
ECSS-E-ST-40-07C Rev.1 DIR1
30 September 2024

Space engineering

Simulation modelling platform

ECSS Secretariat
ESA-ESTEC

Requirements & Standards Section
Noordwijk, The Netherlands

This document is distributed to the ECSS community for Public Review.

(Duration: 8 weeks)

Start Public Review: 29 October 2024

End Public Review: 23 December 2024

DISCLAIMER (for drafts)

This document is an ECSS Draft Standard. It is subject to change without any notice and

may not be referred to as an ECSS Standard until published as such.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

2

Foreword

ECSS is a cooperative effort of the European Space Agency, national space agencies and European

industry associations for the purpose of developing and maintaining common standards. Requirements

in this Standard are defined in terms of what shall be accomplished, rather than in terms of how to

organize and perform the necessary work. This allows existing organizational structures and methods

to be applied where they are effective, and for the structures and methods to evolve as necessary

without rewriting the standards.

This Standard has been prepared by the ECSS-E-ST-40-07C Rev.1 Working Group, reviewed by the

ECSS Executive Secretariat and approved by the ECSS Technical Authority.

Disclaimer

ECSS does not provide any warranty whatsoever, whether expressed, implied, or statutory, including,

but not limited to, any warranty of merchantability or fitness for a particular purpose or any warranty

that the contents of the item are error-free. In no respect shall ECSS incur any liability for any damages,

including, but not limited to, direct, indirect, special, or consequential damages arising out of, resulting

from, or in any way connected to the use of this Standard, whether or not based upon warranty, business

agreement, tort, or otherwise; whether or not injury was sustained by persons or property or otherwise;

and whether or not loss was sustained from, or arose out of, the results of, the item, or any services that

may be provided by ECSS.

Published by: ESA Requirements and Standards Section

 ESTEC, P.O. Box 299,

 2200 AG Noordwijk

 The Netherlands

Copyright: 2024© by the European Space Agency for the members of ECSS

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

3

Change log

Change log for Draft development

Previous steps

ECSS-E-ST-07C, Rev X.X,

DRAFT.1

02 September 2024

Implementation of the CR:

- CR OHB-24 partially implemented

- CR that needs WG thorough review and maybe discussions:

ESOC/TPZG-1, OHB-16, OHB-17, OHB-24, OHB-26, OHB-30, OHB-

37 (only XSD),

Rework of the interfaces related to Dynamic Invocation.

Split out field publication from IPublication: new IPublishField

ECSS-E-ST-40-07C Rev.1

DFR1

6 September 2024

Check by ES:

ECSS-E-ST-40-07C Rev.1

DFR2

16 September 2024

ES comments resolved

WG comments resolved

Cross-check with SMP_FILES content: TODO

Minor corrections:

- 6.2.2.d style of the requirement number changed from “NOTE” to

ECSS_IEPUID

- Numbering after 6.2.2.g

Check by ES

ECSS-E-ST-40-07C Rev.1

DFR3

20 September 2024

ES comments on DFR2 resolved

Cross-checked with SMP_FILES content

 ES comments on DFR3 resolved

SMP_FILES issue number to agree on (please have a look at my

comment in “Normative references”)

Implementation of CR AGS-1 raised as a consequence of CR

ESOC/TPZG-1

ECSS-E-ST-40-07C Rev.1

DFR1

30 September 2024

Parallel Assessment: 1 – 15 October 2024

Current step

ECSS-E-ST-40-07C Rev.1

DIR1

30 September 2024

Public Review29 October – 23 December 2024

Next steps

DIR + impl. DRRs Draft with implemented DRRs

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

4

DIR + impl. DRRs DRR Feedback

DIA TA Vote for publication

DIA Preparation of document for publication (including DOORS transfer

for Standards)

 Publication

 Change log for published Standard (to be updated by

ES before publication)

ECSS-E-ST-40-07C

2 March 2020

First issue

 First issue, Revision 1

Change log will be completed before publication

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

5

Table of contents

Change log .. 3

Introduction ... 10

1 Scope .. 11

2 Normative references .. 12

3 Terms, definitions and abbreviated terms ... 13

3.1 Terms from other standards ... 13

3.2 Terms specific to the present standard .. 13

3.3 Abbreviated terms.. 17

3.4 Nomenclature .. 18

4 Principles ... 19

4.1 Objectives .. 19

4.2 Common Concepts and common types ... 19

4.3 Architecture ... 20

4.4 Time handling principle .. 21

4.5 Simulation lifecycle .. 22

4.6 Simulation method ... 23

4.6.1 Discrete-event simulation (DES) .. 23

4.6.2 Parallelization and distribution .. 24

4.6.3 Inter component communication .. 24

4.7 Models, Services and Components ... 25

4.7.1 Objects ... 25

4.7.2 Components... 27

4.7.3 Factories .. 29

4.7.4 Models and Services .. 29

4.8 Publication, Types and Persistence ... 30

4.9 Dynamic invocation .. 32

4.10 Components meta data ... 36

4.10.1 Catalogue .. 36

4.10.2 Package ... 37

4.10.3 Configuration .. 37

4.11 Model exchanges considerations ... 37

4.11.1 Overview .. 37

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

6

4.11.2 SMP Bundle ... 37

5 Interface requirements .. 38

5.1 Common .. 38

5.1.1 Primitive Types specification .. 38

5.1.2 Time Kinds ... 40

5.1.3 Path string .. 41

5.1.4 Universally Unique Identifiers (UUID) ... 42

5.1.5 Exception specification ... 43

5.2 Components and Objects interfaces .. 43

5.2.1 Object Specification (IObject) ... 43

5.2.2 Collection Specification (ICollection) .. 44

5.2.3 Component Specification ... 45

5.2.4 Aggregation.. 53

5.2.5 Composition ... 56

5.2.6 Events .. 59

5.2.7 Entry points .. 62

5.2.8 Dynamic Invocation .. 63

5.2.9 Persistence (IPersist) ... 68

5.2.10 Failures .. 69

5.2.11 Fields ... 70

5.2.12 Requirements on utilization of Simulation Environments interfaces by
components ... 78

5.2.13 Operations ... 81

5.3 Simulation Environment interfaces ... 83

5.3.1 Logger (ILogger interface) .. 83

5.3.2 Time Keeper (ITimeKeeper) ... 85

5.3.3 Scheduler (IScheduler) .. 87

5.3.4 Event Manager (IEventManager) ... 98

5.3.5 Resolver (IResolver) .. 102

5.3.6 Link Registry (ILinkRegistry) .. 103

5.3.7 Simulator (ISimulator) .. 105

5.3.8 Persistence .. 119

5.3.9 Publication ... 121

5.3.10 Type Registry ... 130

5.3.11 Component Factory (IFactory) ... 139

5.3.12 Event loop requirements .. 139

5.3.13 Threading requirements ... 141

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

7

5.4 Meta data .. 141

5.4.1 Catalogue .. 141

5.4.2 Package ... 148

5.4.3 Configuration data .. 148

6 Implementation mapping .. 149

6.1 Catalogue to C++ .. 149

6.1.1 Mapping templates ... 149

6.1.2 Namespaces and files .. 152

6.1.3 Element and Type Visibility Kind .. 152

6.1.4 Mapping of elements .. 153

6.1.5 Basic Value Types ... 165

6.1.6 Compound Value Types ... 166

6.1.7 Reference Types .. 169

6.2 Package to library .. 173

6.2.1 Mapping templates ... 173

6.2.2 Common to Unix and Windows .. 173

6.2.3 Unix (Shared object) .. 175

6.2.4 Addendum for Windows Dynamic Link Library (DLL) 176

6.2.5 SMP Bundle ... 177

Annex A (normative) Catalogue file - DRD ... 178

A.1 Catalogue DRD ... 178

A.1.1 Requirement identification and source document 178

A.1.2 Purpose and objective .. 178

A.2 Expected response .. 178

A.2.1 Scope and content ... 178

A.2.2 Special remarks ... 178

Annex B (normative) Package file - DRD .. 179

B.1 Package DRD .. 179

B.1.1 Requirement identification and source document 179

B.1.2 Purpose and objective .. 179

B.2 Expected response .. 179

B.2.1 Scope and content ... 179

B.2.2 Special remarks ... 179

Annex C (normative) Configuration file - DRD ... 180

C.1 Configuration DRD ... 180

C.1.1 Requirement identification and source document 180

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

8

C.1.2 Purpose and objective .. 180

C.2 Expected response .. 180

C.2.1 Scope and content ... 180

C.2.2 Special remarks ... 180

Annex D (normative) Manifest file - DRD .. 181

D.1 Manifest DRD .. 181

D.1.1 Requirement identification and source document 181

D.1.2 Purpose and objective .. 181

D.2 Expected response .. 181

D.2.1 Scope and content ... 181

D.2.2 Special remarks ... 183

Bibliography .. 184

Figures

Figure 4-1: Common Concepts and Type System ... 20

Figure 4-2: SMP Architecture .. 20

Figure 4-3: SMP State machine ... 22

Figure 4-4: Object mechanisms ... 26

Figure 4-5: Overview of components hierarchy ... 27

Figure 4-6: Component Mechanisms ... 28

Figure 4-7: Component State machine .. 28

Figure 4-8: Sequence of calls for dynamic invocation of an Operation 33

Figure 4-9: Sequence of calls for dynamic invocation of a Property Setter 35

Tables

Table 4-1: Overview of simulation states ... 23

Table 4-2: ViewKind values ... 31

Table 5-1: Primitive Types ... 38

Table 5-2: Component states .. 46

Table 5-3: Request Type ... 68

Table 5-4: Semantically equivalent types for connections .. 76

Table 5-5: Property Access Kind values .. 80

Table 5-6: Parameter Direction Kind values .. 82

Table 5-7: Default Log Message Kinds .. 83

Table 5-8: Condition for emitting predefined global events .. 100

Table 5-9: Library loading flags ... 118

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

9

Table 6-1: C++ declaration templates .. 149

Table 6-2: C++ definition templates ... 151

Table 6-3: C++ mapping for the Visibility kind attribute .. 152

Table 6-4: C++ mapping of Association depending on ByPointer attribute................. 155

Table 6-5: C++ mapping for the Direction kind attribute ... 156

Table 6-6: C++ mapping for Property depending on ByPointer attribute 158

Table 6-7: C++ mapping for the Operator attribute kinds ... 162

Table 6-8: C++ declaration templates for packages ... 173

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

10

Introduction

Space programmes have developed simulation software for a number of years,

which are used for a variety of applications including analysis, engineering

operations preparation and training. Typically, different departments perform

developments of these simulators, running on several different platforms and

using different computer languages. A variety of subcontractors are involved in

these projects and as a result a wide range of simulation software are often

developed. This standard addresses the issues related to portability and reuse of

simulation models. It is based on the work performed by ESA in the development

of the Simulator Model Portability Standards SMP1 and SMP2 starting from the

mid-end of the nineties.

This standard integrates the ECSS-E-ST-40 with additional requirements which

are specific to the development of simulation software. The formulation of this

standard takes into account:

• The existing ISO 9000 family of documents, and

• The Simulation Model Portability specification version 1.2.

The intended readership of this standard is the simulator software customer and

supplier.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

11

1
Scope

ECSS-E-ST-40-07 is a standard based on ECSS-E-ST-40 for the engineering of

simulation software.

ECSS-E-ST-40-07 complements ECSS-E-ST-40 in being more specific to

simulation software. Simulation software include both Simulation environments

and simulation models. The standard enables the effective reuse of simulation

models within and between space projects and their stakeholders. In particular,

the standard supports model reuse across different simulation environments and

exchange between different organizations and missions.

This standard can be used as an additional standard to ECSS-E-ST-40 providing

the additional requirements which are specific to simulation software.

This standard may be tailored for the specific characteristic and constrains of a

space project in conformance with ECSS-S-ST-00.

Applicability

This standard lays down requirements for simulation software including both

Simulation environments and simulation models. The requirements cover

simulation models’ interfaces and simulation environment interfaces for the

purpose of model re-use and exchange to allow simulation models to be run in

any conformant simulation environment.

A consequence of being compliant to this standard for a model is the possibility

of being reused in several simulation facilities or even in several projects.

However, adherence to this standard does not imply or guarantees model

reusability, it is only a precondition. Other characteristics of the model, to be

defined outside this standard, such as its functional interfaces and behaviour, its

configuration data as well as quality, suitability and performance, etc. are also

heavily affecting the potential for a model to be reused. In addition, agreements

need to be reached on simulation environments compatibility, model validation

status as well as legal issues and export control restrictions.

Therefore, this standard enables but does not mandate, impose nor guarantee

successful model re-use and exchange.

Model reuse in this standard is meant both at source-code and binary level, with

the latter restricted to a fixed platform.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

12

2
Normative references

The following normative documents contain provisions which, through

reference in this text, constitute provisions of this ECSS Standard. For dated

references, subsequent amendments to, or revision of any of these publications

do not apply. However, parties to agreements based on this ECSS Standard are

encouraged to investigate the possibility of applying the more recent editions of

the normative documents indicated below. For undated references, the latest

edition of the publication referred to applies.

ECSS-S-ST-00-01 ECSS system - Glossary of terms

ECSS-E-ST-40 Space engineering - Software general requirements

[SMP_FILES] ECSS_SMP_L1_(20September2024).zip – SMP Level 1

C++ Header files, XML schemas and Catalogue

(Available from ECSS website).

https://www.w3.org/

TR/xmlschema11-2/

XML schema specification

http://www.opengro

up.org

The UUID specification from Open Group.

https://www.osgi.org

/developer/specificati

ons/

OSGi Specifications

https://www.w3.org/TR/xmlschema11-2/
https://www.w3.org/TR/xmlschema11-2/
http://www.opengroup.org/
http://www.opengroup.org/
https://www.osgi.org/developer/specifications/
https://www.osgi.org/developer/specifications/
https://www.osgi.org/developer/specifications/

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

13

3
Terms, definitions and abbreviated terms

3.1 Terms from other standards

a. For the purpose of this Standard, the terms and definitions from ECSS-S-

ST-00-01 and ECSS-E-ST-40 apply.

b. For the purpose of this Standard, the terms and definitions from ECSS‐E‐

ST‐70 apply, in particular the following term:

1. mission

3.2 Terms specific to the present standard

In the following list of terms, underlined words are further defined in the same

list.

3.2.1 aggregate

relationship between two components implemented by storing their references

NOTE Each component in such a relationship keeps its

own lifecycle and it does not dependent on that

of other components.

3.2.2 association

relationship between two instances of any data-type, where each instance has its

own lifecycle and there is no owner

3.2.3 breakpoint

unambiguous state of a simulation

3.2.4 component

building block of a simulation that can be instantiated and that has a well-defined

contract to its environment

3.2.5 composite

component implementing composition

3.2.6 composition

hierarchical relationship where child component is destroyed if the parent

component is destroyed

3.2.7 configuration

specification of values for fields of components

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

14

3.2.8 constructor

specific operation of a component, bearing the same name of the component,

whose purpose is to allocate and build an instance of said component

3.2.9 consumer

component that can receive data in one of its input fields from an output field of

another component

3.2.10 container

typed collection of child components

3.2.11 contract

set of interfaces, operations, fields, entry points, event sinks, event sources and

all the associated constraints, used to interact with a component

3.2.12 data transfer

copy of value from an output field to an input field

3.2.13 entry point

operation without parameters that does not return a value, which can be added

to the scheduler or event manager service

3.2.14 epoch time

absolute time of the simulation

3.2.15 event

see “simulation event”

3.2.16 event manager

component that implements the IEventManager interface

NOTE The IEventManager interface is specified in

clause 5.3.4.

3.2.17 event sink

receiver of specific notifications, owned by a component and subscribed via a

subscription mechanism

3.2.18 event source

emitter of specific notifications, owned by a component and offering a

subscription mechanism

3.2.19 exception

non-recoverable error that can occur when calling into an operation or property

3.2.20 field

feature characterised by a value type and holding a value

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

15

3.2.21 input field

field explicitly marked for receiving values as a result of a data transfer

3.2.22 interface

named set of properties and operations

3.2.23 logger

component that implements the ILogger interface

NOTE The ILogger interface is specified in clause 5.3.1.

3.2.24 mission time

relative time measuring elapsed time from a mission specific point in time

3.2.25 model

component that implements the IModel interface

NOTE The IModel interface is specified in clause

5.2.3.2.

3.2.26 model implementation

executable code implementing a model

3.2.27 model instance

occurrence of a model implementation

3.2.28 output field

field explicitly marked for being the source of a value in a data transfer

3.2.29 operation

declaration of a behavioural feature of a component or an interface with the

option to define parameters, return value and raised exceptions

3.2.30 package

collection of types, where each one is either a value type or a component

3.2.31 platform

set of subsystems/technologies that provide a coherent set of functionality

through APIs and specified usage patterns

3.2.32 primitive type

type that can no longer be de-composed and that is pre-defined by the standard

NOTE The available primitive types are listed in Table

5-1: Primitive Types.

3.2.33 property

typed feature of a class, an interface or a component that can be accessed by two

operations, the setter and the getter, not necessarily both present

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

16

3.2.34 provider

component that can send data of one of its output fields to an input field of

another component

3.2.35 reference

pointer to a component

NOTE When dealing with the C++ mapping, the term

reference has a meaning specific to that

language, whereas in the rest of this standard it

means point to a component (but it cannot for

instance be a pointer to a class).

3.2.36 resolver

component that implements the IResolver interface

NOTE The IResolver interface is specified in clause 0.

3.2.37 schedule

planned time ordered execution of entry points

3.2.38 scheduler

component that implements the IScheduler interface

NOTE The IScheduler interface is specified in clause

5.3.3.

3.2.39 service

component that implements the IService interface

NOTE The IService interface is specified in clause

5.2.3.3.

3.2.40 simple field

field of a type that maps directly to a primitive type

3.2.41 simulation environment

platform implementing the standard E-40-07 services (event manager, link

registry, logger, resolver, scheduler and time keeper) and the ISimulator interface

3.2.42 simulation event

call to an entry point by either scheduler or event manager

NOTE The term “event” is synonymous.

3.2.43 simulation time

relative time since start of simulation

3.2.44 simulator

collection of services and hierarchy of model instances together with a simulation

environment

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

17

3.2.45 simulation

single execution of a simulator

3.2.46 simulation service

service instance resolvable by name in the global scope of the simulation

environment

3.2.47 source

component that owns one or more references, one or more event links, or one or

more output fields

NOTE The term “source component” is synonymous.

3.2.48 source component

See source

3.2.49 target

component that implements one or more interfaces, provides one or more event

sinks, or one or more input fields

NOTE The term “target component” is synonymous.

3.2.50 target component

see “target”

3.2.51 time keeper

component that implements the ITimeKeeper interface

NOTE The ITimeKeeper interface is specified in clause

5.3.2.

3.2.52 value

state of a value type

3.2.53 value type

set of values which a variable can possess

3.2.54 Zulu time

the computer clock time, also called wall clock time

3.3 Abbreviated terms

For the purpose of this Standard, the abbreviated terms and symbols from ECSS-

S-ST-00-01 and the following apply:

Abbreviation Meaning

DES Discrete-Event Simulation

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

18

Abbreviation Meaning

SMDL Simulation Model Definition Language

SMP Simulation Modelling Platform

URI Uniform Resource Identifier

URL Uniform Resource Locator

UUID Universally Unique IDentifier

3.4 Nomenclature

The following nomenclature applies throughout this document:

a. The word “shall” is used in this Standard to express requirements. All the

requirements are expressed with the word “shall”.

b. The word “should” is used in this Standard to express recommendations.

All the recommendations are expressed with the word “should”.

NOTE It is expected that, during tailoring,

recommendations in this document are either

converted into requirements or tailored out.

c. The words “may” and “need not” are used in this Standard to express

positive and negative permissions, respectively. All the positive

permissions are expressed with the word “may”. All the negative

permissions are expressed with the words “need not”.

d. The word “can” is used in this Standard to express capabilities or

possibilities, and therefore, if not accompanied by one of the previous

words, it implies descriptive text.

NOTE In ECSS “may” and “can” have completely

different meanings: “may” is normative

(permission), and “can” is descriptive.

e. The present and past tenses are used in this Standard to express statements

of fact, and therefore they imply descriptive text.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

19

4
Principles

4.1 Objectives

The main objective of this standard is to enable the effective reuse of simulation

models and applications within and between space projects and their

stakeholders. In particular, the standard supports model reuse across different

simulation environments and exchange between different organizations and

missions.

The portability of models between different simulation environments is

supported by defining a standard interface between the simulation environment

and the models. Models can therefore be plugged into a different simulation

environment without requiring any modification to the model source code.

The portability of models between different operating systems and hardware

takes into consideration dependencies such as avoiding calls to operating specific

APIs or use of hardware specific features. The guidelines to the model developer,

on how to avoid developing models with such dependencies, is outside the scope

of this standard.

4.2 Common Concepts and common types

The main purpose of SMP is to promote platform independence, interoperability

and reuse of simulation models. This is done by defining;

• Common Concepts: All SMP models fulfil common high-level concepts

addressing fundamental modelling issues. This enables the development

of models on an abstract level, which is essential for independence from

simulation environments and reuse of models;

1. Common Type System: All SMP models are built upon a common type

system. This enables different models to have a common understanding of

the syntax and semantics of basic types, which is essential for

interoperability between different models.

In other words, models are using common concepts and a common type system

to become interoperable. Thus, models ‘live’ in between these two common

layers as shown in Figure 4-1.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

20

Figure 4-1: Common Concepts and Type System

4.3 Architecture

The SMP architecture covers two types of components;

• Simulation Models provide application specific behaviour;

• Simulation Environments provide Simulation Services.

This architecture is depicted in Figure 4-2.

Simulation

Model 1 Model 2 Model N

Simulation Environment

Simulation Services

Scheduler Time Keeper Logger

Event Manager

…

Link Registry Resolver

Figure 4-2: SMP Architecture

An SMP compliant simulation environment provides the following six

simulation services:

• Logger: Allows logging messages (see clause 5.3.1);

• Time Keeper: Provides the four different SMP time kinds (see clause 4.4

and 5.3.2);

• Scheduler: Allows calls of entry points based on timed or cyclic events (see

clause 5.3.3);

• Event Manager: Provides mechanisms for global asynchronous events (see

clause 5.3.4);

SMP: Common Concepts

Model A
Model B

SMP: Common Type System

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

21

• Resolver: Provides the ability to get a reference to any model within a

simulation (see clause 0);

• Link Registry: Maintains a list of the links between model instances (see

clause 5.3.6).

In addition, it supports other concepts laid out in this standard via some

dedicated interfaces:

• Simulation state machine controlling interface (see clause 4.5 and 5.3.7);

• Interfaces allowing Self-persistence as described in clause 4.8 (see also

IStorageReader in clause 5.3.8.1 and IStorageWriter in clause 5.3.8.2);

• Publication: A set of interfaces allowing models to publish their state to the

simulation environment (see clause 5.3.9);

• Type registry: A registry allowing components to register types that later

can be used for publication (see clause 5.3.10);

• Component Factory: Ability to create components via a factory (see clause

5.3.10.7).

The arrows in Figure 4-2 indicate interaction between components. In SMP,

communication is performed via interfaces. Two different types of interfaces can

be identified in this architecture:

• Interfaces between components and the Simulation Environment, and

• Inter-component communication interfaces.

4.4 Time handling principle

SMP defines four different time scales, referred to as time kinds (see clause 5.1.2

for exact specification):

• Simulation Time: Relative time since start of simulation, starting at 0 when

the simulation is setup.

• Zulu Time: Zulu Time is the computer clock time, also called wall clock

time.

• Epoch Time: The absolute time of the simulation.

• Mission Time: Mission time is a relative time, i.e. it measures elapsed time

from a mission specific point in time.

SMP defines both Epoch and Mission Time as a fixed offset from Simulation

Time. The Offset is set via calls to the SMP time keeper service and the two time

kinds progress linearly with Simulation time. SMP does not define how

Simulation time progress with respect to Zulu time. Typical examples of such a

correlation is:

• Real‐Time: The simulation time progresses with real-time, where real‐

time is typically defined by the computer clock.

• Accelerated: The simulation time progresses relative to real‐time using a

constant acceleration factor. This factor can be larger than 1.0, which

relates to ʺfaster than real‐timeʺ, smaller than 1.0, which means ʺslower

than real‐timeʺ, or 1.0, which coincides with real‐time.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

22

• Free Running: The simulation time progresses as fast as possible, and is

not related to real‐time. Typically, the speed is coordinated with the timed

events of the scheduler, which underlines the close relationship between

these two services (Time Keeper and Scheduler).

SMP does not mandate which of these modes a simulation environment

supports.

4.5 Simulation lifecycle

Any SMP simulation goes via a lifecycle as defined in Figure 4-3. The simulation

environment is responsible to ensure that this state diagram is followed. It is

controlled via the ISimulator interface (see clause 5.3.7).

Figure 4-3: SMP State machine

Each state in Figure 4-3 has its own purpose and behaviour as explained in Table

4-1. Notice that some state transitions are automatically performed by the

Simulation Environment as indicated in Figure 4-3, while others need explicit

calls to the ISimulator interface.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

23

ECSS-E-ST-40-07_1440001

Table 4-1: Overview of simulation states

Name Description

Building In Building state, the model hierarchy is created. In this state, Publish() and

Configure() can be called any time to call the corresponding Publish() and

Configure() operations of each component.

Connecting In Connecting state, the simulation environment traverses the model hierarchy and

calls the Connect() method of each component.

Initialising In Initialising state, the simulation environment executes all initialization entry

points in the order they have been added to the simulator using the ISimulator

AddInitEntryPoint() method (see 5.3.7).

Standby The simulation environment does not progress simulation time. Only entry points

registered relative to Zulu time are executed.

Executing The simulation environment does progress simulation time. Entry points registered

with any of the available time kinds are executed.

Storing In Storing state, the simulation environment first stores the values of all fields

published with the State attribute to storage (typically a file). Afterwards, the

Store() method of all components (Models and Services) implementing the optional

IPersist interface is called, to allow custom storing of additional information.

Restoring In Restoring state, the simulation environment first restores the values of all fields

published with the State attribute from storage. Afterwards, the Restore() method

of all components implementing the optional IPersist interface is called, to allow

custom restoring of additional information.

Reconnecting In Reconnecting state, the simulation environment makes sure that models that

have been added to the simulator after leaving the Building state are properly

published, configured and connected.

Exiting In Exiting state, the simulation environment is properly terminating a running

simulation.

Aborting In this state, the simulation environment attempts a simulation shut-down,

whereby the simulation can stop executing as the users expect, without guaranties

for actual release of resources.

4.6 Simulation method

4.6.1 Discrete-event simulation (DES)

SMP is built on discrete-event simulation (DES) theory where the behaviour of a

system is modelled as a discrete sequence of events in time. Each event that

marks a change in the state of the systems occurs at a particular instant in time.

The simulation can jump in time from one event to the next since no change in

the system occurs between consecutive events.

The main elements in SMP that support this approach are:

• The simulation components schedule EntryPoints (see clause 5.2.7.1) on

the SMP scheduler (see clause 5.3.3) for execution of events.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

24

• The Simulation state is captured in the persisted data.

4.6.2 Parallelization and distribution

SMP assumes a single scheduler executing its events in sequence. All components

are loaded inside the same address space allowing direct communication

between them. The standard however does not prevent parallelization or

distribution to be built into layers on top of the standard.

4.6.3 Inter component communication

4.6.3.1 Overview

SMP supports the following main method of communication between

components:

• Direct interface based communication

• Data flow based communication

• Event based communication

4.6.3.2 Interface based communication

An interface‐based design adds interfaces as the standard mechanisms for inter-

model communication. This isolates the definition of an interface (the “contract”)

from its implementation. In an interface‐based design, a model provides any

number of interfaces. An Interface defines a contract between models. Every

model implementing the interface provides all the functionality of the interface,

so that every model, which consumes this interface can rely on the interface

implementation. As interfaces are a mechanism to de‐couple models, they do not

give access to fields, but only to operations. With special operations (i.e. use of

Properties. See definition 3.2.33 "property") that read or write a single value,

access to fields can be added.

4.6.3.3 Data flow based communication

4.6.3.3.1 Overview

In a data flow based communication, two components exchange the value of a

field. The Provider component transfers an Output field value into an Input field

of the Consumer component. The Output field is said to be connected to the Input

field through a Dataflow connection.

The dataflow communication can be automatic, i.e. whenever the Output field is

updated by its owning component, the value is immediately propagated to the

connected Input field. The output fields that take part in an automatic data flow

based communication implement IOutputField where the IsAutomatic() method

returns true when called (see 5.2.11.7).

The dataflow communication can be scheduled, i.e. when the Output field is

updated by its owning component, the value is not automatically propagated to

the connected Input field. The transfer is only performed on request, e.g.

Commented [HTP1]: CR SPB-11

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

25

cyclically by the Simulation Environment, in scheduled simulation events.

Hence, the “scheduled” terminology for this kind of dataflow transfer. The

output fields that cannot perform automatic dataflow transfer implement

IOutputField where the IsAutomatic() method returns false when called (see

5.2.11.7).

Both scheduled and automatic dataflow transfers are possible because SMP does

not mandate the use of the one or of the other form. Furthermore, it does not

mandate whether an Input field performs any specific action after it has been

updated. An Input field can be implemented in a way that it notifies its

containing model about a change, which can be used to trigger certain behaviour

in the Consumer component.

4.6.3.3.2 Data types consideration

When two fields are involved in a dataflow connection, compatibility of the field

types ensures correct transfer of data between the provider model and the

consumer model.

Two levels of type compatibility are specified for the fields:

a. Strict compatibility: both fields are typed by the same type as identified by

their type UUID published in the Type Registry. In this case, it is obvious

that the fields can be connected via a dataflow connection.

b. Equivalence: the types are equivalent as per their semantics or physical

representation. For example, when type 1 is a user-defined type Voltage

mapped on a Smp::Float64 and type 2 is an user-defined type Tension

mapped on Smp::Float64. As both type 1 and type 2 are Smp::Float64, they

are said “equivalent”. Dataflow connection is allowed as there is no issue

to transfer information between type 1 and type 2.

4.6.3.4 Event Based communication

For an event‐based design the components are modelled using Event Sinks (see

5.2.6.1) and Event Sources (see 5.2.6.2). Events issued by the source are received

by all sinks subscribed to receive the corresponding event.

4.7 Models, Services and Components

4.7.1 Objects

An object is the base class for all SMP elements. It provides the basic features of

a name, description and parent to all SMP elements. This implies that all SMP

elements are organized in a hierarchical structure and always able to traverse

upwards towards its root. The elements inheriting directly from Object are:

• Entry Points (IEntryPoint) as void operations that can be called by the

scheduler and event manager services;

• Entry Point Publisher (IEntryPointPublisher) for publishing of entry

points;

Commented [HTP2]: Clarification added because of CR SPB-

11

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

26

• Event Sinks (IEventSink) and Event Sources (IEventSource) for event

based communication between objects;

• Composites (IComposite) and Containers (IContainer) to build the object

hierarchy;

• Collection (ICollect) allowing to collect SMP elements in a collection;

• References (IReference) allowing objects reference other components;

• Operations (IOperation) for callable function.

• Properties (IProperty) for data objects accessed through a getter and/or a

setter operation;

• Components (IComponent) implementing the simulation behaviour;

• Types (IType) to be used for the definition of fields, properties, operation

parameters and operation return values;

• Factory (IFactory) that creates components;

• Persistent Objects (IPersist) that can store and restore their state. IPersist is

the basis for the following important elements:

− Fields (IField) to hold the simulation state and data;

− Failures (IFailure) to allow objects to represent a failure in a system.

Figure 4-4: Object mechanisms

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

27

4.7.2 Components

Figure 4-5: Overview of components hierarchy

The functionality of an SMP based simulator is implemented in elements that

implement the IComponent (see 5.2.3.1) interface. A component represents an

implementation of a self-contained feature with well-defined interfaces to other

components. At initialization time, a simulation is built by assembling a set of

instances of components. In addition, to implementing the IComponent interface,

a number of additional optional component mechanisms are specified (see Figure

4-6):

• Component aggregation (IAggregate),

• Inter-component events (IEventProvider and IEventConsumer),

• Dynamic invocation (IDynamicInvocation),

• Link management features (ILinkingComponent),

See clause 5.2 for details on Component Mechanisms.

The Simulator itself is an object, in particular a composite. All its direct children

are components, namely models and services.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

28

Figure 4-6: Component Mechanisms

All SMP components goes via a lifecycle as defined in Figure 4-7. Each

component is responsible to ensure that this state diagram is followed. It is

controlled via the IComponent interface (see clause 5.2.3.1).

Figure 4-7: Component State machine

Each state in Figure 4-7 has its own purpose and behaviour as explained in Table

5-2.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

29

4.7.3 Factories

A Factory is an Object that creates Components. The type of the Component

instantiated by the Factory is identified by a Universally Unique Identifier

(UUID). The UUID is a 128-bit number which for practical purposes is unique,

without depending for uniqueness on a central registration authority or

coordination between the parties generating them. The purpose of the Factory is

to hide the implementation details of how a Component is instantiated. For

example, the base class of the Component implementation is hidden by the

Factory.

A Factory is an Object that implements the IFactory interface. The Factory is

registered with the simulator by calling the ISimulator::RegisterFactory method.

Instances of the Component identified by the Component’s UUID can then be

created by calling the ISimulator::CreateInstance method which uses the

registered Factory to instantiate the Component.

4.7.4 Models and Services

Two main flavours of components are specified by SMP: Models and Services.

The main differences are:

• Models implement the IModel interface while Services implement the

IServices interface. Both interfaces are empty and do not add any

additional capabilities, but the difference allows to efficiently differentiate

models and services.

• Models are added to the simulation in a hierarchical tree, while services

live in the global scope of the simulation.

• The Models can be fallible by implementing the IFallibleModel interface

but Services are not.

• Models are added to the Simulations via the ISimulator AddModel

method, while Services are added via the AddService method.

• It is possible to get a reference to a service from the ISimulator interface

via the GetService method by its name. This implies that all components

in a simulation can easily obtain a reference to a service.

• Services can only be added to the simulation during the first startup in

building phase, while models can be dynamically added also later in

stand-by state.

The mandatory features of an SMP runtime environment are specified as

services. See clause 5.3 and Figure 4-5.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

30

4.8 Publication, Types and Persistence

SMP components publish their state information to the simulation environment

to:

• Allow visualization of the simulation state.

• Allow the simulation environment to interact with the state of the

component.

• Allow the simulation environment to store and restore the state of the

component via the SMP persistence mechanism.

Objects that can be published include Fields (data objects), Properties (data

objects updated through dynamic invocation) and Operations (dynamic

invocation).

Fields, Properties, Operation parameters (in and return parameters) are

published again Types (IType) registered with the Type Registry

(ITypeRegistry). Each Type is identified uniquely by an UUID. A SMP value

Type can be:

• A Primitive Type: all types listed in the PrimitiveTimeKind enumeration

(see Table 5-1). Primitive type UUIDs are constants defined in

[SMP_FILES].

• Simple type: type that can be assimilated to a numerical Primitive type.

This groups all the user-defined Integer, Enumeration

(IEnumerationType) and Float types. Each Simple type is identified by one

single UUID.

• String type: type that represents a character string with a maximum length.

The GetPrimitiveTypeKind method called on a String type object returns

String8. Each String type is identified by one single UUID.

• Array type (IArrayType): type that represents a sequence of items typed

by the same type. The item type can be any possible type. A particular

array is a simple type array that contains simple type or primitive type

items. The Array Type is thus identified by its own UUID and the UUID

of its item type.

• Structure type (IStructureType): type that represents a Structure composed

of a number of Fields. The Structure Type is thus identified by its own

UUID and all the type UUIDs of its contained Fields.

• Class (IClassType) type: is a specialized Structure type. The Class Type is

identified by its own UUID, all the type UUIDs of its contained Fields and

the UUID of its base class type (i.e. the base class it inherits from).

A complex type designates a type that is neither a primitive type nor a simple

type nor a simple type array.

The simulation environment has to resolve the type associated with a published

object by searching for the UUIDs (more than one UUIDs need to be resolved for

a complex type) defining the type in the Type Registry at publication time.

All published fields are annotated with a set of attributes provided by the SMP

component to the Simulation Environment:

Commented [HTP3]: CR OHB-19, CR OHB-26

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

31

• A View Kind attribute indicating which kind of user this information is

intended for. The values and intended interpretation of these values by the

Simulation Environment is given in Table 4-2.

• If the field is part of the breakpoint or not (State attribute of field).

• If it is an Input, or an Output, or an Input/Output field (Input and Output

attributes of field).

Additional meta information can also be provided via the SMP Catalogue (see

5.4.1).

Table 4-2: ViewKind values

Name Intended interpretation

VK_None The element is not made visible to the user.

VK_Debug The element is made visible for debugging purposes. The element is not

visible to end users. If the simulation environment supports the selection of

different user roles, then the element is intended to be visible to ʺDebugʺ

users only.

VK_Expert The element is made visible for expert users.

The element is not visible to end users. If the simulation environment

supports the selection of different user roles, then the element is intended to

be visible to ʺDebugʺ and ʺExpertʺ users.

VK_All The element is made visible to all users. (this is the default)

From the list of published fields, the simulation environment is able to determine

the state of a simulation and store it into a breakpoint (or to restore it when

needed). This is called persistence. Persistence of SMP components can be

handled in one of two ways:

• External Persistence: The simulation environment stores and restores the

model’s state by directly accessing the fields that are published to the

simulation environment, i.e. via the IPublication (See 5.3.9.1) interface.

• Self‐Persistence: The component can implement the IPersist (See 5.2.9)

interface, which allows it to perform special operations during store and

restore in addition to external persistence. Typically, self-persistence

allows the persistence of dynamic data structure (e.g. events on the

simulation schedule). Two approaches exist in this case for models to store

their data:

− Its state or parts of it can be stored/restored in the storage that is

provided by the simulation environment via the IStorageReader

(see 5.3.8.1) and IStorageWriter (see 5.3.8.2) interfaces provided by

the simulation environment.

− The component can query the filename and location of the storage

file from the environment via the IStorageReader (see 5.3.8.1) and

IStorageWriter (see 5.3.8.2) interfaces and store additional files in

the same location. This mechanism is usually only needed by

specialised models, for example embedded models that need to load

on‐board software from a specific file.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

32

SMP Runtime Environments supports both External and Self-Persistence. For

models and components, only external persistence (via the Store() and Restore()

methods of the ISimulator interface) is a mandatory feature, while self-

persistence is an additional optional mechanism.

4.9 Dynamic invocation

SMP supports dynamic invocation allowing interaction between simulation

environments and simulation models. This is typically used during execution

allowing to control a simulation via scripting. It is a mechanism that makes the

operations of a component available via a standardised interface.

In order to allow calling a named method with any number of parameters, a

request object is created which contains all information for the method

invocation. This request object is also used to transfer back a return value. The

dynamic invocation concept standardises the request objects (IRequest interface,

see 5.2.8.2). In addition, two methods are provided as part of IOperation to create

and delete request objects. Getting an IOperation object can be done from either

the IDynamicInvocation or the IPublication interface using the GetOperation

method. A reason for offering the call in different interfaces could be to minimise

the number of round‐trips between a client (that calls a method) and a component

that implements IDynamicInvocation:

• Creation of request objects from a client component that is located outside

of the Simulation Environment can call first the GetOperation method of

IDynamicInvocation to obtain the Operation object, which is followed by

the CreateRequest method of IOperation.

• But for example, creation of request objects from a client component that

is part of the Simulation Environment can use instead the GetOperation

method of IPublication.

The sequence diagram in Figure 4-8 shows all steps involved when using the

IOperation CreateRequest() and DeleteRequest() methods.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

33

Figure 4-8: Sequence of calls for dynamic invocation of an Operation

The sequence diagram in Figure 4-8, using a Client component and a Model

implementing IDynamicInvocation, contains the following steps:

1. The Client calls the GetOperation() method of the Model to obtain the

Operation that the Client wants to invoke.

2. The Client calls the CreateRequest() method of the Operation to create a

request object for the Operation.

3. The Operation creates a Request object for the operation, using the

published operation signature.

4. The Operation returns the Request object via its IRequest interface to the

Client.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

34

5. The Client calls the SetParameterValue() method of the Request object to

set parameters to non‐default values.

6. The Client calls the Invoke() operation of the Operation to invoke the

corresponding operation.

7. The Operation may delegate the Invoke handling to the Model Invoke

method (Model should be the parent object of Operation). Delegation is

possible if the Operation object has been created and published by Model.

8. The Model calls the GetParameterValue() method of the Request object to

get operation parameters.

9. The Model calls its internal method that corresponds to the invoked

operation.

10. The Model calls the SetReturnValue() operation of the Request object to set

the return value.

11. The Model and the Operation return control to the Client.

12. The Client calls the GetReturnValue() operation of the Request object to

get the return value.

13. The Client calls the DeleteRequest() method of the Operation to delete the

Request object.

14. The Operation destroys the request object.

15. The Operation returns control to the client.

Dynamic Invocation is also used for calling the Property getter and setter

operations. The request object GetType method can be used to query the request

type, which can be Invoke (i.e. request is related to an operation like described

above), Get (i.e. request is related to a property getter) and Set (i.e. request is

related to a property setter). The sequence diagram for invoking a property setter

is shown in Figure 4-9.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

35

Figure 4-9: Sequence of calls for dynamic invocation of a Property Setter

The sequence diagram in Figure 4-9, using a Client component and a Model

implementing IDynamicInvocation, contains the following steps:

1. The Client calls the GetProperty() method of the Model to obtain the

Property that the Client wants to set.

2. The Client calls the SetValue() method of the Property.

3. The Property calls the SetParameterValue() method of the internal

Request object, which should correspond to the property setter, to

set the new value.

4. The Property calls the Invoke() operation of the Model to invoke the

corresponding method.

5. The Model calls the GetName() and GetType() methods of the

request object to determine the property to set.

6. The Model calls the GetParameterValue() operation of the Request

object to get the setter parameter.

7. The Model calls its internal method that corresponds to the property

setter.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

36

8. The Model return control to the Property.

9. The Property returns control to the Client.

4.10 Components meta data

4.10.1 Catalogue

Meta data for SMP objects are stored in XML documents called the Catalogue.

Having the SMP objects described in XML catalogues allows taking benefit from

the XML language, for example:

• Generation of the catalogues from UML diagrams

• Generation of models documentation from the catalogue

• Generation of models skeleton code from the catalogue (See clause 6.1).

The content of a catalogue is hierarchically ordered in namespaces that may be

nested. Inside each namespace many uniquely named instance of the following

SMP features can be found:

• Types definitions including:

− Constants, Fields and Properties

− Exceptions

− Data Types

• Interfaces specifications

• Component and model specifications including:

− Event Sinks and sources

− Fields and properties

− Entry Points

− Operations

− Containment and inheritance

− Interfaces, associations and references

• Attributes that can be attached to elements:

− Fallible and Forcible

− Min and Max limits for types

− View/ViewKind information determines the visibility of the

element

For all the elements above, meta data can be added like the description of each

element or the engineering unit for type definitions. From this, it can be seen that

the Catalogue definition provides a rich capability to describe the complete

external interface of all SMP components. In fact, the interfaces as described in

the SMP standard can as well be expressed in a catalogue. (See ecss.smp.smpcat

as referenced in clause 5.4.1.2.1a).

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

37

4.10.2 Package

A package describes how implementations of types defined in catalogues are

packaged. This includes not only models, which may have different

implementations in different packages, but as well all other user‐defined types.

4.10.3 Configuration

A configuration document allows specifying arbitrary field values of component

instances in the simulation hierarchy. This can be used to initialise or reinitialise

the simulation.

4.11 Model exchanges considerations

4.11.1 Overview

One of the primary goal of SMP is to allow model exchanges based on the

Package concept.

Model source code exchange are considered easier than binary exchange as some

considerations are important to be taken into account when exchanging binary

models.

The mapping of a Package to C++ defines which symbols a static or dynamic

library of SMP has to expose. This enables binary distribution of models, where

only the catalogues and/or header files (for the compiler) and the libraries (for

the linker) are provided, but no implementation source code. Nevertheless,

binary compatibility depends on a number of other constraints, which may even

vary between operating systems and compilers.

4.11.2 SMP Bundle

For distribution of a binary package SMP bundles are used. A SMP Bundle is an

archive (e.g. a tar file on Linux, or a zip file on Windows) which provides the

following elements:

• One or more SMDL packages.

• One or more package dynamic libraries, directly related to the SMDL

packages.

• One or more package static libraries, directly related to the SMDL

packages.

• All the SMP catalogues related to the SMDL packages.

• Optionally include other artefacts (SMDL configurations) and/or the

related source code for all or parts of the included SMDL packages.

The related structure of folders and files within the bundle, and the names of

folders and files are not standardised.

The added value of a Bundle is the additional SMP.MF Bundle Manifest file.

This Manifest is an ASCII file (aligned with the OSGi bundle manifest format)

which contains key-value pairs with important meta data for the bundle.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

38

5
Interface requirements

5.1 Common

5.1.1 Primitive Types specification

ECSS-E-ST-40-07_1440002

a. All SMP fields, parameters, constants and properties shall be of either a

Primitive Type as per PrimitiveTypes.h in [SMP_FILES], or a User Defined

Type published to the Type Library.

NOTE This specification is compliant with the types

specified in Table 5-1.

ECSS-E-ST-40-07_1440003

b. Mapping between SMP types, XML types and ISO/ANSI C++ types shall

be as per Table 5-1.

NOTE C++ mapping for primitive types is provided by

PrimitiveTypes.h in [SMP_FILES].

ECSS-E-ST-40-07_1440004

Table 5-1: Primitive Types

SMP Type XML mapping C++ mapping Description

Char8 xsd:string char 8 bit character type to represent textual

characters

String8 xsd:string const char* 8-bit character strings based on UTF-8

encoding, which is commonly used in XML

Bool xsd:boolean bool Bool is a binary logical type with values

true or false

Int8 xsd:byte int8_t 8 bit signed integer

UInt8 xsd:unsignedByte uint8_t 8 bit unsigned integer

Int16 xsd:short int16_t 16 bit signed integer

UInt16 xsd:unsignedShort uint16_t 16 bit unsigned integer

Int32 xsd:int int32_t 32 bit signed integer

UInt32 xsd:unsignedInt uint32_t 32 bit unsigned integer

Int64 xsd:long int64_t 64 bit signed integer

UInt64 xsd:unsignedLong uint64_t 64 bit unsigned integer

Float32 xsd:float float IEEE 754 single-precision floating-point

type with a length of 32 bits.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

39

SMP Type XML mapping C++ mapping Description

Float64 xsd:double double IEEE 754 double-precision floating-point

type with a length of 64 bits.

Duration xsd:duration

restricted to days,

hours, minutes and

seconds

int64_t

Duration in nanoseconds.

See 5.1.1c for detailed specification.

DateTime xsd:dateTime int64_t Absolute time in nanoseconds.

See 5.1.1d for detailed specification

ECSS-E-ST-40-07_1440005

c. The Duration type as per Table 5-1 shall be used for specifying a duration,

as follows:

1. It is expressed in nanoseconds;

2. It is stored in a signed 64 bit integer;

3. Positive values correspond to positive durations;

4. Negative values correspond to negative durations.

NOTE 1 Nanoseconds is the lowest level of granularity

supported for time in SMP.

NOTE 2 The duration type allows specifying values

roughly between ‐290 years and 290 years.

NOTE 3 The duration type allows expression of relative

time, hence “negative duration” implies a

relative time in the past.

ECSS-E-ST-40-07_1440006

d. The DateTime type as per Table 5-1 shall be used for absolute time values,

as follows:

1. It is expressed in nanoseconds, relative to the reference time of

01.01.2000, 12:00, Modified Julian Date (MJD) 2000+0.5;

2. It is stored in a signed 64 bit integer;

3. Positive values correspond to times after the reference time;

4. Negative values correspond to time values before the reference

time.

NOTE 1 Nanoseconds is the lowest level of granularity

supported for time in SMP.

NOTE 2 DateTime allows specifying time values roughly

between 1710 and 2290.

ECSS-E-ST-40-07_1440007

e. A SMP Simple Field shall be of a type that maps directly to a Primitive

Type.

Commented [HTP4]: CR OHB-37

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

40

ECSS-E-ST-40-07_1440008

f. The AnySimple type shall hold a Primitive Type as per AnySimple.h in

[SMP_FILES].

ECSS-E-ST-40-07_1440009

g. The AnySimpleArray type shall be an array of AnySimples as per

AnySimpleArray.h in [SMP_FILES].

5.1.2 Time Kinds

ECSS-E-ST-40-07_1440010

a. Simulation time shall be used for keeping the progress of time with respect

to the start of the simulation, with the following properties:

1. Simulation time is a non-negative Duration type;

2. Simulation time is initialised to 0 at the beginning of the Building

state as per Table 4-1;

3. Simulation time changes only when:

(a) The simulation is progressing in the Executing state;

(b) As a result of a restore of a breakpoint in restoring state;

(c) As a result of ITimeKeeper SetSimulationTime.

4. It is not specified how quickly simulation time is progressed when

the simulator is in Executing state;

5. Simulation time is stored and restored in breakpoints;

ECSS-E-ST-40-07_1440011

b. Mission time shall be used for keeping the progress of relative time with

respect to a Mission Start time, with the following properties:

1. Mission time is initialised to 0 at the beginning of the Building state

as per Table 4-1;

2. Mission Time is calculated as a fixed offset between the current

Epoch time and the given Mission start time according to the

following formula: MissionTime = EpochTime – MissionStartTime;

3. The Mission time progresses with Epoch time;

4. The Mission time offset from Epoch time, the Mission start time

changes by calls to:

(a) the ITimeKeeper SetMissionTime method;

(b) the ITimeKeeper SetMissionStartTime method.

5. Mission time only progresses when the simulation environment is

in Executing state;

6. Mission time is stored and restored in the storing and restoring

states;

7. Mission time is expressed as a Duration type.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

41

ECSS-E-ST-40-07_1440012

c. Zulu time shall be time dependent on the system clock of the host machine

or an external clock source expressed, with the following properties:

1. Zulu time is expressed as a DateTime type;

2. Zulu time is not stored and restored in breakpoints.

NOTE High Real Time systems sometimes use an

external clock source instead of the local system

clock of host machine.

ECSS-E-ST-40-07_1440013

d. Epoch time shall be time dependent on the Simulation time with a fixed

offset, with the following properties:

1. Epoch time is expressed as a DateTime type;

2. Epoch time is stored and restored in breakpoints.

NOTE Epoch time progresses with Simulation time.

<<new>>

e. Epoch time may be changed with the ITimeKeeper SetEpochTime method.

NOTE 1 ITimeKeeper SetEpochTime is defined in clause

5.3.2.

NOTE 2 Mission Time is affected by the ITimeKeeper

SetEpochTime method

5.1.3 Path string

ECSS-E-ST-40-07_1440014

a. An SMP path string shall be a representation of a valid route from an SMP

object in the hierarchy to another SMP object.

NOTE 1 Examples of valid path strings:

• /Satellite/Receivers/Receiver1

• /Logger

• /Logger/

• ../../Transmitters/Transmitter4

• ./Satellite/../Satellite//Receivers/

NOTE 2 Examples of invalid path strings:

• “/..”, parent of root object do not exist

• “…”, meaning of triple dots not defined.

ECSS-E-ST-40-07_1440015

b. Both Absolute and Relative path strings shall be supported and

distinguished as follows:

1. Paths starting with a delimiter are absolute paths from the

simulation root object.

Commented [HTP6]: CR OHB-43

Commented [HTP7]: CR OHB-43

Commented [HTP8]: CR OHB-43

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

42

2. Paths not starting with a delimiter are relative paths from the

current object.

ECSS-E-ST-40-07_1440016

c. The delimiter between component names in the path string shall be ”/”.

ECSS-E-ST-40-07_1440017

d. The delimiters between components and its children objects that are not

components shall be either “/” or “.”.

NOTE This allows “Component.Operation()” to be

used as path.

ECSS-E-ST-40-07_1440018

e. Trailing delimiters shall be allowed in path strings.

ECSS-E-ST-40-07_1440019

f. It shall be possible to reference the parent object by the “..” string.

ECSS-E-ST-40-07_1440020

g. It shall be possible to reference the current object by:

1. the “.” string

2. an empty string “”

NOTE This allows the following to be used as path to

operations of current object:

• .Operation()

• ./Operation()

ECSS-E-ST-40-07_1440021

h. The path string shall allow an element in an array to be identified by “[n]”

trailing the array name where “n” is the zero based element index, with no

delimiter.

NOTE This allows the following to be used for

addressing element 2 of an array “MyArray” in

MyModel:

• MyModel/MyArray[2]

• MyModel.MyArray[2]

5.1.4 Universally Unique Identifiers (UUID)

ECSS-E-ST-40-07_1440022

a. All SMP types shall have a unique UUID as per Uuid.h in [SMP_FILES].

NOTE 1 The UUID follows the specification from Open

Group

(http://pubs.opengroup.org/onlinepubs/9629399

/apdxa.htm)

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

43

NOTE 2 The UUID is a 128 bit long unique identifier.

NOTE 3 The UUID allows for example to:

• Uniquely identify types defined in

catalogues so that can be bound with

implementations defined within packages.

• Uniquely identify linked elements within a

Catalogue.

5.1.5 Exception specification

ECSS-E-ST-40-07_1440023

a. All SMP exceptions shall inherit from the Exception class as per

Exception.h in [SMP_FILES] providing the following information:

1. The description of the exception;

2. The name of the exception;

3. The exception message;

4. The sender of the exception when the exception originates from an

SMP Object.

NOTE This covers both exceptions defined in this

standard and user defined exceptions.

5.2 Components and Objects interfaces

5.2.1 Object Specification (IObject)

ECSS-E-ST-40-07_1440024

a. All SMP objects shall provide the following features as per IObject.h in

[SMP_FILES]:

1. If the object is not an array element, a name of the object as follows:

(a) Not be empty;

(b) Start with a letter;

(c) Contain only letters, digits, and underscore (ʺ_ʺ);

(d) Not be an ISO/ANSI C++ keyword.

2. If the object is an array element, the name shall be “[i]“ where “i” is

a zero based element index;

3. A description of the object;

4. The parent object as follows:

(a) An IObject pointer to the parent if the object has a parent;

(b) A nullptr if the object does not have a parent.

5. A collection of contained or child objects, each accessed by its name.

NOTE 1 The Object description may be empty.

Commented [HTP10]: For GetChild method added to

IObject

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

44

NOTE 2 All SMP elements inherit from the IObject

interface including:

• Entry Points

• Event Sinks and Sources

• Fields

• Containers

• References

• Failures

• Components

• Composites

• Factories

• Types

• Properties

• Operations

NOTE 3 to item 5.2.1a.1(d): See ISO/IEC 9899:2011 [C11

Standard] and ISO/IEC 14882:2011 [C++11

Standard] for the actual list of keywords.

ECSS-E-ST-40-07_1440025

b. All SMP objects with the same parent that are to be resolved by the

Resolver shall have a unique name.

ECSS-E-ST-40-07_1440026

c. The validity of the SMP name shall be checked when an SMP object is

created, with the following behaviour:

1. If an object with an invalid name is created, it throws a

InvalidObjectName exception as per InvalidObjectName.h in

[SMP_FILES].

<<new>>

d. The Entry Points, Event Sinks, Event Sources, Fields, Properties,

Operations, Containers, References, and Failures that are contained in

respectively an EntryPointPublisher, EventConsumer, EventProvider,

Component, Composite, Aggregate or FallibleModel shall have the

respective object as their parent.

5.2.2 Collection Specification (ICollection)

ECSS-E-ST-40-07_1440027

a. All SMP Collections of SMP elements shall implement the ICollection

interface as per ICollection.h in [SMP_FILES].

ECSS-E-ST-40-07_1440028

b. The ICollection at method shall return the element with the given position

or name, with the following behaviour:

Commented [HTP11]: CR OHB-44

Commented [HTP13]: CR OHB-47

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

45

1. If no element exists with the given position or name, it returns

nullptr.

ECSS-E-ST-40-07_1440029

c. The ICollection size method shall return the number of elements in the

collection.

<<new>>

d. The ICollection empty method shall return true if the collection contains

zero elements, and false otherwise.

<<new>>

e. The ICollection begin method shall return the collection begin iterator.

<<new>>

f. The ICollection end method shall return the collection end iterator.

5.2.3 Component Specification

5.2.3.1 Component (IComponent)

ECSS-E-ST-40-07_1440030

a. All SMP Components shall implement the IComponent interface as per

IComponent.h in [SMP_FILES].

ECSS-E-ST-40-07_1440031

b. The IComponent GetState method shall return the current state of the

component as per ComponentStateKind.h in [SMP_FILES], specified in

Table 5-2.

Commented [HTP14]: CR OHB-44

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

46

ECSS-E-ST-40-07_1440032

Table 5-2: Component states

Name Description

CSK_Created The Created state is the initial state of a component. Component creation

is done by an external mechanism, e.g. by factories.

This state is entered automatically after the component has been created.

This state is left via the Publish() state transition.

CSK_Publishing In Publishing state, the component is allowed to publish features. This

includes publication of fields, operations and properties. In addition, the

component is allowed to create other components.

This state is entered via the Publish() state transition.

This state is left via the Configure() state transition.

CSK_Configured In Configured state, the component has performed initial configuration.

This configuration can be done by external components, or internally by

the component itself, e.g. by reading data from an external source.

This state is entered via the Configure() state transition.

This state is left via the Connect() state transition

CSK_Connected In Connected state, the component is connected to the simulator. In this

state, neither publication nor creation of other components is allowed

anymore. Configuration performed via loading of SMDL configuration

file and/or calling of initialisation entry point are performed in this state.

This state is entered via the Connect() state transition.

This state is left via the Disconnect() state transition or on simulation

termination.

CSK_Disconnected In Disconnected state, the component is disconnected from the simulator,

and all references to it are deleted, so that it can be deleted.

This state is entered via the Disconnect() state transition.

This is the final state of a component, and only left on deletion.

ECSS-E-ST-40-07_1440033

c. The IComponent Publish method shall be used by components to publish

all publishable fields, properties and operations, with the following

argument and behaviour:

1. Argument:

(a) “receiver” giving a pointer to the IPublication instance for the

component.

2. Behaviour:

(a) If the component is not in Created state, then it throws an

InvalidComponentState exception as per

InvalidComponentState.h in [SMP_FILES];

(b) If the component is in Created state, then it enters the

Publishing state;

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

47

(c) After entering Publishing state, it publishes its fields,

properties and operations using the provided receiver

argument;

(d) While in publishing state, it can create new components;

NOTE 1 Components can override the implementation of

operations and properties from their parents,

hence it is possible that the same property and

operation are published multiple times. In this

case, the last call to published overrides the

previous calls.

NOTE 2 Newly created components are in Created state.

The simulator is responsible for the triggering of

state transitions of new components.

ECSS-E-ST-40-07_1440034

d. The IComponent Configure method shall be used to perform initial

configuration of the component, with the following arguments and

behaviour:

1. Arguments:

(a) “logger” giving a pointer to the ILogger instance for the

component, to provide the possibility to log messages during

its configuration;

(b) “linkRegistry” giving a pointer the ILinkRegistry instance for

the component, to provide the possibility to register links.

2. Behaviour:

(a) If the component is not in Publishing state, it throws an

InvalidComponentState exception as per

InvalidComponentState.h in [SMP_FILES];

(b) If the component is in Publishing state, it creates and

configures other features and even other components using

the field values of its published fields as sole source of

configuration information for the creation of such

components;

(c) After completing the configuration actions, the component

enters Configured state.

ECSS-E-ST-40-07_1440035

e. The IComponent Connect method shall allow the components to connect

to the simulator environment and other components, with the following

argument and behaviour:

1. Argument:

(a) “simulator” giving a pointer to the ISimulator interface as per

ISimlator.h in [SMP_FILES] to access services from the

simulation environment.

2. Behaviour:

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

48

(a) If the Component is not in Configured state, it throws an

InvalidComponentState exception as per

InvalidComponentState.h in [SMP_FILES];

(b) If called in Configured state, the component enters Connected

state;

(c) After entering Connected state, it connects to simulation

services used by the component, if any.

NOTE It is guaranteed that all models have been

created, published and configured before the

Connect method of any component is called.

ECSS-E-ST-40-07_1440036

f. The IComponent Disconnect method shall disconnect the component from

the simulation environment and any other components, with the following

behaviour:

1. If the Component is not in Connected state, it throws an

InvalidComponentState exception as per InvalidComponentState.h

in [SMP_FILES];

2. If called in Connected state, the component enters Disconnected

state;

3. After entering Disconnected state, the component disconnects from

simulation services by deleting all references of these services to the

component.

ECSS-E-ST-40-07_1440037

g. The IComponent GetField method shall provide access to the IField

interface for fields of the component, taking the following argument and

behaviour:

1. Argument:

(a) “fullName” giving the path of the field for whom it returns

the IField interface.

2. Behaviour:

(a) If the passed fullName does not exist, it returns nullptr;

(b) If the passed field name exists and it is a field of simple type

it returns its ISimpleField interface;

(c) If the passed field name exists and it is an array field it returns

its IArrayField or ISimpleArrayField interface;

(d) If the passed field name exists and it is a structure field it

returns its IStructureField interface.

NOTE This includes fields of structures and items of arrays.

ECSS-E-ST-40-07_1440038

h. The IComponent GetFields method shall return a collection of the

component fields as per FieldCollection in IField.h in [SMP_FILES].

Commented [HTP15]: CR ESOC/TPZG-2

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

49

ECSS-E-ST-40-07_1440039

i. The IComponent GetUuid method shall return a reference to the UUID of

the component, as per Uuid.h in [SMP_FILES].

<<new>>

j. The IComponent GetSimpleValue method shall return a simple type or a

string type value with the following arguments and behaviour:

1. Argument:

(a) “fullName” giving the path of the simple field or of an item

of a simple array field for which it returns the value.

2. Behaviour:

(a) If the passed fullName does not exist, it throws an

InvalidFieldName exception as per InvalidFieldName.h in

[SMP_FILES];

(b) If the passed fullName exists and it is not a value of simple

type or of a string type, it throws an InvalidFieldName

exception as per InvalidFieldName.h in [SMP_FILES];

(c) If the passed fullName exists and it is a value of simple type

or of a string type, it returns its value as an AnySimple as per

AnySimple.h in [SMP_FILES];

NOTE Simple values can include as well simple array items or

structure simple type sub-fields.

<<new>>

k. The IComponent SetSimpleValue method shall set a simple type value

with the following arguments and behaviour:

1. Argument:

(a) “fullName” giving the path of the simple field or of an item

of a simple array field for which it sets the value;

(b) “value” giving the value to be set as an AnySimple as per

AnySimple.h in [SMP_FILES].

2. Behaviour:

(a) If the passed fullName does not exist, it throws an

InvalidFieldName exception as per InvalidFieldName.h in

[SMP_FILES];

(b) If the passed fullName exists and it is not a value of simple

type or of a string type, it throws an InvalidFieldName

exception as per InvalidFieldName.h in [SMP_FILES];

(c) If the passed value type does not match the type of the target

field, it throws an InvalidFieldValue exception as per

InvalidFieldValue.h in [SMP_FILES];

(d) If the passed fullName exists and it is a value of simple type,

it sets the field value to the value given in the arguments;

NOTE Simple values can include as well simple array items or

structure simple type sub-field.

Commented [HTP16]: CR OHB-33

Commented [HTP17]: CR OHB-33

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

50

<<new>>

l. The IComponent GetSimpleArrayValue method shall return the value of

a simple array with the following arguments and behaviour:

1. Argument:

(a) “fullName” giving the path of the simple array field or of a

simple array value, which can be part of a field, for which it

returns the values;

(b) “values” containing the returned array item values as an

AnySimpleArray as per AnySimpleArray.h in [SMP_FILES];

(c) “length” giving the number of items that the values array can

contain;

(d) “startIndex” giving the start index within the simple array

values from which values are returned.

2. Behaviour:

(a) If the passed fullName does not exist or is not the name of a

simple array field or of a simple array value, it throws an

InvalidFieldName exception as per InvalidFieldName.h in

[SMP_FILES];

(b) If the passed fullName is valid as per (a) and it has a size not

compatible with the requested range as given by the

startIndex and length arguments, it throws an

InvalidArraySize exception as per InvalidArraySize.h in

[SMP_FILES];

(c) If the passed fullName exists and the field is valid with

regards to (a) and (b), it fills in the values argument with the

array item values.

<<new>>

m. The IComponent SetSimpleArrayValue method shall set the value of a

simple array with the following arguments and behaviour:

1. Argument:

(a) “fullName” giving the path of the simple array field or of a

simple array value, which can be part of a field, for which it

sets the values;

(b) “values” containing the array item values to be set as an

AnySimpleArray as per AnySimpleArray.h in [SMP_FILES];

(c) “length” giving the number of items that the values array can

contain;

(d) “startIndex” giving the start index within the simple array

values from which values are to be set.

2. Behaviour:

(a) If the passed fullName does not exist or is not the name of a

simple array field or of a simple array value, it throws an

InvalidFieldName exception as per InvalidFieldName.h in

[SMP_FILES];

(b) If the passed fullName is valid as per (a) and it has a size not

compatible with the requested range given by the startIndex

Commented [HTP18]: CR OHB-33

Commented [HTP19]: CR OHB-33

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

51

and length arguments, it throws an InvalidArraySize

exception as per InvalidArraySize.h in [SMP_FILES];

(c) If one of the passed values has a type that does not match the

type of the target field, it throws an InvalidFieldValue

exception as per InvalidFieldValue.h in [SMP_FILES];

(d) If the passed fullName exists and the field is valid with

regards to (a), (b) and (c), it sets the array item values to the

values argument.

<<new>>

n. The IComponent AddChild method shall add a new child object to the

component with the following arguments and behaviour:

1. Arguments:

(a) “child” giving the child object to add to the component;

(b) “collection” giving the collection under the component to

which the child object is added.

2. Behaviour:

(a) It returns false if the child object is already present in the

given collection;

(b) Otherwise, it returns true if the child object is successfully

added.

<<new>>

o. The IComponent RemoveChild method shall remove a child object from

the component with the following arguments and behaviour:

1. Arguments:

(a) “child” giving the child object to remove from the

component;

(b) “collection” giving the collection under the component from

which the child object is removed.

2. Behaviour:

(a) It returns false if the child object is not present in the given

collection;

(b) It returns false if the given collection does not correspond to

the collection in which the child object was added with the

AddChild method;

(c) Otherwise, it returns true if the child object is successfully

removed.

NOTE It is not required to call this method when the

component and the collections are destroyed.

<<new>>

p. The IComponent IsChildInCollection method shall check if a name is

registed as a child object under the component with the following

arguments and behaviour:

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

52

1. Arguments:

(a) “child” giving the child object name to check;

(b) “collection” giving the collection under the component in

which the child name is checked.

2. Behaviour:

(a) It returns the child IObject pointer if a child object with the

given name is found in the given collection;

(b) Otherwise, it returns nullptr if no such child object is found.

5.2.3.2 Model (IModel)

ECSS-E-ST-40-07_1440040

a. All SMP Components which contain the implementation of the

simulations functional behaviour shall implement the IModel interface as

per IModel.h in [SMP_FILES].

5.2.3.3 Service (IService)

ECSS-E-ST-40-07_1440041

a. All SMP components which implement a service to be used by other SMP

models shall implement the IService interface as per IService.h in

[SMP_FILES].

NOTE This includes both standard services specified in

this standard and user defined services.

ECSS-E-ST-40-07_1440042

b. All SMP components which implement the IService interface shall ensure

their state is fully persisted in a simulation breakpoint and restored on

Restore.

5.2.3.4 Linking Component (ILinkingComponent)

ECSS-E-ST-40-07_1440043

a. All SMP Components which require dynamic removal of links at runtime

shall implement the ILinkingComponent interface as per

ILinkingComponent.h in [SMP_FILES].

ECSS-E-ST-40-07_1440044

b. The ILinkingComponent RemoveLinks method shall remove all links to

the passed component stored in the LinkingComponent itself, taking the

following argument:

1. “target” giving the reference to the linked component.

NOTE The result of this removal is that the

LinkingComponent can no longer access the

target component removed.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

53

5.2.4 Aggregation

5.2.4.1 Aggregation interface (IAggregate)

ECSS-E-ST-40-07_1440045

a. All SMP Components which are referencing other components shall

implement the IAggregate interface as per IAggregate.h in [SMP_FILES].

NOTE The IReference interface is the referencing

mechanism used by the aggregation interface.

ECSS-E-ST-40-07_1440046

b. The IAggregate GetReference method shall return the reference matching

the given name, with the following argument and behaviour:

1. Argument:

(a) “name” giving name identifying the reference.

2. Behaviour:

(a) If no reference matching the given name is found, it returns a

nullptr reference.

NOTE The returned IReference object has the

IAggregate as its parent.

ECSS-E-ST-40-07_1440047

c. The IAggregate GetReferences method shall return an ordered collection

of all references, with the following behaviour:

1. If the aggregation does not hold any reference, it returns an empty

collection;

2. If at least one reference is contained, it returns a collection ordered

according to the order in which the references have been added to

the aggregate.

NOTE Returned IReference objects have the IAggregate

as their parent.

5.2.4.2 Reference Interface (IReference)

ECSS-E-ST-40-07_1440048

a. All references returned by an aggregate shall implement the IReference

interface as per IReference.h in [SMP_FILES].

NOTE A reference is a named object.

ECSS-E-ST-40-07_1440049

b. The IReference GetComponent method shall return a reference to the

component matching the given name with the following argument and

behaviour:

1. Argument:

Commented [HTP20]: CR OHB-47

Commented [HTP21]: CR OHB-47

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

54

(a) “name” giving the name of the referenced component to be

returned.

2. Behaviour:

(a) If no component matching the given name argument is found,

it returns a nullptr reference;

(b) If multiple components matching the given name argument

are found, it returns one of the references.

NOTE Multiple components with the same name, but

with a different parent (and hence path) can end

up in a single reference. In this case, retrieving a

component by name is not safe, as any of the

components that match the name can be

returned.

ECSS-E-ST-40-07_1440050

c. The IReference GetComponents method shall return an ordered collection

of all the referenced components with the following behaviour:

1. If no component is referenced, it returns an empty collection;

2. If at least one component is contained, it returns a collection ordered

according to the order in which the components have been added

using the AddComponent method.

ECSS-E-ST-40-07_1440051

d. The IReference AddComponent method shall add a component to the

collection of referenced components, with the following argument and

behaviour:

1. Argument:

(a) “component” giving a reference to the component to be

added.

2. Behaviour:

(a) If the maximum supported number of referenced

components is reached, it throws a ReferenceFull exception

as per ReferenceFull.h in [SMP_FILES];

(b) If the reference interface implementation is expecting the

given component to inherit from another type it throws an

InvalidObjectType exception as per InvalidObjectType.h in

[SMP_FILES].

NOTE A (typed) reference can attempt to type-cast a

component to a specific type, to ensure that all

components within the reference inherit from

this common base type.

ECSS-E-ST-40-07_1440052

e. The IReference RemoveComponent method shall remove a component

from the collection of referenced components, with the following

argument and behaviour:

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

55

1. Argument:

(a) “component” giving a reference to the component to be

removed.

2. Behaviour:

(a) If the minimum number of component(s) referenced by this

object is reached, it throws a CannotRemove exception as per

CannotRemove.h in [SMP_FILES];

(b) If the component to remove is not referenced, it throws a

NotReferenced exception as per NotReferenced.h in

[SMP_FILES].

NOTE RemoveComponent ensures that the right

component is identified also if several

components with the same name exist in the

reference, as it takes a reference to the

component as argument, and not the name.

ECSS-E-ST-40-07_1440053

f. The IReference GetCount method shall return the number of components

in the collection of referenced components.

ECSS-E-ST-40-07_1440054

g. The IReference GetUpper method shall return the upper limit, with the

following behaviour:

1. If a maximum number has been defined, it returns the maximum

number;

2. If no maximum number has been defined, it returns -1.

NOTE The usage of -1 is consistent with the use of

upper bounds in UML, where a value of -1

represents no limit (typically shown as *)

ECSS-E-ST-40-07_1440055

h. The IReference GetLower method shall return the minimum number of

components in the collection or 0 when not defined.

NOTE The lower bound can be used to validate a model

hierarchy. If a collection specifies a Lower value

above its current Count, then it is not properly

configured. An external component can use this

information to validate the configuration before

executing it.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

56

5.2.5 Composition

5.2.5.1 Composition interface (IComposite)

ECSS-E-ST-40-07_1440056

a. All SMP Objects which contain Components shall implement the

IComposite interface as per IComposite.h in [SMP_FILES].

NOTE 1 The IContainer interface (see 5.2.5.1c.2) is the

component container used by the composition

interface.

NOTE 2 Composition is the counter part of the IObject

GetParent() method and allows traversing the

tree of components from parent to child

components.

ECSS-E-ST-40-07_1440057

b. The IComposite GetContainer method shall return the container matching

the given name with the following argument and behaviour:

1. Argument:

(a) “name” giving the name of the container to be returned.

2. Behaviour:

(a) If no container matching the given argument name is found,

it returns a nullptr reference.

NOTE The returned IContainer object has the

IComposite as its parent.

ECSS-E-ST-40-07_1440058

c. The IComposite GetContainers method shall return an ordered collection

of all the containers with the following behaviour:

1. If the composite does not hold any container, it returns an empty

collection.

2. If at least one container is contained, it returns a collection ordered

according to the order in which the containers have been added to

the composite.

NOTE Returned IContainer objects have the

IComposite as their parent.

5.2.5.2 Container interface (IContainer)

ECSS-E-ST-40-07_1440059

a. All SMP Objects which represent a composition of child Components shall

implement the IContainer interface as per IContainer.h in [SMP_FILES].

NOTE 1 The container components life-cycle coincides

with its parent one.

NOTE 2 The container is a named Object as per 5.2.1.

Commented [HTP22]: CR OHB-47

Commented [HTP23]: CR OHB-47

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

57

NOTE 3 The container allows adding children to a parent

object.

NOTE 4 Each container holds objects of only one type.

ECSS-E-ST-40-07_1440060

b. The IContainer GetComponent method shall return the component

matching the given name, with the following argument and behaviour:

1. Argument:

(a) “name” giving the name of the component to be returned.

2. Behaviour:

(a) If no component matching the given name is found, it returns

nullptr.

NOTE As the container does not support component

name duplication, it is not possible to get

naming conflict when performing query.

ECSS-E-ST-40-07_1440061

c. The IContainer GetComponents method shall return an ordered collection

of all the contained components with the following behaviour:

1. If no component is contained, it returns an empty collection;

2. If at least one component is contained, it returns a collection ordered

according to the order in which the components have been added

using the AddComponent method.

ECSS-E-ST-40-07_1440062

d. The IContainer AddComponent method shall add a component to the

collection of contained components, with the following argument and

behaviour:

1. Argument:

(a) “component” giving the component to be added.

2. Behaviour:

(a) If the maximum supported number of components is

reached, it throws a ContainerFull exception as per

ContainerFull.h in [SMP_FILES];

(b) If a component with the same name and parent already exists,

it throws a DuplicateName exception as per

DuplicateName.h in [SMP_FILES];

(c) If the container interface implementation is expecting the

given component to inherit from another type, it throws an

InvalidObjectType exception as per InvalidObjectType.h in

[SMP_FILES].

NOTE A (typed) container can attempt to type-cast a

component to a specific type, to ensure that all

components within the container inherit from

this common base type.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

58

ECSS-E-ST-40-07_1440063

e. The IContainer GetCount method shall return the number of components

contained in the collection.

ECSS-E-ST-40-07_1440064

f. The IContainer GetUpper method shall return the maximum number of

components in the collection, with the following behaviour:

1. If the maximum number of elements for the collection has been

defined, it returns the maximum number;

2. If the maximum number of elements for the collection has not been

defined, it returns -1.

NOTE The usage of -1 is consistent with the use of

upper bounds in UML, where a value of -1

represents no limit (typically shown as *).

ECSS-E-ST-40-07_1440065

g. The IContainer GetLower method shall return the minimum number of

components in the collection or 0 when not defined.

NOTE The lower bound can be used to validate a model

hierarchy. If a collection specifies a Lower value

above its current Count, then it is not properly

configured. An external component can use this

information to validate the configuration before

executing it.

ECSS-E-ST-40-07_1440066

h. The IContainer DeleteComponent method shall delete a component from

the collection of contained components, with the following argument and

behaviour:

1. Argument:

(a) "component" giving a reference to the component to be

deleted.

2. Behaviour:

(a) If the minimum number of component(s) contained by this

object is reached, it throws a CannotDelete expection as per

CannotDelete.h in [SMP_FILES];

(b) If the component to delete is not contained, it throws a

NotContained exception as per NotContained.h in

[SMP_FILES];

(c) If the component to delete is included, and the minimum

number is not reached, then the component is removed from

the collection, its Disconnect method is called and finally its

destructor is called.

Commented [HTP24]: CR TPZG-17

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

59

5.2.6 Events

5.2.6.1 Sink of events interface (IEventSink)

ECSS-E-ST-40-07_1440067

a. All SMP Objects which receive event notifications shall implement the

IEventSink interface as per IEventSink.h in [SMP_FILES].

NOTE The specification of event sinks ensures that

notifications from the event sources they are

subscribed to can be managed.

ECSS-E-ST-40-07_1440068

b. The IEventSink GetEventArgType method shall provide the primitive

type kind of the argument expected by the event sink when it is notified

about a given event, with the following behaviour:

1. If no argument is expected, it returns PTK_None.

NOTE 1 See 5.2.6.1c for the specification of how event

sinks are notified.

NOTE 2 This operation allows for type checking when

subscribing (see 5.2.6.2b) event sinks to event

sources.

ECSS-E-ST-40-07_1440069

c. The IEventSink Notify method shall inform the object about the event,

with the following arguments:

1. “sender” giving the reference to the event source calling the method;

2. “arg” giving context data together with the event notification.

NOTE See 5.2.6.2d for the specification of how event

sources call this method.

5.2.6.2 Source of events interface (IEventSource)

ECSS-E-ST-40-07_1440070

a. All SMP Objects which represent the source of event notifications shall

implement the IEventSource interface as per IEventSource.h in

[SMP_FILES].

NOTE The specification of event sources ensures that

event sinks (see 5.2.6.1) that wish to receive their

notifications can subscribe to them.

ECSS-E-ST-40-07_1440071

b. The IEventSource Subscribe method shall add the given event sink to the

list of subscribed event sinks, with the following argument and behaviour:

1. Argument:

(a) “eventSink” giving the reference to the event.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

60

2. Behaviour:

(a) If the given event sink is already subscribed to the event

source, it throws an EventSinkAlreadySubscribed exception

as per EventSinkAlreadySubscribed.h in [SMP_FILES];

(b) If the primitive type kind of the argument expected by the

event sink is not semantically equivalent to the one of the

event source as per Table 5-4, it throws an InvalidEventSink

exception as per InvalidEventSink.h in [SMP_FILES].

NOTE Any event sink can only be subscribed once to

each event source.

ECSS-E-ST-40-07_1440072

c. The IEventSource Unsubscribe method shall remove the given event sink

from the list of subscribed event sinks, with the following argument and

behaviour:

1. Argument:

(a) “eventSink” giving the event to be unsubscribed.

2. Behaviour:

(a) If the given event sink is not subscribed to the event source, it

throws an EventSinkNotSubscribed exception as per

EventSinkNotSubscribed.h in [SMP_FILES].

NOTE Any event sink can only be unsubscribed if it has

been subscribed before.

ECSS-E-ST-40-07_1440073

d. When the event source emits the event, it shall call the Notify method of

all the subscribed event sinks in the same order as the sinks have been

subscribed.

NOTE See 5.2.6.1 for specification of the event sinks

interface.

<<new>>

e. The IEventSource GetEventArgType method shall return the primitive

type kind of the argument transmitted by the event source when it is

emitting, with the following behaviour:

1. If no argument is expected, it returns PTK_None.

NOTE 1 See 5.2.6.2d for the specification of how event

sources emit.

NOTE 2 This operation allows for type checking when

subscribing (see 5.2.6.2b) event sinks to event

sources.

<<new>>

f. The IEventSource GetEventSinks method shall return an ordered

collection of all the subscribed event sinks with the following behaviour:

1. If there is no subscribed event sink, it returns an empty collection;

Commented [HTP25]: CR SPB-1

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

61

2. If at least one event sink has subscribed, it returns a collection

ordered according to the order in which the events have subscribed

using the Subscribe method.

5.2.6.3 Consumer of events interface (IEventConsumer)

ECSS-E-ST-40-07_1440074

a. All SMP Components which hold event sinks and want to allow external

access to them shall implement the IEventConsumer interface as per

IEventConsumer.h in [SMP_FILES].

NOTE The publication of event sinks ensures that they

can subscribe to other component’s event

sources.

ECSS-E-ST-40-07_1440075

b. The IEventConsumer GetEventSinks method shall return a collection of all

the contained event sinks, with the following behaviour:

1. If no event sink is contained, it returns an empty collection.

2. If at least one Event Sink is contained in the collection, it returns a

collection ordered according to the order in which the Event Sinks

have been created in the owning component.

ECSS-E-ST-40-07_1440076

c. The IEventConsumer GetEventSink method shall return the component’s

event sink corresponding to the given name, with the following argument

and behaviour:

1. Argument:

(a) “name” giving the name of the Event Sink.

2. Behaviour:

(a) If no event sink with the given name exists, it returns nullptr.

5.2.6.4 Provider of events interface (IEventProvider)

ECSS-E-ST-40-07_1440077

a. All SMP Components which hold event sources and want to allow external

access to them shall implement the IEventProvider interface as per

IEventProvider.h in [SMP_FILES].

NOTE The publication of event sources ensures that

other component’s event sinks can subscribe to

them.

ECSS-E-ST-40-07_1440078

b. The IEventProvider GetEventSources method shall return a collection of

all the contained event sources, with the following behaviour:

1. If no event source is contained, it returns an empty collection.

Commented [HTP26]: CR SPB-13

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

62

2. If at least one Event Source is contained in the collection, it returns

a collection ordered according to the order in which the Event

Sources have been created in the owning component.

ECSS-E-ST-40-07_1440079

c. The IEventProvider GetEventSource method shall return the component’s

event source corresponding to the given name, with the following

argument and behaviour:

1. Argument:

(a) “name” giving the name of event source to be returned

2. Behaviour:

(a) If no event source with the given name exists, it returns

nullptr.

5.2.7 Entry points

5.2.7.1 Entry points calling interface (IEntryPoint)

ECSS-E-ST-40-07_1440080

a. All SMP Objects which represent a schedulable entry point shall

implement the IEntryPoint interface as per IEntryPoint.h in [SMP_FILES].

NOTE The specification of entry points ensures that the

scheduler or the event manager can trigger them

when the relevant events are emitted.

ECSS-E-ST-40-07_1440081

b. The IEntryPoint Execute method shall be called when the triggering event

is emitted.

5.2.7.2 Entry Points publisher interface
(IEntryPointPublisher)

ECSS-E-ST-40-07_1440082

a. All SMP components which hold entry points and want to allow external

access to them shall implement the IEntryPointPublisher interface as per

IEntryPointPublisher.h in [SMP_FILES].

ECSS-E-ST-40-07_1440083

b. The IEntryPointPublisher GetEntryPoints method shall return a collection

of all the contained entry points, with the following behaviour:

1. If no entry point is contained, it returns an empty collection.

2. If at least one Entry Point is contained in the collection, it returns a

collection ordered according to the order in which the Entry Points

have been created in the owning component.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

63

ECSS-E-ST-40-07_1440084

c. The IEntryPointPublisher GetEntryPoint method shall return the

component’s entry point corresponding to the given name, with the

following argument and behaviour:

1. Argument:

(a) “name” giving the name of the EntryPoint to be returned.

2. Behaviour:

(a) If no entry point with the given name exists, it returns nullptr.

NOTE The “name” always identifies a unique

EntryPoint, as a component cannot have several

EntryPoints with same name.

5.2.8 Dynamic Invocation

5.2.8.1 Dynamic invocation interface (IDynamicInvocation)

ECSS-E-ST-40-07_1440085

a. All SMP Components which allow the simulation environment to invoke

operations, property getters or property setters on them shall implement

the IDynamicInvocation interface as per IDynamicInvocation.h in

[SMP_FILES].

ECSS-E-ST-40-07_1440086

b. All operations of simulation components callable through dynamic

invocation shall be registered by the component using the IPublication

interface.

NOTE See 5.2.12.2d for specification of the IPublication

PublishOperation method to be used.

Parameters of operations need to be of types

registered in the type registry, which excludes

operations with parameters of other types from

dynamic invocation.

ECSS-E-ST-40-07_1440087

c. <<deleted>>

ECSS-E-ST-40-07_1440088

d. The IDynamicInvocation Invoke method shall invoke the method

referenced, with the following argument and behaviour:

1. Argument:

(a) “request” giving the identification of the callable method, as

a fully populated request object implementing IRequest (see

5.2.8.2).

2. Behaviour:

Commented [HTP27]: CR OHB-36

Commented [HTP29]: CR OHB-36

NOCR: dynamic invocation reworked, redundant methods are

removed

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

64

(a) If the method specified by the request parameter is not

callable through dynamic invocation, it throws an

InvalidOperationName exception as per

InvalidOperationName.h in [SMP_FILES];

(b) If the number of arguments specified by the request object

does not match the number of parameters of the callable

method, it throws an InvalidParameterCount exception as

per InvalidParameterCount.h in [SMP_FILES];

(c) If the types of the arguments specified by the request object

do not match the types of parameters of the callable method,

it throws an InvalidParameterValue exception as per

InvalidParameterType.h in [SMP_FILES];

(d) If called with a valid request object, it calls the method

identified in the request, passing the parameters provided in

the request which are of parameter direction In or InOut;

(e) After invoking the request, it stores the parameter values of

parameters with parameter direction InOut, Out or Return

into the requests object.

NOTE 1 The term “method” can refer either to an

operation or a property getter or a property

setter.

NOTE 2 The Invoke operation is a void method as the

result of the invocation is stored in the IRequest

object (see 5.2.8.2).

ECSS-E-ST-40-07_1440089

e. <<deleted>>

ECSS-E-ST-40-07_1440090

f. <<deleted>>

ECSS-E-ST-40-07_1440091

g. The IDynamicInvocation GetProperties method shall return a collection of

the invokable properties of the component as per PropertyCollection in

IProperty.h in [SMP_FILES].

ECSS-E-ST-40-07_1440092

h. The IDynamicInvocation GetOperations method shall return a collection

of the invokable operations of the component as per OperationCollection

in IOperation.h in [SMP_FILES].

<<new>>

i. The IDynamicInvocation GetOperation method shall return the Operation

object with the following arguments and behaviour:

1. Arguments:

(a) “name” giving the Operation name to get.

2. Behaviour:

Commented [HTP30]: CR OHB-36

NOCR: dynamic invocation reworked, redundant methods are

removed

Commented [HTP31]: NOCR: dynamic invocation

reworked, redundant methods are removed

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

65

(a) If the Operation with the given name argument does not exist,

it returns nullptr;

(b) If the Operation with the given name argument exists, it

returns the corresponding IOperation object.

<<new>>

j. The IDynamicInvocation GetProperty method shall return the Property

object with the following arguments and behaviour:

1. Arguments:

(a) “name” giving the Property name to get.

2. Behaviour:

(a) If the Property with the given name argument does not exist,

it returns nullptr;

(b) If the Property with the given name argument exists, it

returns the corresponding IProperty object.

5.2.8.2 IRequest

ECSS-E-ST-40-07_1440093

a. All SMP Request objects which are used in dynamic invocation shall

implement the IRequest interface as per IRequest.h in [SMP_FILES].

ECSS-E-ST-40-07_1440094

b. The IRequest GetName method shall return the name of the callable

operation if GetType return RT_Invoke or the property name if GetType

returns RT_Get or RT_Set.

NOTE For an Operation, requests are usually created

by calling the IOperation CreateRequest method

(see 5.2.13.1f) so the name returned is the

Operation name. For a Property, the name

returned is always the Property name.

ECSS-E-ST-40-07_1440095

c. The IRequest GetParameterCount method shall return the number of

parameters of the request object.

NOTE This operation only considers parameters of

direction in, out or in/out, but not of type return.

ECSS-E-ST-40-07_1440096

d. The IRequest GetParameterIndex method shall return the index of a

specified parameter, with the following argument and behaviour:

1. Argument:

(a) “name” giving the name of the parameter for which the index

is returned.

2. Behaviour:

Commented [HTP32]: NOCR: dynamic invocation

reworked, redundant methods are removed

Commented [HTP33]: CR OHB-36

NOCR: dynamic invocation reworked, redundant methods are

removed

Combination of GetName() and GetType() and new

IDynamicInvocation allows to get rid of the hardcoded

get_<PropertyName> and set_<PropertyName> names because

now the actual methods are private to the component that

implements IDynamicInvocation

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

66

(a) If the name corresponds to the name of a parameter in the

parameter collection, it returns the 0-based index of the

parameter in this collection;

(b) If no parameter with the given name exists, it returns -1.

NOTE This operation only considers parameters of

direction in, out or in/out, but not of type return.

ECSS-E-ST-40-07_1440097

e. The IRequest SetParameterValue method shall store the value for a

parameter, with the following arguments and behaviour:

1. Arguments:

(a) “index” giving the location of the parameter to be set;

(b) “value” giving the new value of the parameter.

2. Behaviour:

(a) If the index is less than zero, it throws an

InvalidParameterIndex exception as per

InvalidParameterIndex in [SMP_FILES];

(b) If the index is greater than or equal to the number of

parameters of the request object, it throws an

InvalidParameterIndex exception as per

InvalidParameterIndex in [SMP_FILES];

(c) If the type of the given value is different than the type of the

parameter at the given index, it throws an

InvalidParameterValue exception as per

InvalidParameterValue.h in [SMP_FILES];

(d) If both index and value are valid, it stores the new value into

the parameter with the given index, so that its new value can

be returned with future calls to GetParameterValue.

NOTE This operation only considers parameters of

direction in, out or in/out, but not of type return.

ECSS-E-ST-40-07_1440098

f. The IRequest GetParameterValue method shall return the value stored at

the given index in the parameters collection, with the following argument

and behaviour:

1. Argument:

(a) “index” of the parameter for which the value is returned.

2. Behaviour:

(a) If the given index is less than zero, it throws an

InvalidParameterIndex exception as per

InvalidParameterIndex.h in [SMP_FILES];

(b) If the index is greater than or equal to the number of

parameters of the request object, it throws an

InvalidParameterIndex exception as per

InvalidParameterIndex.h in [SMP_FILES];

Commented [HTP34]: CR ESOC/TPZG-2: no change after

refactorization of exceptions

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

67

(c) If the index is valid, it returns the current value of the

parameter.

NOTE 1 The current value is either the initial value from

creation of the request object, or the value

provided to the last successful call of the

SetParameterValue method for the same index.

NOTE 2 This operation only considers parameters of

direction in, out or in/out, but not of type return.

ECSS-E-ST-40-07_1440099

g. The IRequest SetReturnValue method shall allow to set a return value in

the request with the following argument and behaviour:

1. Argument:

(a) “value” giving the new value to be set for the return

parameter.

2. Behaviour:

(a) If the operation does not return a value, it throws a

VoidOperation exception as per VoidOperation.h in

[SMP_FILES];

(b) If the type of the provided value does not match the type of

the return value of the operation, it throws an

InvalidParameterValue exception as per

InvalidParameterValue.h in [SMP_FILES];

(c) If the operation does return a value of the given type, the

return value is stored into the request object, so that it can be

retrieved with later calls to GetReturnValue.

ECSS-E-ST-40-07_1440100

h. The IRequest GetReturnValue method shall return the return value of the

callable operation in the request, with the following behaviour:

1. If the operation does not return a value, it throws a VoidOperation

exception as per VoidOperation.h in [SMP_FILES];

2. If the operation does return a value, it returns the current value of

the return parameter.

NOTE The current value is either the initial value from

creation of the request object, or the value

provided to the last successful SetReturnValue

call.

<<new>>

a. The IRequest GetType method shall return the type of the request object

as per RequestType.h in [SMP_FILES], specified in Table 5-3.

Commented [HTP35]: CR ESOC/TPZG-2 not implemented

like proposed because of the refactorization of exceptions

Commented [HTP36]: CR OHB-36

NOCR: dynamic invocation reworked, redundant methods are

removed

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

68

<<new>>

Table 5-3: Request Type

Name Description

RT_Invoke Request represents an Operation.

RT_Get Request represents a Property getter.

RT_Set Request represents a Property setter.

5.2.9 Persistence (IPersist)

ECSS-E-ST-40-07_1440101

a. All SMP Objects which need self-persistence of data shall implement the

IPersist interface as per IPersist.h in [SMP_FILES].

NOTE Self-persistence is an optional interface as

external persistence by the simulation

environment is sufficient for most components.

ECSS-E-ST-40-07_1440102

b. All Simulation objects which implement self-persistence shall read from

the IStorageReader interface exactly the same amount of data and in the

same order as it writes it to the IStorageWriter interface.

ECSS-E-ST-40-07_1440103

c. The IPersist Restore method shall read persisted data from storage through

the IStorageReader interface with the following argument and behaviour:

1. Argument:

(a) “reader” giving a pointer to a IStorageReader interface where

data can be read from.

2. Behaviour:

(a) The operation restores exactly the same amount of data from

the reader that was stored by the writer on Store;

(b) If the operation cannot restore the data, it throws a

CannotRestore exception as per CannotRestore.h in

[SMP_FILES].

ECSS-E-ST-40-07_1440104

d. The IPersist Store method shall write persisted data to the storage through

the IStorageWriter interface with the following argument and behaviour:

1. Argument:

(a) “writer” giving a pointer to a IStorageWriter interface where

data can be written to.

2. Behaviour:

(a) The operation stores exactly the amount of data to the writer

than what it restores from a reader on Restore;

Commented [HTP37]: CR OHB-36

NOCR: dynamic invocation reworked, redundant methods are

removed

Commented [KE38]: COMMENT:

This new table (Table 5-3) is not called from any text.

It must be called from a requirement to be normative or from a

Note to be an informative Table.

Commented [KE39R38]: Klaus 25 Sept:

Would it be not better to state the call of the Table with an

existing requirement, for example your added requirement i.?

Now you have created an addition al requirement just for the

sake to call the Table.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

69

(b) If the operation cannot store the data, it throws a CannotStore

exception as per CannotStore.h in [SMP_FILES].

5.2.10 Failures

5.2.10.1 Failure interface (IFailure)

ECSS-E-ST-40-07_1440105

a. All SMP Objects which represent a failure shall implement the IFailure

interface as per IFailure.h in [SMP_FILES].

ECSS-E-ST-40-07_1440106

b. The IFailure Fail method shall set the state of the failure to “failed”.

ECSS-E-ST-40-07_1440107

c. The IFailure Unfail method shall set the state of the failure to “not failed”.

ECSS-E-ST-40-07_1440108

d. The IFailure IsFailed method shall return the failure state of the failure

with the following behaviour:

1. If the state is “failed”, it returns true;

2. If the state is not “failed”, it returns false.

5.2.10.2 Model failure state interface (IFallibleModel)

ECSS-E-ST-40-07_1440109

a. All Simulation models which can be failed through a list of possible

failures shall implement the IFallibleModel interface as per

IFallibleModel.h in [SMP_FILES].

NOTE 1 This is an optional interface.

NOTE 2 The simulation environment does not

automatically persist the state of each failure, as

it is the responsibility of the models to store the

failure state in persisted data.

ECSS-E-ST-40-07_1440110

b. The IFallibleModel GetFailures method shall return the list of possible

failures for this simulation model.

ECSS-E-ST-40-07_1440111

c. The IFallibleModel GetFailure method shall return a failure instance from

the list of possible failures, with the following argument and behaviour:

1. Argument:

(a) “name” giving the name of the failure.

2. Behaviour:

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

70

(a) If none of the failures in the list of possible failures matches

the given name, it returns nullptr.

(b) If a failure matching the given name exists, it returns the

pointer to the IFailure instance.

ECSS-E-ST-40-07_1440112

d. The IFallibleModel IsFailed method shall return the failure state of the

model, with the following behaviour:

1. If at least one of the failures returns true for its IFailure::IsFailed

among the list of possible failures for this simulation model, it

returns true;

2. If none of the failures returns true for its IFailure::IsFailed among

the list of possible failures for this simulation model, it returns false.

5.2.11 Fields

5.2.11.1 ISimpleField

ECSS-E-ST-40-07_1440113

a. All SMP Fields which represent a primitive type shall implement the

ISimpleField interface as per ISimpleField.h in [SMP_FILES].

ECSS-E-ST-40-07_1440114

b. The ISimpleField GetValue method shall return the field value stored in

an AnySimple as per AnySimple.h in [SMP_FILES].

ECSS-E-ST-40-07_1440115

c. The ISimpleField SetValue method shall store the value in the field with

the following argument and behaviour:

1. Argument:

(a) “value” giving the new value to the field as an AnySimple as

per AnySimple.h in [SMP_FILES].

2. Behaviour:

(a) If the given value simple type kind does not match the simple

type kind of the field, then it throws the InvalidFieldValue

exception as per InvalidFieldValue.h in [SMP_FILES];

(b) If the given value simple type kind does match the simple

type kind of the field, then it changes the field value to the

given value.

ECSS-E-ST-40-07_1440116

d. The ISimpleField GetPrimitiveTypeKind method shall return the primitive

type kind of the field.

Commented [HTP40]: Harmonize with the other headings

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

71

5.2.11.2 IStructureField

ECSS-E-ST-40-07_1440117

a. All SMP Fields which represent a structured data shall implement the

IStructureField interface as per IStructureField.h in [SMP_FILES].

ECSS-E-ST-40-07_1440118

b. The IStructureField GetField method shall return the field as an IField,

with the following argument and behaviour:

1. Argument:

(a) “name” given the field name for which the IField interface is

returned.

2. Behaviour:

(a) If the field name is unknown to the structure, it returns

nullptr.

ECSS-E-ST-40-07_1440119

c. The IStructureField GetFields method shall return the list of fields of the

structure as per FieldCollection in IField.h in [SMP_FILES].

5.2.11.3 IArrayField

ECSS-E-ST-40-07_1440120

a. All SMP fields which represent an array where each array item is to be

retrieved individually as a Field shall implement the IArrayField interface

as per IArrayField.h in [SMP_FILES].

ECSS-E-ST-40-07_1440121

b. The IArrayField GetItem method shall return the array item as an IField as

per IField.h in [SMP_FILES] with the following argument and behaviour:

1. Argument:

(a) “index” giving the location of the item for which the IField

pointer is returned.

2. Behaviour:

(a) If the given index is outside the array size, it returns nullptr.

(b) Otherwise, return the array item at the given index as an

IField

ECSS-E-ST-40-07_1440122

c. The IArrayField GetSize method shall return the number of array items.

Commented [HTP41]: CR ESOC/TPZG-2

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

72

5.2.11.4 ISimpleArrayField

ECSS-E-ST-40-07_1440123

a. All SMP fields which represent an array of simple type items where

individual array items are not to be retrieved as Field shall implement the

ISimpleArrayField interface as per ISimpleArrayField.h in [SMP_FILES].

NOTE This enables an efficient implementation

especially of large arrays as a single object,

rather than having each array item represented

by an individual object. The implications are that

such array items cannot be retrieved as Object or

Field, e.g. via GetField(), and are hence not

available in operations that require individual

objects or fields.

ECSS-E-ST-40-07_1440124

b. The ISimpleArrayField GetSize method shall return the number of array

items.

ECSS-E-ST-40-07_1440125

c. The ISimpleArrayField GetValue method shall return the corresponding

array item value stored in an AnySimple as per AnySimple.h in

[SMP_FILES] with the following argument and behaviour:

1. Argument:

(a) “index” giving the location of the item for which the value is

returned.

2. Behaviour:

(a) If the given index is outside the array size, it throws an

InvalidArrayIndex as per InvalidArrayIndex.h in

[SMP_FILES].

(b) Otherwise, return the item value corresponding to the given

index as an AnySimple.

ECSS-E-ST-40-07_1440126

d. The ISimpleArrayField SetValue method shall set the corresponding array

item value stored with the following arguments and behaviour:

1. Arguments:

(a) “index” giving the location of the item for which the value is

set;

(b) “value” giving the new value for the array item.

2. Behaviour:

(a) If the given index is outside the array size, it throws an

InvalidArrayIndex as per InvalidArrayIndex.h in

[SMP_FILES].

(b) If the given value simple type kind does not match the simple

type kind of the corresponding array item, then it throws an

Commented [KE42]: TYPO corrected.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

73

InvalidFieldValue as per InvalidFieldValue.h in

[SMP_FILES].

(c) If the given value simple type kind does match the simple

type kind of the corresponding array item, then it stores the

given AnySimple value into the item value corresponding to

the given index.

ECSS-E-ST-40-07_1440127

e. The ISimpleArrayField GetValues method shall return all the array item

values stored in an AnySimpleArray as per AnySimpleArray.h in

[SMP_FILES] with the following arguments and behaviour:

1. Arguments:

(a) “length” giving the length of the return array for values;

(b) “values” giving an array of allocated storage for which the

return values are put;

(c) “startIndex” giving the 0-based start index in the array from

which values are returned.

2. Behaviour:

(a) If the given value array size does not match the ArrayField

size, it throws an InvalidArraySize as per InvalidArraySize.h

in [SMP_FILES].

(b) Otherwise, copy the range of item values, given by the

startIndex and length arguments, into the given

AnySimpleArray.

ECSS-E-ST-40-07_1440128

f. The ISimpleArrayField SetValues method shall allow setting all values of

an array with the following arguments and behaviour:

1. Arguments:

(a) “length” giving the length of the array with values to be set;

(b) “values” giving an array of values to be set in the array;

(c) “startIndex” giving the 0-based start index in the array from

which values are set.

2. Behaviour:

(a) If the given length does not match the ArrayField length, it

throws a InvalidArraySize as per InvalidArraySize.h in

[SMP_FILES];

(b) If any of the given values simple type kind does not match

the array item simple type kind, then it throws an

InvalidArrayValue as per InvalidArrayValue.h in

[SMP_FILES].

(c) If any of the given values simple type kind does match the

array item simple type kind, then it stores the given values

into the corresponding array item values, considering the

range given by the startIndex and length arguments.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

74

5.2.11.5 IField

ECSS-E-ST-40-07_1440129

a. All SMP fields shall implement the IField interface as per IField.h in

[SMP_FILES].

ECSS-E-ST-40-07_1440130

b. The IField GetView method shall return the View Kind for the field.

NOTE See Table 4-2 for specification of View Kind.

ECSS-E-ST-40-07_1440131

c. The IField IsState method shall return true if the field State property is true,

false otherwise.

ECSS-E-ST-40-07_1440132

d. The IField IsInput method shall return true if the field is an Input field,

false otherwise.

ECSS-E-ST-40-07_1440133

e. The IField IsOutput method shall return true if the field is an Output field,

false otherwise.

ECSS-E-ST-40-07_1440134

f. The IField GetType method shall return the associated field type or nullptr

if the field has not been published or has not been successfully published

to the Simulation Environment.

5.2.11.6 IForcibleField

ECSS-E-ST-40-07_1440135

a. All SMP simple fields which allow forcing of the field value shall

implement the IForcibleField interface as per IForcibleField.h in

[SMP_FILES].

ECSS-E-ST-40-07_1440136

b. The IForcibleField Force method shall force the field value so that it does

not change until Unforce is called with the following argument and

behaviour:

1. Argument:

(a) “value” giving the forced value to be returned by GetValue

until Unforce is called.

2. Behaviour:

(a) If the given value simple kind does not match the field simple

type kind, then it throws an InvalidFieldValue as per

InvalidFieldValue.h in [SMP_FILES];

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

75

(b) If the given value simple kind does match the field simple

type kind, then it stores the given value as the value to return

by GetValue.

NOTE The handling of the forced field value within a

model is undefined.

ECSS-E-ST-40-07_1440137

c. The IForcibleField Unforce method shall remove the forcing or freezing

condition on the field so that GetValue called on the field returns the

current field value.

NOTE The handling of the forced field value within a

model is undefined.

ECSS-E-ST-40-07_1440138

d. The IForcibleField Freeze method shall force the field to its current field

value so that it no longer changes until Unforce is called.

ECSS-E-ST-40-07_1440139

e. The IForcibleField IsForced method shall return true if field is forced or

freezed, otherwise it returns false.

5.2.11.7 IOutputField

ECSS-E-ST-40-07_1440140

a. All SMP output fields that support pushing their values to connected fields

shall implement the IOutputField interface as per IOutputField.h in

[SMP_FILES].

NOTE Dataflow connections are allowed for primitive

and simple type fields as well as for arrays, array

items, structure fields and any sub-field of

complex type fields.

ECSS-E-ST-40-07_1440141

b. The IOutputField Connect method shall connect the field to an input field

to create a dataflow connection between the two fields giving the following

argument and behaviour:

1. Argument:

(a) “target” giving the input field this output data flow field is

connected to.

2. Behaviour:

(a) If the target is already connected to this output field, it throws

a FieldAlreadyConnected exception as per

FieldAlreadyConnected.h in [SMP_FILES];

(b) If Connect is called several times for an output field, it

connects the output field to a list of input fields allowing the

same output to push values to several input fields;

Commented [HTP43]: CR SPB-11

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

76

(c) If the input and output field have the same type UUID, then

the connection is considered to be strict compatible and it

connects successfully;

(d) If the input and output field are of semantically equivalent

types as per Table 5-4, then the connection is considered to be

of equivalent types and it connects successfully;

(e) If the input and output are of non-equivalent and non-strict

compatible types, it throws an InvalidTarget exception as per

InvalidTarget.h in [SMP_FILES];

(f) If connection is successful, it invokes the Push methods

immediately, triggering an update of the connected input

field with the current value of the output field.

NOTE 1 The specification of semantically equivalent type

ensures that no information can be lost in

transfer of data from output to input.

NOTE 2 The input field is a passive part of the transfer

since the output is pushing the values to the

input.

NOTE 3 The input field can be connected to several

output fields.

NOTE 4 The call of the Push allows to synchronise the

Input value with the Output value immediately

after the connection is established.

NOTE 5 For arrays and structs, each array and struct

element can implement IOutputField. In this

case, each element can be connected with its own

Connect call.

NOTE 6 The target field, that plays the role of the “input”

in the data flow connection, can have any

combination of Input and Output values

because Push supports setting the value for any

target field.

ECSS-E-ST-40-07_1440142

c. The IOutputField Push method shall push the field value to all connected

input fields.

NOTE This is also called propagation of the value to all

the connected consumer models.

ECSS-E-ST-40-07_1440143

Table 5-4: Semantically equivalent types for connections

Type Semantically equivalent types

Char8 Char8

String String of same length

Bool Bool

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

77

Type Semantically equivalent types

Signed integers Signed integer with same size

Unsigned integers Unsigned integer with same size

Float Float with same size

Array Array with same length and each element are of

semantically equivalent types.

Struct Struct with:

• identical number of elements

• same order of elements

• each element is of semantically equivalent types

Duration Duration

DateTime DateTime

Enumeration Same enumeration type definition

<<new>>

d. The IOutputField Disconnect method shall disconnect the field from a

connected input field giving the following argument and behaviour:

1. Argument:

(a) “target” giving the input field this output data flow field is to

be disconnected from.

2. Behaviour:

(a) If the target is not connected to this output field, it throws a

FieldNotConnected exception as per FieldNotConnected.h in

[SMP_FILES];

(b) If the target is connected to this output, the disconnection is

successful;

(c) If Disconnect is called several times for an output field, it

disconnects the output field from the list of input fields;

<<new>>

e. The IOutputField IsAutomatic method shall return true if the output field

is capable to push its value upon change automatically to connected fields.

<<new>>

f. The IOutputField IsAutomatic method shall return false if pushing its

value to connected fields is performed by the Simulation Environment.

NOTE Usually, push is called during the execution of a

simulation event. Hence, this corresponds to a

scheduled field propagation.

<<new>>

g. If the IsAutomatic method returns true, upon the output field value

change, the output field shall call automatically the IOutputField Push

method.

Commented [HTP45]: CR SPB-8

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

78

NOTE 1 Calling Push from outside of the field, e.g. by the

Simulation Environment, is possible to perform

manually the value propagation from the output

field to the input field.

NOTE 2 Since the responsibility of calling the Push

operation is not delegated to the component

owning the field nor to the simulation

environment, the propagation happens

“automatic”, hence this interaction method is

called “automatic data propagation”.

<<new>>

a. The IOutputField GetInputFields method shall return an ordered

collection of all the connected input fields with the following behaviour:

1. If there is no connected input field, it returns an empty collection;

2. If at least one input field is connected, it returns a collection ordered

according to the order in which the input fields have connected

using the Connect method.

5.2.12 Requirements on utilization of Simulation
Environments interfaces by components

5.2.12.1 ILogger interface utilization

ECSS-E-ST-40-07_1440144

a. LogMessageKind type as per Services/LogMessageKind.h in [SMP_FILES]

shall be used to store the Log Message Kind as returned from the results

of ILogger::QueryLogMessageKind

ECSS-E-ST-40-07_1440145

b. All SMP models and services shall use the predefined LogMessageKinds

as defined in Table 5-7 for messages of message type Information, Event,

Warning, Error or Debug .

5.2.12.2 IPublication interface

ECSS-E-ST-40-07_1440146

a. All Arrays published as a single array via the IPublication PublishArray

method shall be without any padding.

NOTE This implies that array element with index i (0-

based) is assumed to be stored at address of

index 0 + i*sizeof(primitiveType).

ECSS-E-ST-40-07_1440147

b. When publishing arrays via the IPublishField PublishArray method that

require each element to be published individually, the following steps

shall be followed:

Commented [HTP46]: CR SPB-11

Commented [HTP47]: CR SPB-13

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

79

1. Call the IPublishField PublishArray method giving the following

arguments:

(a) Name of array

(b) Description of Array

2. The PublishArray method returns a pointer to an IPublishField

interface

3. Use the returned IPublishField interface to publish each of the

elements of the array.

NOTE In case of a multi-dimensional array, step 1-3 in

5.2.12.2b can be repeated iteratively.

ECSS-E-ST-40-07_1440148

c. When publishing a structure via the IPublishField PublishStructure

method, the following steps shall be followed:

1. Call the IPublishField PublishStructure method giving the

following arguments:

(a) Name of Structure

(b) Description of Structure

2. The PublishStructure method returns a pointer to a IPublishField

interface

3. Use the returned IPublishField interface to publish each of the

elements of the structure.

NOTE In case of nested structures, steps 1-3 above can

be repeated iteratively.

ECSS-E-ST-40-07_1440149

d. The IPublication PublishOperation method shall allow publishing an

operation as per following procedure:

1. Call the IPublication PublishOperation method giving the following

arguments:

(a) Name of Operation

(b) Description of Operation

(c) Its view state

2. The IPublication PublishOperation method returns a pointer to an

IPublishOperation interface

3. Use the returned IPublishOperation interface to publish each of the

parameters and the return value of the operation.

NOTE See clause 5.3.9.2 for specification of the

IPublishOperation interface

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

80

5.2.12.3 ISimulator interface

ECSS-E-ST-40-07_1440150

a. All user defined services shall be added to the simulation using the

ISimulator AddService method.

<<new>>

b. The IProperty GetAccess method shall return the property Access Kind as

specified in Table 5-5.

<<new>>

Table 5-5: Property Access Kind values

Name Intended interpretation

AK_ReadWrite Read/Write access. Both getter and setter are available for the

property

AK_ReadOnly Read-Only access. Only the getter is available for the property

AK_WriteOnly Write-Only access. Only the setter is available for the property

<<new>>

c. The IProperty GetView method shall return the View Kind for the

property.

NOTE See Table 4-2 for specification of View Kind.

<<new>>

d. The IProperty GetValue method shall return the value of a property as per

the following behaviour:

1. If the property access type is Write-Only, it throws the

InvalidAccess exception.

2. If the property type is not a simple type, it returns an AnySimple

object as per AnySimple.h in [SMP_FILES] where the type is set to

PTK_None;

NOTE See PrimitiveTypes.h in [SMP_FILES] for the

definition of PTK_None.

3. If the property type is a simple type, it returns the corresponding

AnySimple object;

<<new>>

e. The IProperty SetValue method shall return the value of a property that is

typed by a simple Type as per the following behaviour:

1. If the property access type is Read-Only, it throws the InvalidAccess

exception;

2. If the property type is not a simple type or if the value argument is

of type PTK_None, it returns immediately;

Commented [HTP49]: CR OHB-36

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

81

3. If the property type is a simple type and if the given value simple

type kind does not match the simple type kind of the property, then

it throws the InvalidPropertyValue exception as per

InvalidPropertyValue.h in [SMP_FILES];

4. If all checks above are successful, it sets the property to the

corresponding AnySimple object.

NOTE to item 2: See PrimitiveTypes.h in [SMP_FILES]

for the definition of PTK_None.

<<new>>

f. The IProperty GetPrimitiveType method shall return the property

equivalent primitive type if it is a simple type property or PTK_None if it

is not a simple type property.

5.2.13 Operations

5.2.13.1 IOperation

<<new>>

a. All SMP operations shall implement the IOperation interface as per

IOperation.h in [SMP_FILES].

<<new>>

b. The IOperation GetParameters method shall return the operation

collection of IParameter objects, that excludes the return parameter and

that is ordered identically to the operation signature.

<<new>>

c. The IOperation GetParameter method shall return the operation

Parameter that has the given name passed in the argument or nullptr if

that parameter does not exist.

<<new>>

d. The IOperation GetReturnParameter method shall return the return

parameter for a non-void operation or nullptr for a void operation.

<<new>>

e. The IOperation GetView method shall return the View Kind for the

operation.

NOTE See Table 4-2 for specification of View Kind.

<<new>>

f. The IOperation CreateRequest method shall return the IRequest object for

the operation or nullptr if the operation does not support dynamic

invocation.

Commented [HTP50]: CR OHB-36

Commented [HTP51]: CR OHB-36

Commented [HTP52]: CR ESOC-2/TPZG (Confluence ID,

not in the Excel file)

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

82

NOTE The ownership of the IRequest object remains

with the operation object. It can be later deleted

through the DeleteRequest method.

<<new>>

g. The IOperation Invoke method shall dynamically invoke the operation

described in the passed IRequest argument with the following behaviour:

1. It throws InvalidOperationName as per InvalidOperationName.h in

[SMP_FILES] if the operation does not exist or if the operation does

not allow dynamic invocation;

2. It throws InvalidParameterCount as per InvalidParameterCount.h

in [SMP_FILES] if the operation is invoked with the wrong number

of parameters;

3. It throws InvalidParameterType as per InvalidParameterType.h in

[SMP_FILES] if the operation is invoked with at least one wrong

parameter type.

<<new>>

h. The IOperation DeleteRequest method shall delete the IRequest object

created with the CreateRequest method.

5.2.13.2 IParameter

<<new>>

a. The IParameter GetType method shall return the parameter Type or

nullptr if the parameter has not been published or has not been

successfully published to the Simulation Environment.

<<new>>

b. The IParameter GetDirection method shall return the parameter Direction

as specified in Table 5-6.

Table 5-6: Parameter Direction Kind values

Name Intended interpretation

PDK_In The parameter is read-only to the operation, i.e. its value must be

specified on call, and cannot be changed inside the operation.

PDK_Out The parameter is write-only to the operation, i.e. its value is

unspecified on call, and must be set by the operation.

PDK_InOut The parameter must be specified on call, and may be changed by the

operation.

PDK_Return The parameter represents the operation's return value.

Commented [HTP53]: To be checked against

IDynamicInvocation.Invoke

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

83

5.3 Simulation Environment interfaces

5.3.1 Logger (ILogger interface)

ECSS-E-ST-40-07_1440151

a. The Simulation Environment shall provide a component implementing the

ILogger interfaces as per Services/ILogger.h in [SMP_FILES].

ECSS-E-ST-40-07_1440152

b. The component implementing the ILogger interface shall maintain a list

mapping the defined Log Message Kinds names and IDs, including and

possibly extending Table 5-7.

ECSS-E-ST-40-07_1440153

c. The ILogger QueryLogMessageKind method shall translate from the name

of the message kind to the identifier of the message kind, with the

following argument and behaviour:

1. Argument:

(a) “messageKindName” giving a case sensitive string

containing the name of the log message kind.

2. Behaviour:

(a) If the given name matches one of the predefined

LogMessageKind as specified in Table 5-7, it returns the

corresponding LogMessageKind ID as per Table 5-7;

(b) If the given name does not match any LogMessageKind in

Table 5-7 nor any of the log message kinds in the maintained

mapping, it returns a new LogMessageKind ID as a unique

identifier matching the given name;

(c) If the given name does not match any LogMessageKind in

Table 5-7 but it matches one of the entries in the maintained

mapping of log message kinds, it returns the corresponding

LogMessageKind ID from the mapping.

ECSS-E-ST-40-07_1440154

Table 5-7: Default Log Message Kinds

Name ID Description

Debug 4 To be used for messages that can help during investigations

of anomalous behaviours, but that regular users in nominal

situations are not interested in seeing.

Error 3 To be used for error messages that the simulation or the

model developer thinks are to be conveyed to the user when

anomalous situations happen, that almost surely can lead to

an anomalous simulation.

Warning 2 To be used for messages that the simulation or the model

developer thinks are to be conveyed to the user when

Commented [HTP54]: CR OHB-41

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

84

Name ID Description

anomalous situations happen, that deserves users’ attention,

but that non necessarily lead to an anomalous simulation.

Event 1 To be used for log messages that the simulation or the model

developer thinks are to be conveyed to the user upon certain

events (the definition of ’event’ is open and simulation or

model developer driven).

Information 0 The message contains general information.

ECSS-E-ST-40-07_1440155

d. The list mapping the defined log message kinds to the defined

LogMessageKind IDs shall be part of persisted data and saved/restored

to/from breakpoints.

ECSS-E-ST-40-07_1440156

e. The list of log message kinds mapping shall be restored upon breakpoint

restoring.

NOTE This implies that the list of log message kinds

and associated names are part of the breakpoints

and that models can store log message kinds

they need and not continuously ask which

LogMessageKind corresponds to a given

LogMessageKind name. This leads to more

efficient implementations.

ECSS-E-ST-40-07_1440157

f. The ILogger Log method shall log a message, with the following

arguments:

1. “sender” giving the originator of the message;

2. “message” giving the text to be logged;

3. “kind” giving the registered log message kind for this message as

returned from ILogger::QueryLogMessageKind method.

(a) If the LogMessageKind ID was not previously registered by

using ILogger::QueryLogMessageKind, then it registers the

passed LogMessageKind with text set to the passed number,

followed by the sender’s Path in the model hierarchy. It is

recommended that the implementation writes a Warning

message in the logbook to notify creation of a new

LogMessageKind.

NOTE This implicit registration of a new

LogMessageKind ID allows to quickly identify

models in a simulation that are logging using

custom unregistered LogMessageKinds.

Commented [HTP55]: CR SPB-15

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

85

5.3.2 Time Keeper (ITimeKeeper)

ECSS-E-ST-40-07_1440158

a. The simulation environment shall provide a component implementing the

ITimeKeeper interface as per ITimeKeeper.h in [SMP_FILES].

NOTE 1 The ITimeKeeper gives access to the Time

Keeper Service.

NOTE 2 The ITimeKeeper is used to maintain all the

simulation times.

ECSS-E-ST-40-07_1440159

b. The ITimeKeeper SetEpochTime method shall set the simulation Epoch

Time, with the following argument and behaviour:

1. Argument:

(a) “epochTime” giving the new epoch time;

2. Behaviour:

(a) After setting the EpochTime, it emits a

SMP_EpochTimeChanged global SMP event.

NOTE 1 See Table 5-8 for details on EpochTimeChanged

global Event.

NOTE 2 This method changes the offset between the

Simulation time and the Epoch time.

ECSS-E-ST-40-07_1440160

c. The ITimeKeeper SetMissionStartTime method shall set a new start time

for Mission time, with the following argument and behaviour:

1. Argument:

(a) “missionStart” giving the new Epoch time for which the

Mission time is zero.

2. Behaviour:

(a) After changing the MissionStartTime, it emits the

SMP_MissionTimeChanged global SMP Event.

NOTE This method changes the offset between the

Epoch time and the Mission time.

ECSS-E-ST-40-07_1440161

d. The ITimeKeeper SetMissionTime method shall set the Mission time, with

the following argument and behaviour:

1. Argument:

(a) “MissionTime” giving the new Mission time at the current

Epoch time.

2. Behaviour:

(a) After changing the MissionTime, it emits the

SMP_MissionTimeChanged global SMP Event.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

86

NOTE This method changes the offset between the

Epoch time and the Mission time.

ECSS-E-ST-40-07_1440162

e. The ITimeKeeper SetSimulationTime method shall advance the

Simulation time in the time frame between the call to emit a

PreSimTimeChange event and the end of the call to emit a

PostSimTimeChange event as per Table 5-8, with the following argument

and behaviour:

1. Argument:

(a) “SimulationTime” giving the new simulation time

2. Behaviour:

(a) If SetSimulationTime method is called outside a

PreSimTimeChange as per Table 5-8, then the method returns

without updating the Simulation Time;

(b) If the given simulation time is less than the current simulation

time, it throws an InvalidSimulationTime as per

Services/InvalidSimulationTime.h in [SMP_FILES] and the

Simulation Time is not updated;

(c) If the new simulation time is larger than the time of the next

event on the scheduler, it throws an InvalidSimulationTime

as per Services/InvalidSimulationTime.h in [SMP_FILES] and

the Simulation Time is not updated;

(d) If SetSimulationTime method is called inside the time frame

between the PreSimTimeChange and PostSimTimeChange

events as per Table 5-8, then the simulation time is updated

to the given simulation time.

NOTE 1 SetSimulationTime method has no effect if

called outside the time frame of the

PreSimTimeChange-PostSimTimeChange

global events as per Table 5-8.

NOTE 2 SetSimulationTime method does not result in

emissions of PreSimTimeChange and

PostSimTimeChange global events as per Table

5-8.

NOTE 3 SetSimulationTime provides a direct mean for

Models (thus, not part of the Simulation

Environment) to set the simulation time, which

is normally updated by the Scheduler. For

example, this method can be used by an

executing processor emulator model to

synchronize its own time with the kernel

simulation time.

ECSS-E-ST-40-07_1440163

f. <<deleted>>

Commented [HTP56]: CR OHB-30

Commented [HTP57]: Modified for CR OHB-30 but merged

in 5.3.12.a (CR ESOC/TPZG-1) that specifies almost the same

content

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

87

ECSS-E-ST-40-07_1440164

g. The ITimeKeeper GetSimulationTime method shall return the Simulation

time.

ECSS-E-ST-40-07_1440165

h. The ITimeKeeper GetEpochTime method shall return the current Epoch

time.

ECSS-E-ST-40-07_1440166

i. The ITimeKeeper GetMissionTime method shall return the Mission time.

ECSS-E-ST-40-07_1440167

j. The TimeKeeper GetMissionStartTime method shall return the Mission

Start Time.

ECSS-E-ST-40-07_1440168

k. The ITimeKeeper GetZuluTime method shall return the Zulu time.

5.3.3 Scheduler (IScheduler)

ECSS-E-ST-40-07_1440169

a. The simulation environment shall provide a Scheduler implementing the

IScheduler in Services/IScheduler.h in [SMP_FILES].

ECSS-E-ST-40-07_1440170

b. The Scheduler shall allow Events to be added to the scheduler with a

repeat count with the following behaviour:

1. An Event with repeat=0 is non-cyclic and executes only once;

2. An Event with repeat=0 is removed automatically after its

triggering;

3. An Event with repeat>0 is cyclic, and repeats ‘repeat’ times;

4. An Event with repeat>0 is removed automatically after it has been

triggered ‘repeat+1’ times;

5. An Event with repeat<0 is cyclic forever;

6. An Event with repeat<0 is never removed from the scheduler unless

explicitly requested using the RemoveEvent() method.

ECSS-E-ST-40-07_1440171

c. The Scheduler shall allow to specify the cycle time between each call for

cyclic Events with the following behaviour:

1. For non-cyclic Events, the cycle time parameter is stored, but not

used;

2. For cyclic Events, the cycle time is a positive duration;

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

88

3. For cyclic Events, an InvalidCycleTime exception as per

Services/InvalidCycleTime.h in [SMP_FILES] is thrown if the cycle

time is negative or zero.

NOTE to item 1: The cycle time can become relevant if

a subsequent call to SetEventCount is received

before the Event is removed from the scheduler.

ECSS-E-ST-40-07_1440172

d. Events added to the scheduler by AddSimulationTimeEvent,

AddMissionTimeEvent, AddEpochTimeEvent and AddZuluTimeEvent

shall be executed according to a “first posted, first executed” strategy

where the posting order of Events are determined based on the order of

the Add call.

NOTE This implies that the posting order is not affected

by a change in Epoch time or Mission Time.

ECSS-E-ST-40-07_1440173

e. The IScheduler AddSimulationTimeEvent method shall add an Event to

the scheduler, with the following arguments and behaviour:

1. Arguments:

(a) “entryPoint” giving the Entry Point to be called when the

Event is executed;

(b) “simulationTime” giving the relative time from now until the

first call of the Entry Point;

(c) “cycleTime“ giving the cycle time of the Event as specified

in5.3.3c;

(d) “repeat“ giving the Event repetition count as specified in

5.3.3b.

2. Behaviour:

(a) If the Simulation Time is less than zero, it throws an

InvalidEventTime exception as per

Services/InvalidEventTime.h in [SMP_FILES], the Event is

not added to the scheduler and never executed.

(b) If Repeat is not zero and CycleTime is not positive, it throws

an InvalidCycleTime exception as per

Services/InvalidCycleTime.h in [SMP_FILES], the Event is

not added to the scheduler and never executed;

(c) After adding the new Event to the scheduler, it returns the

EventId as per Services/EventId.h in [SMP_FILES]

identifying the added Event.

NOTE The execution order follows the general priority

rules given in requirement 5.3.3d.

ECSS-E-ST-40-07_1440174

f. The IScheduler AddMissionTimeEvent method shall add an Event to the

scheduler with the following arguments and behaviour:

Commented [HTP58]: CR OHB-41

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

89

1. Arguments:

(a) “entryPoint“ giving the Entry Point to be called when the

Event is executed;

(b) “missionTime“ giving the mission time of the first call of the

Entry Point;

(c) “cycleTime“ giving the cycle time of the Event as specified in

5.3.3c;

(d) “repeat“ giving the Event repetition count as specified in

5.3.3b.

2. Behaviour:

(a) If the Mission Time is less than the current mission time, it

throws an InvalidEventTime exception as per

Servives/InvalidEventTime.h in [SMP_FILES], the Event is

not added to the scheduler and never executed;

(b) If Repeat is not zero and CycleTime is not positive, it throws

an InvalidCycleTime exception as per

Services/InvalidCycleTime.h in [SMP_FILES], the Event is

not added to the scheduler and never executed;

(c) After adding the new Event to the scheduler, it returns the

EventId as per Services/EventId.h in [SMP_FILES]

identifying the added Event.

NOTE The execution order follows the general priority

rules given in requirement 5.3.3d.

ECSS-E-ST-40-07_1440175

g. The IScheduler AddEpochTimeEvent method shall add an Event to the

scheduler, with the following arguments and behaviour:

1. Arguments:

(a) “entryPoint“ giving the Entry Point to be called when the

Event is executed;

(b) “epochTime“ giving the epoch time of the first call of the

Entry Point;

(c) “cycleTime“ giving the cycle time of the Event as specified

in5.3.3c;

(d) “repeat“ giving the Event repetition count as specified in

5.3.3b.

2. Behaviour:

(a) If the Epoch Time is less than the current epoch time it throws

an InvalidEventTime exception as per

Services/InvalidEventTime.h in [SMP_FILES], the Event is

not added to the scheduler and never executed;

(b) If Repeat is not zero and CycleTime is not positive, it throws

an InvalidCycleTime exception as per

Services/InvalidCycleTime.h in [SMP_FILES], the Event is

not added to the scheduler and never executed;

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

90

(c) After adding the new Event to the scheduler, it returns the

EventId as per Services/EventId.h in [SMP_FILES]

identifying the added Event.

NOTE The execution order follows the general priority

rules given in requirement 5.3.3d.

ECSS-E-ST-40-07_1440176

h. The IScheduler AddZuluTimeEvent method shall add an Event to the

scheduler, with the following arguments and behaviour:

1. Arguments:

(a) “entryPoint“ giving the Entry Point to be called when the

Event is executed;

(b) “zuluTime“ giving the Zulu time of the first call of the Entry

Point;

(c) “cycleTime“ giving the cycle time of the Event as specified in

5.3.3c;

(d) “repeat“ giving the Event repetition count as specified in

5.3.3b.

2. Behaviour:

(a) If the given Zulu Time is less than the current Zulu time, it

throws an InvalidEventTime exception as per

Services/InvalidEventTime.h in [SMP_FILES], the Event is

not added to the scheduler and never executed;

(b) If Repeat is not zero and CycleTime is not positive, it throws

an InvalidCycleTime exception as per

Services/InvalidCycleTime.h in [SMP_FILES], the Event is

not added to the scheduler and never executed;

(c) After adding the new Event to the scheduler, it returns the

EventId as per Services/EventId.h in [SMP_FILES]

identifying the added Event.

NOTE The execution order follows the general priority

rules given in requirement 5.3.3d.

ECSS-E-ST-40-07_1440177

i. The IScheduler AddImmediateEvent method shall add an immediate

simulation time event to the scheduler with the current simulation time as

execution time returning an EventId as per Services/EventId.h in

[SMP_FILES], with the following argument and behaviour:

1. Argument:

(a) “entryPoint” giving the Entry Point to be called when the

Event is executed.

2. Behaviour:

(a) The scheduled event is inserted at the end of the list of

immediate events; the list of immediate events is processed in

order of insertion and before any non-immediate event; Commented [HTP59]: CR OHB-12

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

91

(b) After adding the new Event to the scheduler, it returns the

EventId identifying the added Event.

NOTE 1 Calls to AddImmediateEvent differs to calls to

AddSimulationTimeEvent method with

repeat=0, cycleTime=0 and simulationTime=0

since the event is scheduled at the font instead of

the end of the list of scheduled events for the

current simulation time.

NOTE 2 It cannot be assumed that Events added via

AddImmediateEvent are the next Event

executed, as other Events can have been

scheduled with AddImmediateEvent prior to

this Event, and hence are executed first.

NOTE 3 To execute an entry point immediately without

going through the scheduler, the Execute()

method of the EntryPoint can be called directly.

ECSS-E-ST-40-07_1440178

j. The EventId returned when adding an event shall be unique throughout

the entire duration of the simulation implying that EventIds cannot be

reused after the Event has been executed.

NOTE The EventId must only be unique within the

Scheduler context; the Event Manager service

uses the same EventId type, but uniqueness

across services is not required.

ECSS-E-ST-40-07_1440179

k. The IScheduler RemoveEvent method shall remove an already scheduled

Event from the Scheduler, with the following argument and behaviour:

1. Argument:

(a) “eventId” giving the unique identifier of the Event.

2. Behaviour:

(a) If the given EventId does not identify an Event currently in

the Scheduler, it throws an InvalidEventId exception as per

InvalidEventId.h in [SMP_FILES];

(b) If the EventId is identical to the current executing Event in the

schedule, then it still proceeds to finish normally; however, it

is not executed again, as if its repeat count changed to 0 via

SetEventCount;

(c) If the EventId is not identical to the current executing Event

in the schedule, then the Event is simply removed from the

scheduler and never executed, regardless of its remaining

repetitions.

NOTE To item (b): setting the repeat count to 0 implies

that the Event is removed from the scheduler

immediately after it is executed.

Commented [HTP60]: CR OHB-12

Commented [HTP61]: CR OHB-13

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

92

ECSS-E-ST-40-07_1440180

l. The IScheduler SetEventSimulationTime method shall update the

Simulation time of the next execution of an Event with the following

arguments and behaviour:

1. Arguments:

(a) “eventId” giving the unique identifier of the Event;

(b) “simulationTime” giving the relative time from now until the

next execution of the Event.

2. Behaviour:

(a) If the Simulation Time is negative, the Event is never executed

but instead removed immediately from the scheduler;

(b) If the given EventId is not currently on the scheduler, it

throws an InvalidEventId exception as per InvalidEventId.h

in [SMP_FILES];

(c) If the Event identified by the given EventId is not scheduled

on Simulation time, it throws an InvalidEventId exception as

per InvalidEventId.h in [SMP_FILES];

(d) When the Simulation time of the next execution of an Event

is updated, it takes effect on all future repeats of this Event as

per the remaining “repeat” count and respecting the given

cycle-time between each repeat.

NOTE Events scheduled with AddImmediateEvent are

also considered to be scheduled based on

Simulation Time.

ECSS-E-ST-40-07_1440181

m. The IScheduler SetEventMissionTime method shall update the Mission

time of the next execution of an Event with the following arguments and

behaviour:

1. Arguments:

(a) “eventId” giving the unique identifier of the Event;

(b) “missionTime” giving the time of the next execution of the

Event.

2. Behaviour:

(a) If the given EventId is not currently on the scheduler, it

throws an InvalidEventId exception as per InvalidEventId.h

in [SMP_FILES];

(b) If the Event identified by the given EventId is not scheduled

on Mission time, it throws an InvalidEventId exception as per

InvalidEventId.h in [SMP_FILES];

(c) If the mission time is before the current mission time, the

Event is never executed but instead removed immediately

from the scheduler;

(d) When the Mission time of the next execution of an Event is

updated, it takes effect on all future repeats of this Event as

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

93

per the remaining “repeat” count and respecting the given

cycle-time between each repeat.

ECSS-E-ST-40-07_1440182

n. The IScheduler SetEventEpochTime method shall update the Epoch time

of the next execution of an Event, with the following arguments and

behaviour:

1. Arguments:

(a) “eventId” giving the unique identifier of the Event;

(b) “epochTime” giving the time of the next execution of the

Event.

2. Behaviour:

(a) If the given EventId is not currently on the scheduler, it

throws an InvalidEventId exception as per

Services/InvalidEventId.h in [SMP_FILES];

(b) If the Event identified by the given EventId is not scheduled

on Epoch time, it throws an InvalidEventId exception as per

Services/InvalidEventId.h in [SMP_FILES];

(c) If the epoch time is before the current epoch time, the Event

is never executed but instead removed immediately from the

scheduler;

(d) When the Epoch time of the next execution of an Event is

updated, it takes effect on all future repeats of this Event as

per the remaining “repeat” count and respecting the given

cycle-time between each repeat.

ECSS-E-ST-40-07_1440183

o. The IScheduler SetEventZuluTime method shall update the Zulu time of

the next execution of an Event, with the following arguments and

behaviour:

1. Arguments:

(a) “eventId” giving the unique identifier of the Event;

(b) “zuluTime” giving the time of the next execution of the Event.

2. Behaviour:

(a) If the given EventId is not currently on the scheduler, it

throws an InvalidEventId exception as per

Services/InvalidEventId.h in [SMP_FILES];

(b) If the Event identified by the given EventId is not scheduled

on Zulu time, it throws an InvalidEventId exception as per

Services/InvalidEventId.h in [SMP_FILES];

(c) If the Zulu time is before the current Zulu time, the Event is

never executed but instead removed immediately from the

scheduler;

(d) When the Zulu time of the next execution of an Event is

updated, it takes effect on all future repeats of this Event as

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

94

per the remaining “repeat” count and respecting the given

cycle-time between each repeat.

ECSS-E-ST-40-07_1440184

p. The IScheduler SetEventCycleTime method shall allow to update the cycle

time of an already scheduled Event, with the following arguments and

behaviour:

1. Arguments:

(a) “eventId” giving the unique identifier of the Event;

(b) “cycleTime” giving the new cycle time of the Event as

specified in 5.3.3c;

2. Behaviour:

(a) If the given EventId is not currently on the scheduler, it

throws an InvalidEventId exception as per

Services/InvalidEventId.h in [SMP_FILES];

(b) If the Repeat count of the Event is not zero and CycleTime is

not positive, it throws an InvalidCycleTime exception as per

Services/InvalidCycleTime.h in [SMP_FILES] and the

CycleTime is not updated.

NOTE The CycleTime can be set also for immediate

events and events with repeat count equal to 0,

as the repeat can be updated with

SetEventCount afterwards.

ECSS-E-ST-40-07_1440185

q. The IScheduler SetEventRepeat method shall allow to update the repeat

count of an Event already scheduled with the following arguments and

behaviour:

1. Arguments:

(a) “eventId” as a unique identifier of the Event;

(b) “repeat” giving the number of the Event repetitions as

specified in 5.3.3b.

2. Behaviour:

(a) If the given EventId is not currently on the scheduler, it

throws an InvalidEventId exception as per

Services/InvalidEventId.h in [SMP_FILES];

(b) If Count is not zero and CycleTime of the Event is zero, it

throws an InvalidCycleTime exception as per

Services/InvalidCycleTime.h in [SMP_FILES] and the Count

is not updated;

(c) If the given Count is greater than 0 and the given EventId is

identical to the one currently executing, then the scheduler

executes the Event for the given Count, excluding the current

execution;

(d) If the given Count is 0, the Event is removed immediately

after its execution is finished.

Commented [HTP62]: CR OHB-14

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

95

ECSS-E-ST-40-07_1440186

r. The IScheduler GetCurrentEventId method shall return an EventId as per

Services/EventId.h in [SMP_FILES], with the following behaviour:

1. If an Event is currently executing, it returns the EventId of the

currently executing Event;

2. If no scheduled Event is currently executing, it returns -1.

NOTE A scheduled Event may not be executing if

GetCurrentEventId is called as part of the SMP

global events (See clause 5.3.4)

ECSS-E-ST-40-07_1440187

s. The IScheduler GetNextScheduledEventTime method shall return the

Simulation Time of the execution of the next scheduled Simulation Time,

Epoch Time or Mission Time Event.

NOTE 1 Events scheduled in Zulu Time are not

considered, as these Events do not have a fixed

defined Simulation Time.

NOTE 2 In case of Zulu Events executed, other Events

may schedule Events prior to the time returned,

hence the Scheduler does not guarantee that no

other Events may be executed prior to the time

returned from GetNextScheduledEventTime().

ECSS-E-ST-40-07_1440188

t. The complete state of the Scheduler, including Events scheduled using

ZuluTime, shall be part of persisted data and saved/restored to/from

breakpoints.

NOTE 1 Zulu time events posted with absolute Zulu time

are restored with the same Zulu time. The events

with a Zulu time in the past are not executed; if

all cycles of a Zulu time event are in the past, it

is simply removed from the Scheduler.

NOTE 2 Zulu time events posted with relative Zulu time

are "moved" when restoring, such that the

delays of the remaining executions from the

"now" Zulu time at time of storing is equal to the

delays of the remaining executions from the

"now" Zulu time at time of restoring.

ECSS-E-ST-40-07_1440189

u. When the SMP_EpochTimeChanged global SMP event is emitted, the

events already scheduled with Epoch time shall behave as follows:

(a) Non-cyclic events with Epoch Time equal to or in the future

of the new Epoch Time, are executed according to the Epoch

Time they were originally scheduled;

(b) Non-cyclic events with Epoch Time prior the new Epoch

Time, are removed from the scheduler and not executed;

Commented [HTP63]: CR ESOC-1

Commented [HTP64]: CR OHB-43

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

96

(c) For Cyclic Events, any repeat that falls prior the new Epoch

Time is not executed and any positive repeat count is reduced

according to the number of skipped executions;

(d) For Cyclic Events, any repeat that are equal or after the new

Epoch Time is executed according to the original Epoch Time

of the repeats.

ECSS-E-ST-40-07_1440190

v. When the SMP_MissionTimeChanged global SMP event is emitted, the

events already scheduled with Mission time shall behave as follows:

(a) Non-cyclic events with Mission time equal to or in the future

of the new Mission Time, are executed according to the

Mission Time they were originally scheduled;

(b) Non-cyclic events with Mission time prior the new Mission

Time, are removed from the scheduler and not executed;

(c) For Cyclic Events, any repeat that falls prior the new Mission

Time is not executed and any positive repeat count is reduced

according to the number of skipped executions;

(d) For Cyclic Events, any repeat that are equal or after the new

Mission Time is executed according to the original Mission

Time of the repeats.

ECSS-E-ST-40-07_1440191

w. When the simulator is in Standby state, the scheduler shall behave as

follows:

1. Events scheduled on simulation time including immediate Events,

epoch and mission time are not processed;

2. Events scheduled on Zulu time are executed.

<<new>>

x. When SetEventSimulationTime is called for the event that is currently

executing, the time set shall override the cycle time configured in the event.

NOTE Meaning that the next execution occurs at the

specified time and not at the time deduced from

the event cycle time.

<<new>>

y. When SetEventSimulationTime is called for the event that is currently

executing, and the repetition left for the events is zero, an error shall be

emitted.

NOTE 1 This call causes a contradiction, as the command

is setting the time of the next execution, when

there is no such execution.

NOTE 2 This can be guarded by calling SetEventRepeat

with a non-zero value before

SetEventSimulationTime.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

97

<<new>>

z. MAX_INT, the maximum integer value for the type Smp::Duration, shall

be a valid value for event execution time and event cycle time.

NOTE The event will not be executed until a

SetEventSimulationTime is called to set a

"reasonable" time on the event.

<<new>>

aa. When SetEventRepeat is called for the event that is currently executing,

the value shall be used as for deciding the re-scheduling and then

decremented.

NOTE This means that setting repeat to 1 will cause the

event to be repeated exactly once after the

current execution.

<<new>>

bb. The IScheduler IsEventScheduled method shall check if an event is in the

scheduler or not, with the following argument and behaviour:

1. Argument:

(a) “eventId” as a unique identifier of the Event.

2. Behaviour:

(a) It returns true if the corresponding event has been scheduled

but its start time does not yet elapse; or if it is not yet removed

by RemoveEvent; or if it is currently executing; or if it has not

yet finished its repeat count;

(b) It returns false in any other case that does not satisfy (a).

NOTE Any EventId for which IsEventScheduled

returns true is considered safe to pass to the

other methods taking an EventId in parameter

(like RemoveEvent) regardless of the time kind

of the related event.

<<new>>

cc. The IScheduler AddRelativeZuluTimeEvent method shall add an Event to

the scheduler, with the following arguments and behaviour:

1. Arguments:

(a) “entryPoint“ giving the Entry Point to be called when the

Event is executed;

(b) “zuluTimeDelay“ giving the Zulu time delay from now until

the first call of the Entry Point;

(c) “cycleTime“ giving the cycle time of the Event as specified in

requirement 5.3.3c;

(d) “repeat“ giving the Event repetition count as specified in

requirement 5.3.3b.

2. Behaviour:

Commented [HTP65]: CR OHB-16

Commented [HTP66]: CR OHB-11

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

98

(a) If the given Zulu Time delay is less than zero, it throws an

InvalidEventTime exception as per

Services/InvalidEventTime.h in [SMP_FILES], the Event is

not added to the scheduler and never executed;

(b) If Repeat is not zero and CycleTime is not positive, it throws

an InvalidCycleTime exception as per

Services/InvalidCycleTime.h in [SMP_FILES], the Event is

not added to the scheduler and never executed;

(c) After adding the new Event to the scheduler, it returns the

EventId as per Services/EventId.h in [SMP_FILES]

identifying the added Event.

5.3.4 Event Manager (IEventManager)

ECSS-E-ST-40-07_1440192

a. The simulation environment shall provide an Event Manager

implementing the IEventManager interface as Services/IEventManager.h

in [SMP_FILES].

ECSS-E-ST-40-07_1440193

b. The IEventManager QueryEventId method shall return the Event

identifier for an Event, with the following argument and behaviour:

1. Argument:

(a) “eventName” giving the name of the Event.

2. Behaviour:

(a) If called with an empty name, it throws an InvalidEventName

exception as per Services/InvalidEventName.h in

[SMP_FILES];

(b) If called with the name of one of the pre-defined Event types

as in Table 5-8 , it returns the corresponding EventId as in

Table 5-8;

(c) If called with a non-empty event name different from all pre-

defined event types as in Table 5-8, it returns an event

identifier different from all pre-defined event identifiers in

Table 5-8;

(d) If called with the same name again in the context of a restored

simulation, it returns always the same event identifier.

NOTE This implies that the EventManager maintains a

global list of events that is persisted in the

breakpoint and restored when needed.

ECSS-E-ST-40-07_1440194

c. The Event Manager shall maintain a list of pairs of unique event identifiers

and entry points.

NOTE The event identifier must only be unique within

the Event Manager context; the Scheduler

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

99

service uses the same EventId type, but

uniqueness across services is not required.

ECSS-E-ST-40-07_1440195

d. The Event Manager shall initialise the list of pairs to be empty at creation

time.

ECSS-E-ST-40-07_1440196

e. The IEventManager Subscribe method shall allow to subscribe an entry

point to a global event identifier, with the following arguments and

behaviour:

1. Arguments:

(a) “event” giving the ID of the event to be subscribed;

(b) “entryPoint” giving a pointer to the entry point to be called

when the event is emitted.

2. Behaviour:

(a) If called with a pair of event identifier and entry point that is

not currently in the internal list, it adds this pair to the

internal list;

(b) If called with a pair of event identifier and entry point that is

already in the internal list, it throws an

EntryPointAlreadySubscribed exception as per

Services/EntryPointAlreadySubscribed.h in [SMP_FILES];

(c) If called with an event ID that does not exist, it throws an

InvalidEventId exception as per Services/InvalidEventId.h in

[SMP_FILES].

ECSS-E-ST-40-07_1440197

f. The IEventManager Unsubscribe method shall remove a pair from the list,

with the following arguments and behaviour:

1. Arguments:

(a) “event” giving the ID of the event to be unsubscribed;

(b) “entryPoint” giving a pointer to the entry point to be

unsubscribed.

2. Behaviour:

(a) If called with a pair of event identifier and entry point that is

currently in the internal list, it removes this pair to the

internal list;

(b) If called with a pair of event identifier and entry point that is

not in the internal list, it throws an EntryPointNotSubscribed

exception as per Services/EntryPointNotSubscribed.h in

[SMP_FILES];

(c) If called with an invalid event id, it throws an InvalidEventId

exception as per Services/InvalidEventId.h in [SMP_FILES].

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

100

ECSS-E-ST-40-07_1440198

g. The IEventManager Emit method shall emit a specific global event to all

the subscribed entry points, with the following arguments and behaviour:

1. Arguments:

(a) “eventId” giving the ID of the event to be emitted;

(b) “synchronous” giving if the event is emitted synchronously

to all subscribed entry points.

2. Behaviour:

(a) If the eventId is unknown to the Event Manager, it throws an

InvalidEventId exception as per Services/InvalidEventId.h in

[SMP_FILES];

(b) If called with an event identifier for which pairs with entry

points exist in the list, then these entry points are called;

(c) If more than one entry point is called, then the order of the

calls is the order of subscription using the Subscribe method;

(d) If called with the synchronous flag set to false, the calls to the

entry points are asynchronous, such that the call to the Emit

method is not blocked from returning while waiting for calls

to subscribed entry points to return;

(e) If called with the synchronous flag set to true, the calls to the

entry points are synchronous, such that the call to the Emit

method is blocked from returning until the calls to all

subscribed entry points return.

ECSS-E-ST-40-07_1440199

h. The SMP predefined global events shall only be emitted in the conditions

outlined in Table 5-8 and only by the Simulation Environment.

ECSS-E-ST-40-07_1440200

i. The SMP predefined global events shall be emitted with the synchronous

flag set as per Table 5-8.

ECSS-E-ST-40-07_1440201

Table 5-8: Condition for emitting predefined global events

Name EventId Condition for emitting Synchronous

flag

SMP_LeaveConnecting 1 When leaving the Connecting state with

an automatic state transition to

Initializing state

True

SMP_EnterInitialising 2 When entering the Initialising state with

an automatic state transition from

Connecting state, or with the Initialise()

state transition.

True

Commented [HTP67]: To sync with the C++ header

Commented [HTP68]: To sync with the C++ header

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

101

Name EventId Condition for emitting Synchronous

flag

SMP_LeaveInitialising 3 When leaving the Initialising state with an

automatic state transition to Standby

state.

True

SMP_EnterStandby 4 When entering the Standby state with:

• an automatic state transition from

Initialising, Storing or Restoring state,

• the Hold() state transition command

from Executing state.

True

SMP_LeaveStandby 5 When leaving the Standby state with:

• the Run() state transition command to

Executing state.

• the Store() state transition command

to Storing state,

• the Restore() state transition

command to Restoring state

• the Initialise() state transition

command to Initialising state

True

SMP_EnterExecuting 6 When entering the Executing state with

the Run() state transition command from

Standby state

True

SMP_LeaveExecuting 7 When leaving the Executing state with the

Hold() state transition command to

Standby state.

True

SMP_EnterStoring 8 When entering the Storing state with the

Store() state transition command from

Standby state

True

SMP_LeaveStoring 9 When leaving the Storing state with an

automatic state transition to Standby state

True

SMP_EnterRestoring 10 When entering the Restoring state with

the Restore() state transition command

from Standby state

True

SMP_LeaveRestoring 11 When leaving the Restoring state with an

automatic state transition to Standby state

True

SMP_EnterExiting 12 When entering the Exiting state with the

Exit() state transition command from

Standby state

True

SMP_EnterAborting 13 When entering the Aborting state with the

Abort() state transition command from

any other state

True

SMP_EpochTimeChanged 14 When changing the epoch time with the

SetEpochTime() method of the time

keeper service

True

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

102

Name EventId Condition for emitting Synchronous

flag

SMP_MissionTimeChanged 15 When changing the mission time with one

of the SetMissionTime() and

SetMissionStartTime() methods of the

time keeper service.

True

SMP_EnterReconnecting 16 When entering the Reconnecting state

with the Reconnect() state transition from

Standby state

True

SMP_LeaveReconnecting 17 When leaving the Reconnecting state with

an automatic state transition to Standby

state.

True

SMP_PreSimTimeChange 18 When all events have been executed by

the Scheduler for a specific Simulation

Time, but before the TimeKeeper changes

the Simulation time to the time of next

event.

True

SMP_PostSimTimeChange 19 When the simulation time has been

changed by the Time Keeper, but before

any events have been executed by the

Scheduler.

True

<<new>>

j. While an event for a simulator state transition is emitted using the

IEventManger Emit call, subscribed entry points shall not trigger another

simulation state transition.

<<new>>

k. Entry point subscription or unsubscription during the execution of the

IEventManger Emit call shall be taken into account the next time Emit is

called.

5.3.5 Resolver (IResolver)

ECSS-E-ST-40-07_1440202

a. The simulation environment shall provide a component implementing the

IResolver interface as Services/IResolver.h in [SMP_FILES].

ECSS-E-ST-40-07_1440203

b. The IResolver ResolveAbsolute method shall return a reference to a

Component, Field, Failure, Event Sink, Event Source or Entry Point object

in the simulation, with the following argument and behaviour:

1. Argument:

(a) “absolutePath” giving the absolute path string of the object.

2. Behaviour:

Commented [HTP69]: CR AGS-1 (not in initial list,

consequence of CR ESOC/TPZG-1)

Commented [HTP70]: CR AGS-1 (not in initial list,

consequence of CR ESOC/TPZG-1)

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

103

(a) If the “absolutePath” does not give the path to an object, it

returns nullptr;

(b) If no object with the given path can be found, it returns

nullptr;

(c) If “absolutePath” resolves to an object, it returns the IObject

reference to the object.

NOTE 1 To allow keeping names as short as possible, and

avoid dependency on the name of the simulator

itself, absolute paths contain the name of either

a top level Model or Service, but not the name of

the simulator, although the simulator itself is the

top-level object.

NOTE 2 The specification of path string is given in clause

5.1.3.

ECSS-E-ST-40-07_1440204

c. The Resolver ResolveRelative method shall return a reference to an object

in the simulation with the following arguments and behaviour:

1. Arguments:

(a) “relativePath” giving a path string representing the relative

path to the object;

(b) “relativeRoot” being the object relative to which the path is

resolved.

2. Behaviour:

(a) If “relativePath” does not resolve to any object, it returns

nullptr;

(b) If “relativePath” resolves to an object, it returns an IObject

reference to the object.

NOTE The specification of path string is given in clause

5.1.3.

5.3.6 Link Registry (ILinkRegistry)

ECSS-E-ST-40-07_1440205

a. The simulation environment shall provide a Link Registry service

implementing the ILinkRegistry interface as Services/ILinkRegistry.h in

[SMP_FILES].

NOTE 1 The link registry maintains a global collection of

links between components, supports adding,

fetching and removing all links to a given target.

NOTE 2 The links include Interface Links, Event Links

and Field Links.

ECSS-E-ST-40-07_1440206

b. The ILinkRegistry AddLink method shall increment the link count

between two components, with the following arguments and behaviour:

Commented [HTP72]: CR OHB-22

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

104

1. Arguments:

(a) “source” giving the source component;

(b) “target” giving the target component.

2. Behaviour

(a) The link count between both components is incremented by

one, taking note of a new link that has been created.

NOTE This method can be called several times with the

same arguments, when a source component has

several links to the same target component.

ECSS-E-ST-40-07_1440207

c. The ILinkRegistry GetLinkCount method shall return the link count

between the given source and target, with the following arguments:

1. “source” giving the source component;

2. “target” giving the target component.

ECSS-E-ST-40-07_1440208

d. The ILinkRegistry RemoveLink method shall decrement the link count

between the two components, with the following arguments and

behaviour:

1. Arguments:

(a) “source” giving the source component;

(b) “target” giving the target component.

2. Behaviour:

(a) If the link count between both components is positive, it is

decremented by one, taking note that a link has been

removed, and true is returned.

(b) If the link count between both components is 0, false is

returned.

NOTE 1 Existing links have been previously added to the

service using the AddLink() method.

NOTE 2 This method can be called several times with the

same arguments, when several links from the

source component to the same target component

are removed.

ECSS-E-ST-40-07_1440209

e. The ILinkRegistry GetLinkSources method shall return the collection of

source components for which a link to the given target component has

been added to the registry.

ECSS-E-ST-40-07_1440210

f. The ILinkRegistry CanRemove method shall return whether all source

components linking to the given target can be asked to remove their

link(s), with the following argument and behaviour:

1. Argument:

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

105

(a) “target” giving the target component of the link.

2. Behaviour:

(a) If all source components linking to the given target can be

asked to remove their link(s), it returns true;

(b) If at least one of the source components linking to the given

target cannot be asked to remove its link(s), it returns false.

NOTE Components can be asked to remove their links

if they implement the optional

ILinkingComponent interface.

ECSS-E-ST-40-07_1440211

g. The ILinkRegistry RemoveLinks method shall call the RemoveLinks

method of all source components that implement the optional

ILinkingComponent interface with the following argument:

1. “target” giving the component from which all links to be removed.

5.3.7 Simulator (ISimulator)

ECSS-E-ST-40-07_1440212

a. The simulation environment shall provide a Simulator Object

implementing the ISimulator interface as ISimulator.h in [SMP_FILES].

NOTE 1 The ISimulator gives access to the simulation

environment state and state transitions.

NOTE 2 The ISimulator interface provides methods to

add models and to add and retrieve simulation

services.

ECSS-E-ST-40-07_1440213

b. The Simulator Object shall have two containers as follows:

1. One “Models” container that holds simulation models with no

upper limit on the number of Models to hold;

2. One “Services” container that holds simulation services with no

upper limit on the number of Services to hold.

ECSS-E-ST-40-07_1440214

c. The ISimulator interface shall be used to setup the simulation as per the

following procedure:

1. Publish/Configure can be called multiple times, each time that new

components are created;

(a) First, the Publish method is called.

(b) After returning from the Publish call, the Configure method

is called.

2. After finishing the Publish/Configure calls sequence, the Connect

method is called; Commented [HTP73]: Corrected as part of CR SPB-14

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

106

3. After returning from the Connect method, the Initialise method is

called.

ECSS-E-ST-40-07_1440215

d. The ISimulator Publish method shall call the Publish() method of all

service and model instances in the component hierarchy that are in

CSK_Created state within the simulation as per following procedure:

1. If the simulation is not in Building state, then it throws an

InvalidSimulatorState exception as per InvalidSimulatorState.h in

[SMP_FILES];

2.

3. It traverses through the "Services" container of the simulator, as

follows:

(a) It calls the Publish() operation of each component in

CSK_Created state;

(b) After calling Publish() on a service, it calls Publish()

immediately on all its child components recursively.

4. After completing publication of the components in the “Services”

container, it traverses through the "Models" container of the

simulator as follows:

(a) It calls the Publish() operation of each component in

CSK_Created state;

(b) After calling Publish on a model, it calls Publish()

immediately on all its child components recursively.

ECSS-E-ST-40-07_1440216

e. The ISimulator Configure method shall call the Configure() method of all

service and model instances in the component hierarchy that are in

CSK_Publishing state as per following procedure:

1. If the simulation is not in Building state, then throws an

InvalidSimulatorState exception as per InvalidSimulatorState.h in

[SMP_FILES];

2. It traverses through the "Services" container of the simulator. For

each component, it performs the following procedure:

(a) If the component is still in CSK_Created state, it first calls the

Publish() operation;

(b) If the component is in CSK_Publishing state, it calls the

Configure() operation;

(c) Then it immediately performs the same operation(s)

recursively on all child components of the component.

3. After configuring the Services, it traverses through the "Models"

container of the simulator. For each component, it performs the

following procedure:

(a) If the component is in CSK_Created state, it first calls the

Publish() operation;

Commented [HTP74]: Corrected as part of CR SPB-14

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

107

(b) If the component is in CSK_Publishing state, it calls the

Configure() operation;

(c) Then it immediately performs the same operation(s)

recursively on all child components of the component.

ECSS-E-ST-40-07_1440217

f. The ISimulator Connect method shall call the Connect() method of all

service and model instances in the component hierarchy that are in

CSK_Configured state as per the following procedure:

1. If the simulation is not in Building state, then it throws an

InvalidSimulatorState exception as per InvalidSimulatorState.h in

[SMP_FILES];

2. If Connect method is called during the execution of the global event

SMP_LeaveConnecting, then it throws an InvalidSimulatorState

exception as per InvalidSimulatorState.h in [SMP_FILES];

3. It traverses through the "Services" container of the simulator and

performs the following actions:

(a) If the component is in CSK_Created state, it calls the Publish()

operation;

(b) If the component is in CSK_Publishing state, it calls the

Configure() operation;

(c) If the component is in CSK_Configure state, it calls the

Connect() operation;

(d) Afterwards, it performs the same operation(s) recursively on

all child components of the component.

4. After connecting the services, the operation traverses through the

"Models" container of the simulator performing the following

actions:

(a) If the component is in CSK_Created state, it calls the Publish()

operation;

(b) If the component is in CSK_Publishing state, it calls the

Configure() operation;

(c) If the component is in CSK_Configure state, it calls the

Connect() operation;

(d) Afterwards, it performs the same operation(s) recursively on

all child components of the component.

5. After all component Connect() operations have been executed, it

issues the global event “SMP_LeaveConnecting” via the Event

Manager;

6. After returning from the “SMP_LeaveConnecting” global event, it

changes the simulation state to Initialising state;

7. After entering Initialising state, it issues the global event

“SMP_EnterInitialising” via the Event Manager;

8. After returning from the “SMP_EnterInitialising” global event, it

calls the initialisation entry points for all models that have registered

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

108

an initialisation entry point via the ISimulator AddInitEntryPoint

method in the order the entry points were added;

9. After executing the entry points, it removes the entry points from

the list so that in case Initialise() is called again, the same

initialisation entry point is not called twice;

10. After calling all initialisation entry points, it issues the global event

“SMP_LeaveInitialising” via the Event Manager;

11. After returning from the “SMP_LeaveInitialising” global event, it

changes the simulation state to Standby state;

12. Finally, the global event “SMP_EnteringStandby” is issued via the

Event Manager.

ECSS-E-ST-40-07_1440218

g. The ISimulator Initialise method shall call all initialisation entry points

within the simulation as per the following procedure:

1. If the simulation is not in Standby state, then it throws an

InvalidSimulatorState exception as per InvalidSimulatorState.h in

[SMP_FILES];

2. If Initialise method is called during the execution of the global event

SMP_LeaveStandby, then it throws an InvalidSimulatorState

exception as per InvalidSimulatorState.h in [SMP_FILES];

3. If the simulation is in Standby state, it issues the global event

“SMP_LeaveStandby” via the Event Manager;

4. After returning from the SMP_LeaveStandby global event, the

simulator state changes to Initialising state;

5. After entering Initialising state, it issues the global event

“SMP_EnterInitialising” via the Event Manager;

6. After returning from the SMP_EnterInitialising global event, it

executes all entry points added via the ISimulator

AddInitEntryPoint method in the order they have been added by

the AddInitEntryPoint call;

7. After executing the entry points, it removes the entry points from

the list so that in case Initialise is called again, the same initialisation

entry point is not called twice;

8. After all entry points has been executed, it issues the global event

“SMP_LeaveInitialising” via the Event Manager;

9. After returning from the “SMP_LeaveInitialising” global event, it

changes the simulation state to Standby state;

10. Finally, it issues the global event “SMP_EnterStandby” via the Event

Manager.

ECSS-E-ST-40-07_1440219

h. The ISimulator Run method shall change the state from Standby to

Executing as per the following procedure:

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

109

1. If the simulation is not in Standby state, then it throws an

InvalidSimulatorState exception as per InvalidSimulatorState.h in

[SMP_FILES];

2. If Run method is called during the execution of the global event

SMP_LeaveStandby, then it throws an InvalidSimulatorState

exception as per InvalidSimulatorState.h in [SMP_FILES];

3. If Run method is called during the execution of the global event

SMP_EnterStandby, then it throws an InvalidSimulatorState

exception as per InvalidSimulatorState.h in [SMP_FILES];

4. If the simulation is in Standby state, it issues the global event

“SMP_LeaveStandby” via the Event Manager;

5. After returning from the SMP_LeaveStandby global event, it

changes the simulation state to “Executing” state;

6. After entering Executing state, it issues the global event

“SMP_EnterExecuting” via the Event Manager.

ECSS-E-ST-40-07_1440220

i. The ISimulator Hold method shall change the state from Executing to

Standby with the following argument and procedure:

1. Argument:

(a) “hardHold” given if the Simulation is halting immediately.

2. Procedure:

(a) If the simulation is not in Executing state, then it throws an

InvalidSimulatorState exception as per

InvalidSimulatorState.h in [SMP_FILES];

(b) If called during the execution of the global event

SMP_LeaveExecuting, then it throws an

InvalidSimulatorState exception as per

InvalidSimulatorState.h in [SMP_FILES];

(c) If called during the execution of the global event

SMP_EnterExecuting, then it throws an

InvalidSimulatorState exception as per

InvalidSimulatorState.h in [SMP_FILES];

(d) If the simulation is in Executing state, it waits until the current

executing event, if any, completes;

(e) After the current executing event is completed and if the

hardHold argument is “false”, it executes all events

scheduled for the current simulation time;

(f) After all events that need executing are completed, it issues

the global event “SMP_LeaveExecuting” via the Event

Manager;

(g) After returning from the SMP_LeaveExecuting global event,

it changes the simulation state to “Standby” state;

(h) After entering Standby state, it issues the global event

“SMP_EnterStandby” via the Event Manager.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

110

NOTE 1 Halting the simulation with “hardHold” to

“true” can cause the simulation to halt when

some models have reached the current

simulation time, but others not. This is useful for

debugging purposes.

NOTE 2 Halting the simulation with “hardHold” to

“false” ensures that all simulation models have

executed up until a consistent simulation time.

This is useful for hardware in the loop

simulations.

ECSS-E-ST-40-07_1440221

j. The ISimulator Store method shall store a breakpoint to file, with the

following argument and procedure:

1. Argument:

(a) “filename” giving the name including the full path of the

breakpoint file to be saved.

2. Procedure:

(a) If the simulation is not in Standby state, then it throws an

InvalidSimulatorState exception as per

InvalidSimulatorState.h in [SMP_FILES];

(b) If Store method is called during the execution of the global

event SMP_LeaveStandby, then it throws an

InvalidSimulatorState exception as per

InvalidSimulatorState.h in [SMP_FILES];

(c) If Store method is called during the execution of the global

event SMP_EnterStandby, then it throws an

InvalidSimulatorState exception as per

InvalidSimulatorState.h in [SMP_FILES];

(d) If the simulation is in Standby state, it issues the global event

“SMP_LeaveStandby” via the Event Manager;

(e) After returning from the SMP_LeaveStandby global event, it

changes the simulation state to Storing state;

(f) After entering Storing state, it issues the global event “SMP_

EnterStoring” via the Event Manager;

(g) After returning from the “SMP_EnterStoring” event, it

performs Self Persistence by calling the IPersist Store method

on all simulation objects that implement the IPersist interface;

(h) After Self Persistence is completed, it performs External

Persistence by storing the simulation state in the simulation

breakpoint file given by the “filename” argument;

(i) After Store operation has been completed, it issues the global

event “SMP_LeaveStoring” via the Event Manager;

(j) After returning from the “SMP_LeaveStoring” event, it

changes the simulation state to Standby state;

(k) After entering Standby state, it issues the global event

“SMP_EnterStandby” via the Event Manager.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

111

NOTE Self-Persistence is performed prior to External

Persistence during store as it allows models to

update its published data prior to storing it.

ECSS-E-ST-40-07_1440222

k. The ISimulator Restore method shall restore a breakpoint from file, with

the following argument and procedure:

1. Argument:

(a) “filename” giving the name including the full path of the

breakpoint file to restore.

2. Procedure:

(a) If the simulation is not in Standby state, then it returns and no

action is taken;

(b) If called during the execution of the global event

SMP_LeaveStandby, then it throws an InvalidSimulatorState

exception as per InvalidSimulatorState.h in [SMP_FILES];

(c) If called during the execution of the global event

SMP_EnterStandby, then it throws an InvalidSimulatorState

exception as per InvalidSimulatorState.h in [SMP_FILES];

(d) If the simulation is in Standby state, it issues the global event

“SMP_LeaveStandby” via the Event Manager;

(e) After returning from the SMP_LeaveStandby global event,

the simulation state is changed to Restoring state;

(f) After entering Restoring state, it issues the global event

“SMP_EnterRestoring” via the Event Manager.

(g) After returning from the “SMP_EnterRestoring” event, it

performs External Persistence by restoring the simulation

state from a breakpoint file given by the “filename”

argument;

(h) After completing External Persistence, it performs Self

Persistence by calling the IPersist Restore method of all

simulation objects which implement the IPersist interface;

(i) After Restore operation has been completed, it issues the

global event “SMP_LeaveRestoring” via the Event Manager;

(j) After returning from the “SMP_LeaveRestoring” event, the

simulation state is changed to Standby;

(k) After entering Standby state, it issues the global event

“SMP_EnterStandby” via the Event Manager.

NOTE Self-Persistence is performed after to External

Persistence at restore as it allows models to use

its published data during the self-persistence

restoration.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

112

ECSS-E-ST-40-07_1440223

l. The ISimulator Reconnect method shall reconnect the component

hierarchy starting at the root component given as parameter, with the

following argument and procedure:

1. Argument:

(a) “root” giving the component in the hierarchy for which the

reconnect shall start from.

2. Procedure:

(a) If the simulation is not in Standby state, then the method

throws an InvalidSimulatorState exception as per

InvalidSimulatorState.h in [SMP_FILES].

(b) If Reconnect method is called during the execution of the

global event SMP_LeaveStandby, then the method throws an

InvalidSimulatorState exception as per

InvalidSimulatorState.h in [SMP_FILES].

(c) If Reconnect method is called during the execution of the

global event SMP_EnterStandby, then the method throws an

InvalidSimulatorState exception as per

InvalidSimulatorState.h in [SMP_FILES].

(d) If the simulation is in Standby state, the global event

“SMP_LeaveStandby” is issued via the Event Manager.

(e) After returning from the SMP_LeaveStandby global event,

the simulation state is changed to “Reconnecting” state.

(f) The simulation environment ensures that the given Root

component and all models under the given Root component

parameter are published, configured and connected.

(g) After Reconnect operation has been completed, the

simulation state is changed to Standby.

(h) After entering Standby state, the global event

“SMP_EnterStandby” is issued via the Event Manager.

ECSS-E-ST-40-07_1440224

m. The ISimulator Exit method shall trigger a normal termination of a

simulation, as per following procedure:

1. If the simulation is not in Standby state, then it returns and throws

an InvalidSimulatorState exception as per InvalidSimulatorState.h

in [SMP_FILES];

2. If called during the execution of the global event

SMP_LeaveStandby, then it throws an InvalidSimulatorState

exception as per InvalidSimulatorState.h in [SMP_FILES];

3. If called during the execution of the global event

SMP_EnterStandby, then it throws an InvalidSimulatorState

exception as per InvalidSimulatorState.h in [SMP_FILES];

4. If the simulation is in Standby state, it issues the global event

“SMP_LeaveStandby” via the Event Manager;

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

113

5. After returning from the SMP_LeaveStandby global event, it

changes the simulation state to “Exiting” state;

6. After entering Exiting state, it issues the global event

“SMP_EnterExiting” via the Event Manager;

7. The Exit method triggers a normal termination of the simulation.

ECSS-E-ST-40-07_1440225

n. The ISimulator Abort method shall trigger an abnormal termination of a

simulation, as per following procedure:

1. When called, it issues the global event “SMP_EnterAborting” via the

Event Manager;

2. After returning from the “SMP_EnterAborting” event, it changes

the simulation state to Aborting state;

3. After entering Aborting state, it triggers an abnormal termination of

the simulation.

NOTE This method can be called from any other state.

ECSS-E-ST-40-07_1440226

o. The ISimulator GetState method shall return the current simulator state as

per SimulatorStateKind in SimulatorStateKind.h in [SMP_FILES].

ECSS-E-ST-40-07_1440227

p. The ISimulator AddInitEntryPoint method shall add entry points to be

executed in the Initialising state, as per following argument and behaviour:

1. Argument:

(a) “entryPoint” giving a pointer to the entry point interface of

the entry point to be added.

2. Behaviour:

(a) If the simulation is not in Building, Connecting or Standby

state, then it throws an InvalidSimulatorState exception as

per InvalidSimulatorState.h in [SMP_FILES];

(b) If the simulation is in Building, Connecting or Standby state,

it adds the entry point to the list of entry points to be executed

once the simulation reaches Initialising state.

NOTE This allows components to subscribe to a

callback during initialization phase since there

are only explicit methods defined for Publish,

Configure and Connect. This simplifies

implementation for models that do not require

initialization.

ECSS-E-ST-40-07_1440228

q. The ISimulator AddModel method shall add a model to the Models

container of the simulator, with the following argument and behaviour:

1. Argument:

(a) “model” giving the model to be added.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

114

2. Behaviour:

(a) If the Simulation is not in Standby, Building, Connecting or

Initializing state, it throws an InvalidSimulatorState

exception as per InvalidSimulatorState.h in [SMP_FILES];

(b) If the name of the new model conflicts with the name of an

existing model already added via AddModel, it throws a

DuplicateName exception as per DuplicateName.h in

[SMP_FILES];

(c) If the name of the new model conflicts with the name of an

existing service already added via AddService, it throws a

DuplicateName exception as per DuplicateName.h in

[SMP_FILES].

NOTE 1 The container for the models has no upper limit

and thus the ContainerFull exception is never

thrown.

NOTE 2 The method never throws the

InvalidObjectType exception, as it gets a

component implementing the IModel interface.

ECSS-E-ST-40-07_1440229

r. The ISimulator AddService method shall add a user-defined service to the

Services container, with the following argument and behaviour:

1. Argument:

(a) “service” giving the service to be added.

2. Behaviour:

(a) If the Simulation is not in Building state, it throws an

InvalidSimulatorState exception as per

InvalidSimulatorState.h in [SMP_FILES];

(b) If the name of the new service conflicts with the name of an

existing model already added via AddModel, it throws a

DuplicateName exception as per DuplicateName.h in

[SMP_FILES];

(c) If the name of the new service conflicts with the name of an

existing service already added via AddService, it throws a

DuplicateName exception as per DuplicateName.h in

[SMP_FILES].

NOTE 1 The container for the services has no upper limit

and thus the ContainerFull exception is never

thrown.

NOTE 2 The method never throws the

InvalidObjectType exception, as it gets a

component implementing the IService interface.

NOTE 3 It is recommended that custom services include

a project or company acronym as prefix in their

name, to avoid collision of service names.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

115

ECSS-E-ST-40-07_1440230

s. The ISimulator GetService method shall return the interface of a service

with the following argument and behaviour:

1. Argument:

(a) “name” giving the name of the service.

2. Behaviour:

(a) If no service with the given name , it returns nullptr;

(b) If a service with the given name is found, it returns a reference

to that service.

NOTE For the mandatory services, it is recommended

to use the dedicated convenience methods listed

in requirements 5.3.7t to 5.3.7y, which are

guaranteed to return valid references.

ECSS-E-ST-40-07_1440231

t. The ISimulator GetLogger method shall return the interface of the

mandatory logger service.

NOTE This is a type-safe convenience method, to avoid

having to use the generic GetService() method.

For the standardised services, it is recommended

to use the convenience methods, which are

guaranteed to return a valid reference.

ECSS-E-ST-40-07_1440232

u. The ISimulator GetTimeKeeper method shall return the interface to the

mandatory time keeper service.

NOTE This is a type-safe convenience method, to avoid

having to use the generic GetService() method.

For the standardised services, it is recommended

to use the convenience methods, which are

guaranteed to return a valid reference.

ECSS-E-ST-40-07_1440233

v. The ISimulator GetScheduler method shall return the interface to the

mandatory scheduler service.

NOTE This is a type-safe convenience method, to avoid

having to use the generic GetService() method.

For the standardised services, it is recommended

to use the convenience methods, which are

guaranteed to return a valid reference.

ECSS-E-ST-40-07_1440234

w. The ISimulator GetEventManager method shall return the interface to the

mandatory event manager service.

NOTE This is a type-safe convenience method, to avoid

having to use the generic GetService() method.

Commented [HTP75]: CR TAS-1

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

116

For the standardised services, it is recommended

to use the convenience methods, which are

guaranteed to return a valid reference.

ECSS-E-ST-40-07_1440235

x. The ISimulator GetResolver method shall return the interface to the

mandatory resolver service.

NOTE This is a type-safe convenience method, to avoid

having to use the generic GetService() method.

For the standardised services, it is recommended

to use the convenience methods, which are

guaranteed to return a valid reference.

ECSS-E-ST-40-07_1440236

y. The ISimulator GetLinkRegistry method shall return the interface to the

mandatory link registry service.

NOTE This is a type-safe convenience method, to avoid

having to use the generic GetService() method.

For the standardised services, it is recommended

to use the convenience methods, which are

guaranteed to return a valid reference.

ECSS-E-ST-40-07_1440237

z. The ISimulator RegisterFactory method shall register a component factory,

with the following argument and behaviour:

1. Argument:

(a) “componentFactory” giving the factory to be registered.

2. Behaviour:

(a) If another factory has been registered using the same

implementation identifier already, it raises a DuplicateUuid

exception as per DuplicateUuid.h in [SMP_FILES].

NOTE 1 The simulator can use this factory to create

component instances of the component

implementation in its CreateInstance() method.

NOTE 2 This method is typically called early in the

Building state to register the available

component before the hierarchy of model

instances is created.

ECSS-E-ST-40-07_1440238

aa. The ISimulator CreateInstance method shall create an instance of a

component, with the following arguments and behaviour:

1. Arguments:

(a) “uuid” giving a unique identifier of the component

implementation to create;

(b) “name” giving the name of the new instance;

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

117

(c) “description” giving the description of the new instance;

(d) “parent” giving the parent object of the new instance.

2. Behaviour:

(a) If the “uuid” provided does not corresponds to a registered

factory through the RegisterFactory method, it returns

nullptr;

(b) If the name provided is not a valid object name, it raises an

InvalidObjectName exception as per InvalidObjectName.h in

[SMP_FILES];

(c) If the “uuid” provided corresponds to a registered model,

and the name is a valid object name, it returns a reference to

the newly created model with name, description and parent

set as provided.

NOTE This method is typically called during the

Building state when building the hierarchy of

models.

ECSS-E-ST-40-07_1440239

bb. The ISimulator GetFactory method shall return the factory of the

component with the following argument and behaviour:

1. Argument:

(a) “uuid” giving a unique identifier of the component

implementation.

2. Behaviour:

(a) If a factory has been registered with the given “uuid”, it

returns a pointer to the registered factory;

(b) If no factory for the given “uuid” has been registered, it

returns nullptr.

ECSS-E-ST-40-07_1440240

cc. The ISimulator GetFactories method shall return a collection of all

registered facories as per FactoryCollection in IFactory.h in [SMP_FILES].

ECSS-E-ST-40-07_1440241

dd. The ISimulator GetTypeRegistry method shall return a reference to the

Type Registry.

ECSS-E-ST-40-07_1440242

ee. The ISimulator LoadLibrary method shall load a library for a Package,

with the following argument and behaviour:

1. Argument:

(a) "libraryPath" to the library to load;

(b) “flag” to describe visibility of the loaded library symbols for

subsequently loaded libraries, whose type is an enumeration

as per LibraryLoadingFlag.h in [SMP_FILES], specified in

Table 5-9.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

118

2. Behaviour:

(a) If called with an invalid libraryPath, it throws a FileNotFound

exception as per FileNotFound.h in [SMP_FILES];

(b) If called with an libraryPath pointing to a library without the

Initialise() function, it throws an InvalidLibrary exception as

per InvalidLibrary.h in [SMP_FILES];

(c) If called with the file name of a library, it loads this library

into memory and calls the dynamic "Initialise()" function of

this library;

(d) If called with the LLF_LOCAL or LLF_GLOBAL flag, the

value is converted to an equivalent value supported by the

underlying operating system;

(e) If called with the LLF_AUTO flag, the appropriate value is

determined by the ISimulator implementation;

(f) If called with the file name of a library, it calls the dynamic

"Finalise()" function of this library when in the simulator

Exiting or Aborting state.

NOTE 1 to item (d): In the case where the flag argument

is not LLF_AUTO and if there is no equivalent

value in the underlying operation system, its

value is ignored.

NOTE 2 to item (d): Under Unix OS, LLF_LOCAL and

LLF_GLOBAL correspond respectively to the

the RTLD_LOCAL and RTLD_GLOBAL flags in

the dlopen() system call.

NOTE 3 to item (f): It is expected that the Operating

System loads the library into memory only once

even in case this method is called multiple times.

Table 5-9: Library loading flags

Name Description

LLF_AUTO The library loading option will be selected by the simulation environment

implementation.

LLF_LOCAL Symbols defined in this library will not be made available to resolve

references in subsequently loaded libraries.

LLF_GLOBAL The symbols defined by this library will be made available for symbol

resolution of subsequently loaded libraries.

ECSS-E-ST-40-07_1440243

ff. The ISimulator GetContainers method shall return a ContainerCollection

with two containers as follows:

1. One container called “Models” with all the models added via the

ISimulator AddModel method;

2. One container called “Services” with all the services added via the

ISimulator AddService method.

Commented [HTP76]: CR SPB-9

Commented [HTP77]: CR OHB-40

Commented [HTP78]: CR SPB-9

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

119

ECSS-E-ST-40-07_1440244

gg. The ISimulator GetContainer method shall return the IContainer interface

to the container, with the following argument and behaviour:

1. Argument:

(a) “name” of the container to be returned.

2. Behaviour:

(a) If called with “Models” as argument, it returns the reference

to the Models container.

(b) If called with “Services” as argument, it returns the reference

to the Services container.

(c) If called with anything else than “Models” or “Services”, it

returns nullptr.

ECSS-E-ST-40-07_1440245

hh. The ISimulator GetParent shall return nullptr.

NOTE The Simulator is the root object in the simulator

tree.

ECSS-E-ST-40-07_1440246

ii. The ISimulator GetName shall return a valid name.

5.3.8 Persistence

5.3.8.1 Storage Reader Interface (IStorageReader)

ECSS-E-ST-40-07_1440247

a. The simulation environment shall provide a component implementing the

IStorageReader interface as per IStorageReader.h in [SMP_FILES].

NOTE 1 The IStoragerReader interface provides

functionality to read data from storage.

NOTE 2 The IStoragerReader interface allows objects

implementing the IPersist interface to restore

their state.

ECSS-E-ST-40-07_1440248

b. The IStorageReader Restore method shall restore data from storage, with

the following arguments and behaviour:

1. Arguments:

(a) “address” giving the address of memory block;

(b) “size”, giving the size of the memory block.

2. Behaviour:

(a) It reads from the breakpoint a memory block of the given size

at the given address.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

120

ECSS-E-ST-40-07_1440249

c. The IStorageReader GetStateVectorFileName method shall return the full

name including the absolute path of the breakpoint file currently in use by

the Storage Reader.

ECSS-E-ST-40-07_1440250

d. The IStorageReader GetStateVectorFilePath method shall return a full

absolute path to the directory of the breakpoint file currently in use.

NOTE The path can be used when reading additional

files that correspond to the breakpoint file read.

5.3.8.2 Storage Writer Interface (IStorageWrite)

ECSS-E-ST-40-07_1440251

a. The simulation environment shall provide a component implementing the

IStorageWriter interface as per IStorageWriter.h in [SMP_FILES].

NOTE 1 The IStorageWriter interface provides

functionality to write data from storage.

NOTE 2 The IStorageWriter interface allows objects

implementing the IPersist interface to store their

state.

ECSS-E-ST-40-07_1440252

b. The IStorageWriter Store method shall store data to storage by writing a

memory block of data to the breakpoint file with the following arguments:

1. “address” giving the address of memory block;

2. “size” giving the size of the memory block.

ECSS-E-ST-40-07_1440253

c. The IStorageWriter GetStateVectorFileName method shall return the full

name including the absolute path of the breakpoint file currently in use by

the Storage Writer.

ECSS-E-ST-40-07_1440254

d. The IStorageWriter GetStateVectorFilePath method shall return a full

absolute path to the directory of the breakpoint file currently in use.

NOTE The path can be used when writing additional

files that correspond to the breakpoint file

written.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

121

5.3.9 Publication

5.3.9.1 IPublication

ECSS-E-ST-40-07_1440255

a. The simulation environment shall provide a component implementing the

IPublication interface as per IPublication.h in [SMP_FILES].

NOTE The IPublication interface provides functionality

to allow publishing simulation model members,

including fields, properties and operations.

ECSS-E-ST-40-07_1440256

b. The IPublication GetTypeRegistry method shall return a reference to the

Type Registry.

NOTE See clause 5.3.10 for details on the Type Registry.

c. <<deleted, modified and moved to 5.3.9.3b>>

d. <<deleted, modified and moved to 5.3.9.3c>>

e. <<deleted, modified and moved to 5.3.9.3d>>

f. <<deleted, modified and moved to 5.3.9.3e>>

g. <<deleted, modified and moved to 5.3.9.3f>>

h. <<deleted, modified and moved to 5.3.9.3g>>

ECSS-E-ST-40-07_1440263

i. The IPublication PublishOperation method shall allow publishing of an

operation, with the following arguments and behaviour:

1. Arguments:

(a) “name” giving the operation name;

(b) “description” giving the operation description;

(c) “view” giving the visibility of the operation

2. Behaviour:

(a) If an Operation with the same Name is already published, it

updates the “Description” and “View” of the previous

publication, clears all published Parameters for the

Operation, and returns the same IPublishOperation of the

previously published Operation;

(b) If an Operation with the same Name is not published, it

creates a new IPublishOperation instance and returns it.

(c) If the component that publishes the Operation does not

implement IDynamicInvocation, it throws a

Commented [HTP80]: Change due to the new IPublishField

interface

Commented [HTP81]: Change due to the new IPublishField

interface

Commented [HTP82]: Change due to the new IPublishField

interface

Commented [HTP83]: Change due to the new IPublishField

interface

Commented [HTP84]: CR OHB-21

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

122

NoDynamicInvocation exception as per

NoDynamicInvocation.h in [SMP_FILES].

NOTE 1 The returned IPublishOperation interface allows

callers of PublishOperation to publish

parameters and return value of the operation.

NOTE 2 See clause 5.2.12.2 for details on how to publish

a complete operation including its parameters.

ECSS-E-ST-40-07_1440264

j. The IPublication PublishProperty method shall allow publishing a

property, with the following arguments and behaviour:

1. Arguments:

(a) “name“ giving the property name;

(b) “description“ giving the property description.

(c) “typeUuid“ giving the property type.

(d) “accessKind“ giving the property access restrictions as per

AccessKind.h in [SMP_FILES] allowing the following values:

(1) Read and write;

(2) Read only;

(3) Write only.

(e) “view“ giving its view kind attribute as per ViewKind.h in

[SMP_FILES].

2. Behaviour:

(a) If the given UUID is not a UUID of a registered type, it throws

a TypeNotRegistered exception as per TypeNotRegistered.h

in [SMP_FILES].

(b) If the given UUID is not an UUID of a Simple Type, it throws

InvalidType as per InvalidType.h in [SMP_FILES].

(c) If the component that publishes the Property does not

implement IDynamicInvocation, it throws a

NoDynamicInvocation exception as per

NoDynamicInvocation.h in [SMP_FILES].

(d) If a Property with the same Name is already published, it

updates the “description”, “uuid”, “accessKind” and “view”

of the previous Property and returns the previous IProperty

object;

(e) Otherwise, it creates and returns a new IProperty object.

NOTE to item (a): The UUID stored in the

TypeNotRegistered exception is the UUID given

to PublishProperty.

k. <<deleted, modified and moved to 5.3.9.3h>>

Commented [HTP85]: CR OHB-31

Commented [HTP86]: Change due to the new IPublishField

interface

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

123

l. <<deleted, modified and moved to 5.3.9.3i>>

ECSS-E-ST-40-07_1440267

m. The IPublication GetProperties method shall return a collection of

published properties as per PropertyCollection in IProperty.h in

[SMP_FILES] that is identical to the collection of properties published

through the PublishProperty() operations in 5.3.9.1j and 5.3.9.1s.

ECSS-E-ST-40-07_1440268

n. The IPublication GetOperations method shall return a collection of

published operations as per OperationCollection in IOperation.h in

[SMP_FILES] that is identical to the collection of operations published

through the PublishOperation() operations in 5.3.9.1i and 5.3.9.1r.

ECSS-E-ST-40-07_1440269

o. <<deleted>>

ECSS-E-ST-40-07_1440270

p. <<deleted>>

ECSS-E-ST-40-07_1440271

q. The IPublication Unpublish method shall release all data published earlier

via the Publish operations.

NOTE This is called prior to deleting the component

that has called into a specific IPublication

instance.

<<new>>

r. The IPublication PublishOperation method shall allow publishing an

operation, with the following arguments and behaviour:

1. Arguments:

(a) "operation" giving the IOperation object.

2. Behaviour:

(a) If the operation parent object, obtained by calling the GetParent

method on the operation argument, does not implement

IDynamicInvocation, it throws a NoDynamicInvocation

exception as per NoDynamicInvocation.h in [SMP_FILES];

(b) If an Operation with the same Name is already published, it

stores the operation argument as a replacement of the

previously published operation;

(c) If an Operation with the same Name is not published, it stores

the provided instance.

NOTE The ownership of the published operation

remains with the publishing component.

Commented [HTP87]: Change due to the new IPublishField

interface

Commented [HTP88]: CR TPZG-7

Commented [HTP89]: CR TPZG-7

Commented [HTP90]: Deleted because redundant in the

new Dynamic Invocation scheme

As a consequence, a part of the implementation of CR OHB-16

has been deleted as well

Commented [HTP91]: Idem comment above

Commented [HTP92]: CR OHB-21

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

124

<<new>>

s. The IPublication PublishProperty method shall allow publishing a

property, with the following arguments and behaviour:

1. Arguments:

(a) "property" giving the IProperty object.

2. Behaviour:

(a) If the property parent object, obtained by calling the GetParent

method on the property argument, does not implement

IDynamicInvocation, it throws a NoDynamicInvocation

exception as per NoDynamicInvocation.h in [SMP_FILES];

(b) If a Property with the same Name is already published, it

stores the property argument as a replacement of the

previously published property;

(c) If a Property with the same Name is not published, it stores

the provided instance.

NOTE The ownership of the published property

remains with the publishing component.

<<new>>

t. The IPublication GetOperation method shall return the Operation object

with the following arguments and behaviour:

1. Arguments:

(a) “name” giving the Operation name to get.

2. Behaviour:

(a) If the Operation with the given name argument does not exist,

it returns nullptr;

(b) If the Operation with the given name argument exists, it

returns the corresponding IOperation object.

<<new>>

u. The IPublication GetProperty method shall return the Property object with

the following arguments and behaviour:

1. Arguments:

(a) “name” giving the Property name to get.

2. Behaviour:

(a) If the Property with the given name argument does not exist,

it returns nullptr;

(b) If the Property with the given name argument exists, it

returns the corresponding IProperty object.

<<new>>

v. All IPublication Publish methods shall throw an InvalidObjectName

exception as per InvalidObjectName.h in [SMP_FILES] if the name given

in the arguments is invalid as per requirement 5.2.1a.

Commented [HTP93]: CR’s TPZG-6 and OHB-20

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

125

<<new>>

w. All IPublication Publish methods shall throw a DuplicateName exception

as per DuplicateName.h in [SMP_FILES] if the name given in the

arguments has already been published for another different SMP object

kind within the same parent.

NOTE This requirement is a direct consequence of

5.2.1b.

5.3.9.2 IPublishOperation

ECSS-E-ST-40-07_1440272

a. The simulation environment shall provide a component implementing the

IPublishOperation interface as per Publication/IPublishOperation.h in

[SMP_FILES].

ECSS-E-ST-40-07_1440273

b. The IPublishOperation PublishParameter method shall allow publishing

parameters of an operation, with the following arguments and behaviour:

1. Arguments:

(a) “name” giving the parameter name;

(b) “description” giving the parameter description;

(c) “typeUuid” giving the parameter type identifier in the Type

Registry;

(d) “direction” giving the parameter direction as per

Publication/ParameterDirectionKind.h in [SMP_FILES]

allowing the following values:

(1) “In” for read only parameters that are not changed by

the operation;

(2) “Out” for write only parameters where no initial

value is specified but the operation provides an

output value;

(3) “InOut” for both read and write parameters;

(4) “Return” for the operation return value.

2. Behaviour:

(a) If the name of the new parameter to be published is already

used by another published parameter by the same Operation,

it throws DuplicateName as per DuplicateName.h in

[SMP_FILES];

(b) If the given UUID is not a valid UUID of a registered type, it

throws TypeNotRegistered as per TypeNotRegistered.h in

[SMP_FILES];

(c) If the given UUID is not an UUID of a simple type, it throws

InvalidType as per InvalidType.h in [SMP_FILES].

(d) If the name of the new parameter to be published is not a

valid object name, it throws InvalidObjectName as per

InvalidObjectName.h in [SMP_FILES].

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

126

(e) If the parameter to be published has direction Return and the

Operation already has a published Parameter with direction

Return, it throws InvalidParameterDirection as per

InvalidParameterDirection.h in [SMP_FILES].

5.3.9.3 IPublishField

<<new>>

a. The simulation environment shall provide a component implementing the

IPublishField interface as per IPublishField.h in [SMP_FILES].

NOTE The IPublishField interface provides

functionality to allow publishing simulation

model fields.

ECSS-E-ST-40-07_1440257

b. The first IPublishField PublishField overloaded method shall allow

publishing of a primitive type field, with the following arguments and

behaviour:

1. Arguments:

(a) “name” giving the field name;

(b) “description” giving the field description;

(c) “address” giving the pointer to the address where the value

of the field is found supporting the following pointer types:

(1) Char8,

(2) Bool,

(3) Int8,

(4) Int16,

(5) Int32,

(6) Int64,

(7) UInt8,

(8) UInt16,

(9) UInt32,

(10) UInt64,

(11) Float32,

(12) Float64.

(d) “view” giving the fields view attribute as per ViewKind.h in

[SMP_FILES];

(e) “state” given if the field is part of the simulation state when

storing or restoring or not;

(f) “input” giving if the field is an input field or not;

(g) “output” giving if the field is an output field or not.

2. Behaviour:

(a) If the name of the new field to be published is already used

by another published field in the same Component, it throws

DuplicateName as per DuplicateName.h in [SMP_FILES];

(b) Otherwise, it creates and returns a new IField object.

Commented [HTP94]: CR OHB-38

Commented [HTP95]: Field publication functionalities are

split out of IPublication to prevent publishing operations and

properties following a PublishStructure call (as this latter

returned an IPublication*)

Commented [HTP96]: CR OHB-31

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

127

NOTE 1 The view kind attribute is specified in Table 4-2.

NOTE 2 There is no publishing call for String8 as it relies

on dynamically allocated memory areas, hence

cannot be published like the other primitive

types.

NOTE 3 Duration and DateTime cannot be supported in

the same way, as they are not strong types (they

are defined to be identical to Int64, but with a

different semantic). For publication of Duration

and DateTime, PublishField with UUID is used.

ECSS-E-ST-40-07_1440258

c. The second IPublishField overloaded PublishField method shall allow

publishing a field against a type found in the Type Registry, with the

following arguments and behaviour:

1. Arguments:

(a) “name” giving the field name;

(b) “description” giving the field description;

(c) “address” giving the field memory address;

(d) “typeUuid” giving the field type;

(e) “view” giving the fields view attribute as per ViewKind.h in

[SMP_FILES];

(f) “state” given if the field is part of the simulation state when

storing or restoring or not;

(g) “input” giving if the field is an input field or not;

(h) “output” giving if the field is an output field or not.

2. Behaviour:

(a) If the name of the new field to be published is already used

by another published field in the same Component, it throws

DuplicateName as per DuplicateName.h in [SMP_FILES];

(b) If the given UUID is not an UUID of a valid registered type,

it throws TypeNotRegistered as per TypeNotRegistered.h in

[SMP_FILES].

NOTE The UUID stored in the TypeNotRegistered

exception is the UUID given to PublishField.

(c) If the given UUID is the UUID of the String8 type or of an

Array of String8 type, it throws InvalidType as per

InvalidType.h in [SMP_FILES].

(d) Otherwise, it creates and returns a new IField object.

NOTE The view kind attribute is specified in Table 4-2.

ECSS-E-ST-40-07_1440259

d. The third IPublishField PublishField overloaded method shall allow

publishing a field that implements IField, with the following argument

and behaviour:

Commented [HTP97]: CR OHB-26

Commented [HTP98]: CR OHB-31

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

128

1. Argument:

(a) “field” giving a pointer to the field IField interface.

2. Behaviour:

(a) If the name of the new field to be published is already used

by another published field in the same Component, it throws

DuplicateName as per DuplicateName.h in [SMP_FILES];

NOTE 1 All additional data defining the field is available

via the operations supported by the IField

interface.

NOTE 2 The ownership of the published field remains

with the publishing component.

ECSS-E-ST-40-07_1440260

e. The IPublishField PublishArray method shall publish an array of simple

types that can be mapped to a primitive type, with the following

arguments and behaviour:

1. Arguments:

(a) “name” giving the array name;

(b) “description” giving the array description;

(c) “count” giving the size of an array;

(d) “address” giving the array memory address of the first

element;

(e) “type” giving the type of each array item;

(f) “view” giving the array view attribute as per ViewKind.h in

[SMP_FILES];

(g) “state” given if the array is part of the simulation state when

storing or restoring or not;

(h) “input” giving if the array is an input field or not;

(i) “output” giving if the array is an output field or not.

2. Behaviour:

(a) If the name of the new field to be published is already used

by another published field in the same Component, it throws

DuplicateName as per DuplicateName.h in [SMP_FILES];

(b) If the given type is String8, it throws InvalidType as per

InvalidType.h in [SMP_FILES];

(c) Otherwise, it creates and returns an ISimpleArrayField object.

ECSS-E-ST-40-07_1440261

f. The IPublishField PublishArray method shall allow to publish arrays of

any type by allowing each element of the array to be published

individually, with the following arguments and behaviour:

1. Arguments:

(a) “name” giving the array name;

(b) “description” giving the array description.

Commented [HTP99]: CR OHB-20

Commented [HTP100]: CR OHB-31

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

129

2. Behaviour:

(a) If the name of the new field to be published is already used

by another published field in the same Component, it throws

DuplicateName as per DuplicateName.h in [SMP_FILES];

(b) A pointer to an IPublishField object is returned.

NOTE 1 The returned IPublishField interface allows

callers of PublishArray to publish each element

of the array individually.

NOTE 2 See clause 5.2.12.2 for details on how to publish

each element individually.

ECSS-E-ST-40-07_1440262

g. The IPublishField PublishStructure method shall allow publishing a

structure by allowing each child element to be published individually,

with the following arguments and behaviour:

1. Arguments:

(a) “name” giving the struct name;

(b) “description” giving the struct description.

2. Behaviour:

(a) If the name of the new field to be published is already used

by another published field in the same Component, it throws

DuplicateName as per DuplicateName.h in [SMP_FILES];

(b) A pointer to an IPublishField object is returned.

NOTE 1 The returned IPublishField interface allows

callers of PublishStructure to publish each

element of the struct individually.

NOTE 2 See clause 5.2.12.2 for details on how to publish

each element individually.

ECSS-E-ST-40-07_1440265

h. The IPublishField GetField method shall return an interface to a field, with

the following argument and behaviour:

1. Argument:

(a) “fullName“ giving the path relative to the component.

2. Behaviour:

(a) If no field exists with the given fully qualified name, it returns

nullptr;

(b) If the field matching the given fully qualified name has a

simple type, it returns an ISimpleField instance;

(c) If the field matching the given fully qualified name is an

Array Field, it returns an IArrayField instance;

(d) If the field matching the given fully qualified name is a

Structure Field, it returns an IStructureField instance.

(e) If the field matching the given fully qualified name is a Simple

Array Field, it returns an ISimpleArrayField instance;

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

130

(f) If the field matching the given fully qualified name is an item

of a simple Array Field, it returns nullptr;

(g) If the field matching the given fully qualified name is an

output field, it returns an IOutputField instance.

NOTE 1 to item (f): To get the corresponding simple

value in this case, it is recommended to call

IComponent.GetSimpleValue.

NOTE 2 to item (g): The path relative to the component is

constructed as per clause 5.1.3. Examples:

• MyStructuredField.InnerField

• MyArrayField[2]

• MyStructuredField.ArrayInnerField[2]

ECSS-E-ST-40-07_1440266

i. The IPublishField GetFields method shall return a collection of published

fields as per FieldCollection in IField.h in [SMP_FILES] that is identical to

the collection of fields published through the PublishField() operations in

5.3.9.3b to 5.3.9.3g.

5.3.10 Type Registry

5.3.10.1 ITypeRegistry

ECSS-E-ST-40-07_1440274

a. The simulation environment shall provide, via the IPublication interface,

a Type Registry publication implementing the ITypeRegistry interface as

Publication/ITypeRegistry.h in [SMP_FILES].

NOTE This interface defines a registration mechanism

for user defined types.

ECSS-E-ST-40-07_1440275

b. The Type Registry shall contain all pre-defined SMP value types with their

pre-defined universally unique identifiers as per ecss.smp.smpcat in

[SMP_FILES].

NOTE It is not mandatory for the models to make use

of the Type Registry.

ECSS-E-ST-40-07_1440276

c. The ITypeRegistry GetType method shall return the interface to the

requested primitive type, with the following argument:

1. “type” giving a primitive type kind.

NOTE This method can be used to map primitive types

to the IType interface to treat all types

identically.

Commented [HTP101]: CR OHB-6

Commented [HTP102]: CR TPZG-5

Commented [HTP103]: CR TPGZ-7

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

131

ECSS-E-ST-40-07_1440277

d. The ITypeRegistry GetType method shall return the interface to the

requested type, with the following argument and behaviour:

1. Argument:

(a) “typeUuid” giving the UUID for which the type is returned.

2. Behaviour:

(a) If no type with the registered UUID are found, it returns

nullptr.

NOTE This method can be used to find out whether a

specific type has been registered before.

ECSS-E-ST-40-07_1440278

e. The ITypeRegistry AddFloatType method shall return the interface to a

new Float type, with the following arguments and behaviour:

1. Arguments:

(a) “name” giving the name of the registered type;

(b) “description” giving the description of the registered type;

(c) “typeUuid” giving the universally unique identifier of the

registered type;

(d) “minimum” giving the minimum value for float;

(e) “maximum” giving the maximum value for float;

(f) “minIncluded” giving whether the minimum value is valid

or not;

(g) “maxIncluded” giving whether the maximum value is valid

or not;

(h) “unit” giving the unit of the type;

(i) “type” giving the primitive type to use for Float type.

2. Behaviour:

(a) If the Primitive Type given is not a Float type, it throws an

InvalidPrimitiveType exception as per

InvalidPrimitiveType.h in [SMP_FILES];

(b) If another type with the same UUID is already registered, it

throws a TypeAlreadyRegistered exception as per

TypeAlreadyRegistered.h in [SMP_FILES].

NOTE 1 IComponent and IDynamicInvocation support

fields, parameters and operations of Float types

via the PTK_Float32 and PTK_Float64 primitive

type, as a Float is mapped either to Float32 or

Float64.

NOTE 2 In type registry, name duplication is possible as

long as the UUID is unique.

ECSS-E-ST-40-07_1440279

f. The ITypeRegistry AddIntegerType method shall return the interface to a

new Integer type, with the following arguments and behaviour:

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

132

1. Arguments:

(a) “name” giving the name of the registered type;

(b) “description” giving the description of the registered type;

(c) “typeUuid” giving the universally unique identifier of the

registered type;

(d) “minimum” giving the minimum allowed value for integer;

(e) “maximum” giving the maximum allowed value for integer;

(f) “unit” giving the unit of the type;

(g) “primitiveType” giving the primitive type to use for Integer

type.

2. Behaviour:

(a) If the Primitive Type given is not an Integer type, it throws an

InvalidPrimitiveType exception as per

InvalidPrimitiveType.h in [SMP_FILES];

(b) If another type with the same UUID is already registered, it

throws a TypeAlreadyRegistered exception as per

TypeAlreadyRegistered.h in [SMP_FILES].

NOTE IComponent and IDynamicInvocation support

fields, parameters and operations of Integer

types via the PTK_Int primitive types, as an

Integer is mapped to one of Int8 / Int16 / Int32 /

Int64 / UInt8 / UInt16 / UInt32 / UInt64.

ECSS-E-ST-40-07_1440280

g. The ITypeRegistry AddEnumerationType method shall return the

interface to a new Enumeration type, with the following arguments and

behaviour:

1. Arguments:

(a) “name” giving the name of the registered type;

(b) “description” giving the description of the registered type;

(c) “typeUuid” giving the universally unique identifier (UUID)

of the registered type.

2. Behaviour:

(a) If another type with the same UUID is already registered, it

throws a TypeAlreadyRegistered exception as per

TypeAlreadyRegistered.h in [SMP_FILES].

ECSS-E-ST-40-07_1440281

h. The ITypeRegistry AddArrayType method shall return the interface to a

new Array type, with the following arguments and behaviour:

1. Arguments:

(a) “name” giving the name of the registered type;

(b) “description” giving the description of the registered type;

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

133

(c) “typeUuid” giving the universally unique identifier of the

registered type;

(d) “itemTypeUuid” giving the universally unique identifier of

the Type of the array items;

(e) “itemSize” giving the size of an array item in bytes, taking

possible padding into account, as it can be used by the

simulation environment to calculate the memory offset

between array items;

(f) “arrayCount” giving the number of elements in the array;

(g) “simpleArray” giving a flag whether a field of this array type

is be implemented as ISimpleArrayField or as IArrayField.

2. Behaviour:

(a) If another type with the same typeUuid already is registered,

it throws a TypeAlreadyRegistered exception as per

TypeAlreadyRegistered.h in [SMP_FILES];

(b) If the typeUuid is not yet registered, the array type is added

to the Type Registry.

NOTE Existence of the type identified by the item type

UUID in the Type Registry is not checked

because the implementation performs “lazy”

resolution of types, i.e. the type resolution is

deferred until a model element is published

against the type (or when the type is actually

used).

ECSS-E-ST-40-07_1440282

i. The ITypeRegistry AddStringType method shall return the interface to a

new String type, with the following arguments and behaviour:

1. Arguments:

(a) “name” giving the name of the registered type;

(b) “description” giving the description of the registered type;

(c) “typeUuid” giving the universally unique identifier of the

registered type;

(d) “length” giving the maximum length of the string.

2. Behaviour:

(a) If another type with the same UUID is already registered, it

throws a TypeAlreadyRegistered exception as per

TypeAlreadyRegistered.h in [SMP_FILES].

ECSS-E-ST-40-07_1440283

j. The ITypeRegistry AddStructureType method shall return the interface to

a new Structure type that allows adding fields, with the following

arguments and behaviour:

1. Arguments:

(a) “name” giving name of the registered type;

Commented [HTP105]: CR OHB-19, CR OHB-26

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

134

(b) “description” giving description of the registered type;

(c) “typeUuid” giving the universally unique identifier of the

registered type.

2. Behaviour:

(a) If another type with the same UUID is already registered, it

throws a TypeAlreadyRegistered exception as per

TypeAlreadyRegistered.h in [SMP_FILES].

ECSS-E-ST-40-07_1440284

k. The ITypeRegistry AddClassType method shall return the interface to a

new Class type that allows adding fields, with the following arguments

and behaviour:

1. Arguments:

(a) “name” giving name of the registered type;

(b) “description” giving description of the registered type;

(c) “typeUuid” giving the universally unique identifier of the

registered type.

(d) "baseClassUuid" giving the universally unique identifier of

the base class, or Uuid_Void when the Class has no base

Class.

2. Behaviour:

(a) If another type with the same UUID is already registered, it

throws a TypeAlreadyRegistered exception as per

TypeAlreadyRegistered.h in [SMP_FILES].

NOTE Existence of the type identified by

baseClassUuid in the Type Registry is not

checked because the implementation performs

“lazy” resolution of types, i.e. the type

resolution is deferred until a model element is

published against the type (or when the type is

actually used).

5.3.10.2 IType

ECSS-E-ST-40-07_1440285

a. The simulation environment shall provide a class implementing the IType

interface as per Publication/IType.h in [SMP_FILES].

ECSS-E-ST-40-07_1440286

b. The IType GetPrimitiveTypeKind method shall return the primitive type

kind as per PrimitiveTypes.h in [SMP_FILES] for types in the type registry

as follows:

1. If the type cannot be mapped to a primitive type kind, it returns

PTK_None;

2. If the type is registered as a derived type of one of the primitive

types, it returns the Primitive type kind;

Commented [HTP106]: CR OHB-26

Commented [HTP107]: CR OHB-19, CR OHB-26

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

135

3. If the type is one of the primitive types themselves, it returns the

corresponding primitive type kind.

NOTE 1 The primitive types are specified in Table 5-1.

NOTE 2 Types that cannot be mapped to a primitive type

include:

• Arrays registered via ITypeRegistry

AddArrayType;

• Structures registered via ITypeRegistry

AddStructureType.

• Classes registered via ITypeRegistry

AddClassType.

NOTE 3 Derived types include:

• Enumerations registered via ITypeRegistry

AddEnumerationType;

• Strings registered via ITypeRegistry

AddStringType;

• Integer types registered via the

ITypeRegistry AddIntegerType;

• Float types registered via the ITypeRegistry

AddFloatType.

ECSS-E-ST-40-07_1440287

c. The IType GetUuid method shall return the Universally Unique Identifier

of the type.

ECSS-E-ST-40-07_1440288

d. The IType Publish method shall allow publishing a new field in a receiver,

with the following arguments and behaviour:

1. Arguments:

(a) “receiver” giving the publishing interface to publish against;

(b) “name” giving the name of instance;

(c) “description” giving the description of instance;

(d) “address” giving the address of instance;

(e) “viewKind” giving the visibility of instance;

(f) “state” giving if the instance is part of the breakpoint or not;

(g) “input” giving if writing to the instance is allowed;

(h) “output” giving if reading from the instance is allowed.

2. Behaviour:

(a) If the name of the new field to be published is not a valid

object name, it throws InvalidObjectName as per

InvalidObjectName.h in [SMP_FILES];

(b) If the name of the new field to be published is already used

by another published field in the same Component, it throws

DuplicateName as per DuplicateName.h in [SMP_FILES];

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

136

(c) If the UUID of the IType being published is not a valid

registered type, it throws TypeNotRegistered as per

TypeNotRegistered.h in [SMP_FILES];

(d) If the UUID of the IType being published is the UUID of the

String8 type or of an Array of String8 type, it throws

InvalidType as per InvalidType.h in [SMP_FILES];

(e) Otherwise, it creates and returns a new IField object.

NOTE Using the IType Publish method is an alternative

method to publish a field than using the

IPublication publishing methods.

5.3.10.3 IStructureType

ECSS-E-ST-40-07_1440289

a. The simulation environment shall provide a class implementing the

IStructureType interface as per Publication/IStructureType.h in

[SMP_FILES].

ECSS-E-ST-40-07_1440290

b. The IStructureType AddField method shall add a field to the structure,

with the following arguments and behaviour:

1. Arguments:

(a) “Name” giving the name of the field;

(b) “Description” giving the description of the field;

(c) “Uuid” giving the universally unique identifier of the field

Type, as a value type;

(d) “offset” giving the memory offset of field relative to

Structure;

(e) “ViewKind” giving the visibility of instance;

(f) “state” giving if the instance is part of the breakpoint or not;

(g) “input” giving if the field is an input field or not;

(h) “output” giving if the field is an output field or not.

2. Behaviour:

(a) If the given Name is already used by another published field

by the same StructureType, it throws a DuplicateName

exception as per DuplicateName.h in [SMP_FILES];

(b) If the given Name is not a valid object name, it throws

InvalidObjectName as per InvalidObjectName.h in

[SMP_FILES].

5.3.10.4 IClassType

ECSS-E-ST-40-07_1440291

a. The simulation environment shall provide a class implementing the

IClassType interface as per Publication/IClassType.h in [SMP_FILES].

Commented [HTP108]: NOCR: changed as part of exception

handling refactorisation

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

137

5.3.10.5 IArrayType

ECSS-E-ST-40-07_1440292

a. The simulation environment shall provide a class implementing the

IArrayType interface as per Publication/IArrayType.h in [SMP_FILES].

ECSS-E-ST-40-07_1440293

b. The IArrayType GetSize method shall return the number of elements in

the array.

ECSS-E-ST-40-07_1440294

c. The IArrayType GetItemType method shall return a pointer to the type

that all array items have or throws a TypeNotRegistered exception as par

TypeNotRegistered.h in [SMP_FILES] if the type in the Type Registry

cannot be resolved.

5.3.10.6 IEnumerationType

ECSS-E-ST-40-07_1440295

a. The simulation environment shall provide a class implementing the

IEnumerationType interface as per Publication/IEnumerationType.h in

[SMP_FILES].

ECSS-E-ST-40-07_1440296

b. The IStructureType AddLiteral method shall add a literal entry to the

enumeration given the following input arguments and behaviour:

1. Arguments:

(a) “name” giving the name of the literal;

(b) “description” giving the description of the field;

(c) “value” giving the “value” of the literal.

2. Behaviour:

(a) If the given Name is not a valid object name, it throws an

InvalidObjectName exception as per InvalidObjectName.h in

[SMP_FILES];

(b) If the given Name is already added as a literal to the

enumeration, it throws a DuplicateName exception as per

DuplicateName.h in [SMP_FILES];

(c) If the given Value is already added as a literal to the

enumeration, it throws a DuplicateLiteral exception as per

Publication/DuplicateLiteral.h in [SMP_FILES].

Commented [HTP109]: CR OHB-19 requests return nullptr.

Lazy resolution requests to throw TypeNotRegistered. Second

option implemented

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

138

5.3.10.7 Type Resolution requirements

5.3.10.7.1 General

A Type stored in the Type Registry can be resolved using the associated UUID.

The Simulation Environment does type resolution whenever a method is called

passing a type UUID parameter.

5.3.10.7.2 Requirements

<<new>>

a. A Type registered with the Type Registry shall be resolvable using its

UUID.

<<new>>

b. All Primitive Types shall be resolvable.

NOTE See Table 5-1 for the list of Primitive Types.

<<new>>

c. A Simple Type shall be resolvable if it exists in the Type Registry.

NOTE A Simple type is a type for which the IType

GetPrimitiveTypeKind method returns a value

different from PTK_None and from

PTK_String8.

<<new>>

d. A String Type shall be resolvable if it exists in the Type Registry.

NOTE A String type is a type for which the IType

GetPrimitiveTypeKind method returns

PTK_String8.

<<new>>

e. An Array Type shall be resolvable if its item Type and itself exist in the

Type Registry.

<<new>>

f. A Structure Type shall be resolvable if all its child Field Types and itself

exist in the Type Registry.

<<new>>

g. A Class Type shall be resolvable if its base class Type is resolvable; all its

child Field Types, and itself exist in the Type Registry.

NOTE The base Class type is optional.

<<new>>

h. The Simulation Environment shall resolve a complex type only at the first

use of that type.

Commented [HTP110]: CR OHB-19, CR OHB-26

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

139

NOTE This approach, that consists thus in not resolving

the type completely at the moment where it is

registered with the Type Registry, is called “lazy

resolution”: type resolution of a complex type

involving more than one type UUID (like array,

structure and class types) is delayed until the

first publication that refers to that type UUID.

5.3.11 Component Factory (IFactory)

ECSS-E-ST-40-07_1440297

a. The simulation environment shall provide a class implementing the

IFactory interface as per IFactory.h in [SMP_FILES].

ECSS-E-ST-40-07_1440298

b. The IFactory GetUuid method shall return the UUID of the component that

will be created by this factory.

ECSS-E-ST-40-07_1440299

c. The IFactory CreateInstance method shall create an instance of the

component with the following arguments:

1. “name” giving the name of the instance to be created;

2. “description” giving the description of the instance to be created;

3. “parent” giving a pointer to the parent object of the instance to be

created.

ECSS-E-ST-40-07_1440300

d. The IFactory DeleteInstance method shall delete an existing component

with the following argument:

1. “instance” given the IComponent interface to the component to be

deleted.

ECSS-E-ST-40-07_1440301

e. The IFactory GetTypeName method shall return the fully qualified C++

type name of the component type.

NOTE The fully qualified type name contains all

namespaces and the name of the type, separated

by two colons ("::").

5.3.12 Event loop requirements

5.3.12.1.1 General

The event loop corresponds to the main thread of the Simulation Environment

that executes the simulation events and that updates the simulation time. A

standard behaviour of the event loop can be specified. An event loop executing

all time kind events when the simulator is in the Executing state. Another event

Commented [HTP111]: CR ESOC/TPZG-1

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

140

loop executing only the Zulu time event must be considered when the simulator

is in the Standby state.

5.3.12.1.2 Requirements

<<new>>

a. In the simulator Executing state, one iteration of the Simulation

Environment event loop shall execute the following sequence of actions:

1. Emit the PreSimTimeChange global event via the Event Manager;

2. Accept SetSimulationTime as per requirement 5.3.2e;

3. Emit the PostSimTimeChange global event via the Event Manager;

4. Change Simulation Time to the current next event time;

5. Perform actions to maintain synchronization of simulation time

with Zulu time;

6. While there are events scheduled at or before the current simulation

or Zulu time, execute the event.

NOTE 1 to item 5: synchronisation between simulation

time and Zulu time is necessary only if imposed

by the simulation timing constraints, which are

usually set by the simulation environment.

NOTE 2 to item 5: how synchronization between

simulation time and Zulu time is performed is

outside the scope of this standard. For example,

delays can be inserted in the event loop if

simulation speed is too fast with regards to the

Zulu time.

NOTE 3 to item 6: event could be either immediate or

simulation time, immediate events take priority

over simulation time events.

NOTE 4 to item 6: this while loop can be empty if events

are removed during Pre/PostSimTimeChange.

Same in the case where the

SetEventSimulationTime is called to change the

event execution time.

<<new>>

b. In the simulator Standby state, one iteration of the Simulation

Environment event loop shall perform the following sequence:

1. Wait to reach the time of the next scheduled Zulu time event;

2. While there are events scheduled at or before the current Zulu time,

execute the Zulu time event.

NOTE In the Standby state, only Zulu time events are

executed as specified in requirement 5.3.3w

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

141

5.3.13 Threading requirements

a. Unless specified otherwise in the implementation, methods of Models

shall be called from the simulation thread.

NOTE The simulation thread is the operating system

thread that executes all EntryPoints scheduled

through the Scheduler or subscribed through the

EventManager.

b. Methods of all Services, user-defined services and the Simulation

Environment services, which are the Logger, Scheduler, TimeKeeper,

Event Manager, Resolver and Link Registry may be called from any

thread.

5.4 Meta data

5.4.1 Catalogue

5.4.1.1 File format specification

ECSS-E-ST-40-07_1440302

a. The Catalogue file shall be in conformance with the Catalogue file DRD of

Annex A.

5.4.1.2 Validation rules

5.4.1.2.1 General

ECSS-E-ST-40-07_1440303

a. All user defined catalogues shall link to the SMP catalogue in file

XML/ecss.smp.smpcat in [SMP_FILES] for all standard SMP elements

defined in this standard.

NOTE 1 The ecss.smp.smpcat contains the complete

meta data model for all elements of

[SMP_FILES] expressed in an SMP catalogue.

NOTE 2 The usage of a common standardized SMP

catalogue ensures that common types and other

elements have the same UUID across all

platform, hence allows model integration.

ECSS-E-ST-40-07_1440304

b. No recursive Types shall be specified.

NOTE Models, interfaces, entry points, fields, etc… are

Types in the catalogue, so these Types cannot be

typed as, be derived from or use themselves at

any level of their specification.

Commented [HTP112]: CR OHB-17

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

142

ECSS-E-ST-40-07_1440305

c. Types that are used in another Type shall be visible for that Type.

ECSS-E-ST-40-07_1440306

d. XLinks in documents shall not result in recursively linked documents.

ECSS-E-ST-40-07_1440307

e. The xlink:href attribute shall be a valid URI locator on the form

"<Document>[#<Fragment>]", where <Document> is the linked XML file

and <Fragment> is an optional named element defined in that file.

NOTE In case the named element is defined within the

same file, i.e. the link is local to the file, the

<Document> part of the locator can be omitted.

ECSS-E-ST-40-07_1440308

f. The xlink:title attribute shall always contain the Name of the referenced

named element.

5.4.1.2.2 Types

ECSS-E-ST-40-07_1440309

a. The size of an array shall be a positive number.

ECSS-E-ST-40-07_1440310

b. The PrimitiveType for a Float may only point to Float32 or Float64.

ECSS-E-ST-40-07_1440311

c. Float Minimum shall be less than Float Maximum if MinInclusive is false

or MaxInclusive is false.

ECSS-E-ST-40-07_1440312

d. Float Minimum shall be less or equal to Float Maximum if MinInclusive is

true and MaxInclusive is true.

ECSS-E-ST-40-07_1440313

e. The length of a string shall be larger or equal to zero.

ECSS-E-ST-40-07_1440314

f. The length of a String Value shall not exceed the size of the corresponding

String type.

ECSS-E-ST-40-07_1440315

g. The PrimitiveType for an Integer shall point to Int8, Int16, Int32, Int64,

UInt8, UInt16, UInt32 or UInt64.

ECSS-E-ST-40-07_1440316

h. For Integer types, the Minimum shall be less or equal to the Integer

Maximum.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

143

ECSS-E-ST-40-07_1440317

i. The type for an AttributeType shall point to a ValueType.

ECSS-E-ST-40-07_1440318

j. The Type link for an Attribute shall point to an AttributeType.

ECSS-E-ST-40-07_1440319

k. The default value of an AttributeType shall be not empty.

ECSS-E-ST-40-07_1440320

l. The Value of an Attribute shall not be empty.

5.4.1.2.3 Named Element

ECSS-E-ST-40-07_1440321

a. A Named Element Name shall be unique in its context.

ECSS-E-ST-40-07_1440322

b. A Named Element Id shall be unique in its Document.

ECSS-E-ST-40-07_1440323

c. A Named Element Id shall not be empty.

ECSS-E-ST-40-07_1440324

d. A Named Element Name shall not be an ISO/ANSI C++ keyword.

ECSS-E-ST-40-07_1440325

e. A Named Element Name shall only contain letters, digits, and the

underscore, optionally followed by ‘[‘ and ‘]’ enclosing a number or a

string.

ECSS-E-ST-40-07_1440326

f. Type UUID shall be unique.

5.4.1.2.4 Container and associations

ECSS-E-ST-40-07_1440327

a. Container lower bound shall be a positive number or 0.

ECSS-E-ST-40-07_1440328

b. Container lower bound shall be less or equal to the container upper bound,

if present.

ECSS-E-ST-40-07_1440329

c. Container upper bound shall be ‐1 or larger or equal to the container lower

bound.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

144

ECSS-E-ST-40-07_1440330

d. The Type link of an Association shall point to a Language Type.

ECSS-E-ST-40-07_1440331

e. The Type link of a Container shall point to a Reference Type.

ECSS-E-ST-40-07_1440332

f. The Type link of a Reference shall point to an Reference Type.

ECSS-E-ST-40-07_1440333

g. <<deleted>>

5.4.1.2.5 Enumeration

ECSS-E-ST-40-07_1440334

a. Enumeration Literal Names shall be unique within an Enumeration.

ECSS-E-ST-40-07_1440335

b. Enumeration Literal Values shall be unique within an Enumeration.

5.4.1.2.6 Entry Point

ECSS-E-ST-40-07_1440336

a. Entry Point Output fields shall be output type fields.

ECSS-E-ST-40-07_1440337

b. Entry Point Input fields shall be input type fields.

ECSS-E-ST-40-07_1440338

c. Entry Point Input and Output fields shall be located in the same Model or

a base model.

5.4.1.2.7 Properties

ECSS-E-ST-40-07_1440339

a. Property Attached Field shall have the type of Property’s Type, or a type

derived thereof.

ECSS-E-ST-40-07_1440340

b. Property Attached Field shall be located in the same Class or a base class.

ECSS-E-ST-40-07_1440341

c. The Type link of a Property shall point to a Language Type.

ECSS-E-ST-40-07_1440342

d. <<deleted>>

Commented [HTP113]: CR OHB-45

Commented [HTP114]: CR TPZG-8

Commented [HTP115]: CR TPZG-8

Commented [HTP116]: CR TPZG-9

Commented [HTP117]: CR TPZG-10

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

145

ECSS-E-ST-40-07_1440343

e. A Property of an Interface shall be public.

ECSS-E-ST-40-07_1440344

f. A Property of an Interface shall not be static.

5.4.1.2.8 References

ECSS-E-ST-40-07_1440345

a. Reference lower bound shall be larger than zero.

ECSS-E-ST-40-07_1440346

b. Reference lower bound shall be less or equal to Reference upper bound, if

present.

ECSS-E-ST-40-07_1440347

c. Reference upper bound shall be ‐1, larger or equal to Reference lower

bound.

5.4.1.2.9 Fields

ECSS-E-ST-40-07_1440348

a. <<deleted>>

ECSS-E-ST-40-07_1440349

b. The Type link for a Field shall point to a ValueType.

ECSS-E-ST-40-07_1440350

c. <<deleted>>

ECSS-E-ST-40-07_1440351

d. A Field of a Structure shall be public.

ECSS-E-ST-40-07_1440352

e. <<deleted>>

5.4.1.2.10 Operations

ECSS-E-ST-40-07_1440353

a. An operation of an Interface shall be public.

ECSS-E-ST-40-07_1440354

b. An Operation of an Interface shall not be static.

ECSS-E-ST-40-07_1440355

c. The Type link of a Parameter of the Operation shall point to a Language

Type.

Commented [HTP118]: CR TPZG-11

Commented [HTP119]: CR TPZG-12

Commented [HTP120]: CR TPZG-13

Commented [HTP121]: CR TPZG-14

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

146

ECSS-E-ST-40-07_1440356

d. A Parameter shall only have a default value if its type is Value Type.

ECSS-E-ST-40-07_1440357

e. The value of a parameter shall be inside the range defined for the

corresponding type.

ECSS-E-ST-40-07_1440358

f. Each operation shall have only one parameter with the return type

attribute set.

5.4.1.2.11 Constructors

ECSS-E-ST-40-07_1440359

a. Constructors shall not have any return parameters.

ECSS-E-ST-40-07_1440360

b. Constructors shall not have Const, Virtual or Static attributes.

5.4.1.2.12 Events

ECSS-E-ST-40-07_1440361

a. <<deleted>>

ECSS-E-ST-40-07_1440362

b. The EventArgs link for an EventType shall only point to a SimpleType.

ECSS-E-ST-40-07_1440363

c. The Type link of an EventSource shall point to an EventType.

ECSS-E-ST-40-07_1440364

d. The Type link of an EventSink shall point to an EventType.

ECSS-E-ST-40-07_1440365

e. <<deleted>>

5.4.1.3 Requirements on utilization of Catalogue

ECSS-E-ST-40-07_1440366

a. The design of simulation Models and related Sub-Elements shall be

defined via a catalogue, or a set of catalogues when their use is required in

model exchange.

NOTE For example, model catalogues provide

information about Fields and Properties that can

be configured for a given model in a simulator.

Commented [HTP122]: CR TPZG-15

Commented [HTP123]: CR TPZG-16

Commented [HTP124]: CR related to the relaxing of

Catalogues mandatory use constraint discussed in SMP L2

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

147

ECSS-E-ST-40-07_1440367

b. Catalogues shall not have circular dependencies.

ECSS-E-ST-40-07_1440368

c. Each Model in a simulation shall be defined in a catalogue.

ECSS-E-ST-40-07_1440369

d. Each user-defined Service in a simulator shall be defined in a catalogue.

ECSS-E-ST-40-07_1440370

e. Each Interface between components shall be defined in a catalogue.

ECSS-E-ST-40-07_1440371

f. Each Type used in an interface or component shall be defined in a

catalogue.

ECSS-E-ST-40-07_1440372

g. Each Field of a model or service that is of a type defined in a catalogue

shall be defined in a catalogue.

ECSS-E-ST-40-07_1440373

h. Each public Property of an interface, model or service shall be defined in a

catalogue.

ECSS-E-ST-40-07_1440374

i. Each public Operation of an interface, model or service shall be defined in

a catalogue.

ECSS-E-ST-40-07_1440375

j. Each Entry Point of a model or service shall be defined in a catalogue.

ECSS-E-ST-40-07_1440376

k. Each Event Source of a model or service shall be defined in a catalogue.

ECSS-E-ST-40-07_1440377

l. Each Event Sink of a model or service shall be defined in a catalogue.

ECSS-E-ST-40-07_1440378

m. Each Container of a model or service shall be defined in a catalogue.

ECSS-E-ST-40-07_1440379

n. Each Reference of a model or service shall be defined in a catalogue.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

148

5.4.2 Package

5.4.2.1 File format specification

ECSS-E-ST-40-07_1440380

a. The Package file shall be in confromance with the Package file DRD of

Annex B.

5.4.2.2 Validation rules

ECSS-E-ST-40-07_1440381

a. There shall be no clashes of Type names in packages.

ECSS-E-ST-40-07_1440382

b. For each Model implementation, a different UUID shall be used.

5.4.3 Configuration data

5.4.3.1 File format

ECSS-E-ST-40-07_1440383

a. Files containing configuration data for published fields should be in

conformance with the Configuration file DRD of Annex C.

NOTE The usage of the SMP Configuration file format

is optional.

5.4.3.2 Validation rules

ECSS-E-ST-40-07_1440384

a. All path strings in configuration files shall be valid SMP path strings.

NOTE Valid SMP path strings are specified in clause

5.1.3

ECSS-E-ST-40-07_1440385

b. All field values set shall be valid values for the field type it refers to.

<<new>>

c. All path strings in configuration files shall identify either a simple field, or

an array item of a simple array field.

NOTE For a simple field, the Resolver can resolve the

path. For an item of a simple array field, the

Resolver can only resolve the array field. Commented [HTP125]: CR TPZG-4

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

149

6
Implementation mapping

6.1 Catalogue to C++

6.1.1 Mapping templates

a. Syntax and expression rules used in the specification of C++ mapping

templates:

1. Parts omitted to shorten the template and ease the reading are

replaced by ‘…’.

2. Information from the catalogue to be mapped in the C++ code is

specified by means of placeholders encased within dollar ‘$’

symbols. For example, $Component.Name$ for the value of the field

‘Name’ of some ‘Component’ element referred in the context the

template is applicable. In case an element belongs in a sequence with

a number ‘N’ of occurrences, $...Element[i]...$ refers to the ‘i-th’

occurrence of the sequence where ‘i’ could take any value between

‘1’ and ‘N-1’.

3. Fully qualified names for types are specified by means of the

‘TypeName($Type$)’ expression. For example, for a given type

‘MyType’ defined within two levels of nested namespaces would

refer to ‘::Namespace1::Namespace2::MyType’.

4. Optional code is specified encased within the square bracket ‘[‘ and

‘]’ symbols. For example, ‘[static]’ where the use of ‘static’ might be

subject to some conditions. Exception is where ‘[...]’ is used for the

elements in an array as per rule a.2. above.

5. Alternative code is specified by means of the ‘|’ separator symbol

where exactly one of several options is required. For example,

‘A|B|C’ if either ‘A’, ‘B’ or ‘C’ is to be used in the code.

Table 6-1 and ECSS-E-ST-40-07_1440387

NOTE Table 6-2 contains the C++ declaration and

defintition templates and are referred to from

requirements of clause 6.1.

ECSS-E-ST-40-07_1440386

Table 6-1: C++ declaration templates

Template C++ mapping

Constant static constexpr|const TypeName($Constant.Type$)

$Constant.Name$ = $Constant.Value$;

Field [static][mutable]TypeName($Field.Type$) $Field.Name$;

Commented [HTP126]: CR OHB-28

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

150

Template C++ mapping

Association [const][static][mutable]TypeName($Association.Type$)[*]

$Association.Name$;

Parameter [const]TypeName($Parameter.Type$)[*|&]

$Parameter.Name$[= $Parameter.Default$]

Property

Getter

[virtual] [static][const]TypeName($Property.Type$)[*|&]

get_$Property.Name$()[const][= 0];

Property

Setter

[virtual][static]void

set_$Property.Name$([const]TypeName($Property.Type$)[*|&]

value)[= 0];

Operation [virtual][static]

void|TypeName($Operation.Parameter[i].Type$)[*|&]

$Operation.Name$(void|...)[const][= 0];

Operator [virtual][static]

void|TypeName($Operation.Parameter[i].Type$)[*|&] operator

$Operation.Operator.OperatorKind$(void|...)[const][= 0];

Constructor $Owner.Name$(void|...)[= delete];

Entry Point Smp::IEntryPoint* $EntryPoint.Name$;

Event Sink Smp::IEventSink* $EventSink.Name$;

Event Source Smp::IEventSource* $EventSource.Name$

Container Smp::IContainer* $Container.Name$;

Reference Smp::IReference* $Reference.Name$;

Uuid extern const Smp::Uuid Uuid_$Type.Name$;

Global

Registry

[static] void _Register_$Type.Name$(

Smp::Publication::ITypeRegistry* registry);

Scoped

Registry

[static] void _Register(

Smp::Publication::ITypeRegistry* registry);

Enumeration enum class $Enumeration.Name$: Smp::Int32 {

...

};

Literal $Enumeration.Literal.Name$ = $Enumeration.Literal.Value$

Integer typedef $Integer.PrimitiveType$|Smp::Int32 $Integer.Name$;

Float typedef $Float.PrimitiveType$|Smp::Float64 $Float.Name$;

String struct $String.Name$ {

Smp::Char8 internalString[$String.Length$+1];

};

Array struct $Array.Name$ {

TypeName($Array.ItemType$) internalArray[$Array.Size$];

};

Structure struct $Structure.Name$ {

...

};

Class class $Class.Name$

[: public TypeName($Class.Base.Name$)] {

...

};

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

151

Template C++ mapping

Exception class $Exception.Name$:

 public TypeName($Exception.Base.Name$)|Smp::Exception {

...

};

Interface class $Interface.Name$

[: virtual public TypeName($Interface.Base[1].Name$),

 ...,

 TypeName($Interface.Base[N].Name$)] {

...

};

Model class $Model.Name$:

[public TypeName($Model.Base.Name$),]

[virtual public TypeName($Model.Interface[1].Name$),

 ...,

 TypeName($Model.Interface[N].Name$),]

[virtual public Smp::IEntryPointPublisher,]

[virtual public Smp::IEventConsumer,]

[virtual public Smp::IEventProvider,]

[virtual public Smp::IComposite,]

[virtual public Smp::IAggregate,]

virtual public Smp::IModel {

...

};

Service class $Service.Name$:

[public TypeName($Service.Base.Name$),]

[virtual public TypeName($Service.Interface[1].Name$),

 ...,

 TypeName($Service.Interface[N].Name$),]

[virtual public Smp::IEntryPointPublisher,]

[virtual public Smp::IEventConsumer,]

[virtual public Smp::IEventProvider,]

virtual public Smp::IService {

...

};

ECSS-E-ST-40-07_1440387

Table 6-2: C++ definition templates

Template C++ mapping

Uuid Smp::Uuid Uuid_$Type.Name$ = $Type.Uuid$;

Simple TypeName($Variable.Type$) $Variable.Name$ =

$Variable.Value.Value$|$Variable.Value.Literal$;

Array TypeName($Variable.Type$) $Variable.Name$ = {{

$Variable.ItemValue[1].Value$|$Variable.ItemValue[1].Literal$,

...,

$Variable.ItemValue[N].Value$|$Variable.ItemValue[N].Literal$

}};

Structure TypeName($Variable.Type$) $Variable.Name$ = {

$Variable.FieldValue[1].Value$|$Variable.FieldValue[1].Literal$,

...,

$Variable.FieldValue[N].Value$|$Variable.FieldValue[N].Literal$

};

Property

Getter

return $Property.AttachedField.Name$;

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

152

Template C++ mapping

Property

Setter

$Property.AttachedField.Name$ = value;

6.1.2 Namespaces and files

ECSS-E-ST-40-07_1440388

a. All elements shall be declared within the exact same namespace as in the

Catalogue.

ECSS-E-ST-40-07_1440389

b. Each type shall be declared in a dedicated header file as follows:

1. The hierarchy of namespaces defines the file location with one

directory level per namespace level in the hierarchy;

2. The type name defines the file name.

ECSS-E-ST-40-07_1440390

c. Header files shall allow multiple inclusion by implementing ‘#include’

guards.

ECSS-E-ST-40-07_1440391

d. Header files shall avoid circular dependencies by using forward

declaration.

6.1.3 Element and Type Visibility Kind

ECSS-E-ST-40-07_1440392

a. Visibility kind attributes shall be mapped to ISO/ANSI C++ member access

specifiers as follows:

1. If the attribute is explicitly defined, mapping is as per Table 6-3;

2. If the attribute is undefined, the default “Private” visibility kind is

used with mapping as per Table 6-3.

ECSS-E-ST-40-07_1440393

Table 6-3: C++ mapping for the Visibility kind attribute

Visibility kind Description C++ mapping

Private Local to the parent Type. private

Protected Local to the parent Type and derived Types thereof. protected

Public Global. public

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

153

6.1.4 Mapping of elements

6.1.4.1 Value elements

ECSS-E-ST-40-07_1440394

a. Simple value elements shall be mapped to ISO/ANSI C++ variable’s values

as follows:

Syntax as per “Simple” template in ECSS-E-ST-40-07_1440387

1. Table 6-2;

2. If the element value is of EnumerationValue type, mapping is done

using the Literal attribute instead of the Value one.

ECSS-E-ST-40-07_1440395

b. Array value elements shall be mapped to ISO/ANSI C++ variable’s values

as follows:

Syntax as per “Array” template in ECSS-E-ST-40-07_1440387

1. Table 6-2;

2. If the element items are of EnumerationValue type, mapping is done

using their Literal attribute instead of the Value one.

ECSS-E-ST-40-07_1440396

c. Structure value elements shall be mapped to ISO/ANSI C++ variable’s

values as follows:

Syntax as per “Structure” template in ECSS-E-ST-40-07_1440387

1. Table 6-2;

2. For the element fields of EnumerationValue type, mapping is done

using the Literal attribute instead of the Value one.

6.1.4.2 Constant

ECSS-E-ST-40-07_1440397

a. Constant elements shall be mapped to ISO/ANSI C++ member variables as

per “Constant” template in Table 6-1.

ECSS-E-ST-40-07_1440398

b. The value of the Constant member variable shall be defined as per

mapping of the Value attribute.

NOTE See clause 6.1.4.1 for details on the mapping of

Value attributes.

ECSS-E-ST-40-07_1440399

c. The access specifier of the Constant member variable shall be defined as

follows:

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

154

1. If the member variable belongs in a C++ structure, the member is

public;

2. If the member variable does not belong in a C++ structure, the

mapping of the Visibility attribute is used.

NOTE 1 See clause 6.1.3 for details on the mapping of

Visibility attributes.

NOTE 2 The access specifier applies to Classes, Models,

Services and Interfaces.

6.1.4.3 Field

ECSS-E-ST-40-07_1440400

a. Field elements shall be mapped to ISO/ANSI C++ member variables as per

“Field” template in Table 6-1.

ECSS-E-ST-40-07_1440401

b. The initial value of the Field member variable shall be defined as per

mapping of the Default attribute.

NOTE See clause 6.1.4.1 for details on the mapping of

Value attributes.

ECSS-E-ST-40-07_1440402

c. The access specifier of the Field member variable shall be defined as

follows:

1. If the member variable belongs in a C++ structure, the member is

public;

2. If the member variable does not belong in a C++ structure, the

mapping of the Visibility attribute is used.

NOTE See clause 6.1.3 for details on the mapping of

Visibility attributes.

ECSS-E-ST-40-07_1440403

d. The Static attribute as per ecss.smp.smpcat in [SMP_FILES] shall have the

following effect for the Field C++ mapping:

1. If set to “true”, then the C++ field includes the ‘static’ specifier as per

“Field” template in Table 6-1;

2. If not set, then it has no effect;

3. If set to “false”, then it has no effect.

ECSS-E-ST-40-07_1440404

e. The Mutable attribute as per ecss.smp.smpcat in [SMP_FILES] shall have

the following effect for the Field C++ mapping:

1. If set to “true”, then the C++ field includes the ‘mutable’ specifier as

per “Field” template in Table 6-1;

2. If not set, then it has no effect;

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

155

3. If set to “false”, then it has no effect.

6.1.4.4 Association

ECSS-E-ST-40-07_1440405

a. Association elements shall be mapped to ISO/ANSI C++ member variables

as per “Association” template in Table 6-1;

ECSS-E-ST-40-07_1440406

b. The access specifier of the Association member variable shall be defined

by the mapping of the Visibility attribute.

NOTE See clause 6.1.3 for details on the mapping of

Visibility attributes.

ECSS-E-ST-40-07_1440407

c. The ByPointer attribute as per ecss.smp.smpcat in [SMP_FILES] shall have

the following effect for the Association C++ mapping:

1. If set to “true”, then the C++ mapping of the type includes the ‘*’

specifier as per “Association” template in Table 6-1;

2. If not set, then the C++ mapping of the type includes the specifier

corresponding to the type referenced in the Type attribute as per

Table 6-4;

3. If set to “false”, then the C++ mapping of the type does not include

the ‘*’ specifier.

ECSS-E-ST-40-07_1440408

Table 6-4: C++ mapping of Association depending on ByPointer attribute

C++ mapping

Native Type Value Type Value Reference Reference Type

Specifier without ByPointer *

Specifier with ByPointer=”true” * * * *

Specifier with ByPointer=”false”

ECSS-E-ST-40-07_1440409

d. The Const attribute as per ecss.smp.smpcat in [SMP_FILES] shall have the

following effect for the Association C++ mapping:

1. If set to “true”, then the C++ mapping includes the ‘const’ specifier

as per “Association” template in Table 6-1;

2. If not set, then it has no effect;

3. If set to “false”, then it has no effect.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

156

ECSS-E-ST-40-07_1440410

e. The Static attribute as per ecss.smp.smpcat in [SMP_FILES] shall have the

following effect for the Association C++ mapping:

1. If set to “true”, then the C++ mapping includes the ‘static’ specifier

as per “Association” template in Table 6-1;

2. If not set, then it has no effect;

3. If set to “false”, then it has no effect.

ECSS-E-ST-40-07_1440411

f. The Mutable attribute as per ecss.smp.smpcat in [SMP_FILES] shall have

the following effect for the Association C++ mapping:

1. If set to “true”, then the C++ mapping includes the ‘mutable’

specifier as per “Association” template in Table 6-1;

2. If not set, then it has no effect;

3. If set to “false”, then it has no effect.

6.1.4.5 Parameter

ECSS-E-ST-40-07_1440412

a. Parameter elements shall be mapped to ISO/ANSI C++ as follows:

1. If the Direction kind attribute is ‘return’, the parameter is the return

type of a C++ member method;

2. If the Direction kind attribute is not ‘return’, the parameter is an

argument of a C++ member method with default value given by the

Default attribute;

3. Syntax is for arguments as per “Parameter” and for the return type

as per “Operation” templates in Table 6-1;

4. For the C++ type specifier the mapping of the Direction kind

attribute corresponding to the type referenced in the Type attribute

as per Table 6-5 is used.

NOTE If a Default is set and the Parameter has a type

other than a Value Type or a Direction Kind

other than 'in', then the C++ mapping of the

Default Value shall be the 'nullptr' keyword.

ECSS-E-ST-40-07_1440413

Table 6-5: C++ mapping for the Direction kind attribute

Direction kind
C++ mapping

Native Type Value Type Value Reference Reference Type

in const const &

out * * *

inout * * *

return *

Commented [HTP127]: CR OHB-46

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

157

ECSS-E-ST-40-07_1440414

b. The ByReference attribute as per ecss.smp.smpcat in [SMP_FILES] shall

have the following effect for the Parameter C++ mapping:

1. If set to “true”, then the C++ mapping includes the ‘&’ specifier as

per “Parameter” template in Table 6-1, irrespectively of Table 6-5;

2. If not set, then the C++ mapping is done according to Table 6-5;

3. If set to “false”, then the C++ mapping does not include the ‘&’

specifier, irrespectively of Table 6-5.

ECSS-E-ST-40-07_1440415

c. The Const attribute as per ecss.smp.smpcat in [SMP_FILES] shall have the

following effect for the Parameter C++ mapping:

1. If set to “true”, then the C++ mapping includes the ‘const’ specifier

as per “Parameter” template in Table 6-1, irrespectively of Table 6-5;

2. If not set, then the C++ mapping is done according to Table 6-5;

3. If set to “false”, then the C++ mapping does not include the ‘const’

specifier, irrespectively of Table 6-5.

ECSS-E-ST-40-07_1440416

d. The ByPointer attribute as per ecss.smp.smpcat in [SMP_FILES] shall have

the following effect for the Parameter C++ mapping:

1. If set to “true”, then the C++ mapping includes the ‘*’ specifier as per

“Parameter” template in Table 6-1, irrespectively of Table 6-5;

2. If not set, then the C++ mapping is done according to Table 6-5;

3. If set to “false”, then the C++ mapping does not include the ‘*’

specifier, irrespectively of Table 6-5.

NOTE It is invalid to have both the ByReference

attribute and the ByPointer attribute set to

”true” for the same parameter.

6.1.4.6 Property

ECSS-E-ST-40-07_1440417

a. Property elements shall be mapped to ISO/ANSI C++ member methods as

follows:

1. If the Access attribute is not defined, or it is defined with value equal

to ‘readWrite’ or ‘readOnly’, a getter member method is created

with syntax as per “Property Getter” template in Table 6-1;

2. If the Access attribute is not defined, or it is defined with value equal

to ‘readWrite’ or ‘writeOnly’, a setter member method is created

with syntax as per “Property Setter” template in Table 6-1;

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

158

ECSS-E-ST-40-07_1440418

b. The access specifier of the Property member methods shall be defined as

follows:

1. If the Operation belongs in an Interface, the member is public;

2. If the Operation does not belong in an Interface, the mapping of the

Visibility attribute is used.

NOTE See clause 6.1.3 for details on the mapping of

Visibility attributes.

ECSS-E-ST-40-07_1440419

c. If the AttachedField element is defined, the body of the Property getter

and setter member methods shall be respectively mapped as per “Property

Getter” and “Property Setter” templates in Table 6-2.

ECSS-E-ST-40-07_1440420

d. The ByReference attribute as per ecss.smp.smpcat in [SMP_FILES] shall

have the following effect for the Property C++ mapping:

1. If set to “true”, then the C++ mapping of the type includes the ‘&’

specifier;

2. If not set, or if set to “false”, then the C++ mapping of the type does

not include the ‘&’ specifier.

ECSS-E-ST-40-07_1440421

e. The ByPointer attribute as per ecss.smp.smpcat in [SMP_FILES] shall have

the following effect for the Property C++ mapping:

1. If set to “true”, then the C++ mapping of the type includes the ‘*’

specifier;

2. If not set, then the C++ mapping of the type includes the specifier

corresponding to the type referenced in the Type attribute as per

Table 6-6;

3. If set to “false”, then the C++ mapping of the type does not include

the ‘*’ specifier.

ECSS-E-ST-40-07_1440422

Table 6-6: C++ mapping for Property depending on ByPointer attribute

C++ mapping

Native Type Value Type Value Reference Reference Type

specifier without ByPointer *

Specifier with ByPointer=”true” * * * *

Specifier with ByPointer=”false”

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

159

ECSS-E-ST-40-07_1440423

f. The Static attribute as per ecss.smp.smpcat in [SMP_FILES] shall have the

following effect for the Property C++ mapping:

1. If set to “true”, then the C++ mapping includes the ‘static’ specifier

as per “Property Getter” and “Property Setter” template in Table

6-1;

2. If not set, then it has no effect;

3. If set to “false”, then it has no effect.

ECSS-E-ST-40-07_1440424

g. The Virtual attribute as per ecss.smp.smpcat in [SMP_FILES] shall have

the following effect for the Property C++ mapping:

1. If set to “true”, then the C++ mapping includes the ‘virtual’ specifier

as per “Property Getter” and “Property Setter” template in Table

6-1;

2. If not set, then the C++ mapping includes the ‘virtual’ specifier as

per “Property Getter” and “Property Setter” template in Table 6-1 if

the property belongs to an Interface, Model or Service and is not

static;

3. If set to “false”, then it has no effect.

ECSS-E-ST-40-07_1440425

h. The Abstract attribute as per ecss.smp.smpcat in [SMP_FILES] shall have

the following effect for the Property C++ mapping:

1. If set to “true”, then the C++ mapping includes the ‘=0’ pure specifier

as per “Property Getter” and “Property Setter” template in Table

6-1;

2. If not set, then the C++ mapping includes the ‘=0’ pure specifier as

per “Property Getter” and “Property Setter” template in Table 6-1 if

the property belongs to an Interface;

3. If set to “false”, then it has no effect.

ECSS-E-ST-40-07_1440426

i. The ConstGetter attribute as per ecss.smp.smpcat in [SMP_FILES] shall

have the following effect for the Property C++ mapping:

1. If set to “true”, then the C++ mapping includes the ‘const’ specifier

at the end, as per “Property Getter” template in Table 6-1;

2. If not set, then it has no effect;

3. If set to “false”, then it has no effect.

ECSS-E-ST-40-07_1440427

j. The Const attribute as per ecss.smp.smpcat in [SMP_FILES] shall have the

following effect for the Property C++ mapping:

1. If set to “true”, then the C++ mapping includes the ‘const’ specifier

at the beginning, as per “Property Getter” and "Property Setter"

templates in Table 6-1;

Commented [HTP129]: CR OHB-39

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

160

2. 2. If not set, then it has no effect;

3. 3. If set to “false”, then it has no effect.

6.1.4.7 Operation

ECSS-E-ST-40-07_1440428

a. Operation elements shall be mapped to ISO/ANSI C++ member methods

as follows:

1. If neither the Operator nor the Constructor attribute is set, syntax is

as per “Operation” template in Table 6-1.

2. If the Operator attribute is set, syntax is as per “Operator” template

in Table 6-1.

3. If the Constructor attribute is set, syntax is as per “Constructor”

template in Table 6-1.

NOTE 1 Operator and Constructor attributes cannot be

both set at the same time for a given Operation

element as they are mutually exclusive.

NOTE 2 Constructor methods inherit the name from the

element the Operation is member of, therefore

their own Name attribute is ignored.

ECSS-E-ST-40-07_1440429

b. Operation elements shall have at maximum one Parameter element, or

none in case the Constructor attribute is set, with Direction attribute equal

to ‘return’.

ECSS-E-ST-40-07_1440430

c. Parameter elements belonging to the Operation element shall be mapped

as follows:

1. Syntax as per mapping of Parameter elements.

2. If there is no Parameter element with Direction attribute equal to

‘return’, the return type of the Operation member method is ‘void’.

3. If there is no Parameter element with Direction attribute different

than ‘return’, the only argument of the Operation member method

is ‘void’.

4. If there is more than one Parameter element with Direction attribute

different than ‘return’, they are mapped in sequence as comma-

separated arguments for the Operation member method.

NOTE See clause 6.1.4.5 for details on the mapping of

Parameter elements.

ECSS-E-ST-40-07_1440431

d. The access specifier of the Operation C++ member method shall be defined

as follows:

1. If the Operation belongs in an Interface, the member is public;

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

161

2. If the Operation does not belong in an Interface, the mapping of the

Visibility attribute is used.

NOTE See clause 6.1.3 for details on the mapping of

Visibility attributes.

ECSS-E-ST-40-07_1440432

e. The Static attribute as per ecss.smp.smpcat in [SMP_FILES] shall have the

following effect for the Operation C++ mapping:

1. If set to “true”, then the C++ mapping includes the ‘static’ specifier

as per “Operation” or “Operator” template in Table 6-1;

2. If not set, then it has no effect;

3. If set to “false”, then it has no effect.

NOTE Constructor methods are not affected by the

Static attribute.

ECSS-E-ST-40-07_1440433

f. The Virtual attribute as per ecss.smp.smpcat in [SMP_FILES] shall have

the following effect for the Operation C++ mapping:

1. If set to “true”, then the C++ mapping includes the ‘virtual’ specifier

as per “Operation” or “Operator” template in Table 6-1;

2. If not set, then the C++ mapping includes the ‘virtual’ specifier as

per “Operation” or “Operator” template in Table 6-1 if the

Operation belongs to an Interface, Model or Service and is not static;

3. If set to “false”, then it has no effect.

NOTE Constructor methods are not affected by the

Virtual attribute.

ECSS-E-ST-40-07_1440434

g. The Abstract attribute as per ecss.smp.smpcat in [SMP_FILES] shall have

the following effect for the Operation C++ mapping:

1. If set to “true”, then the C++ mapping includes the ‘=0’ pure specifier

as per “Operation” or “Operator” template in Table 6-1;

2. If not set, then the C++ mapping includes the ‘=0’ pure specifier as

per “Operation” or “Operator” template in Table 6-1 if the

Operation belongs to an Interface;

3. If set to “false”, then it has no effect.

NOTE Constructor methods are not affected by the

Abstract attribute.

ECSS-E-ST-40-07_1440435

h. The Const attribute as per ecss.smp.smpcat in [SMP_FILES] shall have the

following effect for the Operation C++ mapping:

1. If set to “true”, then the C++ mapping includes the ‘const’ specifier

as per “Operation” or “Operator” template in Table 6-1;

2. If not set, then it has no effect;

Commented [HTP130]: CR OHB-39

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

162

3. If set to “false”, then it has no effect.

NOTE Constructor methods are not affected by the

Const attribute.

ECSS-E-ST-40-07_1440436

i. The Operator attribute as per ecss.smp.smpcat in [SMP_FILES] shall have

the following effect for the Operation C++ mapping:

1. If set, then the C++ mapping of the Operator kind referenced in the

Operator attribute as per Table 6-7 is used.

2. If not set, it has no effect.

ECSS-E-ST-40-07_1440437

Table 6-7: C++ mapping for the Operator attribute kinds

Operator kind Description C++ mapping

None Undefined.

Positive Positive value of instance. +x

Negative Negative value of instance. -x

Assign Assigns new value to instance. x = a

Add Adds value to instance. x += a

Subtract Subtracts value to instance. x -= a

Multiply Multiplies instance with value. x *= a

Divide Divides instance by value. x /= a

Remainder Remainder of instance for value. x %= a

Greater Compares whether instance is greater than value. x > a

Less Compares whether instance is less than value. x < a

Equal Compares whether instance is equal to value. x == a

NotGreater Compares whether instance is not greater than value. x <= a

NotLess Compares whether instance is not less than value. x >= a

NotEqual Compares whether instance is not equal to value. x != a

Indexer Returns indexed value of instance. x[a]

Sum Returns sum of two values. a + b

Difference Returns difference of two values. a - b

Product Returns product of two values. a * b

Quotient Returns quotient of two values. a / b

Module Returns remainder of two values. a % b

6.1.4.8 EntryPoint

ECSS-E-ST-40-07_1440438

a. EntryPoint elements shall be mapped to ISO/ANSI C++ member pointer

variables as per “EntryPoint” template in Table 6-1.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

163

ECSS-E-ST-40-07_1440439

b. The access specifier of the EntryPoint member variable shall be public.

ECSS-E-ST-40-07_1440440

c. The EntryPoint member variable shall point to an implementation of the

Smp::IEntryPoint interface.

6.1.4.9 EventSink

ECSS-E-ST-40-07_1440441

a. EventSink elements shall be mapped to ISO/ANSI C++ member pointer

variables as per “EventSink” template in Table 6-1.

ECSS-E-ST-40-07_1440442

b. The access specifier of the EventSink member variable shall be public.

ECSS-E-ST-40-07_1440443

c. The EventSink member variable shall point to an implementation of the

Smp::IEventSink interface.

ECSS-E-ST-40-07_1440444

d. If the EventType of an EventSink has an EventArgs, the implementation of

the Notify method of the Smp::IEventSink interface shall expect to receive

an “arg” parameter of simple type as defined by the type of the EventArgs.

NOTE See clause 5.2.6.1 for the details of the Notify

method of the Smp::IEventSink interface.

6.1.4.10 EventSource

ECSS-E-ST-40-07_1440445

a. EventSource elements shall be mapped to ISO/ANSI C++ member pointer

variables as per “EventSource” template in Table 6-1.

ECSS-E-ST-40-07_1440446

b. The access specifier of the EventSource member variable shall be public.

ECSS-E-ST-40-07_1440447

c. The EventSource member variable shall point to an implementation of the

Smp::IEventSource interface.

ECSS-E-ST-40-07_1440448

d. If the EventType of an EventSource has an EventArgs, the implementation

of the Emit method of the Smp::IEventSource interface shall expect to pass

an “arg” parameter of simple type as defined by the type of the EventArgs.

NOTE See clause 5.2.6.2 for the details of the Emit

method of the Smp::IEventSource interface.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

164

6.1.4.11 Container

ECSS-E-ST-40-07_1440449

a. Container elements shall be mapped to ISO/ANSI C++ member pointer

variables as per “Container” template in Table 6-1.

ECSS-E-ST-40-07_1440450

b. The access specifier of the Container member variable shall be public.

ECSS-E-ST-40-07_1440451

c. The Container member variable shall point to an implementation of the

Smp::IContainer interface.

ECSS-E-ST-40-07_1440452

d. If the Type element of the Container points to a reference type, then the

implementation of the AddComponent method of the Smp::IContainer

interface shall expect the component parameter to be derived from this

Type.

NOTE See clause 5.2.5.2 for the details of the

AddComponent method of the Smp::IContainer

interface.

6.1.4.12 Reference

ECSS-E-ST-40-07_1440453

a. Reference elements shall be mapped to ISO/ANSI C++ member pointer

variables as per “Reference” template in Table 6-1.

ECSS-E-ST-40-07_1440454

b. The access specifier of the Reference member variable shall be public.

ECSS-E-ST-40-07_1440455

c. The Reference member variable shall point to an implementation of the

Smp::IReference interface.

ECSS-E-ST-40-07_1440456

d. If the Type element of the Reference points to a reference type, then the

implementation of the AddComponent method of the Smp::IReference

interface shall expect the component parameter to be derived from this

Type.

NOTE See clause 5.2.4.2 for the details of the

AddComponent method of the Smp::IReference

interface.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

165

6.1.5 Basic Value Types

6.1.5.1 Common specification

ECSS-E-ST-40-07_1440457

a. For each type, a universally unique identifier (UUID) variable shall be

declared as per “Uuid” template in Table 6-1.

ECSS-E-ST-40-07_1440458

The value of the universally unique identifier (UUID) variable shall be defined as per “Uuid” template in ECSS-E-ST-40-07_1440387

b. Table 6-2.

ECSS-E-ST-40-07_1440459

c. For each type, a method to register the type in the registry shall be defined

as per “Global Registry” template in Table 6-1.

ECSS-E-ST-40-07_1440460

d. If the type belongs to a Reference Type, the access specifier of the C++

member variables, types and methods related to the type shall be defined

by the mapping of the Visibility attribute.

NOTE See clause 6.1.3 for details on the mapping of

Visibility attributes.

6.1.5.2 Enumeration

ECSS-E-ST-40-07_1440461

a. Enumeration types shall be mapped to ISO/ANSI C++ enumerated types

as per “Enumeration” template in Table 6-1.

ECSS-E-ST-40-07_1440462

b. Literal elements shall be mapped to ISO/ANSI C++ enumeration literals

with value assignment as per “Literal” template in Table 6-1.

ECSS-E-ST-40-07_1440463

c. Literal elements shall be declared within the exact same Enumeration type

as in the Catalogue.

6.1.5.3 Integer

ECSS-E-ST-40-07_1440464

a. Integer types shall be mapped to ISO/ANSI C++ type definitions as follows:

1. Syntax is as per “Integer” template in Table 6-1;

2. If it references a specific type, the same is used for the declaration;

3. If it does not reference a type, the default Int32 primitive type as per

Table 5-1 is used for the declaration.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

166

6.1.5.4 Float

ECSS-E-ST-40-07_1440465

a. Float types shall be mapped to ISO/ANSI C++ type definitions as follows:

1. Syntax is as per “Float” template in Table 6-1;

2. If it references a specific type, the same is used for the declaration;

3. If it does not reference a type, the default Float64 primitive type as

per Table 5-1 is used for the declaration.

6.1.5.5 String

ECSS-E-ST-40-07_1440466

a. String types shall be mapped to ISO/ANSI C++ structures as per “String”

template in Table 6-1.

NOTE 1 Using a structure with a single internalString

array field (rather than using an array) allows

passing String types by value.

NOTE 2 The extension of one extra character in length

ensures that the terminating NULL character fits

into the string.

6.1.5.6 Array

ECSS-E-ST-40-07_1440467

a. Array types shall be mapped to ISO/ANSI C++ structures as per “Array”

template in Table 6-1.

NOTE Using a structure with a single internalArray

array field (rather than using an array) allows

passing Array types by value.

6.1.6 Compound Value Types

6.1.6.1 Common specification

ECSS-E-ST-40-07_1440468

a. For each type, a universally unique identifier (UUID) variable shall be

declared as per “Uuid” template in Table 6-1.

ECSS-E-ST-40-07_1440469

The value of universally unique identifier (UUID) variables shall be defined as per “Uuid” template in ECSS-E-ST-40-07_1440387

b. Table 6-2.

ECSS-E-ST-40-07_1440470

c. For each type, a method to register the type in the registry shall be defined

as follows:

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

167

1. Syntax is as per “Scoped Registry” template in Table 6-1;

2. Method is declared as member of the C++ structure or class the type

is mapped to.

ECSS-E-ST-40-07_1440471

d. Constant and Field elements belonging to the type shall be mapped within

the exact same C++ structure or class the type is mapped to.

NOTE See clause 6.1.4.1c.2 for details on the mapping

of Constant elements and clause 6.1.4.3 for

details on the mapping of Field elements.

ECSS-E-ST-40-07_1440472

e. If the type belongs to a Reference Type, the access specifier of the C++

member variables, types and methods related to the type shall be defined

by the mapping of the Visibility attribute.

NOTE See clause 6.1.3 for details on the mapping of

Visibility attributes.

6.1.6.2 Structure

ECSS-E-ST-40-07_1440473

a. Structure types shall be mapped to ISO/ANSI C++ structures as per

“Structure” template in Table 6-1.

6.1.6.3 Class

ECSS-E-ST-40-07_1440474

a. Class types shall be mapped to ISO/ANSI C++ classes as follows:

1. Syntax as per “Class” template in Table 6-1;

2. If the Base element is defined, the class inherits from the Base class.

ECSS-E-ST-40-07_1440475

b. Class types shall have a default constructor whose access specifier is

defined by the mapping of the Visibility attribute.

NOTE See clause 6.1.3 for details on the mapping of

Visibility attributes.

ECSS-E-ST-40-07_1440476

c. Class types shall have a virtual destructor with the noexcept keyword

whose access specifier is defined by the mapping of the Visibility attribute.

NOTE See clause 6.1.3 for details on the mapping of

Visibility attributes.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

168

ECSS-E-ST-40-07_1440477

d. If the Class type has the NoConstructor attribute as per ecss.smp.smpcat

in [SMP_FILES] set to "true", the constructor shall be declared with the

delete keyword.

ECSS-E-ST-40-07_1440478

e. If the Class type has the NoDestructor attribute as per ecss.smp.smpcat in

[SMP_FILES] set to "true", the destructor shall be declared with the default

keyword.

ECSS-E-ST-40-07_1440479

f. Association, Property and Operation elements belonging to the Class type

shall be mapped within the exact same C++ class the type is mapped to.

NOTE See clause 6.1.4.4 for details on the mapping of

Association elements, clause 6.1.4.6 for details

on the mapping of Property elements and clause

6.1.4.7 for details on the mapping of Operation

elements.

ECSS-E-ST-40-07_1440480

g. If the Class type has the Abstract attribute set to “true”, the destructor shall

be declared as pure virtual.

ECSS-E-ST-40-07_1440481

h. The BaseClass attribute as per ecss.smp.smpcat in [SMP_FILES] shall have

the following effect for the Class C++ mapping:

1. If set, then the class includes an inheritance link to the base class that

the attribute points to;

2. If not set, then it has no effect.

6.1.6.4 Exception

ECSS-E-ST-40-07_1440482

a. Exception types shall be mapped to ISO/ANSI C++ classes as follows:

1. Syntax as per “Exception” template in Table 6-1;

2. If the Base element is defined, the class inherits from the Base class;

3. If the Base element is not defined, the class inherits from the default

Exception class.

ECSS-E-ST-40-07_1440483

b. Exception classes shall have a default constructor whose access specifier is

defined by the mapping of the Visibility attribute.

NOTE See clause 6.1.3 for details on the mapping of

Visibility attributes.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

169

ECSS-E-ST-40-07_1440484

c. Exception classes shall have a copy constructor whose access specifier is

defined by the mapping of the Visibility attribute.

NOTE 1 Copy constructors are required to be able to

catch exceptions by value.

NOTE 2 See clause 6.1.3 for details on the mapping of

Visibility attributes.

ECSS-E-ST-40-07_1440485

d. Exception classes shall have a virtual destructor whose access specifier is

defined by the mapping of the Visibility attribute.

NOTE See clause 6.1.3 for details on the mapping of

Visibility attributes.

ECSS-E-ST-40-07_1440486

e. Association, Property and Operation elements belonging to the Exception

type shall be mapped within the exact same C++ class the type is mapped

to.

NOTE See clause 6.1.4.4 for details on the mapping of

Association elements, clause 6.1.4.6 for details

on the mapping of Property elements and clause

6.1.4.7 for details on the mapping of Operation

elements.

ECSS-E-ST-40-07_1440487

f. If the Exception type has the Abstract attribute set to “true”, the destructor

shall be declared as pure virtual.

ECSS-E-ST-40-07_1440488

g. The BaseClass attribute as per ecss.smp.smpcat in [SMP_FILES] shall have

the following effect for the Exception C++ mapping:

1. If set, then the Exception includes an inheritance link to the base

class that the attribute points to;

2. If not set, then it has no effect.

6.1.7 Reference Types

6.1.7.1 Common specification

ECSS-E-ST-40-07_1440489

a. For each type, a universally unique identifier (UUID) variable shall be

declared as per “Uuid” template in Table 6-1.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

170

ECSS-E-ST-40-07_1440490

The value of universally unique identifier (UUID) variables shall be defined as per “Uuid” template in ECSS-E-ST-40-07_1440387

b. Table 6-2.

ECSS-E-ST-40-07_1440491

c. Constant, Property and Operation elements belonging to the type shall be

mapped within the exact same C++ class the type is mapped to.

NOTE See clause 6.1.4.2 for details on the mapping of

Constant elements, clause 6.1.4.6 for details on

the mapping of Property elements and clause

6.1.4.7 for details on the mapping of Operation

elements.

ECSS-E-ST-40-07_1440492

d. The access specifier of class constructors and destructors within the C++

class a type is mapped to shall be defined by the mapping of the type

Visibility attribute.

NOTE See clause 6.1.3 for details on the mapping of

Visibility attributes.

6.1.7.2 Interface

ECSS-E-ST-40-07_1440493

a. Interface types shall be mapped to ISO/ANSI C++ abstract classes as

follows:

1. Syntax as per “Interface” template in Table 6-1;

2. If Base elements are defined, the class inherits from the Base classes;

3. All class member methods are declared as pure virtual.

ECSS-E-ST-40-07_1440494

b. Interface classes shall have a virtual destructor with an empty

implementation.

6.1.7.3 Model

ECSS-E-ST-40-07_1440495

a. Model types shall be mapped to ISO/ANSI C++ classes as follows:

1. Syntax as per “Model” template in Table 6-1;

2. If Base element is defined, the class inherits from the Base class;

3. If Interface elements are defined, the class inherits from the Interface

classes;

4. If at least one EntryPoint is defined, the class inherits from the

Smp::IEntryPointPublisher class;

5. If at least one EventSink element is defined, the class inherits from

the Smp::IEventConsumer class;

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

171

6. If at least one EventSource element is defined, the class inherits from

the Smp::IEventProvider class;

7. If at least one Container element is defined, the class inherits from

the Smp::IComposite class;

8. If at least one Reference element is defined, the class inherits from

the Smp::IAggregate class.

ECSS-E-ST-40-07_1440496

b. <<deleted>>

ECSS-E-ST-40-07_1440497

c. Model classes shall have a virtual destructor.

ECSS-E-ST-40-07_1440498

d. Field and Association elements belonging to the Model type shall be

mapped within the exact same C++ class the Model type is mapped to.

NOTE See clause 6.1.4.3 for details on the mapping of

Field elements and clause 6.1.4.4 for details on

the mapping of Association elements.

ECSS-E-ST-40-07_1440499

e. EntryPoint, EventSink, EventSource, Container and Reference elements

belonging to the Model type shall be mapped within the exact same C++

class the Model type is mapped to.

NOTE See clause 6.1.4.8 for details on the mapping of

EntryPoint elements, clause 6.1.4.9 for details on

the mapping of EventSink elements, clause

6.1.4.10 for details on the mapping of

EventSource elements, clause 6.1.4.11 for details

on the mapping of Container elements and

clause 6.1.4.12 for details on the mapping of

Reference elements.

ECSS-E-ST-40-07_1440500

f. The Fallible attribute as per ecss.smp.smpcat in [SMP_FILES] shall have

the following effect:

1. If set to “true”, then the C++ class implements the IFallibleModel

interface;

2. If not set, then it has no effect;

3. If set to “false”, then it has no effect.

ECSS-E-ST-40-07_1440501

g. The BaseClass attribute as per ecss.smp.smpcat in [SMP_FILES] shall have

the following effect for the Model C++ mapping:

1. If set, then the class includes an inheritance link to a base class that

the attribute points to;

2. If not set, then it has no effect.

Commented [HTP131]: CR OHB-1

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

172

6.1.7.4 Service

ECSS-E-ST-40-07_1440502

a. Service types shall be mapped to ISO/ANSI C++ classes as follows:

1. Syntax as per “Service” template in Table 6-1;

2. If Base element is defined, the class inherits from the Base class;

3. If Interface elements are defined, the class inherits from the Interface

classes.

4. If at least one EntryPoint is defined, the class inherits from the

Smp::IEntryPointPublisher class;

5. If at least one EventSink element is defined, the class inherits from

the Smp::IEventConsumer class;

6. If at least one EventSource element is defined, the class inherits from

the Smp::IEventProvider class;

ECSS-E-ST-40-07_1440503

b. <<delete>>

ECSS-E-ST-40-07_1440504

c. Service classes shall have a virtual destructor.

ECSS-E-ST-40-07_1440505

d. Field and Association elements belonging to the Service type shall be

mapped within the exact same C++ class the Service type is mapped to.

NOTE See clause 6.1.4.3 for details on the mapping of

Field elements and clause 6.1.4.4 for details on

the mapping of Association elements.

ECSS-E-ST-40-07_1440506

e. EntryPoint, EventSink and EventSource elements belonging to the Service

type shall be mapped within the exact same C++ class the Service type is

mapped to.

NOTE See clause 6.1.4.8 for details on the mapping of

EntryPoint elements, clause 6.1.4.9 for details on

the mapping of EventSink elements and clause

6.1.4.10 for details on the mapping of

EventSource elements.

ECSS-E-ST-40-07_1440507

f. The BaseClass attribute as per ecss.smp.smpcat in [SMP_FILES] shall have

the following effect for the Model C++ mapping:

1. If set, then the class includes an inheritance link to a base class that

the attribute points to;

2. If not set, then it has no effect.

Commented [HTP132]: CR OHB-1

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

173

6.2 Package to library

6.2.1 Mapping templates

a. Syntax and expression rules used in the specification of C++ mapping

templates:

1. Information from the package to be mapped in the C++ code is

specified by means of placeholders encased within dollar ‘$’

symbols. For example, $Package.Name$ for the value of the field

‘Name’ of some ‘Package’ referred in the context the template is

applicable.

NOTE Table 6-8 contains the C++ declaration templates

for packages and is referred to from

requirements of clause 6.2.

ECSS-E-ST-40-07_1440508

Table 6-8: C++ declaration templates for packages

Template C++ mapping

Static Initialise extern “C” bool Initialise_$Package.Name$(

 Smp::ISimulator* simulator,

 Smp::Publication::ITypeRegistry* typeRegistry);

Static Finalise extern “C” bool Finalise_$Package.Name$(Smp::ISimulator*

simulator);

Dynamic Initialise extern ʺCʺ bool Initialise(

 Smp::ISimulator* simulator,

 Smp::Publication::ITypeRegistry* typeRegistry);

Dynamic Finalise extern ʺCʺ bool Finalise(Smp::ISimulator* simulator);

DLL Initialise extern ʺCʺ DLL_EXPORT bool Initialise(

 Smp::ISimulator* simulator,

 Smp::Publication::ITypeRegistry* typeRegistry);

DLL Finalise extern ʺCʺ DLL_EXPORT bool Finalise(Smp::ISimulator*

simulator);

DLL_EXPORT #ifdef WIN32

 #define DLL_EXPORT declspec(dllexport)

#else

 #define DLL_EXPORT

#endif

6.2.2 Common to Unix and Windows

ECSS-E-ST-40-07_1440509

a. The SMDL Package Provider shall implement the Package as a Static or

Dynamic Library file.

NOTE The Library file can be materialized differently

on different Operating Systems.

Commented [HTP133]: CR TPZG-3

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

174

ECSS-E-ST-40-07_1440510

b. The Library shall contain an Initialise function as per Initialise template in

Table 6-8.

ECSS-E-ST-40-07_1440511

c. The Library shall contain a Finalise method as per Finalise template in

Table 6-8.

ECSS-E-ST-40-07_1440512

d. The Finalise function shall release memory allocated during Initialise

method, unless ownership has been handed over.

ECSS-E-ST-40-07_1440513

e. The Initialise function shall register all user-defined Types in the library

with the Type Registry using the provided Type Registry interface.

NOTE This is done by calling the global register

function (for Enumeration, Integer, Float, Array,

String) or method (Structure, Class, Exception)

of the type.

ECSS-E-ST-40-07_1440514

f. The Initialise function shall register the class Factory of all implemented

models in the library using the ISimulator RegisterFactory method.

NOTE The ownership of the class factory is handed

over to the object implementing ISimulator.

ECSS-E-ST-40-07_1440515

g. The Initialise function shall add an instance of all Services in the library

using the ISimulator AddService method.

NOTE The ownership of the service is handed over to

the object implementing ISimulator.

<<new>>

h. The Initialise function may add instances of Model in the library using the

ISimulator AddModel method.

NOTE The ownership of the model is handed over to

the object implementing ISimulator.

<<new>>

i. The Initialise function may register instances of Entry Point in the library

using the ISimulator AddInitEntryPoint method.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

175

6.2.3 Unix (Shared object)

ECSS-E-ST-40-07_1440516

a. The SMDL Package shall be implementation mapped on UNIX based

Operation Systems using on the following two methods:

1. As a Static Library file with extension “.a”;

2. As a Dynamic Shared Object file with extension “.so”.

ECSS-E-ST-40-07_1440517

b. The Static Library shall contain an Initialise method as per the “Static

Initialise” template in Table 6-8.

ECSS-E-ST-40-07_1440518

c. The Dynamic Shared Object shall contain an Initialise method as per the

“Dynamic Initialise” template in Table 6-8.

ECSS-E-ST-40-07_1440519

d. The Static Library shall contain a Finalise method as per the Static Finalise

template in Table 6-8.

ECSS-E-ST-40-07_1440520

e. The Dynamic Shared Object shall contain a Finalise method as per the

“Dynamic Finalise” template in Table 6-8.

ECSS-E-ST-40-07_1440521

f. The Initialise function shall call the Initialise$Package.Name$ () function.

ECSS-E-ST-40-07_1440522

g. The Finalise function shall call the Finalise$Package.Name$ () function.

ECSS-E-ST-40-07_1440523

h. The Initialise$Package.Name$ function shall call the initialization

functions of the Packages which are referenced as Dependencies of the

Package.

NOTE 1 Dependency indicates that a type referenced

from an implementation in the package needs a

type implemented in the referenced package.

NOTE 2 There are no rules on the order in which

packages are initialised, as the type registration

process via Universally Unique Identifiers

(UUIDs) does not introduce dependencies on the

order.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

176

ECSS-E-ST-40-07_1440524

i. The Initialise and Finalise functions shall be implemented so that multiple

calls are possible.

NOTE 1 The Initialise and Finalise functions may get

called several times during initialization when a

library is referenced from more than one

package.

NOTE 2 Ensuring that types are only registered once and

memory is only allocated once allows multiple

calls to Initialise.

ECSS-E-ST-40-07_1440525

j. Packages shall map to either static or dynamic libraries.

NOTE 1 Two dynamic library implementations are

currently mapped

• Unix Shared Object (SO)

• Windows Dynamic Link Library (DLL)

NOTE 2 The requirements for the static library are

common to all the dynamic library

implementations, therefore they are not

repeated in the corresponding clauses. The

clauses on the dynamic library implementations

cover only the specific delta specifications

applicable to the case at hand.

6.2.4 Addendum for Windows Dynamic Link
Library (DLL)

ECSS-E-ST-40-07_1440526

a. A package shall be mapped to a single DLL file.

ECSS-E-ST-40-07_1440527

b. A single DLL file shall implement a single package.

ECSS-E-ST-40-07_1440528

c. All functions exported by a DLL file shall be exported with platform-

specific decorations based on the calling convention.

NOTE This is typically achieved by using the ‘C’

linkage (extern “C”) along with the

__declspec(dllexport) storage-class

attributes.

ECSS-E-ST-40-07_1440529

d. A DLL file shall export the function Initialise() with the following “DLL

Initialise” template in Table 6-8 where DLL_EXPORT is as per

“DLL_EXPORT” template in Table 6-8.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

177

ECSS-E-ST-40-07_1440530

e. A DLL file shall export the function Finalise() with the following DLL

Finalise template in Table 6-8 where DLL_EXPORT is as per DLL_EXPORT

template in Table 6-8.

6.2.5 SMP Bundle

ECSS-E-ST-40-07_1440531

a. A SMP bundle shall be composed by one or more SMDL packages.

ECSS-E-ST-40-07_1440532

b. A SMP bundle shall be composed by one or more package dynamic

libraries, directly related to the SMDL packages.

ECSS-E-ST-40-07_1440533

c. A SMP bundle may be composed by one or more package static libraries,

directly related to the SMDL packages.

ECSS-E-ST-40-07_1440534

d. A SMP bundle shall be composed by all the SMP catalogues related to the

SMDL packages.

ECSS-E-ST-40-07_1440535

e. A SMP Bundle shall include a SMP manifest file in conformace with the

Manifest file DRD of Annex D.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

178

Annex A (normative)
Catalogue file - DRD

A.1 Catalogue DRD

A.1.1 Requirement identification and source document

This DRD is called from ECSS-E-ST-40-07 requirement 5.4.1.1a.

A.1.2 Purpose and objective

The purpose of the Catalogue file is to hold the model meta data.

A.2 Expected response

A.2.1 Scope and content

ECSS-E-ST-40-07_1440536

a. The suffix for catalogue files shall be “smpcat”.

ECSS-E-ST-40-07_1440537

b. The document shall be compliant with the Catalogue XML XSD in

XML/Smdl/Catalogue.xsd in [SMP_FILES] and the files referred from it:

1. XML/Core/Types.xsd in [SMP_FILES]

2. XML/Core/Elements.xsd in [SMP_FILES]

A.2.2 Special remarks

None.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

179

Annex B (normative)
Package file - DRD

B.1 Package DRD

B.1.1 Requirement identification and source document

This DRD is called from ECSS-E-ST-40-07 requirement 5.4.2.1a.

B.1.2 Purpose and objective

The purpose of the Package file is to contain all metamodel elements that are

needed in order to define how implementations of types defined in catalogues

are packaged.

B.2 Expected response

B.2.1 Scope and content

ECSS-E-ST-40-07_1440538

a. The suffix for package files shall be “smppkg”.

ECSS-E-ST-40-07_1440539

b. The document shall be compliant with the Package XML XSD in

xml/Smdl/Package.xsd in [SMP_FILES] and the files referred from it:

1. xml/Smdl/Types.xsd in [SMP_FILES]

2. xml/Smdl/Elements.xsd in [SMP_FILES]

B.2.2 Special remarks

None.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

180

Annex C (normative)
Configuration file - DRD

C.1 Configuration DRD

C.1.1 Requirement identification and source document

This DRD is called from ECSS-E-ST-40-07 requirement 5.4.3.1a

C.1.2 Purpose and objective

The purpose of the Configuration file is to hold configuration data for a

simulation.

C.2 Expected response

C.2.1 Scope and content

ECSS-E-ST-40-07_1440540

a. The suffix for configuration files shall be “smpcfg”.

ECSS-E-ST-40-07_1440541

b. The document shall be compliant with the Configuration XML XSD in

xml/Smdl/Configuration.xsd in [SMP_FILES] and the files referred from it:

1. xml/Smdl/Types.xsd in [SMP_FILES]

2. xml/Smdl/Elements.xsd in [SMP_FILES]

C.2.2 Special remarks

None.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

181

Annex D (normative)
Manifest file - DRD

D.1 Manifest DRD

D.1.1 Requirement identification and source document

This DRD is called from ECSS-E-ST-40-07 requirement 6.2.5e.

D.1.2 Purpose and objective

The purpose of the Manifest file is to hold meta data for a bundle.

D.2 Expected response

D.2.1 Scope and content

ECSS-E-ST-40-07_1440542

a. The SMP Manifest files name shall be “SMP.MF”.

ECSS-E-ST-40-07_1440543

b. The SMP Manifest file shall be an ASCII file which contains key-value pairs

in the following format: “Key: Value”

ECSS-E-ST-40-07_1440544

c. In the SMP Manifest file the Key and Value shall be separated by a colon.

ECSS-E-ST-40-07_1440545

d. In the SMP Manifest file the, the Key shall only contain alpha-numerical

characters, underscore (“_”) or dash (“-“).

ECSS-E-ST-40-07_1440546

e. In the SMP Manifest file the, the Value shall start at the first non-

whitespace character after the colon (“:”), and is terminated by the end of

line.

ECSS-E-ST-40-07_1440547

f. The SMP Manifest file shall contain the Mandatory Keys listed in Table D-

1 as indicated in the Mandatory column.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

182

ECSS-E-ST-40-07_1440548

g. The SMP Manifest file shall conform to the OSGi Core Release 6 Bundle

Manifest file format.

NOTE Internet link to the OSGI Core manifest:

https://osgi.org/download/r6/osgi.core-6.0.0.pdf

ECSS-E-ST-40-07_1440549

Table D-1: SMP Manifest Key

Key Meaning Mandatory

Bundle-Copyright Copyright statement for the bundle. Yes

Bundle-ContactAddress Full address of a person or company that can be

contacted.

No

Bundle-DocURL URL where documentation for the bundle can be

retrieved from.

No

Bundle-Description Textual description of the bundle and its content. Yes

Bundle-ManifestVersion A bundle manifest may express the version of the

OSGi manifest header syntax in the Bundle-

ManifestVersion header. If specified, the bundle

manifest version must be ’2’.

Yes

Bundle-Name The Bundle-Name header defines a readable name for

this bundle. This should be a short, human-readable

name that can contain spaces.

Yes

Bundle-SymbolicName The Bundle-SymbolicName manifest header is a

mandatory header. The bundle symbolic name and

bundle version allow a bundle to be uniquely

identified in the Framework. That is, a bundle with a

given symbolic name and version is treated as equal to

another bundle with the same (case sensitive) symbolic

name and exact version.

The installation of a bundle with a Bundle-

SymbolicName and Bundle-Version identical to an

existing bundle fail.

Yes

Bundle-Vendor The Bundle-Vendor header contains a human-readable

description of the bundle vendor.

Yes

Bundle-Version Bundle-Version is an optional header; the default

value is 0.0.0.

A version consists of major, minor and micro version

components. If the minor or micro version

components are not specified, they have a default

value of 0.

Versions are comparable. Their comparison is done

numerically and sequentially on the major, minor, and

micro components. A version is considered equal to

another version if the major, minor, and micro

components are equal.

Yes

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

183

Key Meaning Mandatory

Require-Bundle The Require-Bundle header specifies the required

exports from another bundle. This is a comma-

separated list of required bundles, where each bundle

is at least specified by its symbolic name, optionally

followed by a specific version:

<Bundle-SymbolicName>[; Bundle-Version="<Bundle-

Version>"]

No

Compiler-Name Name of the compiler that has been used to compile

the source code.

No

Compiler-Version Version of the compiler that has been used to compile

the source code.

No

OS-Name Name of the Operating System. No

OS-Version Version of the Operating System. No

D.2.2 Special remarks

None.

ECSS-E-ST-40-07C Rev.1 DIR1

30 September 2024

184

Bibliography

ECSS-S-ST-00 ECSS system – Description, implementation and

general requirements

ISO 9000 series Quality management systems standards

International Organization for Standardization (ISO)

http://www.iso.org

ISO/IEC 9899:2011 ISO/IEC 9899:2011 Information technology --

Programming languages -- C

ISO/IEC 14882:2011 ISO/IEC 14882:2011 Information technology --

Programming languages -- C++

Open Group UUID Open Group

http://www.opengroup.org

OSGi Manifest Open Services Gateway initiative

http://www.osgi.org

SMP v1.2 Simulation Model Portability

Specification version 1.2

XML Extensible Markup Language

World Wide Web Consortium (W3C)

http://www.w3.org/XM

http://www.opengroup.org/

