

Standardization training program E-60 discipline: Control

Gyro terminology and performance specification standard E-ST-60-21C (Febr. 2017)

The ECSS E60 branch

Background and motivation

Standardization training program E60 discipline:

IF YOU ASK 10 PEOPLE WHAT BIAS IS, YOU GET 11 ANSWERS

- Gyros are used on almost all spacecraft
- Often used in mission-critical functions:
 - Detumble and rate damping
 - Safe mode, Sun acquisition mode
 - High accuracy gyrostellar estimation
 - Star tracker blinding coverage

- Optical gyros (Ring Laser Gyro, Fibre Optic Gyro)
- Coriolis Vibratory Gyros (Hemispherical Resonating Gyro, Tuning Fork Gyro,...)
- Mechanical gyros (single-axis/dual-axis mechanical gyro, Dynamically Tuned Gyro,...)
- MEMS gyros
- Despite the different technologies, a common understanding of the performance of gyros is needed.
- Often the IEEE standards (952-1997 FOG and 1431-2004 CVG) were referred to.

Gyro terminology & performance specification overview

Standardization training program E60 discipline: Control

Chapter 1
Scope

Chapter 2 Normative references

Chapter 3

Terms, definitions and abbreviated terms

from other standards / specific to the present standard

Annex A, B

AOCS documentation

Functional mathematical model (FMM)

Example of data sheet

E-ST-60-21C Gyro terminology & performance spec

Chapter 5

Performance requirements

- Statistical ensemble
- Performance metrics
- Perf verification requirements

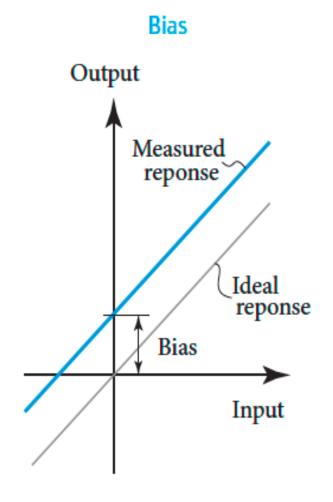
Chapter 4 - Functional requirements

Modes, Anti-aliasing, stimulation,...

ECSS-E-ST-60-21C: Gyro terminology and performance specification

- 1. Scope
- 2. Normative References
- 3. Terms, definitions and abbreviated terms
- 4. Functional requirements
- **5. Performance** requirements
- Annex: functional mathematical model description
- Annex: example of data sheet

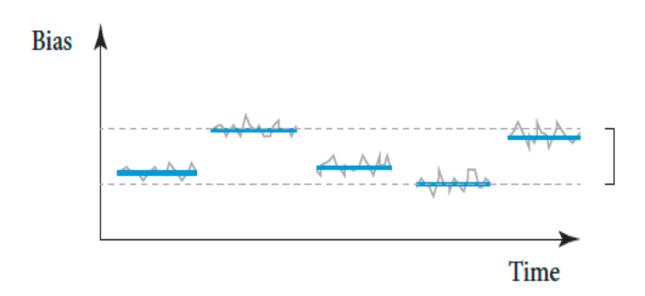
Chapter 4: Functional requirements



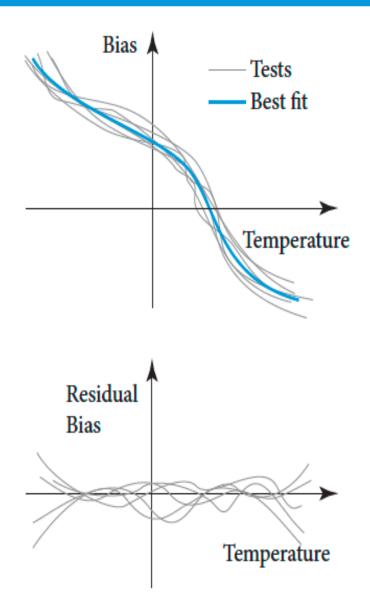
- Operating Modes
 - Measurement mode
 - Auxiliary modes (test mode, programming mode,...)
- Start-up, Warm-up (durations)
- Alignment and scale factor (shall be provided by supplier)
- Anti-aliasing filter (shall be defined by supplier)
- Stimulation
- Lifetime and duty cycle

Perf. Req. Chapter 5.1, 5.2, 5.3: Statistical Ensemble, Verification req.

- Statistical interpretation
 - Variation in time → temporal interpretation (e.g. noise), use worst-case sensor
 - Variation from sensor-to-sensor → ensemble interpretation (e.g. switch-on bias)
 - Mixed interpretation (do not use this as a default)
- Confidence level is to be agreed with the customer for each of the error source
 - $(1\sigma, 2\sigma \text{ or } 3\sigma \text{ only applies for Gaussian distributions})$
- Performance verification
 - To be specified whether this applies to compensated (calibrated) or uncompensated measurements
 - Adequate test equipment is required
 - Earth rotation rate (approx. 15°/h) shall be taken into account
- Performance requirements shall indicate conditions:
 - EOL vs BOL
 - Environmental effects
 - Warm-up effects
 - Acceleration, 1g 0g effects
 - Temperature effects

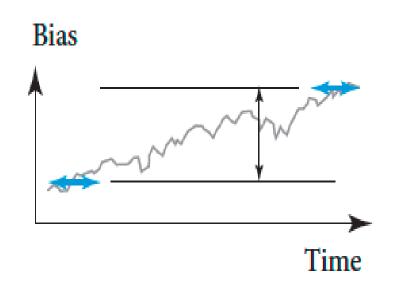

- Bias is the measured output for a zero rate input
- Errors can be split in 2 parts:
 - Systematic
 - Random
- ECSS: not rate dependent, average rate error, over a defined time period
- The absolute value of bias does not dominate, as long as it is systematic
- A bias of 0.001°/h misses on full revolution in 41 years!

Bias repeatability



- Degree of closeness of test results taken during different periods of operation
- Random in magnitude, but constant in time. Variations between switch-on to switch-on; or before and after environmental conditions

Standardization training program E60 discipline:
Control


- Usually, a polynomial fit (e.g. 4th order) is used to calibrate the systematic effects
- Factory calibration can be stored in EEPROM
- The relevant error source is then the residual after calibration, measured in °/h (not °/h/K)
- ECSS: noise contribution must be
 <1/3 of target accuracy, preferably
 <1/10

Bias stability

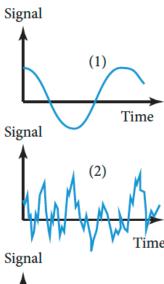
- Variation of defined time period
- Constant environmental conditions, no switch-off
- Also known as:
 - Bias drift
 - In-run bias
 - Bias in-run drift
 - Bias random walk
 - Rate random walk
- ECSS: agree with customer to specify averaging period and observation period, but no default values given

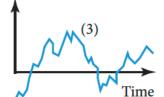
→ BIAS

- Bias repeatability
 - Switch-on to switch-on repeatability
 - Repeatability before and after mechanical environment
 - Repeatability before and after thermal vacuum cycling
 - Repeatability before and after radiation
- Bias stability
 - E.g. maximum over life, time intervals to be specified
 - See also: rate random walk, flicker noise, long term drift, bias drift
- Bias thermal sensitivity
 - Before calibration or residual after calibration
 - Sensitivity to thermal gradient (spatial or temporal) to be specified
- Other bias sensitivity:
 - Magnetic flux density
 - Specific force (non-gravitational acceleration)
 - Vibration
 - •
- **Verification**: on marble block, thermal chamber

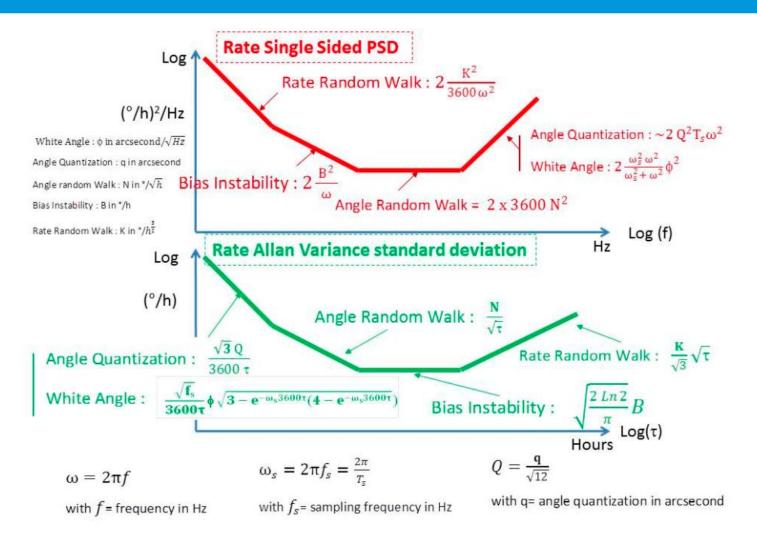
Noise: Power Spectral Density (PSD) introduction

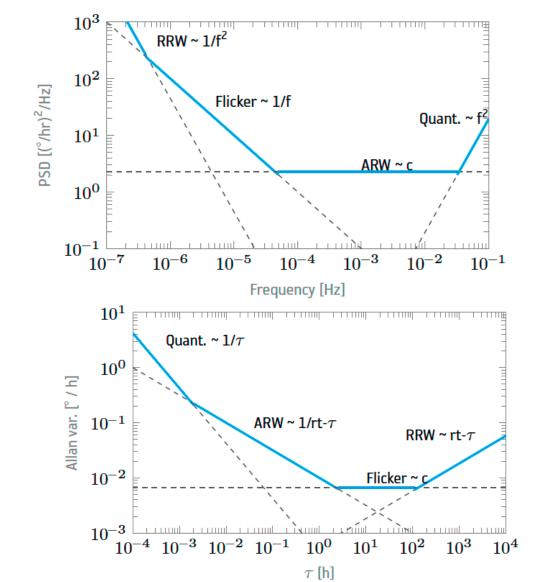

Standardization training program E60 discipline:


- Power spectral density (PSD) describes the frequency content of a random process
- The mean square value of the signal is equal to the integral under the PSD curve:

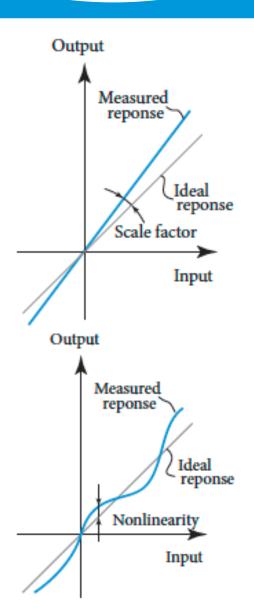

$$E[x^2] = \int_0^\infty S_x(f) df$$

- White noise has a flat PSD curve
- Propagation through a transfer function H:

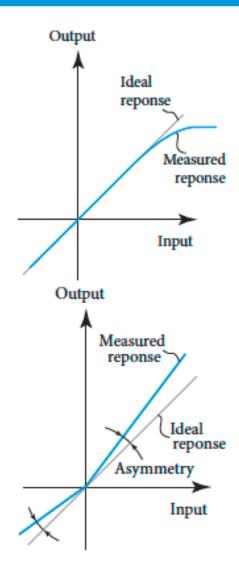

$$S_y(\omega) = |H(i\omega)|^2 S_x(\omega)$$



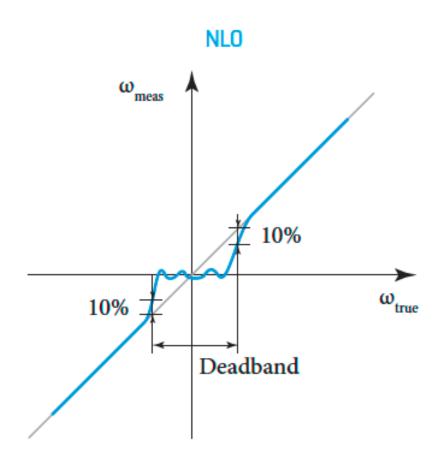
Standardization training program E60 discipline:


→ NOISE

- Noise performance requirements (from high-frequency to low frequency)
- Angle White noise (AWN)
- Angular Quantization Noise (AQN)
- Angle Random Walk (ARW)
- Bias instability (flicker, 1/f noise)
- Rate Random Walk (RRW)
- Rate Ramp
- PSD versus Allan Variance


Standardization training program E60 discipline:
Control

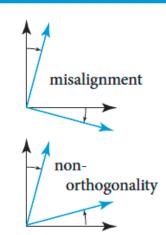
- Slope between input and output
- Non-linearity: depends on input rate
- Usually expressed as the ratio of the error to the full scale, in % or in ppm
- A scale factor error of 10 ppm loses one Earth revolution in 274 years!

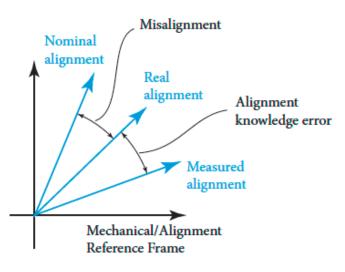

Standardization training program E60 discipline:
Control

- Scale factor can have high non-linearity close to maximum output (saturation)
- An asymmetry error appears as a bias for oscillatory vehicle motion around zero input (e.g. vibration)

→ DEADBAND

- A.k.a. Non-linearity around zero (NLO)
- Caused by:
 - Stiction in mechanical gyros
 - Lock-in in RLGs
 - Reflections and electronics limitations in FOGs
- Often hard to measure with good accuracy (elimination of Earth rotation)

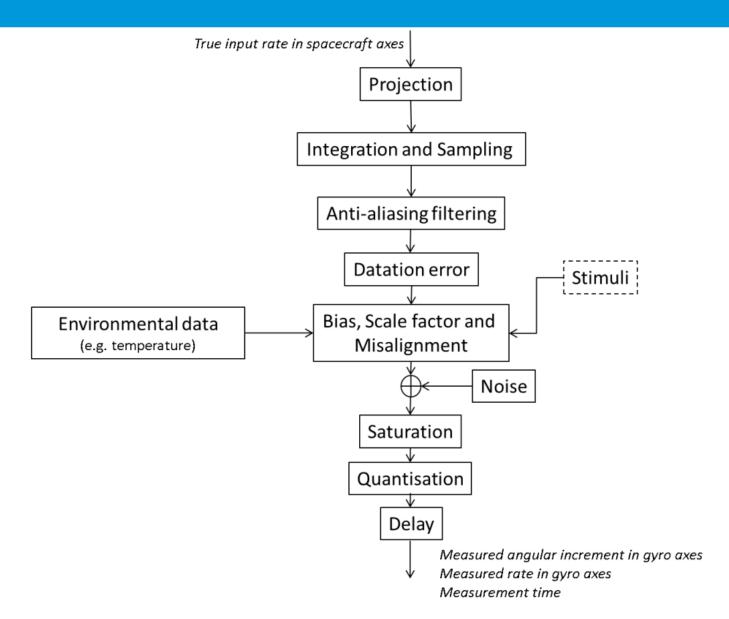

→ SCALE FACTOR ERRORS


- Scale factor initial value
- **Deadband** (no Δ -value specified in ECSS), **non-linearity** and non-linearity error
- Scale factor repeatability
 - Switch-on to switch-on
 - Mechanical environment
 - Thermal vacuum
 - Radiation
- Scale factor stability
 - Time period to be specified
- Scale factor thermal sensitivity
- Verification:
 - Rate table
 - After bias compensation
 - Axis alignment errors
 - Noise effects must be <10% of scale factor error requirement

Standardization training program E60 discipline:
Control

→ MISALIGNMENT

- Absolute/relative alignment error
 - Absolute: angular error of sensitive axes wrt theoretical orientation
 - Relative: angular error between sensitive axes (nonorthogonality)
- Absolute/relative alignment knowledge error
 - Launch, micro-gravity, outgassing, moisture release, thermo-elastics,...
- Absolute/relative alignment repeatability
 - Mechanical environment
 - Thermal vacuum cycling
- Absolute/relative alignment stability
 - Specified time period
- Absolute/relative alignment thermal sensitivity
 - Operating temperature range and/or customerspecified temperature range



→ OTHER PERFORMANCE METRICS

- Measurement datation and latency
 - Datation accuracy (jitter) → verified by analysis
 - Latency: between measurement date and availability date on databus
- **start-up** performances
 - Max rate error or angle increment error during start-up period
- Warm-up performances
 - Bias
 - Noise
 - Scale factor error
 - Misalignment error
- Measurement output bandwidth
- Anti-aliasing filter (DC gain, max phase at frequency, max overshoot, max attenuation, min attenuation, sample frequency,...)
- Data quantization
- Failure detection efficiency
- Stimulation

Annex A: Functional Mathematical Model (FMM)

Standardization training program E60 discipline:

- A common terminology, performance specification and test methodology is specified for all gyro technologies to be used for spacecraft
- Gyro performance specification contains, at least:
 - Bias (repeatability, thermal, stability, sensitivity)
 - Noise (quantization, ARW, flicker, RRW)
 - Scale factor (repeatability, deadband, thermal sensitivity, stability)
 - Misalignment (absolute/relative, knowledge, repeatability, stability, sensitivity)
 - Others (datation and latency, bandwidth, start-up, warm-up,...)
- Not a specification for gyros for launchers (not treating e.g. coning effects, depressurization effects, transfer function, structural damping,....)
- A similar terminology and performance specification standard can be proposed for accelerometers (no working group formed yet)
- Contact points:
 - Benedicte.Girouart@esa.int
 - Jeroen.Vandersteen@esa.int

