;

(f) After all events that needs executing is completed, it issues
the global event “SMP_LeavingExecuting” via the Event
Manager;

(g) After returning from the SMP_LeavingExecuting global
event, it changes the simulation state to “Standby” state;

(h) After entering Standby state, it issues the global event
“SMP_EnterStandby” via the Event Manager.

NOTE 1 Halting the simulation with “hardHold” to
“true” can cause the simulation to halt when
some models have reached the current
simulation time, but others not. This is useful
for debugging purposes.

NOTE 2 Halting the simulation with “hardHold” to
“false” ensures that all simulation models have
executed up until a consistent simulation time.
This is useful for hardware in the loop
simulations.

ECSS-E-ST-40-07C
2 March 2020

88

j. The ISimulator Store method shall store a breakpoint to file, with the
following argument and procedure:

1. Argument:

(a) “filename” giving the name including the full path of the
breakpoint file to be saved.

2. Procedure:

(a) If the simulation is not in Standby state, then it returns and
no action is taken;

(b) If Store method is called during the execution of the global
event SMP_LeavingStandby, then it returns and no action is
taken;

(c) If the simulation is in Standby state, it issues the global event
“SMP_LeavingStandby” via the Event Manager;

(d) After returning from the SMP_LeavingStandby global event,
it changes the simulation state to Storing state;

(e) After entering Storing state, it issues the global event “SMP_
EnterStoring” via the Event Manager;

(f) After returning from the “SMP_EnterStoring” event, it
performs Self Persistence by calling the IPersist Store
method on all simulation objects that implement the IPersist
interface;

(g) After Self Persistence is completed, it performs External
Persistence by storing the simulation state in the simulation
breakpoint file given by the “filename” argument;

(h) After Store operation has been completed, it issues the
global event “SMP_LeaveStoring” via the Event Manager;

(i) After returning from the “SMP_LeaveStoring” event, it
changes the simulation state to Standby state;

(j) After entering Standby state, it issues the global event
“SMP_EnterStandby” via the Event Manager.

NOTE Self-Persistence is performed prior to External
Persistence during store as it allows models to
update its published data prior to storing it.

k. The ISimulator Restore method shall restore a breakpoint from file, with
the following argument and procedure:

1. Argument:

(a) “filename” giving the name including the full path of the
breakpoint file to restore.

2. Procedure:

(a) If the simulation is not in Standby state, then it returns and
no action is taken;

(b) If called during the execution of the global event
SMP_LeavingStandby, then it returns and no action is taken;

(c) If the simulation is in Standby state, it issues the global event
“SMP_LeavingStandby” via the Event Manager;

ECSS-E-ST-40-07C
2 March 2020

89

(d) After returning from the SMP_LeavingStandby global event,
the simulation state is changed to Restoring state;

(e) After entering Restoring state, it issues the global event
“SMP_EnterRestoring” via the Event Manager.

(f) After returning from the “SMP_EnterRestoring” event, it
performs External Persistence by restoring the simulation
state from a breakpoint file given by the “filename”
argument;

(g) After completing External Persistence, it performs Self
persistence by calling the IPersist Restore method of all
simulation objects which implement the IPersist interface;

(h) After Restore operation has been completed, it issues the
global event “SMP_LeavingRestoring” via the Event
Manager;

(i) After returning from the “SMP_LeavingRestoring” event,
the simulation state is changed to Standby;

(j) After entering Standby state, it issues the global event
“SMP_EnterStandby” via the Event Manager.

NOTE Self-Persistence is performed after to External
Persistence at restore as it allows models to use
its published data during the self-persistence.

l. The ISimulator Reconnect method shall reconnect the component
hierarchy starting at the root component given as parameter, with the
following argument and procedure:

1. Argument:

(a) “root” giving the component in the hierarchy for which the
reconnect shall start from.

2. Procedure:

(a) If the simulation is not in Standby state, then the method
returns and no action is taken.

(b) If Reconnect method is called during the execution of the
global event SMP_LeavingStandby, then the method returns
and no action is taken.

(c) If the simulation is in Standby state, the global event
“SMP_LeavingStandby” is issued via the Event Manager.

(d) After returning from the SMP_LeavingStandby global event,
the simulation state is changed to “Reconnecting” state.

(e) The simulation environment ensures that all models under
the given Root component parameter are published,
configured and connected.

(f) After Reconnect operation has been completed, the
simulation state is changed to Standby.

(g) After entering Standby state, the global event
“SMP_EnterStandby” is issued via the Event Manager.

ECSS-E-ST-40-07C
2 March 2020

90

m. The ISimulator Exit method shall trigger a normal termination of a
simulation, as per following procedure:

1. If the simulation is not in Standby state, then it returns and no
action is taken;

2. If called during the execution of the global event
SMP_LeavingStandby, then it returns and no action is taken;

3. If the simulation is in Standby state, it issues the global event
“SMP_LeavingStandby” via the Event Manager;

4. After returning from the SMP_LeavingStandby global event, it
changes the simulation state to “Exiting” state;

5. After entering Exiting state, it issues the global event
“SMP_EnterExiting” via the Event Manager;

6. The Exit method triggers a normal termination of the simulation.

n. The ISimulator Abort method shall trigger an abnormal termination of a
simulation, as per following procedure:

1. When called, it issues the global event “SMP_EnterAborting” via
the Event Manager;

2. After returning from the “SMP_EnterAborting” event, it changes
the simulation state to Aborting state;

3. After entering Aborting state, it triggers an abnormal termination
of the simulation.

NOTE This method can be called from any other state.

o. The ISimulator GetState method shall return the current simulator state
as per SimulatorStateKind in SimulatorStateKind.h in [SMP_FILES].

p. The ISimulator AddInitEntryPoint method shall add entry points to be
executed in the Initialising state, as per following argument and
behaviour:

1. Argument:

(a) “entryPoint” giving a pointer to the entry point interface of
the entry point to be added.

2. Behaviour:

(a) If the simulation is not in Building, Connecting or Standby
state, then it returns and no action is taken;

(b) If the simulation is in Building, Connecting or Standby state,
it adds the entry point to the list of entry points to be
executed once the simulation reaches Initialising state.

NOTE This allows components to subscribe to a
callback during initialization phase since there
are only explicit methods defined for Publish,
Configure and Connect. This simplifies
implementation for models that do not require
initialization.

ECSS-E-ST-40-07C
2 March 2020

91

q. The ISimulator AddModel method shall add a model to the models
collection of the simulator, with the following argument and behaviour:

1. Argument:

(a) “model” giving the model to be added.

2. Behaviour:

(a) If the Simulation is not in Standby, Building, Connecting or
Initializing state, it throws an InvalidSimulatorState
exception as per InvalidSimulatorState.h in [SMP_FILES];

(b) If the name of the new model conflicts with the name of an
existing model already added via AddModel, it throws a
DuplicateName exception as per DuplicateName.h in
[SMP_FILES];

(c) If the name of the new model conflicts with the name of an
existing service already added via AddService, it throws a
DuplicateName exception as per DuplicateName.h in
[SMP_FILES].

NOTE 1 The container for the models has no upper limit
and thus the ContainerFull exception will never
be thrown.

NOTE 2 The method will never throw the
InvalidObjectType exception, as it gets a
component implementing the IModel interface.

r. The ISimulator AddService method shall add a user-defined service to
the services collection, with the following argument and behaviour:

1. Argument:

(a) “service” giving the service to be added.

2. Behaviour:

(a) If the Simulation is not in Building state, it throws an
InvalidSimulatorState exception as per
InvalidSimulatorState.h in [SMP_FILES];

(b) If the name of the new service conflicts with the name of an
existing model already added via AddModel, it throws a
DuplicateName exception as per DuplicateName.h in
[SMP_FILES];

(c) If the name of the new service conflicts with the name of an
existing service already added via AddService, it throws a
DuplicateName exception as per DuplicateName.h in
[SMP_FILES].

NOTE 1 The container for the services has no upper
limit and thus the ContainerFull exception is
never thrown.

NOTE 2 The method never throw the InvalidObjectType
exception, as it gets a component implementing
the IService interface.

ECSS-E-ST-40-07C
2 March 2020

92

NOTE 3 It is recommended that custom services include
a project or company acronym as prefix in their
name, to avoid collision of service names.

s. The ISimulator GetService method shall return the interface of a service
with the following argument and behaviour:

1. Argument:

(a) “name” giving the name of the service.

2. Behaviour:

(a) If no service with the given name , it returns nullptr;

(b) If a service with the given name is found, it returns a
reference to that service.

t. The ISimulator GetLogger method shall return the interface of the
mandatory logger service.

NOTE This is a type-safe convenience method, to
avoid having to use the generic GetService()
method. For the standardised services, it is
recommended to use the convenience methods,
which are guaranteed to return a valid
reference.

u. The ISimulator GetTimeKeeper method shall return the interface to the
mandatory time keeper service.

NOTE This is a type-safe convenience method, to
avoid having to use the generic GetService()
method. For the standardised services, it is
recommended to use the convenience methods,
which are guaranteed to return a valid
reference.

v. The ISimulator GetScheduler method shall return the interface to the
mandatory scheduler service.

NOTE This is a type-safe convenience method, to
avoid having to use the generic GetService()
method. For the standardised services, it is
recommended to use the convenience methods,
which are guaranteed to return a valid
reference.

w. The ISimulator GetEventManager method shall return the interface to the
mandatory event manager service.

NOTE This is a type-safe convenience method, to
avoid having to use the generic GetService()
method. For the standardised services, it is
recommended to use the convenience methods,
which are guaranteed to return a valid
reference.

ECSS-E-ST-40-07C
2 March 2020

93

x. The ISimulator GetResolver method shall return the interface to the
mandatory resolver service.

NOTE This is a type-safe convenience method, to
avoid having to use the generic GetService()
method. For the standardised services, it is
recommended to use the convenience methods,
which are guaranteed to return a valid
reference.

y. The ISimulator GetLinkRegistry method shall return the interface to the
mandatory link registry service.

NOTE This is a type-safe convenience method, to
avoid having to use the generic GetService()
method. For the standardised services, it is
recommended to use the convenience methods,
which are guaranteed to return a valid
reference.

z. The ISimulator RegisterFactory method shall register a component
factory, with the following argument and behaviour:

1. Argument:

(a) “componentFactory” giving the factory to be registered.

2. Behaviour:

(a) If another factory has been registered using the same
implementation identifier already, it raises a DuplicateUuid
exception as per DuplicateUuid.h in [SMP_FILES].

NOTE 1 The simulator can use this factory to create
component instances of the component
implementation in its CreateInstance() method.

NOTE 2 This method is typically called early in the
Building state to register the available
component before the hierarchy of model
instances is created.

aa. The ISimulator CreateInstance method shall create an instance of a
component, with the following arguments and behaviour:

1. Arguments:

(a) “uuid” giving a unique identifier of the component
implementation to create;

(b) “name” giving the name of the new instance;

(c) “description” giving the description of the new instance;

(d) “parent” giving the parent object of the new instance.

2. Behaviour:

(a) If the uuid provided does not corresponds to a registered
factory, it returns nullptr;

(b) If the name provided is not a valid object name, it raises an
InvalidObjectName exception as per InvalidObjectName.h
in [SMP_FILES];

ECSS-E-ST-40-07C
2 March 2020

94

(c) If the uuid provided corresponds to a registered model, and
the name is a valid object name, it returns a reference to the
newly created model with name, description and parent set
as provided.

NOTE This method is typically called during Creating
state when building the hierarchy of models.

bb. The ISimulator GetFactory method shall return the factory of the
component with the following argument and behaviour:

1. Argument:

(a) “uuid” giving a unique identifier of the component
implementation.

2. Behaviour:

(a) If a factory has been registered with the given “uuid”, it
returns a pointer to the registered factory;

(b) If no factory for the given “uuid” has been registered, it
returns nullptr.

cc. The ISimulator GetFactories method shall return a collection of all
registered facories as per FactoryCollection in IFactory.h in [SMP_FILES].

dd. The ISimulator GetTypeRegistry method shall return a reference to the
Type Registry.

ee. The ISimulator LoadLibrary method shall load a library for a Package,
with the following argument and behaviour:

1. Argument:

(a) "libraryPath" to the library to load.

2. Behaviour:

(a) If called with an invalid libraryPath, it throws an
LibraryNotFound exception as per LibraryNotFound.h in
[SMP_FILES];

(b) If called with an libraryPath pointing to a library without
initialise function, it throws and InvalidLibrary exception as
per InvalidLibrary.h in [SMP_FILES];

(c) If called with the file name of a library, it loads this library
into memory and calls the dynamic "Initialise()" function of
this library;

(d) If called with the file name of a library, it calls the dynamic
"Finalise()" function of this library when in Exiting or
Aborting state.

ff. The ISimulator GetContainers method shall return a ContainerCollection
with two containers as follows:

1. One container called “Models” with all the models added via
ISimulator AddModel method;

2. One container called “Services” with all the services added via the
ISimulator AddService method.

ECSS-E-ST-40-07C
2 March 2020

95

gg. The ISimulator GetContainer method shall return the IContainer
interface to the container, with the following argument and behaviour:

1. Argument:

(a) “name” of the container to be returned.

2. Behaviour:

(a) If called with “Models” as argument, it returns the container
reference to the models container.

(b) If called with “Services” as argument, it returns the
container reference to the Services container.

(c) If called with anything else than “Models” or “Services”, it
returns nullptr.

hh. The ISimulator GetParent shall return nullptr.

NOTE The Simulator is the root object in the simulator
tree.

ii. The ISimulator GetName shall return a valid name.

5.3.8 Persistence

5.3.8.1 Storage Reader Interface (IStorageReader)
a. The simulation environment shall provide a component implementing

the IStorageReader interface as per IStorageReader.h in [SMP_FILES].
NOTE 1 The IStoragerReader interface provides

functionality to read data from storage.
NOTE 2 The IStoragerReader interface allows objects

implementing the IPersist interface to restore
their state.

b. The IStorageReader Restore method shall restore data from storage, with
the following arguments and behaviour:

1. Arguments:

(a) “address” giving the address of memory block;

(b) “size”, giving the size of the memory block.

2. Behaviour:

(a) It reads from the breakpoint a memory block of the given
size at the given address.

c. The IStorageReader GetStateVectorFileName method shall return the full
name including the absolute path of the breakpoint file currently in use
by the Storage Reader.

d. The IStorageReader GetStateVectorFilePath method shall return a full
absolute path to the directory of the breakpoint file currently in use.

NOTE The path can be used when reading additional
files that correspond to the breakpoint file read.

ECSS-E-ST-40-07C
2 March 2020

96

5.3.8.2 Storage Writer Interface (IStorageWrite)
a. The simulation environment shall provide a component implementing

the IStorageWriter interface as per IStorageWriter.h in [SMP_FILES].
NOTE 1 The IStoragerWriter interface provides

functionality to write data from storage.
NOTE 2 The IStoragerWriter interface allows objects

implementing the IPersist interface to store
their state.

b. The IStorageWriter Store method shall store data to storage by writing a
memory block of data to the breakpoint file with the following
arguments:

1. “address” giving the address of memory block;

2. “size” giving the size of the memory block.

c. The IStorageWriter GetStateVectorFileName method shall return the full
name including the absolute path of the breakpoint file currently in use
by the Storage Writer.

d. The IStorageWriter GetStateVectorFilePath method shall return a full
absolute path to the directory of the breakpoint file currently in use.

NOTE The path can be used when writing additional
files that correspond to the breakpoint file
written.

5.3.9 Publication

5.3.9.1 IPublication
a. The simulation environment shall provide a component implementing

the IPublication interface as per IPublication.h in [SMP_FILES].

NOTE The IPublication interface provides
functionality to allow publishing simulation
model members, including fields, properties
and operations.

b. The IPublication GetTypeRegistry method shall return a reference to the
Type Registry.

NOTE See clause 5.3.10 for details on the Type
Registry.

c. The IPublication PublishField method shall allow publishing of a field,
with the following arguments and behaviour:

1. Arguments:

(a) “name” giving the field name;

(b) “description” giving the field description;

(c) “address” giving the pointer to the address where the value
of the field is found supporting the following pointer types:
(1) Char8,

ECSS-E-ST-40-07C
2 March 2020

97

(2) Bool,
(3) Int8,
(4) Int16,
(5) Int32,
(6) Int64,
(7) UInt8,
(8) UInt16,
(9) UInt32,
(10) UInt64,
(11) Float32,
(12) Float64.

(d) “view” giving the fields view attribute as per ViewKind.h in
[SMP_FILES];

(e) “state” given if the field is part of the simulation state when
storing or restoring or not;

(f) “input” giving if the field is an input field or not;

(g) “output” giving if the field is an output field or not.

2. Behaviour:

(a) If the name of the new field to be published is already used
by another published field by the same Component, it
throws DuplicateName as per DuplicateName.h in
[SMP_FILES];

(b) If the name of the new field to be published is not a valid
object name, it throws InvalidObjectName as per
InvalidObjectName.h in [SMP_FILES].

NOTE 1 The view kind attribute is specified in Table 4-2.
NOTE 2 There is no publishing call for String8 as it

relies on dynamically allocated memory areas,
hence cannot be published like the other
primitive types.

NOTE 3 Duration and DateTime cannot be supported in
the same way, as they are not strong types (they
are defined to be identical to Int64, but with a
different semantic). For publication of Duration
and DateTime, PublishField with Uuid is used.

d. The IPublication PublishField method shall allow publishing a field, with
the following arguments and behaviour:

1. Arguments:

(a) “name” giving the field name;

(b) “description” giving the field description;

(c) “address” giving the field memory address;

(d) “uuid” giving the field type;

(e) “view” giving the fields view attribute as per ViewKind.h in
[SMP_FILES];

ECSS-E-ST-40-07C
2 March 2020

98

(f) “state” given if the field is part of the simulation state when
storing or restoring or not;

(g) “input” giving if the field is an input field or not;

(h) “output” giving if the field is an output field or not.

2. Behaviour:

(a) If the name of the new field to be published is already used
by another published field by the same Component, it
throws DuplicateName as per DuplicateName.h in
[SMP_FILES];

(b) If the name of the new field to be published is not a valid
object name, it throws InvalidObjectName as per
InvalidObjectName.h in [SMP_FILES];

(c) If the given Uuid is not a valid Uuid of a registered type, it
throws InvalidUuid as per InvalidUuid.h in [SMP_FILES].

NOTE The view kind attribute is specified in Table 4-2.

e. The IPublication PublishField method shall allow publishing a field, with
the following argument and behaviour:
1. Argument:

(a) “field” giving a pointer to the field IField interface.

2. Behaviour:

(a) If the name of the new field to be published is already used
by another published field by the same Component, it
throws DuplicateName as per DuplicateName.h in
[SMP_FILES].

NOTE All additional data defining the field is
available via the operations supported by the
IField interface.

f. The IPublication PublishArray method shall publish an array of simple
types that can be mapped to a primitive type, with the following
arguments and behaviour:

1. Arguments:

(a) “name” giving the array name;

(b) “description” giving the array description;

(c) “count” giving the size of an array;

(d) “address” giving the array memory address of the first
element;

(e) “type” giving the type of each array item;

(f) “view” giving the array view attribute as per ViewKind.h in
[SMP_FILES];

(g) “state” given if the array is part of the simulation state when
storing or restoring or not;

(h) “input” giving if the array is an input field or not;

(i) “output” giving if the array is an output field or not.

ECSS-E-ST-40-07C
2 March 2020

99

2. Behaviour:

(a) If the name of the new Array to be published is already used
by another published field by the same Component, it
throws DuplicateName as per DuplicateName.h in
[SMP_FILES];

(b) If the name of the new field to be published is not a valid
object name, it throws InvalidObjectName as per
InvalidObjectName.h in [SMP_FILES].

g. The IPublication PublishArray method shall allow to publish arrays of
any type by allowing each element of the array to be published
individually, with the following arguments and behaviour:

1. Arguments:

(a) “name” giving the array name;

(b) “description” giving the array description.

2. Behaviour:

(a) If the name of the new Array to be published already used
by another published field by the same Component, it
throws DuplicateName as per DuplicateName.h in
[SMP_FILES];

(b) If the name of the new field to be published is not a valid
object name, it throws InvalidObjectName as per
InvalidObjectName.h in [SMP_FILES];

(c) A pointer to an IPublication object is returned.
NOTE 1 The returned IPublication interface allows

callers of PublishArray to publish each element
of the array individually.

NOTE 2 See clause 5.2.12.2 for details on how to public
each element individually.

h. The IPublication PublishStructure method shall allow publishing a
structure by allowing each child element to be published individually,
with the following arguments and behaviour:

1. Arguments:

(a) “name” giving the struct name;

(b) “description” giving the struct description.

2. Behaviour:

(a) If the name of the new Structure to be published is already
used by another published field by the same Component, it
throws DuplicateName as per DuplicateName.h in
[SMP_FILES];

(b) If the name of the new Struct to be published is not a valid
object name, it throws InvalidObjectName as per
InvalidObjectName.h in [SMP_FILES];

(c) A pointer to an IPublication object is returned.

ECSS-E-ST-40-07C
2 March 2020

100

NOTE 1 The returned IPublication interface allows
callers of PublishStructure to publish each
element of the struct individually.

NOTE 2 See clause 5.2.12.2 for details on how to publish
each element individually.

i. The IPublication PublishOperation method shall allow publishing of an
operation, with the following arguments and behaviour:

1. Arguments:

(a) “name” giving the operation name;

(b) “description” giving the operation description;

(c) “view” giving the visibility of the operation

2. Behaviour:

(a) If an Operation with the same Name is already published, it
updates the “Description” and “View” of the previous
publication and it returns the same IPublishOperation of the
previously published Operation;

(b) If an Operation with the same Name is not published, it
creates a new IPublishOperation instance and returns it.

NOTE 1 The returned IPublishOperation interface
allows callers of PublishOperation to publish
parameters and return value of the operation.

NOTE 2 See clause 5.2.12.2 for details on how to publish
a complete operation including its parameters.

j. The IPublication PublishProperty method shall allow publishing a
property, with the following arguments and behaviour:

1. Arguments:

(a) “name“ giving the property name;

(b) “description“ giving the property description.

(c) “uuid“ giving the property type.

(d) “accessKind“ giving the property access restrictions as per
AccessKind.h in [SMP_FILES] allowing the following
values:
(1) Read and write;
(2) Read only;
(3) Write only.

(e) “view“ giving its view kind attribute as per ViewKind.h in
[SMP_FILES].

2. Behaviour:

(a) If a Property with the same Name is already published, it
updates the “description”, “uuid”, “accessKind” and “view”
of the previous Property;

(b) If the given Uuid is not a valid Uuid of a registered type, it
throws a TypeNotRegistered exception as per
TypeNotRegistered.h in [SMP_FILES].

ECSS-E-ST-40-07C
2 March 2020

101

k. The IPublication GetField method shall return an interface to a field, with
the following argument and behaviour:

1. Argument:

(a) “fullName“ giving the path relative to the component.

2. Behaviour:

(a) If no field exists with the given fully qualified name, it
throws an InvalidFieldName exception as per
InvalidFieldName.hin [SMP_FILES];

(b) If the field matching the given fully qualified name has a
simple type, it returns an ISimpleField instance;

(c) If the field matching the given fully qualified name is an
Array Field, it returns an IArrayField instance;

(d) If the field matching the given fully qualified name is a
Structure Field, it returns an IStructureField instance.

NOTE The path relative to the component is
constructed as per clause 5.1.3. Examples:
• MyStructuredField.InnerField
• MyArrayField[2]
• MyStructuredField.ArrayInnerField[2]

l. The IPublication GetFields method shall return a collection of published
fields as per FieldCollection in IField.h in [SMP_FILES].

m. The IPublication GetProperties method shall return a collection of
published properties as per PropertyCollection in Property.h in
[SMP_FILES].

n. The IPublication GetOperations method shall return a collection of
published operations as per OperationCollection in Operation.h in
[SMP_FILES].

o. The IPublication CreateRequest method shall return a request object
allowing dynamic invocation of a published operation with the following
argument and behaviour:

1. Argument:

(a) “operationName” giving the name of operation.

2. Behaviour:

(a) If no operation with the given name can be found, it returns
nullptr.

NOTE 1 See clause 5.2.8.2 for specification of the
returned request object.

NOTE 2 When the request object is no longer needed,
destroyed with a call to IPublication
DeleteRequest.

p. The IPublication DeleteRequest method shall delete request object that
has been created with the CreateRequest() method, with the following
argument:

1. “request” giving the object to be deleted.

ECSS-E-ST-40-07C
2 March 2020

102

NOTE The request object cannot be used anymore
after DeleteRequest has been called for it.

q. The IPublication Unpublish method shall release all data published
earlier via the Publish operations.

NOTE This is called prior to deleting the component
that has called into a specific IPublication
instance

5.3.9.2 IPublishOperation
a. The simulation environment shall provide a component implementing

the IPublishOperation interface as per Publication/IPublishOperation.h in
[SMP_FILES].

b. The IPublishOperation PublishParameter method shall allow publishing
parameters of an operation, with the following arguments and
behaviour:

1. Arguments:

(a) “name” giving the parameter name;

(b) “description” giving the parameter description;

(c) “uuid” giving the parameter type identifier in the Type
Registry;

(d) “direction” giving the parameter direction as per
Publication/ParameterDirectionKind.h in [SMP_FILES]
allowing the following values:
(1) “In” for read only parameters that are not changed by

the operation;
(2) “Out” for write only parameters where no initial

value is specified but the operation provides an
output value;

(3) “InOut” for both read and write parameters;
(4) “Return” for the operation return value.

2. Behaviour:

(a) If the name of the new parameter to be published is already
used by another published parameter by the same
Operation, it throws DuplicateName as per
DuplicateName.h in [SMP_FILES];

(b) If the given Uuid is not a valid Uuid of a registered type, it
throws TypeNotRegistered as per TypeNotRegistered.h in
[SMP_FILES];

(c) If the name of the new parameter to be published is not a
valid object name, it throws InvalidObjectName as per
InvalidObjectName.h in [SMP_FILES].

ECSS-E-ST-40-07C
2 March 2020

103

5.3.10 Type Registry

5.3.10.1 ITypeRegistry
a. The simulation environment shall provide, via the IPublication interface,

a Type Registry publication implementing the ITypeRegistry interface as
Publication/ITypeRegistry.h in [SMP_FILES].

NOTE This interface defines a registration mechanism
for user defined types.

b. The Type Registry shall contain all pre-defined SMP value types with
their pre-defined universally unique identifiers as per ecss.smp.smpcat in
[SMP_FILES].

NOTE It is not mandatory for the models to make use
of the Type Registry.

c. The ITypeRegistry GetType method shall return the interface to the
requested primitive type, with the following argument:

1. “type” giving a primitive type kind.

NOTE This method can be used to map primitive
types to the IType interface to treat all types
identically.

d. The ITypeRegistry GetType method shall return the interface to the
requested type, with the following argument and behaviour:

1. Argument:

(a) “typeUuid” giving the Uuid for which the type are returned.

2. Behaviour:

(a) If no type with the registered Uuid are found, it returns
nullptr.

NOTE This method can be used to find out whether a
specific type has been registered before.

e. The ITypeRegistry AddFloatType method shall return the interface to a
new Float type, with the following arguments and behaviour:

1. Arguments:
(a) “name” giving the name of the registered type;
(b) “description” giving the description of the registered type;
(c) “uuid” giving the universally unique identifier of the

registered type;
(d) “minimum” giving the minimum value for float;
(e) “maximum” giving the maximum value for float;
(f) “minIncluded” giving whether the minimum value is valid

or not;
(g) “maxIncluded” giving whether the maximum value is valid

or not;
(h) “unit” giving the unit of the type;
(i) “type” giving the primitive type to use for Float type.

ECSS-E-ST-40-07C
2 March 2020

104

2. Behaviour:

(a) If the Primitive Type given is not a Float type, it throws an
InvalidPrimitiveType exception as per
InvalidPrimitiveType.h in [SMP_FILES];

(b) If another type with the same uuid already is registered, it
throws a TypeAlreadyRegistered exception as per
TypeAlreadyRegistered.h in [SMP_FILES].

NOTE 1 IComponent and IDynamicInvocation support
fields, parameters and operations of Float types
via the PTK_Float32 and PTK_Float64 primitive
type, as a Float is mapped either to Float32 or
Float64.

NOTE 2 In type registry, name duplication is possible as
long as the uuid is unique.

f. The ITypeRegistry AddIntegerType method shall return the interface to a
new Integer type, with the following arguments and behaviour:

1. Arguments:

(a) “name” giving the name of the registered type;

(b) “description” giving the description of the registered type;

(c) “uuid” giving the universally unique identifier of the
registered type;

(d) “minimum” giving the minimum allowed value for integer;

(e) “maximum” giving the maximum allowed value for integer;

(f) “unit” giving the unit of the type;

(g) “primitiveType” giving the primitive type to use for Integer
type.

2. Behaviour:

(a) If the Primitive Type given is not an Integer type, it throws
an InvalidPrimitiveType exception as per
InvalidPrimitiveType.h in [SMP_FILES];

(b) If another type with the same uuid already is registered, it
throws a TypeAlreadyRegistered exception as per
TypeAlreadyRegistered.h in [SMP_FILES].

NOTE IComponent and IDynamicInvocation support
fields, parameters and operations of Integer
types via the PTK_Int primitive types, as an
Integer is mapped to one of Int8 / Int16 / Int32 /
Int64 / UInt8 / UInt16 / UInt32 / UInt64.

g. The ITypeRegistry AddEnumerationType method shall return the
interface to a new Enumeration type, with the following arguments and
behaviour:

1. Arguments:

(a) “name” giving the name of the registered type;

(b) “description” giving the description of the registered type;

ECSS-E-ST-40-07C
2 March 2020

105

(c) “uuid” giving the universally unique identifier (UUID) of
the registered type;

(d) “size” giving the size of an instance of this enumeration in
bytes. Valid values are 1, 2, 4 and 8.

2. Behaviour:

(a) If another type with the same uuid already is registered, it
throws a TypeAlreadyRegistered exception as per
TypeAlreadyRegistered.h in [SMP_FILES].

h. The ITypeRegistry AddArrayType method shall return the interface to a
new Array type, with the following arguments and behaviour:

1. Arguments:

(a) “name” giving the name of the registered type;

(b) “description” giving the description of the registered type;

(c) “typeUuid” giving the universally unique identifier of the
registered type;

(d) “itemTypeUuid” giving the universally unique identifier of
the Type of the array items;

(e) “itemSize” giving the size of an array item in bytes, taking
possible padding into account, as it can be used by the
simulation environment to calculate the memory offset
between array items;

(f) “arrayCount” giving the number of elements in the array;

(g) “simpleArray” giving a flag whether a field of this array
type is be implemented as ISimpleArrayField or as
IArrayField.

2. Behaviour:

(a) If another type with the same uuid already is registered, it
throws a TypeAlreadyRegistered exception as per
TypeAlreadyRegistered.h in [SMP_FILES].

i. The ITypeRegistry AddStringType method shall return the interface to a
new String type, with the following arguments and behaviour:

1. Arguments:

(a) “name” giving the name of the registered type;

(b) “description” giving the description of the registered type;

(c) “uuid” giving the universally unique identifier of the
registered type;

(d) “length” giving the maximum length of the string.

2. Behaviour:

(a) If another type with the same uuid already is registered, it
throws a TypeAlreadyRegistered exception as per
TypeAlreadyRegistered.h in [SMP_FILES].

j. The ITypeRegistry AddStructureType method shall return the interface
to a new Structure type that allows adding fields, with the following
arguments and behaviour:

ECSS-E-ST-40-07C
2 March 2020

106

1. Arguments:

(a) “name” giving name of the registered type;

(b) “description” giving description of the registered type;

(c) “uuid” giving the universally unique identifier of the
registered type.

2. Behaviour:

(a) If another type with the same uuid already is registered, it
throws a TypeAlreadyRegistered exception as per
TypeAlreadyRegistered.h in [SMP_FILES].

k. The ITypeRegistry AddClassType method shall return the interface to a
new Class type that allows adding fields, with the following arguments
and behaviour:

1. Arguments:

(a) “name” giving name of the registered type;

(b) “description” giving description of the registered type;

(c) “uuid” giving the universally unique identifier of the base
class.

2. Behaviour:

(a) If another type with the same uuid already is registered, it
throws a TypeAlreadyRegistered exception as per
TypeAlreadyRegistered.h in [SMP_FILES].

5.3.10.2 IType
a. The simulation environment shall provide a class implementing the

IType interface as per Publication/IType.h in [SMP_FILES].

b. The IType GetPrimitiveTypeKind method shall return the primitive type
kind as per PrimitiveTypes.h in [SMP_FILES] for types in the type
registry as follows:

1. If the type cannot be mapped to a primitive type kind, it returns
PTK_None;

2. If the type is registered as a derived type of one of the primitive
types, it returns the Primitive type kind;

3. If the type is one of the primitive types themselves, it returns the
corresponding primitive type kind.

NOTE 1 The primitive types are specified in Table 5-1.
NOTE 2 Types that cannot be mapped to a primitive

type include:
• Arrays registered via ITypeRegistry

AddArrayType;
• Structures registered via ITypeRegistry

AddStructureType.
NOTE 3 Derived types include:

• Enumerations registered via ITypeRegistry
AddEnumerationType;

ECSS-E-ST-40-07C
2 March 2020

107

• Strings registered via ITypeRegistry
AddStringType;

• Integer types registered via the
ITypeRegistry AddIntegerType;

• Float types registered via the ITypeRegistry
AddFloatType.

c. The IType GetUuid method shall return the Universally Unique
Identifier of the type.

d. The IType Publish method shall allow publishing a new field in a
receiver, with the following arguments:

1. “receiver” giving the publishing interface to publish against;

2. “name” giving the name of instance;

3. “description” giving the description of instance;

4. “address” giving the address of instance;

5. “viewKind” giving the visibility of instance;

6. “state” giving if the instance is part of the breakpoint or not;

7. “input” giving if writing to the instance is allowed;

8. “output” giving if reading from the instance is allowed.

NOTE Using the IType Publish method is an
alternative method to publish a field than using
the IPublication publishing methods.

5.3.10.3 IStructureType
a. The simulation environment shall provide a class implementing the

IStructureType interface as per Publication/IStructureType.h in
[SMP_FILES].

b. The IStructureType AddField method shall add a field to the structure,
with the following arguments:

1. “Name” giving the name of the field;

2. “Description” giving the description of the field;

3. “Uuid” giving the universally unique identifier of field Type, as a
value type;

4. “offset” giving the memory offset of field relative to Structure;

5. “ViewKind” giving the visibility of instance;

6. “state” giving if the instance is part of the breakpoint or not;

7. “input” giving if writing to the instance is allowed;

8. “output” giving if reading from the instance is allowed.

5.3.10.4 IClassType
a. The simulation environment shall provide a class implementing the

IClassType interface as per Publication/IClassType.h in [SMP_FILES].

ECSS-E-ST-40-07C
2 March 2020

108

5.3.10.5 IArrayType
a. The simulation environment shall provide a class implementing the

IArrayType interface as per Publication/IArrayType.h in [SMP_FILES].

b. The IArrayType GetSize method shall return the number of elements in
the array.

c. The IArrayType GetItemType method shall return a pointer to the type
that all array items have.

5.3.10.6 IEnumerationType
a. The simulation environment shall provide a class implementing the

IEnumerationType interface as per Publication/IEnumerationType.h in
[SMP_FILES].

b. The IStructureType AddLiteral method shall add a literal entry to the
enumeration given the following input arguments and behaviour:

1. Arguments:

(a) “name” giving the name of the literal;

(b) “description” giving the description of the field;

(c) “value” giving the “value” of the literal.

2. Behaviour:

(a) If the given Name is already added as a literal to the
enumeration, it throws a DuplicateName exception as per
DuplicateName.h in [SMP_FILES];

(b) If the given Value is already added as a literal to the
enumeration, it throws a DuplicateLiteral exception as per
Publication/DuplicateLiteral.h in [SMP_FILES].

5.3.11 Component Factory (IFactory)
a. The simulation environment shall provide a class implementing the

IFactory interface as per IFactory.h in [SMP_FILES].

b. The IFactory GetUuid method shall return the UUID of the component
that will be created by this factory.

c. The IFactory CreateInstance method shall create an instance of the
component with the following arguments:

1. “name” giving the name of the instance to be created;

2. “description” giving the description of the instance to be created;

3. “parent” giving a pointer to the parent object of the instance to be
created.

d. The IFactory DeleteInstance method shall delete an existing component
with the following argument:

1. “instance” given the IComponent interface to the component to be
deleted.

ECSS-E-ST-40-07C
2 March 2020

109

e. The IFactory GetTypeName method shall return the fully qualified C++
type name of the component type.

NOTE The fully qualified type name contains all
namespaces and the name of the type,
separated by two colons ("::").

5.4 Meta data

5.4.1 Catalogue

5.4.1.1 File format specification
a. The Catalogue file shall be in conformance with thc Catalogue file DRD

of Annex A.

5.4.1.2 Validation rules

5.4.1.2.1 General

a. All user defined catalogues shall link to the SMP catalogue in file
XML/ecss.smp.smpcat in [SMP_FILES] for all standard SMP elements
defined in this standard.

NOTE 1 The ecss.smp.smpcat contains the complete
meta data model for all elements of
[SMP_FILES] expressed in an SMP catalogue.

NOTE 2 The usage of a common standardized SMP
catalogue ensures that common types and other
elements have the same UUID across all
platform, hence allows model integration.

b. No recursive Types shall be specified.

NOTE Models, interfaces, entry points, fields, etc… are
Types in the catalogue, so these Types cannot
be typed as, be derived from or use themselves
at any level of their specification.

c. Types that are used in another Type shall be visible for that Type.

d. XLinks in documents shall not result in recursively linked documents.

e. The xlink:href attribute shall be a valid URI locator on the form
"<Document>[#<Fragment>]", where <Document> is the linked XML file
and <Fragment> is an optional named element defined in that file.

NOTE In case the named element is defined within the
same file, i.e. the link is local to the file, the
<Document> part of the locator can be omitted.

f. The xlink:title attribute shall always contain the Name of the referenced
named element.

ECSS-E-ST-40-07C
2 March 2020

110

5.4.1.2.2 Types

a. The size of an array size shall be a positive number.

b. The PrimitiveType for a Float may only point to Float32 or Float64.

c. Float Minimum shall be less than Float Maximum if MinInclusive is false
or MaxInclusive is false.

d. Float Minimum shall be less or equal to Float Maximum if MinInclusive
is true and MaxInclusive is true.

e. The length of a string shall be larger or equal to zero.

f. The length of a String Value shall not exceed the size of the
corresponding String type.

g. The PrimitiveType for an Integer shall point to Int8, Int16, Int32, Int64,
UInt8, UInt16, UInt32 or UInt64.

h. For Integer types, the Minimum shall be less or equal to the Integer
Maximum.

i. The type for an AttributeType shall point to a ValueType.

j. The Type link for an Attribute shall point to an AttributeType.

k. The default value of an AttributeType shall be not empty.

l. The Value of an Attribute shall not be empty.

5.4.1.2.3 Named Element

a. A Named Element Name shall be unique in its context.

b. A Named Element Id shall be unique in its Document.

c. A Named Element Id shall not be empty.

d. A Named Element Name shall not be an ISO/ANSI C++ keyword.

e. A Named Element Name shall only contain letters, digits, and the
underscore, optionally followed by ‘[‘ and ‘]’ enclosing a number or a
string.

f. Type UUID shall be unique.

5.4.1.2.4 Container and associations

a. Container lower bound shall be a positive number or 0.

b. Container lower bound shall be less or equal to the container upper
bound, if present.

c. Container upper bound shall be ‐1 or larger or equal to the container
lower bound.

d. The Type link of an Association shall point to a Model, Interface or Value
Type.

e. The Type link of a Container shall point to a Reference Type.

f. The Type link of a Reference shall point to an Interface.

g. For a Reference, the Lower limit shall be less or equal to the Upper limit.

ECSS-E-ST-40-07C
2 March 2020

111

5.4.1.2.5 Enumeration

a. Enumeration Literal Names shall be unique within an Enumeration.

b. Enumeration Literal Values shall be unique within an Enumeration.

5.4.1.2.6 Entry Point

a. Entry Point Output fields shall be output type fields.

b. Entry Point Input fields shall be input type fields.

c. Entry Point Input and Output fields shall be located in the same Model or
a base model.

5.4.1.2.7 Properties

a. Property Attached Field shall have the type of Property’s Type, or a type
derived thereof.

b. Property Attached Field shall be located in the same Class or a base class.

c. The Type link of a Property shall point to a Value Type.

d. The Type of the AttachedField shall match the Type of the Property.

e. A Property of an Interface shall be public.

f. A Property of an Interface shall not be static.

5.4.1.2.8 References

a. Reference lower bound shall be larger than zero.

b. Reference lower bound shall be less or equal to Reference upper bound, if
present.

c. Reference upper bound shall be ‐1, larger or equal to Reference lower
bound.

5.4.1.2.9 Fields

a. The Field link shall point to a Field.

b. The Type link for a Field shall point to a ValueType.

c. The Field value shall not be empty.

d. A Field of a Structure shall be public.

e. The Type link of an Operation shall point to a ValueType.

5.4.1.2.10 Operations

a. An operation of an Interface shall be public.

b. An Operation of an Interface shall not be static.

c. The Type link of a Parameter of the Operation shall point to a Value
Type.

d. A Parameter shall only have a default value if its type is Value Type.

e. The value of a parameter shall be inside the range defined for the
corresponding type.

ECSS-E-ST-40-07C
2 March 2020

112

f. Each operation shall have only one parameter with the return type
attribute set.

5.4.1.2.11 Constructors

a. Constructors shall not have any return parameters.

b. Constructors shall not have Const, Virtual or Static attributes.

5.4.1.2.12 Events

a. Events shall be typed by an EventType.

b. The EventArgs link for an EventType shall only point to a SimpleType.

c. The Type link of an EventSource shall point to an EventType.

d. The Type link of an EventSink shall point to an EventType.

e. An EventSource shall only be linked to an EventSink when both have the
same EventType.

5.4.1.3 Requirements on utilization of Catalogue
a. The simulation Models design shall be defined via a catalogue, or a set of

catalogues.

b. Catalogues shall not have circular dependencies.

c. Each Model in a simulation shall be defined in a catalogue.

d. Each user-defined Service in a simulator shall be defined in a catalogue.

e. Each Interface between components shall be defined in a catalogue.

f. Each Type used in an interface or component shall be defined in a
catalogue.

g. Each Field of a model or service that is of a type defined in a catalogue
shall be defined in a catalogue.

h. Each public Property of an interface, model or service shall be defined in
a catalogue.

i. Each public Operation of an interface, model or service shall be defined
in a catalogue.

j. Each Entry Point of a model or service shall be defined in a catalogue.

k. Each Event Source of a model or service shall be defined in a catalogue.

l. Each Event Sink of a model or service shall be defined in a catalogue.

m. Each Container of a model or service shall be defined in a catalogue.

n. Each Reference of a model or service shall be defined in a catalogue.

ECSS-E-ST-40-07C
2 March 2020

113

5.4.2 Package

5.4.2.1 File format specification
a. The Package file shall be in confromance with the Package file DRD of

Annex B.

5.4.2.2 Validation rules
a. There shall be no clashes of Type names in packages.

b. For each Model implementation, a different Uuid shall be used.

5.4.3 Configuration data

5.4.3.1 File format
a. Files containing configuration data for published fields should be in

conformance with the Configuration file DRD of Annex C.

NOTE The usage of the SMP Configuration file format
is optional.

5.4.3.2 Validation rules
a. All path strings in configuration files shall be valid SMP path strings.

NOTE Valid SMP path strings are specified in clause
5.1.3

b. All field values set shall be valid values for the field type it refers to.

ECSS-E-ST-40-07C
2 March 2020

114

6
Implementation mapping

6.1 Catalogue to C++

6.1.1 Mapping templates
a. Syntax and expression rules used in the specification of C++ mapping

templates:

1. Parts omitted to shorten the template and ease the reading are
replaced by ‘…’.

2. Information from the catalogue to be mapped in the C++ code is
specified by means of placeholders encased within dollar ‘$’
symbols. For example, $Component.Name$ for the value of the
field ‘Name’ of some ‘Component’ element referred in the context
the template is applicable. In case an element belongs in a
sequence with a number ‘N’ of occurrences, $...Element[i]...$ refers
to the ‘i-th’ occurrence of the sequence where ‘i’ could take any
value between ‘1’ and ‘N-1’.

3. Fully qualified names for types are specified by means of the
‘TypeName($Type$)’ expression. For example, for a given type
‘MyType’ defined within two levels of nested namespaces would
refer to ‘::Namespace1::Namespace2::MyType’.

4. Optional code is specified encased within the square bracket ‘[‘
and ‘]’ symbols. For example, ‘[static]’ where the use of ‘static’
might be subject to some conditions. Exception is where ‘[...]’ is
used for the elements in an array as per rule a.2. above.

5. Alternative code is specified by means of the ‘|’ separator symbol
where exactly one of several options is required. For example,
‘A|B|C’ if either ‘A’, ‘B’ or ‘C’ is to be used in the code.

NOTE Table 6-1 and Table 6-2 contains the C++
declaration and defintition templates and are
referred to from requirements of clause 6.1.

ECSS-E-ST-40-07C
2 March 2020

115

Table 6-1: C++ declaration templates
Template C++ mapping
Constant static constexpr TypeName($Constant.Type$) $Constant.Name$ =

$Constant.Value$;

Field [static][mutable]TypeName($Field.Type$) $Field.Name$;

Association [const][static][mutable]TypeName($Association.Type$)[*]
$Association.Name$;

Parameter [const]TypeName($Parameter.Type$)[*|&]
$Parameter.Name$[= $Parameter.Default$]

Property
Getter

[virtual] [static][const]TypeName($Property.Type$)[*|&]
get_$Property.Name$()[const][= 0];

Property Setter [virtual][static]void
set_$Property.Name$([const]TypeName($Property.Type$)[*|&]
value)[= 0];

Operation [virtual][static]
void|TypeName($Operation.Parameter[i].Type$)[*|&]
$Operation.Name$(void|...)[const][= 0];

Operator [virtual][static]
void|TypeName($Operation.Parameter[i].Type$)[*|&] operator
$Operation.Operator.OperatorKind$(void|...)[const][= 0];

Constructor $Owner.Name$(void|...)[= delete];

Entry Point Smp::IEntryPoint* $EntryPoint.Name$;

Event Sink Smp::IEventSink* $EventSink.Name$;

Event Source Smp::IEventSource* $EventSource.Name$

Container Smp::IContainer* $Container.Name$;

Reference Smp::IReference* $Reference.Name$;

Uuid extern const Smp::Uuid Uuid_$Type.Name$;

Global
Registry

[static] void _Register_$Type.Name$(
Smp::Publication::ITypeRegistry* registry);

Scoped
Registry

[static] void _Register(
Smp::Publication::ITypeRegistry* registry);

Enumeration enum class $Enumeration.Name$: Smp::Int32 {
...
};

Literal $Enumeration.Literal.Name$ = $Enumeration.Literal.Value$

Integer typedef $Integer.PrimitiveType$|Smp::Int32 $Integer.Name$;

Float typedef $Float.PrimitiveType$|Smp::Float64 $Float.Name$;

String struct $String.Name$ {
Smp::Char8 internalString[$String.Length$+1];
};

Array struct $Array.Name$ {
TypeName($Array.ItemType$) internalArray[$Array.Size$];
};

Structure struct $Structure.Name$ {
...
};

ECSS-E-ST-40-07C
2 March 2020

116

Template C++ mapping
Class class $Class.Name$

[: public TypeName($Class.Base.Name$)] {
...
};

Exception class $Exception.Name$:
 public TypeName($Exception.Base.Name$)|Smp::Exception {
...
};

Interface class $Interface.Name$
[: virtual public TypeName($Interface.Base[1].Name$),
 ...,
 TypeName($Interface.Base[N].Name$)] {
...
};

Model class $Model.Name$:
[public TypeName($Model.Base.Name$),]
[virtual public TypeName($Model.Interface[1].Name$),
 ...,
 TypeName($Model.Interface[N].Name$),]
[virtual public Smp::IEntryPointPublisher,]
[virtual public Smp::IEventConsumer,]
[virtual public Smp::IEventProvider,]
[virtual public Smp::IComposite,]
[virtual public Smp::IAggregate,]
virtual public Smp::IModel {
...
};

Service class $Service.Name$:
[public TypeName($Service.Base.Name$),]
[virtual public TypeName($Service.Interface[1].Name$),
 ...,
 TypeName($Service.Interface[N].Name$),]
[virtual public Smp::IEntryPointPublisher,]
[virtual public Smp::IEventConsumer,]
[virtual public Smp::IEventProvider,]
virtual public Smp::IService {
...
};

ECSS-E-ST-40-07C
2 March 2020

117

Table 6-2: C++ definition templates
Template C++ mapping
Uuid Smp::Uuid Uuid_$Type.Name$ = $Type.Uuid$;

Simple TypeName($Variable.Type$) $Variable.Name$ =
$Variable.Value.Value$|$Variable.Value.Literal$;

Array TypeName($Variable.Type$) $Variable.Name$ = {{
$Variable.ItemValue[1].Value$|$Variable.ItemValue[1].Literal$,
...,
$Variable.ItemValue[N].Value$|$Variable.ItemValue[N].Literal$
}};

Structure TypeName($Variable.Type$) $Variable.Name$ = {
$Variable.FieldValue[1].Value$|$Variable.FieldValue[1].Literal$,
...,
$Variable.FieldValue[N].Value$|$Variable.FieldValue[N].Literal$
};

Property
Getter

return $Property.AttachedField.Name$;

Property
Setter

$Property.AttachedField.Name$ = value;

6.1.2 Namespaces and files
a. All elements shall be declared within the exact same namespace as in the

Catalogue.

b. Each type shall be declared in a dedicated header file as follows:

1. The hierarchy of namespaces defines the file location with one
directory level per namespace level in the hierarchy;

2. The type name defines the file name.

c. Header files shall allow multiple inclusion by implementing ‘#include’
guards.

d. Header files shall avoid circular dependencies by using forward
declaration.

6.1.3 Element and Type Visibility Kind
a. Visibility kind attributes shall be mapped to ISO/ANSI C++ member

access specifiers as follows:

1. If the attribute is explicitly defined, mapping is as per Table 6-3;

2. If the attribute is undefined, the default “Private” visibility kind is
used with mapping as per Table 6-3.

Table 6-3: C++ mapping for the Visibility kind attribute
Visibility kind Description C++ mapping
Private Local to the parent Type. private

Protected Local to the parent Type and derived Types thereof. protected

Public Global. public

ECSS-E-ST-40-07C
2 March 2020

118

6.1.4 Mapping of elements

6.1.4.1 Value elements
a. Simple value elements shall be mapped to ISO/ANSI C++ variable’s

values as follows:

1. Syntax as per “Simple” template in Table 6-2;

2. If the element value is of EnumerationValue type, mapping is done
using the Literal attribute instead of the Value one.

b. Array value elements shall be mapped to ISO/ANSI C++ variable’s values
as follows:

1. Syntax as per “Array” template in Table 6-2;

2. If the element items are of EnumerationValue type, mapping is
done using their Literal attribute instead of the Value one.

c. Structure value elements shall be mapped to ISO/ANSI C++ variable’s
values as follows:

1. Syntax as per “Structure” template in Table 6-2;

2. For the element fields of EnumerationValue type, mapping is done
using the Literal attribute instead of the Value one.

6.1.4.2 Constant
a. Constant elements shall be mapped to ISO/ANSI C++ member variables

as per “Constant” template in Table 6-1.

b. The value of the Constant member variable shall be defined as per
mapping of the Value attribute.

NOTE See clause 6.1.4.1 for details on the mapping of
Value attributes.

c. The access specifier of the Constant member variable shall be defined as
follows:

1. If the member variable belongs in a C++ structure, the member is
public;

2. If the member variable does not belong in a C++ structure, the
mapping of the Visibility attribute is used.

NOTE 1 See clause 6.1.3 for details on the mapping of
Visibility attributes.

NOTE 2 The access specifier applies to Classes, Models,
Services and Interfaces.

6.1.4.3 Field
a. Field elements shall be mapped to ISO/ANSI C++ member variables as

per “Field” template in Table 6-1.

b. The initial value of the Field member variable shall be defined as per
mapping of the Default attribute.

NOTE See clause 6.1.4.1 for details on the mapping of
Value attributes.

ECSS-E-ST-40-07C
2 March 2020

119

c. The access specifier of the Field member variable shall be defined as
follows:

1. If the member variable belongs in a C++ structure, the member is
public;

2. If the member variable does not belong in a C++ structure, the
mapping of the Visibility attribute is used.

NOTE See clause 6.1.3 for details on the mapping of
Visibility attributes.

d. The Static attribute as per ecss.smp.smpcat in [SMP_FILES] shall have the
following effect for the Field C++ mapping:

1. If set to “true”, then the C++ field includes the ‘static’ specifier as
per “Field” template in Table 6-1;

2. If not set, then it has no effect;

3. If set to “false”, then it has no effect.

e. The Mutable attribute as per ecss.smp.smpcat in [SMP_FILES] shall have
the following effect for the Field C++ mapping:

1. If set to “true”, then the C++ field includes the ‘mutable’ specifier
as per “Field” template in Table 6-1;

2. If not set, then it has no effect;

3. If set to “false”, then it has no effect.

6.1.4.4 Association
a. Association elements shall be mapped to ISO/ANSI C++ member

variables as per “Association” template in Table 6-1;

b. The access specifier of the Association member variable shall be defined
by the mapping of the Visibility attribute.

NOTE See clause 6.1.3 for details on the mapping of
Visibility attributes.

c. The ByPointer attribute as per ecss.smp.smpcat in [SMP_FILES] shall
have the following effect for the Association C++ mapping:

1. If set to “true”, then the C++ mapping of the type includes the ‘*’
specifier as per “Association” template in Table 6-1;

2. If not set, then the C++ mapping of the type includes the specifier
corresponding to the type referenced in the Type attribute as per
Table 6-4;

3. If set to “false”, then the C++ mapping of the type does not include
the ‘*’ specifier.

ECSS-E-ST-40-07C
2 March 2020

120

Table 6-4: C++ mapping of Association depending on ByPointer attribute

C++ mapping
Native Type Value Type Value Reference Reference Type

Specifier without ByPointer *

Specifier with ByPointer=”true” * * * *

Specifier with ByPointer=”false”

d. The Const attribute as per ecss.smp.smpcat in [SMP_FILES] shall have
the following effect for the Association C++ mapping:

1. If set to “true”, then the C++ mapping includes the ‘const’ specifier
as per “Association” template in Table 6-1;

2. If not set, then it has no effect;

3. If set to “false”, then it has no effect.

e. The Static attribute as per ecss.smp.smpcat in [SMP_FILES] shall have the
following effect for the Association C++ mapping:

1. If set to “true”, then the C++ mapping includes the ‘static’ specifier
as per “Association” template in Table 6-1;

2. If not set, then it has no effect;

3. If set to “false”, then it has no effect.

f. The Mutable attribute as per ecss.smp.smpcat in [SMP_FILES] shall have
the following effect for the Association C++ mapping:

1. If set to “true”, then the C++ mapping includes the ‘mutable’
specifier as per “Association” template in Table 6-1;

2. If not set, then it has no effect;

3. If set to “false”, then it has no effect.

6.1.4.5 Parameter
a. Parameter elements shall be mapped to ISO/ANSI C++ as follows:

1. If the Direction kind attribute is ‘return’, the parameter is the
return type of a C++ member method;

2. If the Direction kind attribute is not ‘return’, the parameter is an
argument of a C++ member method with default value given by
the Default attribute;

3. Syntax is for arguments as per “Parameter” and for the return type
as per “Operation” templates in Table 6-1;

4. For the C++ type specifier the mapping of the Direction kind
attribute corresponding to the type referenced in the Type attribute
as per Table 6-5 is used.

ECSS-E-ST-40-07C
2 March 2020

121

Table 6-5: C++ mapping for the Direction kind attribute

Direction kind
C++ mapping
Native Type Value Type Value Reference Reference Type

in const const const &

out * * *

inout * * *

return *

b. The ByReference attribute as per ecss.smp.smpcat in [SMP_FILES] shall
have the following effect for the Parameter C++ mapping:

1. If set to “true”, then the C++ mapping includes the ‘&’ specifier as
per “Parameter” template in Table 6-1, irrespectively of Table 6-5;

2. If not set, then the C++ mapping is done according to Table 6-5;

3. If set to “false”, then the C++ mapping does not include the ‘&’
specifier, irrespectively of Table 6-5.

c. The Const attribute as per ecss.smp.smpcat in [SMP_FILES] shall have
the following effect for the Parameter C++ mapping:

1. If set to “true”, then the C++ mapping includes the ‘const’ specifier
as per “Parameter” template in Table 6-1, irrespectively of Table
6-5;

2. If not set, then the C++ mapping is done according to Table 6-5;

3. If set to “false”, then the C++ mapping does not include the ‘const’
specifier, irrespectively of Table 6-5.

d. The ByPointer attribute as per ecss.smp.smpcat in [SMP_FILES] shall
have the following effect for the Parameter C++ mapping:

1. If set to “true”, then the C++ mapping includes the ‘*’ specifier as
per “Parameter” template in Table 6-1, irrespectively of Table 6-5;

2. If not set, then the C++ mapping is done according to Table 6-5;

3. If set to “false”, then the C++ mapping does not include the ‘*’
specifier, irrespectively of Table 6-5.

NOTE It is invalid to have both the ByReference
attribute and the ByPointer attribute set to
”true” for the same parameter.

6.1.4.6 Property
a. Property elements shall be mapped to ISO/ANSI C++ member methods

as follows:

1. If the Access attribute is not defined, or it is defined with value
equal to ‘readWrite’ or ‘readOnly’, a getter member method is
created with syntax as per “Property Getter” template in Table 6-1;

2. If the Access attribute is not defined, or it is defined with value
equal to ‘readWrite’ or ‘writeOnly’, a setter member method is
created with syntax as per “Property Setter” template in Table 6-1;

ECSS-E-ST-40-07C
2 March 2020

122

b. The access specifier of the Property member methods shall be defined as
follows:

1. If the Operation belongs in an Interface, the member is public;

2. If the Operation does not belong in an Interface, the mapping of
the Visibility attribute is used.

NOTE See clause 6.1.3 for details on the mapping of
Visibility attributes.

c. If the AttachedField element is defined, the body of the Property getter
and setter member methods shall be respectively mapped as per
“Property Getter” and “Property Setter” templates in Table 6-2.

d. The ByReference attribute as per ecss.smp.smpcat in [SMP_FILES] shall
have the following effect for the Property C++ mapping:

1. If set to “true”, then the C++ mapping of the type includes the ‘&’
specifier;

2. If not set, or if set to “false”, then the C++ mapping of the type does
not include the ‘&’ specifier.

e. The ByPointer attribute as per ecss.smp.smpcat in [SMP_FILES] shall
have the following effect for the Property C++ mapping:

1. If set to “true”, then the C++ mapping of the type includes the ‘*’
specifier;

2. If not set, then the C++ mapping of the type includes the specifier
corresponding to the type referenced in the Type attribute as per
Table 6-6;

3. If set to “false”, then the C++ mapping of the type does not include
the ‘*’ specifier.

Table 6-6: C++ mapping for Property depending on ByPointer attribute

C++ mapping

Native Type Value Type Value Reference Reference Type

specifier without ByPointer *

Specifier with ByPointer=”true” * * * *

Specifier with ByPointer=”false”

f. The Static attribute as per ecss.smp.smpcat in [SMP_FILES] shall have the
following effect for the Property C++ mapping:

1. If set to “true”, then the C++ mapping includes the ‘static’ specifier
as per “Property Getter” and “Property Setter” template in Table
6-1;

2. If not set, then it has no effect;

3. If set to “false”, then it has no effect.

ECSS-E-ST-40-07C
2 March 2020

123

g. The Virtual attribute as per ecss.smp.smpcat in [SMP_FILES] shall have
the following effect for the Property C++ mapping:

1. If set to “true”, then the C++ mapping includes the ‘virtual’
specifier as per “Property Getter” and “Property Setter” template
in Table 6-1;

2. If not set, then the C++ mapping includes the ‘virtual’ specifier as
per “Property Getter” and “Property Setter” template in Table 6-1
if the property belongs to an Interface, Model or Service;

3. If set to “false”, then it has no effect.

h. The Abstract attribute as per ecss.smp.smpcat in [SMP_FILES] shall have
the following effect for the Property C++ mapping:

1. If set to “true”, then the C++ mapping includes the ‘=0’ pure
specifier as per “Property Getter” and “Property Setter” template
in Table 6-1;

2. If not set, then the C++ mapping includes the ‘=0’ pure specifier as
per “Property Getter” and “Property Setter” template in Table 6-1
if the property belongs to an Interface;

3. If set to “false”, then it has no effect.

i. The ConstGetter attribute as per ecss.smp.smpcat in [SMP_FILES] shall
have the following effect for the Property C++ mapping:

1. If set to “true”, then the C++ mapping includes the ‘const’ specifier
at the end, as per “Property Getter” template in Table 6-1;

2. If not set, then it has no effect;

3. If set to “false”, then it has no effect.

j. The Const attribute as per ecss.smp.smpcat in [SMP_FILES] shall have
the following effect for the Property C++ mapping:

1. If set to “true”, then the C++ mapping includes the ‘const’ specifier
at the beginning, as per “Property Getter” and "Property Setter"
templates in Table 6-1;

2. 2. If not set, then it has no effect;

3. 3. If set to “false”, then it has no effect.

6.1.4.7 Operation
a. Operation elements shall be mapped to ISO/ANSI C++ member methods

as follows:

1. If neither the Operator nor the Constructor attribute is set, syntax
is as per “Operation” template in Table 6-1.

2. If the Operator attribute is set, syntax is as per “Operator”
template in Table 6-1.

3. If the Constructor attribute is set, syntax is as per “Constructor”
template in Table 6-1.

NOTE 1 Operator and Constructor attributes cannot be
both set at the same time for a given Operation
element as they are mutually exclusive.

ECSS-E-ST-40-07C
2 March 2020

124

NOTE 2 Constructor methods inherit the name from the
element the Operation is member of, therefore
their own Name attribute is ignored.

b. Operation elements shall have at maximum one Parameter element, or
none in case the Constructor attribute is set, with Direction attribute
equal to ‘return’.

c. Parameter elements belonging to the Operation element shall be mapped
as follows:

1. Syntax as per mapping of Parameter elements.

2. If there is no Parameter element with Direction attribute equal to
‘return’, the return type of the Operation member method is ‘void’.

3. If there is no Parameter element with Direction attribute different
than ‘return’, the only argument of the Operation member method
is ‘void’.

4. If there is more than one Parameter element with Direction
attribute different than ‘return’, they are mapped in sequence as
comma-separated arguments for the Operation member method.

NOTE See clause 6.1.4.5 for details on the mapping of
Parameter elements.

d. The access specifier of the Operation C++ member method shall be
defined as follows:

1. If the Operation belongs in an Interface, the member is public;

2. If the Operation does not belong in an Interface, the mapping of
the Visibility attribute is used.

NOTE See clause 6.1.3 for details on the mapping of
Visibility attributes.

e. The Static attribute as per ecss.smp.smpcat in [SMP_FILES] shall have the
following effect for the Operation C++ mapping:

1. If set to “true”, then the C++ mapping includes the ‘static’ specifier
as per “Operation” or “Operator” template in Table 6-1;

2. If not set, then it has no effect;

3. If set to “false”, then it has no effect.

NOTE Constructor methods are not affected by the
Static attribute.

f. The Virtual attribute as per ecss.smp.smpcat in [SMP_FILES] shall have
the following effect for the Operation C++ mapping:

1. If set to “true”, then the C++ mapping includes the ‘virtual’
specifier as per “Operation” or “Operator” template in Table 6-1;

2. If not set, then the C++ mapping includes the ‘virtual’ specifier as
per “Operation” or “Operator” template in Table 6-1 if the
Operation belongs to an Interface, Model or Service;

3. If set to “false”, then it has no effect.

NOTE Constructor methods are not affected by the
Virtual attribute.

ECSS-E-ST-40-07C
2 March 2020

125

g. The Abstract attribute as per ecss.smp.smpcat in [SMP_FILES] shall have
the following effect for the Operation C++ mapping:

1. If set to “true”, then the C++ mapping includes the ‘=0’ pure
specifier as per “Operation” or “Operator” template in Table 6-1;

2. If not set, then the C++ mapping includes the ‘=0’ pure specifier as
per “Operation” or “Operator” template in Table 6-1 if the
Operation belongs to an Interface;

3. If set to “false”, then it has no effect.

NOTE Constructor methods are not affected by the
Abstract attribute.

h. The Const attribute as per ecss.smp.smpcat in [SMP_FILES] shall have
the following effect for the Operation C++ mapping:

1. If set to “true”, then the C++ mapping includes the ‘const’ specifier
as per “Operation” or “Operator” template in Table 6-1;

2. If not set, then it has no effect;

3. If set to “false”, then it has no effect.

NOTE Constructor methods are not affected by the
Const attribute.

i. The Operator attribute as per ecss.smp.smpcat in [SMP_FILES] shall have
the following effect for the Operation C++ mapping:

1. If set, then the C++ mapping of the Operator kind referenced in the
Operator attribute as per Table 6-7 is used.

2. If not set, it has no effect.

Table 6-7: C++ mapping for the Operator attribute kinds
Operator kind Description C++ mapping
None Undefined.

Positive Positive value of instance. +x

Negative Negative value of instance. -x

Assign Assigns new value to instance. x = a

Add Adds value to instance. x += a

Subtract Subtracts value to instance. x -= a

Multiply Multiplies instance with value. x *= a

Divide Divides instance by value. x /= a

Remainder Remainder of instance for value. x %= a

Greater Compares whether instance is greater than value. x > a

Less Compares whether instance is less than value. x < a

Equal Compares whether instance is equal to value. x == a

NotGreater Compares whether instance is not greater than value. x <= a

NotLess Compares whether instance is not less than value. x >= a

NotEqual Compares whether instance is not equal to value. x != a

ECSS-E-ST-40-07C
2 March 2020

126

Operator kind Description C++ mapping
Indexer Returns indexed value of instance. x[a]

Sum Returns sum of two values. a + b

Difference Returns difference of two values. a - b

Product Returns product of two values. a * b

Quotient Returns quotient of two values. a / b

Module Returns remainder of two values. a % b

6.1.4.8 EntryPoint
a. EntryPoint elements shall be mapped to ISO/ANSI C++ member pointer

variables as per “EntryPoint” template in Table 6-1.

b. The access specifier of the EntryPoint member variable shall be public.

c. The EntryPoint member variable shall point to an implementation of the
Smp::IEntryPoint interface.

6.1.4.9 EventSink
a. EventSink elements shall be mapped to ISO/ANSI C++ member pointer

variables as per “EventSink” template in Table 6-1.

b. The access specifier of the EventSink member variable shall be public.

c. The EventSink member variable shall point to an implementation of the
Smp::IEventSink interface.

d. If the EventType of an EventSink has an EventArgs, the implementation
of the Notify method of the Smp::IEventSink interface shall expect to
receive an “arg” parameter of simple type as defined by the type of the
EventArgs.

NOTE See clause 5.2.6.1 for the details of the Notify
method of the Smp::IEventSink interface.

6.1.4.10 EventSource
a. EventSource elements shall be mapped to ISO/ANSI C++ member pointer

variables as per “EventSource” template in Table 6-1.

b. The access specifier of the EventSource member variable shall be public.

c. The EventSource member variable shall point to an implementation of
the Smp::IEventSource interface.

d. If the EventType of an EventSource has an EventArgs, the
implementation of the Emit method of the Smp::IEventSource interface
shall expect to pass an “arg” parameter of simple type as defined by the
type of the EventArgs.

NOTE See clause 5.2.6.2 for the details of the Emit
method of the Smp::IEventSource interface.

ECSS-E-ST-40-07C
2 March 2020

127

6.1.4.11 Container
a. Container elements shall be mapped to ISO/ANSI C++ member pointer

variables as per “Container” template in Table 6-1.

b. The access specifier of the Container member variable shall be public.

c. The Container member variable shall point to an implementation of the
Smp::IContainer interface.

d. If the Type element of the Container points to a reference type, then the
implementation of the AddComponent method of the Smp::IContainer
interface shall expect the component parameter to be derived from this
Type.

NOTE See clause 5.2.5.2 for the details of the
AddComponent method of the Smp::IContainer
interface.

6.1.4.12 Reference
a. Reference elements shall be mapped to ISO/ANSI C++ member pointer

variables as per “Reference” template in Table 6-1.

b. The access specifier of the Reference member variable shall be public.

c. The Reference member variable shall point to an implementation of the
Smp::IReference interface.

d. If the Type element of the Reference points to a reference type, then the
implementation of the AddComponent method of the Smp::IReference
interface shall expect the component parameter to be derived from this
Type.

NOTE See clause 5.2.4.2 for the details of the
AddComponent method of the Smp::IReference
interface.

6.1.5 Basic Value Types

6.1.5.1 Common specification
a. For each type, a universally unique identifier (UUID) variable shall be

declared as per “Uuid” template in Table 6-1.

b. The value of the universally unique identifier (UUID) variable shall be
defined as per “Uuid” template in Table 6-2.

c. For each type, a method to register the type in the registry shall be
defined as per “Global Registry” template in Table 6-1.

d. If the type belongs to a Reference Type, the access specifier of the C++
member variables, types and methods related to the type shall be defined
by the mapping of the Visibility attribute.

NOTE See clause 6.1.3 for details on the mapping of
Visibility attributes.

ECSS-E-ST-40-07C
2 March 2020

128

6.1.5.2 Enumeration
a. Enumeration types shall be mapped to ISO/ANSI C++ enumerated types

as per “Enumeration” template in Table 6-1.

b. Literal elements shall be mapped to ISO/ANSI C++ enumeration literals
with value assignment as per “Literal” template in Table 6-1.

c. Literal elements shall be declared within the exact same Enumeration
type as in the Catalogue.

6.1.5.3 Integer
a. Integer types shall be mapped to ISO/ANSI C++ type definitions as

follows:

1. Syntax is as per “Integer” template in Table 6-1;

2. If it references a specific type, the same is used for the declaration;

3. If it does not reference a type, the default Int32 primitive type as
per Table 5-1 is used for the declaration.

6.1.5.4 Float
a. Float types shall be mapped to ISO/ANSI C++ type definitions as follows:

1. Syntax is as per “Float” template in Table 6-1;

2. If it references a specific type, the same is used for the declaration;

3. If it does not reference a type, the default Float64 primitive type as
per Table 5-1 is used for the declaration.

6.1.5.5 String
a. String types shall be mapped to ISO/ANSI C++ structures as per “String”

template in Table 6-1.
NOTE 1 Using a structure with a single internalString

array field (rather than using an array) allows
passing String types by value.

NOTE 2 The extension of one extra character in length
ensures that the terminating NULL character
fits into the string.

6.1.5.6 Array
a. Array types shall be mapped to ISO/ANSI C++ structures as per “Array”

template in Table 6-1.

NOTE Using a structure with a single internalArray
array field (rather than using an array) allows
passing Array types by value.

ECSS-E-ST-40-07C
2 March 2020

129

6.1.6 Compound Value Types

6.1.6.1 Common specification
a. For each type, a universally unique identifier (UUID) variable shall be

declared as per “Uuid” template in Table 6-1.

b. The value of universally unique identifier (UUID) variables shall be
defined as per “Uuid” template in Table 6-2.

c. For each type, a method to register the type in the registry shall be
defined as follows:

1. Syntax is as per “Scoped Registry” template in Table 6-1;

2. Method is declared as member of the C++ structure or class the
type is mapped to.

d. Constant and Field elements belonging to the type shall be mapped
within the exact same C++ structure or class the type is mapped to.

NOTE See clause 6.1.4.1c.2 for details on the mapping
of Constant elements and clause 6.1.4.3 for
details on the mapping of Field elements.

e. If the type belongs to a Reference Type, the access specifier of the C++
member variables, types and methods related to the type shall be defined
by the mapping of the Visibility attribute.

NOTE See clause 6.1.3 for details on the mapping of
Visibility attributes.

6.1.6.2 Structure
a. Structure types shall be mapped to ISO/ANSI C++ structures as per

“Structure” template in Table 6-1.

6.1.6.3 Class
a. Class types shall be mapped to ISO/ANSI C++ classes as follows:

1. Syntax as per “Class” template in Table 6-1;

2. If the Base element is defined, the class inherits from the Base class.

b. Class types shall have a default constructor whose access specifier is
defined by the mapping of the Visibility attribute.

NOTE See clause 6.1.3 for details on the mapping of
Visibility attributes.

c. Class types shall have a virtual destructor with the noexcept keyword
whose access specifier is defined by the mapping of the Visibility
attribute.

NOTE See clause 6.1.3 for details on the mapping of
Visibility attributes.

d. If the Class type has the NoConstructor attribute as per ecss.smp.smpcat
in [SMP_FILES] set to "true", the constructor shall be declared with the
delete keyword.

ECSS-E-ST-40-07C
2 March 2020

130

e. If the Class type has the NoDestructor attribute as per ecss.smp.smpcat in
[SMP_FILES] set to "true", the destructor shall be declared with the
default keyword.

f. Association, Property and Operation elements belonging to the Class
type shall be mapped within the exact same C++ class the type is mapped
to.

NOTE See clause 6.1.4.4 for details on the mapping of
Association elements, clause 6.1.4.6 for details
on the mapping of Property elements and
clause 6.1.4.7 for details on the mapping of
Operation elements.

g. If the Class type has the Abstract attribute set to “true”, the destructor
shall be declared as pure virtual.

h. The BaseClass attribute as per ecss.smp.smpcat in [SMP_FILES] shall
have the following effect for the Class C++ mapping:

1. If set, then the class includes an inheritance link to the base class
that the attribute points to;

2. If not set, then it has no effect.

6.1.6.4 Exception
a. Exception types shall be mapped to ISO/ANSI C++ classes as follows:

1. Syntax as per “Exception” template in Table 6-1;

2. If the Base element is defined, the class inherits from the Base class;

3. If the Base element is not defined, the class inherits from the
default Exception class.

b. Exception classes shall have a default constructor whose access specifier
is defined by the mapping of the Visibility attribute.

NOTE See clause 6.1.3 for details on the mapping of
Visibility attributes.

c. Exception classes shall have a copy constructor whose access specifier is
defined by the mapping of the Visibility attribute.

NOTE 1 Copy constructors are required to be able to
catch exceptions by value.

NOTE 2 See clause 6.1.3 for details on the mapping of
Visibility attributes.

d. Exception classes shall have a virtual destructor whose access specifier is
defined by the mapping of the Visibility attribute.

NOTE See clause 6.1.3 for details on the mapping of
Visibility attributes.

e. Association, Property and Operation elements belonging to the Exception
type shall be mapped within the exact same C++ class the type is mapped
to.

NOTE See clause 6.1.4.4 for details on the mapping of
Association elements, clause 6.1.4.6 for details

ECSS-E-ST-40-07C
2 March 2020

131

on the mapping of Property elements and
clause 6.1.4.7 for details on the mapping of
Operation elements.

f. If the Exception type has the Abstract attribute set to “true”, the
destructor shall be declared as pure virtual.

g. The BaseClass attribute as per ecss.smp.smpcat in [SMP_FILES] shall
have the following effect for the Exception C++ mapping:

1. If set, then the Exception includes an inheritance link to the base
class that the attribute points to;

2. If not set, then it has no effect.

6.1.7 Reference Types

6.1.7.1 Common specification
a. For each type, a universally unique identifier (UUID) variable shall be

declared as per “Uuid” template in Table 6-1.

b. The value of universally unique identifier (UUID) variables shall be
defined as per “Uuid” template in Table 6-2.

c. Constant, Property and Operation elements belonging to the type shall be
mapped within the exact same C++ class the type is mapped to.

NOTE See clause 6.1.4.2 for details on the mapping of
Constant elements, clause 6.1.4.6 for details on
the mapping of Property elements and clause
6.1.4.7 for details on the mapping of Operation
elements.

d. The access specifier of class constructors and destructors within the C++
class a type is mapped to shall be defined by the mapping of the type
Visibility attribute.

NOTE See clause 6.1.3 for details on the mapping of
Visibility attributes.

6.1.7.2 Interface
a. Interface types shall be mapped to ISO/ANSI C++ abstract classes as

follows:

1. Syntax as per “Interface” template in Table 6-1;

2. If Base elements are defined, the class inherits from the Base
classes;

3. All class member methods are declared as pure virtual.

b. Interface classes shall have a virtual destructor with an empty
implementation.

ECSS-E-ST-40-07C
2 March 2020

132

6.1.7.3 Model
a. Model types shall be mapped to ISO/ANSI C++ classes as follows:

1. Syntax as per “Model” template in Table 6-1;
2. If Base element is defined, the class inherits from the Base class;
3. If Interface elements are defined, the class inherits from the

Interface classes;
4. If at least one EntryPoint is defined, the class inherits from the

Smp::IEntryPointPublisher class;
5. If at least one EventSink element is defined, the class inherits from

the Smp::IEventConsumer class;
6. If at least one EventSource element is defined, the class inherits

from the Smp::IEventProvider class;
7. If at least one Container element is defined, the class inherits from

the Smp::IComposite class;
8. If at least one Reference element is defined, the class inherits from

the Smp::IAggregate class.

b. Model classes shall have a default constructor.

c. Model classes shall have a virtual destructor.

d. Field and Association elements belonging to the Model type shall be
mapped within the exact same C++ class the Model type is mapped to.

NOTE See clause 6.1.4.3 for details on the mapping of
Field elements and clause 6.1.4.4 for details on
the mapping of Association elements.

e. EntryPoint, EventSink, EventSource, Container and Reference elements
belonging to the Model type shall be mapped within the exact same C++
class the Model type is mapped to.

NOTE See clause 6.1.4.8 for details on the mapping of
EntryPoint elements, clause 6.1.4.9 for details
on the mapping of EventSink elements, clause
6.1.4.10 for details on the mapping of
EventSource elements, clause 6.1.4.11 for details
on the mapping of Container elements and
clause 6.1.4.12 for details on the mapping of
Reference elements.

f. The Fallible attribute as per ecss.smp.smpcat in [SMP_FILES] shall have
the following effect:
1. If set to “true”, then the C++ class implements the IFallibleModel

interface;
2. If not set, then it has no effect;
3. If set to “false”, then it has no effect.

g. The BaseClass attribute as per ecss.smp.smpcat in [SMP_FILES] shall
have the following effect for the Model C++ mapping:
1. If set, then the class includes an inheritance link to a base class that

the attribute points to;
2. If not set, then it has no effect.

ECSS-E-ST-40-07C
2 March 2020

133

6.1.7.4 Service
a. Service types shall be mapped to ISO/ANSI C++ classes as follows:

1. Syntax as per “Service” template in Table 6-1;

2. If Base element is defined, the class inherits from the Base class;

3. If Interface elements are defined, the class inherits from the
Interface classes.

4. If at least one EntryPoint is defined, the class inherits from the
Smp::IEntryPointPublisher class;

5. If at least one EventSink element is defined, the class inherits from
the Smp::IEventConsumer class;

6. If at least one EventSource element is defined, the class inherits
from the Smp::IEventProvider class;

b. Service classes shall have a default constructor.

c. Service classes shall have a virtual destructor.

d. Field and Association elements belonging to the Service type shall be
mapped within the exact same C++ class the Service type is mapped to.

NOTE See clause 6.1.4.3 for details on the mapping of
Field elements and clause 6.1.4.4 for details on
the mapping of Association elements.

e. EntryPoint, EventSink and EventSource elements belonging to the
Service type shall be mapped within the exact same C++ class the Service
type is mapped to.

NOTE See clause 6.1.4.8 for details on the mapping of
EntryPoint elements, clause 6.1.4.9 for details
on the mapping of EventSink elements and
clause 6.1.4.10 for details on the mapping of
EventSource elements.

f. The BaseClass attribute as per ecss.smp.smpcat in [SMP_FILES] shall
have the following effect for the Model C++ mapping:

1. If set, then the class includes an inheritance link to a base class that
the attribute points to;

2. If not set, then it has no effect.

ECSS-E-ST-40-07C
2 March 2020

134

6.2 Package to library

6.2.1 Mapping templates
a. Syntax and expression rules used in the specification of C++ mapping

templates:

1. Information from the package to be mapped in the C++ code is
specified by means of placeholders encased within dollar ‘$’
symbols. For example, $Package.Name$ for the value of the field
‘Name’ of some ‘Package’ referred in the context the template is
applicable.

NOTE Table 6-8 contains the C++ declaration
templates for packages and is referred to from
requirements of clause 6.2.

Table 6-8: C++ declaration templates for packages
Template C++ mapping
Static Initialise extern “C” bool Initialise_$Package.Name$(

 Smp::ISimulator* simulator,
 Smp::Publication::ITypeRegistry* typeRegistry);

Static Finalise extern “C” bool Finalise_$Package.Name$();

Dynamic Initialise extern ʺCʺ bool Initialise(
 Smp::ISimulator* simulator,
 Smp::Publication::ITypeRegistry* typeRegistry);

Dynamic Finalise extern ʺCʺ bool Finalise(Smp::ISimulator* simulator);

DLL Initialise extern ʺCʺ DLL_EXPORT bool Initialise(
 Smp::ISimulator* simulator,
 Smp::Publication::ITypeRegistry* typeRegistry);

DLL Finalise extern ʺCʺ DLL_EXPORT bool Finalise(Smp::ISimulator*
simulator);

DLL_EXPORT #ifdef WIN32
 #define DLL_EXPORT declspec(dllexport)
#else
 #define DLL_EXPORT
#endif

6.2.2 Common to Unix and Windows
a. The SMDL Package Provider shall implement the Package as a Static or

Dynamic Library file.

NOTE The Library file can be materialized differently
on different Operating Systems.

b. The Library shall contain an Initialise function as per Initialise template
in Table 6-8.

c. The Library shall contain a Finalise method as per Finalise template in
Table 6-8.

ECSS-E-ST-40-07C
2 March 2020

135

d. The Finalise method function shall release memory allocated during
Initialise method, unless ownership has been handed over.

e. The Initialise function shall register all user-defined Types in the library
with the Type Registry using the provided Type Registry interface.

NOTE This is done by calling the global register
function (for Enumeration, Integer, Float,
Array, String) or method (Structure, Class,
Exception) of the type.

f. The Initialise function shall register the class Factory of all implemented
models in the library using the ISimulator RegisterFactory method.

NOTE The ownership of the class factory is handed
over to the object implementing ISimulator.

g. The Initialise function shall register an instance of all Services in the
library using the ISimulator AddService method.

NOTE The ownership of the service is handed over to
the object implementing ISimulator.

6.2.3 Unix (Shared object)
a. The SMDL Package shall be implementation mapped on UNIX based

Operation Systems using on the following two methods:

1. As a Static Library file with extension “.a”;

2. As a Dynamic Shared Object file with extension “.so”.

b. The Static Library shall contain an Initialise method as per the “Static
Initialise” template in Table 6-8.

c. The Dynamic Shared Object shall contain an Initialise method as per the
“Dynamic Initialise” template in Table 6-8.

d. The Static Library shall contain a Finalise method as per the Static
Finalise template in Table 6-8.

e. The Dynamic Shared Object shall contain a Finalise method as per the
“Dynamic Finalise” template in Table 6-8.

f. The Initialise function shall call the Initialise$Package.Name$ () function.

g. The Finalise function shall call the Finalise$Package.Name$ () function.

h. The Initialise$Package.Name$ function shall call the initialization
functions of the Packages which are referenced as Dependencies of the
Package.

NOTE 1 Dependency indicates that a type referenced
from an implementation in the package needs a
type implemented in the referenced package.

NOTE 2 There are no rules on the order in which
packages are initialised, as the type registration
process via Universally Unique Identifiers
(UUIDs) does not introduce dependencies on
the order.

ECSS-E-ST-40-07C
2 March 2020

136

i. The Initialise and Finalise functions shall be implemented so that
multiple calls are possible.

NOTE 1 The Initialise and Finalise functions may get
called several times during initialization when
a library is referenced from more than one
package.

NOTE 2 Ensuring that types are only registered once
and memory is only allocated once allows
multiple calls to Initialise.

j. Packages shall map to either static or dynamic libraries.
NOTE 1 Two dynamic library implementations are

currently mapped
• Unix Shared Object (SO)
• Windows Dynamic Link Library (DLL)

NOTE 2 The requirements for the static library are
common to all the dynamic library
implementations, therefore they are not
repeated in the corresponding clauses. The
clauses on the dynamic library
implementations cover only the specific delta
specifications applicable to the case at hand.

6.2.4 Addendum for Windows Dynamic Link
Library (DLL)

a. A package shall be mapped to a single DLL file.

b. A single DLL file shall implement a single package.

c. All functions exported by a DLL file shall be exported with platform-
specific decorations based on the calling convention.

NOTE This is typically achieved by using the ‘C’
linkage (extern “C”) along with the
__declspec(dllexport) storage-class
attributes.

d. A DLL file shall export the function Initialise() with the following “DLL
Initialise” template in Table 6-8 where DLL_EXPORT is as per
“DLL_EXPORT” template in Table 6-8.

e. A DLL file shall export the function Finalise() with the following DLL
Finalise template in Table 6-8 where DLL_EXPORT is as per
DLL_EXPORT template in Table 6-8.

ECSS-E-ST-40-07C
2 March 2020

137

6.2.5 SMP Bundle
a. A SMP bundle shall be composed by one or more SMDL packages.

b. A SMP bundle shall be composed by one or more package dynamic
libraries, directly related to the SMDL packages.

c. A SMP bundle may be composed by one or more package static libraries,
directly related to the SMDL packages.

d. A SMP bundle shall be composed by all the SMP catalogues related to the
SMDL packages.

e. A SMP Bundle shall include a SMP manifest file in conformace with the
Manifiest file DRD of Annex D.

ECSS-E-ST-40-07C
2 March 2020

138

Annex A (normative)
Catalogue file - DRD

A.1 Catalogue DRD

A.1.1 Requirement identification and source document
This DRD is called from ECSS-E-ST-40-07 requirement 5.4.1.1a.

A.1.2 Purpose and objective
The purpose of the Catalogue file is to hold the model meta data.

A.2 Expected response

A.2.1 Scope and content
a. The suffix for catalogue files shall be “smpcat”.

b. The document shall be compliant with the Catalogue XML XSD in
XML/Smdl/Catalogue.xsd in [SMP_FILES] and the files referred from it:

1. XML/Core/Types.xsd in [SMP_FILES]

2. XML/Core/Elements.xsd in [SMP_FILES]

A.2.2 Special remarks
None.

ECSS-E-ST-40-07C
2 March 2020

139

Annex B (normative)
Package file - DRD

B.1 Package DRD

B.1.1 Requirement identification and source document
This DRD is called from ECSS-E-ST-40-07 requirement 5.4.2.1a.

B.1.2 Purpose and objective
The purpose of the Package file is to contain all metamodel elements that are
needed in order to define how implementations of types defined in catalogues
are packaged.

B.2 Expected response

B.2.1 Scope and content
a. The suffix for package files shall be “smppkg”.

b. The document shall be compliant with the Package XML XSD in
xml/Smdl/Package.xsd in [SMP_FILES] and the files referred from it:

1. xml/Smdl/Types.xsd in [SMP_FILES]

2. xml/Smdl/Elements.xsd in [SMP_FILES]

B.2.2 Special remarks
None.

ECSS-E-ST-40-07C
2 March 2020

140

Annex C (normative)
Configuration file - DRD

C.1 Configuration DRD

C.1.1 Requirement identification and source document
This DRD is called from ECSS-E-ST-40-07 requirement 5.4.3.1a

C.1.2 Purpose and objective
The purpose of the Configuration file is to hold configuration data for a
simulation.

C.2 Expected response

C.2.1 Scope and content
a. The suffix for configuration files shall be “smpcfg”.

b. The document shall be compliant with the Configuration XML XSD in
xml/Smdl/Configuration.xsd in [SMP_FILES] and the files referred from
it:

1. xml/Smdl/Types.xsd in [SMP_FILES]

2. xml/Smdl/Elements.xsd in [SMP_FILES]

C.2.2 Special remarks
None.

ECSS-E-ST-40-07C
2 March 2020

141

Annex D (normative)
Manifest file - DRD

D.1 Configuration DRD

D.1.1 Requirement identification and source document
This DRD is called from ECSS-E-ST-40-07 requirement 6.2.5e.

D.1.2 Purpose and objective
The purpose of the Manifest file is to hold meta data for a bundle.

D.2 Expected response

D.2.1 Scope and content
a. The SMP Manifest files name shall be “SMP.MF”.

b. The SMP Manifest file shall be an ASCII file which contains key-value
pairs in the following format: “Key: Value”

c. In the SMP Manifest file the Key and Value shall be separated by a colon.

d. In the SMP Manifest file the, the Key shall only contain alpha-numerical
characters, underscore (“_”) or dash (“-“).

e. In the SMP Manifest file the, the Value shall start at the first non-
whitespace character after the colon (“:”), and is terminated by the end of
line.

f. The SMP Manifest file shall contain the Mandatory Keys listed in Table
D-1 as indicated in the Mandatory column.

g. The SMP Manifest file shall conform to the OSGi Core Release 6 Bundle
Manifest file format.

NOTE Internet link to the OSGI Core manifest:
https://osgi.org/download/r6/osgi.core-6.0.0.pdf

ECSS-E-ST-40-07C
2 March 2020

142

Table D-1: SMP Manifest Key

Key Meaning Mandatory
Bundle-Copyright Copyright statement for the bundle. Yes

Bundle-ContactAddress Full address of a person or company that can be
contacted.

No

Bundle-DocURL URL where documentation for the bundle can be
retrieved from.

No

Bundle-Description Textual description of the bundle and its content. Yes

Bundle-ManifestVersion A bundle manifest may express the version of the
OSGi manifest header syntax in the Bundle-
ManifestVersion header. If specified, the bundle
manifest version must be ’2’.

Yes

Bundle-Name The Bundle-Name header defines a readable name for
this bundle. This should be a short, human-readable
name that can contain spaces.

Yes

Bundle-SymbolicName The Bundle-SymbolicName manifest header is a
mandatory header. The bundle symbolic name and
bundle version allow a bundle to be uniquely
identified in the Framework. That is, a bundle with a
given symbolic name and version is treated as equal to
another bundle with the same (case sensitive) symbolic
name and exact version.

The installation of a bundle with a Bundle-
SymbolicName and Bundle-Version identical to an
existing bundle fail.

Yes

Bundle-Vendor The Bundle-Vendor header contains a human-readable
description of the bundle vendor.

Yes

Bundle-Version Bundle-Version is an optional header; the default
value is 0.0.0.

A version consists of major, minor and micro version
components. If the minor or micro version
components are not specified, they have a default
value of 0.

Versions are comparable. Their comparison is done
numerically and sequentially on the major, minor, and
micro components. A version is considered equal to
another version if the major, minor, and micro
components are equal.

Yes

Require-Bundle The Require-Bundle header specifies the required
exports from another bundle. This is a comma-
separated list of required bundles, where each bundle
is at least specified by its symbolic name, optionally
followed by a specific version:
<Bundle-SymbolicName>[; Bundle-Version="<Bundle-
Version>"]

No

ECSS-E-ST-40-07C
2 March 2020

143

Key Meaning Mandatory
Compiler-Name Name of the compiler that has been used to compile

the source code.
No

Compiler-Version Version of the compiler that has been used to compile
the source code.

No

OS-Name Name of the Operating System. No

OS-Version Version of the Operating System. No

D.2.2 Special remarks
None.

ECSS-E-ST-40-07C
2 March 2020

144

Bibliography

ECSS-S-ST-00 ECSS system – Description, implementation and
general requirements

ISO 9000 series Quality management systems standards
International Organization for Standardization (ISO)
http://www.iso.org

ISO/IEC 9899:2011 ISO/IEC 9899:2011 Information technology --
Programming languages -- C

ISO/IEC 14882:2011 ISO/IEC 14882:2011 Information technology --
Programming languages -- C++

Open Group UUID Open Group
http://www.opengroup.org

OSGi Manifest Open Services Gateway initiative
http://www.osgi.org

SMP v1.2 Simulation Model Portability
Specification version 1.2

XML Extensible Markup Language
World Wide Web Consortium (W3C)
http://www.w3.org/XM

http://www.opengroup.org/

	Simulation modelling platform
	1 Scope
	2 Normative references
	3 Terms, definitions and abbreviated terms
	3.1 Terms from other standards
	3.2 Terms specific to the present standard
	3.3 Abbreviated terms
	3.4 Nomenclature

	4 Principles
	4.1 Objectives
	4.2 Common Concepts and common types
	4.3 Architecture
	4.4 Time handling principle
	4.5 Simulation lifecycle
	4.6 Simulation method
	4.6.1 Discrete-event simulation (DES)
	4.6.2 Parallelization and distribution
	4.6.3 Inter component communication
	4.6.3.1 Overview
	4.6.3.2 Interface based communication
	4.6.3.3 Data flow based communication
	4.6.3.3.1 Overview
	4.6.3.3.2 Data types consideration

	4.6.3.4 Event Based communication

	4.7 Models, Services and Components
	4.7.1 Objects
	4.7.2 Components
	4.7.3 Factories
	4.7.4 Models and Services

	4.8 Publication and Persistence
	4.9 Dynamic invocation
	4.10 Components meta data
	4.10.1 Catalogue
	4.10.2 Package
	4.10.3 Configuration

	4.11 Model exchanges considerations
	4.11.1 Overview
	4.11.2 SMP Bundle

	5 Interface requirements
	5.1 Common
	5.1.1 Primitive Types specification
	5.1.2 Time Kinds
	5.1.3 Path string
	5.1.4 Universally Unique Identifiers (UUID)
	5.1.5 Exception specification

	5.2 Components and Objects interfaces
	5.2.1 Object Specification (IObject)
	5.2.2 Collection Specification (ICollection)
	5.2.3 Component Specification
	5.2.3.1 Component (IComponent)
	5.2.3.2 Model (IModel)
	5.2.3.3 Service (IService)
	5.2.3.4 Linking Component (ILinkingComponent)

	5.2.4 Aggregation
	5.2.4.1 Aggregation interface (IAggregate)
	5.2.4.2 Reference Interface (IReference)

	5.2.5 Composition
	5.2.5.1 Composition interface (IComposite)
	5.2.5.2 Container interface (IContainer)

	5.2.6 Events
	5.2.6.1 Sink of events interface (IEventSink)
	5.2.6.2 Source of events interface (IEventSource)
	5.2.6.3 Consumer of events interface (IEventConsumer)
	5.2.6.4 Provider of events interface (IEventProvider)

	5.2.7 Entry points
	5.2.7.1 Entry points calling interface (IEntryPoint)
	5.2.7.2 Entry Points publisher interface (IEntryPointPublisher)

	5.2.8 Dynamic Invocation
	5.2.8.1 Dynamic invocation interface (IDynamicInvocation)
	5.2.8.2 IRequest

	5.2.9 Persistence (IPersist)
	5.2.10 Failures
	5.2.10.1 Failure interface (IFailure)
	5.2.10.2 Model failure state interface (IFallibleModel)

	5.2.11 Field interfaces
	5.2.11.1 ISimpleField
	5.2.11.2 IStructureField
	5.2.11.3 IArrayField
	5.2.11.4 ISimpleArrayField
	5.2.11.5 IField
	5.2.11.6 IForcibleField
	5.2.11.7 IDataflowField

	5.2.12 Requirements on utilization of Simulation Environments interfaces by components
	5.2.12.1 ILogger interface utilization
	5.2.12.2 IPublication interface
	5.2.12.3 ISimulator interface

	5.3 Simulation Environment interfaces
	5.3.1 Logger (ILogger interface)
	5.3.2 Time Keeper (ITimeKeeper)
	5.3.3 Scheduler (IScheduler)
	5.3.4 Event Manager (IEventManager)
	5.3.5 Resolver (IResolver)
	5.3.6 Link Registry (ILinkRegistry)
	5.3.7 Simulator (ISimulator)
	5.3.8 Persistence
	5.3.8.1 Storage Reader Interface (IStorageReader)
	5.3.8.2 Storage Writer Interface (IStorageWrite)

	5.3.9 Publication
	5.3.9.1 IPublication
	5.3.9.2 IPublishOperation

	5.3.10 Type Registry
	5.3.10.1 ITypeRegistry
	5.3.10.2 IType
	5.3.10.3 IStructureType
	5.3.10.4 IClassType
	5.3.10.5 IArrayType
	5.3.10.6 IEnumerationType

	5.3.11 Component Factory (IFactory)

	5.4 Meta data
	5.4.1 Catalogue
	5.4.1.1 File format specification
	5.4.1.2 Validation rules
	5.4.1.2.1 General
	5.4.1.2.2 Types
	5.4.1.2.3 Named Element
	5.4.1.2.4 Container and associations
	5.4.1.2.5 Enumeration
	5.4.1.2.6 Entry Point
	5.4.1.2.7 Properties
	5.4.1.2.8 References
	5.4.1.2.9 Fields
	5.4.1.2.10 Operations
	5.4.1.2.11 Constructors
	5.4.1.2.12 Events

	5.4.1.3 Requirements on utilization of Catalogue

	5.4.2 Package
	5.4.2.1 File format specification
	5.4.2.2 Validation rules

	5.4.3 Configuration data
	5.4.3.1 File format
	5.4.3.2 Validation rules

	6 Implementation mapping
	6.1 Catalogue to C++
	6.1.1 Mapping templates
	6.1.2 Namespaces and files
	6.1.3 Element and Type Visibility Kind
	6.1.4 Mapping of elements
	6.1.4.1 Value elements
	6.1.4.2 Constant
	6.1.4.3 Field
	6.1.4.4 Association
	6.1.4.5 Parameter
	6.1.4.6 Property
	6.1.4.7 Operation
	6.1.4.8 EntryPoint
	6.1.4.9 EventSink
	6.1.4.10 EventSource
	6.1.4.11 Container
	6.1.4.12 Reference

	6.1.5 Basic Value Types
	6.1.5.1 Common specification
	6.1.5.2 Enumeration
	6.1.5.3 Integer
	6.1.5.4 Float
	6.1.5.5 String
	6.1.5.6 Array

	6.1.6 Compound Value Types
	6.1.6.1 Common specification
	6.1.6.2 Structure
	6.1.6.3 Class
	6.1.6.4 Exception

	6.1.7 Reference Types
	6.1.7.1 Common specification
	6.1.7.2 Interface
	6.1.7.3 Model
	6.1.7.4 Service

	6.2 Package to library
	6.2.1 Mapping templates
	6.2.2 Common to Unix and Windows
	6.2.3 Unix (Shared object)
	6.2.4 Addendum for Windows Dynamic Link Library (DLL)
	6.2.5 SMP Bundle

