
ECSS-E-ST-40-08C DIR1
30 September 2024

Space engineering
Simulation modelling platform
(SMP) - Level 2
 This document is distributed to the ECSS community for Public Review.

(Duration: 8 weeks)
Start Public Review: 29 October 2024

End Public Review: 23 December 2024

DISCLAIMER (for drafts)
This document is an ECSS Draft Standard. It is subject to change without any notice and
may not be referred to as an ECSS Standard until published as such.

ECSS Secretariat
ESA-ESTEC

Requirements & Standards Section
Noordwijk, The Netherlands

ECSS-E-ST-40-08C DIR1
30 September 2024

2

Foreword

This Standard is one of the series of ECSS Standards intended to be applied together for the
management, engineering, product assurance and sustainability in space projects and applications.
ECSS is a cooperative effort of the European Space Agency, national space agencies and European
industry associations for the purpose of developing and maintaining common standards. Requirements
in this Standard are defined in terms of what shall be accomplished, rather than in terms of how to
organize and perform the necessary work. This allows existing organizational structures and methods
to be applied where they are effective, and for the structures and methods to evolve as necessary
without rewriting the standards.

This Standard has been prepared by the ECSS-E-ST-40-08C Working Group, reviewed by the ECSS
Executive Secretariat and approved by the ECSS Technical Authority.

Disclaimer

ECSS does not provide any warranty whatsoever, whether expressed, implied, or statutory, including,
but not limited to, any warranty of merchantability or fitness for a particular purpose or any warranty
that the contents of the item are error-free. In no respect shall ECSS incur any liability for any damages,
including, but not limited to, direct, indirect, special, or consequential damages arising out of, resulting
from, or in any way connected to the use of this Standard, whether or not based upon warranty, business
agreement, tort, or otherwise; whether or not injury was sustained by persons or property or otherwise;
and whether or not loss was sustained from, or arose out of, the results of, the item, or any services that
may be provided by ECSS.

Published by: ESA Requirements and Standards Section
 ESTEC, P.O. Box 299,
 2200 AG Noordwijk
 The Netherlands
Copyright: 2024© by the European Space Agency for the members of ECSS

ECSS-E-ST-40-08C DIR1
30 September 2024

3

Change log

 Change log for Draft development
Previous step

ECSS-E-ST-40-08C Draft 2

23 Oct 2023

WG Draft

Revised terms, definitions and abbreviations

Improved template argument description

Improved Links description and specifications

Completed LinkBase description and specifications

Added error handling

Updated C++ mapping

ECSS-E-ST-40-08C Draft 3

15 Nov 2023

WG Draft

Revised terms, definitions and abbreviations

Revised simulator initialisation sequence and loading order

Complete LinkBase specifications

Added Schedule specifications

ECSS-E-ST-40-08C Draft 4

29 Mar 2024

Filled in Scope clause (proposal)

Clarifications following RID’s on Draft 3

Port and Port Link removed

Black-box assembly handling reworked: Component Interface is
proposed to define model instance sub-elements which do not have a
corresponding Catalogue definition

Simulator init sequence reworked: this benefits actually from the black-
box assembly simplification

Relative Zulu Time event removed

Track changes enabled to follow-up

Draft is probably not synchronised with the current metamodel

ECSS-E-ST-40-08C Draft 5

05 Jun 2024

Removed ComponentInterface.

Removed non-useful Annexes.

Black-box assembly and simulator init sequence content reworked
following the WG latest discussions.

Completed requirements

Updated following comments from ECSS Secretariat for Draft 4

ECSS-E-ST-40-08C Draft 6

21 Jun 2024

Updated following WG review of Draft 5

Updated following comments from ECSS Secretariat for Draft 4

Remove Bidirectional Field Link as there is no use case identified for
such Link.

Reworked simulator init sequence with the introduction of the
Smp::ISimulatorL2 interface.

ECSS-E-ST-40-08C DIR1
30 September 2024

4

ECSS-E-ST-40-08C Draft 7

30 Sept 2024

Updated following WG review of Draft 6: add clarifications and
requirements for the handling of Component Configurations.

Updated following comments from ECSS Secretariat for Draft 6.

ECSS-E-ST-40-08C DFR1

30 September 2024

Parallel Assessment: 1 – 15 October 2024

Released by TAAR for Public review on 21 Oct. 2024

Current step

ECSS-E-ST-40-08C DIR1

30 September 2024

Public Review 29 October – 23 December 2024

Next steps

DIR + impl. DRRs Draft with implemented DRRs

DIR + impl. DRRs DRR Feedback

DIA TA Vote for publication

DIA Preparation of document for publication (including DOORS transfer for
Standards)

 Publication

 Change log for published Standard (to be updated by ES
before publication)

 First issue

 First issue revision 1.

Changes with respect to version C (date) are identified with revision
tracking.

Main changes are:

 Second issue

The summary of changes between this issue and ECSS…… is as
follows:

• xxx

ECSS-E-ST-40-08C DIR1
30 September 2024

5

Table of contents

Change log .. 3

Introduction ... 9

1 Scope .. 10

2 Normative references .. 12

3 Terms, definitions and abbreviated terms ... 13
3.1 Terms from other standards ... 13
3.2 Terms specific to the present standard .. 13
3.3 Abbreviated terms.. 17
3.4 Conventions... 17
3.5 Nomenclature .. 18

4 Principles ... 19
4.1 Objectives .. 19
4.2 Architecture ... 19

4.2.1 Assembly Architecture ... 20
4.2.2 Link Base Architecture ... 27
4.2.3 Schedule Architecture .. 28
4.2.4 Simulator Architecture .. 32

4.3 Simulator Metadata .. 33
4.3.1 Assembly ... 33
4.3.2 Link Base ... 34
4.3.3 Schedule .. 34

4.4 Simulator Initialisation and Configuration ... 34
4.4.1 Use Cases and Assumptions ... 35
4.4.2 Simulator Initialisation Process Description 37

4.5 Simulator Reconfiguration .. 40

5 Requirements ... 41
5.1 Common requirements .. 41

5.1.1 General .. 41
5.1.2 Requirements ... 41

5.2 Assembly requirements ... 41
5.2.1 Template Argument .. 41

ECSS-E-ST-40-08C DIR1
30 September 2024

6

5.2.2 Field Value ... 42
5.2.3 Property Value ... 43
5.2.4 Operation Call .. 43
5.2.5 Global Event Subscription .. 44
5.2.6 Component Configuration .. 45
5.2.7 Link .. 46
5.2.8 Model Instance ... 48
5.2.9 Assembly Instance (or Sub-Assembly) ... 48
5.2.10 Assembly ... 49

5.3 Link Base requirements ... 49
5.4 Schedule requirements .. 50

5.4.1 Epoch Time .. 50
5.4.2 Mission Start .. 50
5.4.3 Template Argument .. 50
5.4.4 Task ... 50
5.4.5 Activity ... 50
5.4.6 Event.. 51

5.5 Simulator initialisation and configuration .. 52
5.5.1 Simulator initialisation and configuration with Assemblies, Link Bases

and Configurations ... 52
5.5.2 Simulator initialisation and configuration with one Schedule 55
5.5.3 Simulator reconfiguration ... 56
5.5.4 Level 2 Simulator (ISimulatorL2) .. 56
5.5.5 Assembly and Link Base error handling ... 57
5.5.6 Schedule error handling ... 60

5.6 Simulator reconfiguration ... 63
5.7 Metadata ... 63

5.7.1 Assembly ... 63
5.7.2 Link Base ... 64
5.7.3 Schedule .. 65

5.8 Implementation mapping.. 66
5.8.1 General .. 66
5.8.2 Requirements ... 66

Annex A (normative) Assembly file - DRD .. 68
A.1 DRD identification .. 68

A.1.1 Requirement identification and source document 68
A.1.2 Purpose and objective .. 68

ECSS-E-ST-40-08C DIR1
30 September 2024

7

A.2 Expected response .. 68
A.2.1 Scope and content ... 68
A.2.2 Special remarks ... 68

Annex B (normative) Link Base file - DRD .. 69
B.1 DRD identification .. 69

B.1.1 Requirement identification and source document 69
B.1.2 Purpose and objective .. 69

B.2 Expected response .. 69
B.2.1 Scope and content ... 69
B.2.2 Special remarks ... 69

Annex C (normative) Schedule file - DRD ... 70
C.1 DRD identification .. 70

C.1.1 Requirement identification and source document 70
C.1.2 Purpose and objective .. 70

C.2 Expected response .. 70
C.2.1 Scope and content ... 70
C.2.2 Special remarks ... 70

Bibliography .. 71

Figures
Figure 4-1: Assembly Architecture ... 20
Figure 4-2: Three types of Link .. 22
Figure 4-3: Bidirectional Interface Link .. 23
Figure 4-4: Component Configuration .. 24
Figure 4-5: Example of Template Argument Usage ... 26
Figure 4-6: Link Base architecture ... 28
Figure 4-7: Schedule Architecture ... 29
Figure 4-8: Simulator Architecture ... 32
Figure 4-9: ECSS-E-ST-40-07 Simulation Environment state machine 35
Figure 4-10: Simulator Initialisation ... 40

No table of figures entries found.
Tables
Table 5-1: Assembly error identifiers ... 58
Table 5-2: Schedule error identifiers .. 61

ECSS-E-ST-40-08C DIR1
30 September 2024

8

No table of figures entries found.

ECSS-E-ST-40-08C DIR1
30 September 2024

9

Introduction

Space programmes have developed simulation software for a number of years,
which are used for a variety of applications including analysis, engineering
operations preparation and training. Typically, different departments perform
developments of these simulators, running on several different platforms and
using different computer languages. A variety of subcontractors are involved in
these projects and as a result a wide range of simulation software are often
developed. This standard addresses the issues related to portability and reuse of
simulators. For the simulator specifications, it is based on the Simulation
Modelling Platform Level 1 standard ECSS-E-ST-40-07 and it reuses the concepts
developed in the work performed by ESA in the development of the Simulator
Model Portability framework SMP2 starting from the mid-end of the nineties.

This standard integrates the ECSS-E-ST-40 with additional requirements which
are specific to the development of simulation software. The formulation of this
standard takes into account:

• The existing ISO 9000 family of documents, and

• The Simulation Model Portability specification version 1.2.

• The Simulation Modelling Platform standard ECSS-E-ST-40-07.

The intended readership of this standard is the simulator software customer and
supplier.

ECSS-E-ST-40-08C DIR1
30 September 2024

10

1
Scope

ECSS-E-ST-40-08 is a standard based on ECSS-E-ST-40 for the engineering of
artefacts used to instantiate and to configure simulators.

ECSS-E-ST-40-08 complements ECSS-E-ST-40 and ECSS-E-ST-40-07 in being
more specific to simulator artefacts for integration. Simulator artefacts include
assembly, schedule and link base files. The standard enables the effective reuse
of these artefacts within and between space projects and their stakeholders. In
particular, the standard supports assemblies, schedules and link bases reuse
across different simulation environments and exchange between different
organizations and missions.

ECSS-E-ST-40-08 allows:

• to instantiate and to configure elements defined in ECSS-E-ST-40-07,
which are namely the simulation model (including thus its sub-
components and related configuration values and interfaces), the
simulation events and their scheduling.

• to define connections or links between simulation models.

• to define a standard application process of the artefacts at start-up of a
simulator compliant to ECSS-E-ST-40-07.

This standard can be used as an additional standard to ECSS-E-ST-40 and ECSS-
E-ST-40-07 providing the additional requirements which are specific to simulator
software integration.

This standard may be tailored for the specific characteristic and constrains of a
space project in conformance with ECSS-S-ST-00.

Applicability

This standard lays down requirements for simulator artefacts including
assembly, schedule and link base files. The requirements cover the definitions of
these artefacts for the purpose of re-use and exchange to allow a simulator to be
deployed and run in any conformant simulation environment.

A consequence of being compliant to this standard for a simulator artefact is the
possibility of being reused in several simulation facilities or even in several
projects. However, adherence to this standard does not imply or guarantees
simulator artefact reusability, it is only a precondition. Other characteristics of
the simulator artefacts, to be defined outside this standard, such as the functional
content of the artefacts, the simulated spacecraft equipment, the simulator
structure, information and data dependent on the space mission, etc. are also
heavily affecting the potential for an artefact to be reused. In addition,
agreements need to be reached on simulator validation status as well as legal
issues and export control restrictions.

Therefore, this standard enables but does not mandate, impose nor guarantee
successful simulator artefact re-use and exchange.

ECSS-E-ST-40-08C DIR1
30 September 2024

11

Simulator artefact reuse in this standard is meant at the semantics and format
level of the content of these artefacts.

ECSS-E-ST-40-08C DIR1
30 September 2024

12

2
Normative references

The following normative documents contain provisions which, through
reference in this text, constitute provisions of this ECSS Standard. For dated
references, subsequent amendments to, or revision of any of these publications
do not apply. However, parties to agreements based on this ECSS Standard are
encouraged to investigate the possibility of applying the more recent editions of
the normative documents indicated below. For undated references, the latest
edition of the publication referred to applies.

ECSS-S-ST-00-01 ECSS system - Glossary of terms

ECSS-E-ST-40 Space engineering - Software general
requirements

ECSS-E-ST-40-07 Simulation modelling platform

[SMP_FILES] ECSS_SMP_L2_(30September2024).zip – SMP
Level 2 C++ Header files and XML schemas
(Available from ECSS website).

ECSS-E-ST-40-08C DIR1
30 September 2024

13

3
Terms, definitions and abbreviated terms

3.1 Terms from other standards
a. For the purpose of this Standard, the terms and definitions from ECSS-S-

ST-00-01 and ECSS-E-ST-40 apply.

b. For the purpose of this Standard, the terms and definitions from ECSS-E-
ST-70 apply, in particular for the following term:

1. mission

c. For the purpose of this Standard, the terms and definitions from ECSS-E-
ST-40-07 apply.

3.2 Terms specific to the present standard
3.2.1 assembly
simulator artefact that contains a hierarchy of model instances and assembly
instances

3.2.2 assembly instance
occurrence of an external assembly created inside a given assembly

3.2.3 child model instance
model instance contained in a parent model instance via the composition
relationship

3.2.4 component configuration
element contained in an assembly or in an assembly instance, that allows
configuring one model instance.

3.2.5 dataflow link
synonym of field link

3.2.6 event link
link connecting an event source to an event sink

NOTE Consumed data is the event type and the
corresponding data

3.2.7 field link
link connecting an output field to an input field

NOTE Consumed data is the field value

ECSS-E-ST-40-08C DIR1
30 September 2024

14

3.2.8 field automatic-propagation
synonym of field self-propagation

3.2.9 field propagation
copy of the value of the output field to all connected input fields

3.2.10 field scheduled-propagation
field propagation is performed by the simulation environment

NOTE This propagation way is scheduled in a
simulation event. Therefore, this is called a
scheduled propagation

3.2.11 field self-propagation
field propagation is performed by the output field, which can propagate the
value immediately upon value change.

NOTE No scheduling is necessary for this kind of field
propagation

3.2.12 field value
model field configuration value contained in an assembly or in a component
configuration

NOTE Value can be simple when the field is typed by a
primitive type such as Bool, Char8, Int32,
Float64, Duration, DateTime, String8… Value
can also be enumeration, array, string and
structure value. See ECSS-E-ST-40-07 for details

3.2.13 global event
event representing a notification broadcast by the Event Manager service to all
components participating to the simulator

NOTE Global events are not to be confused with
simulation events, which are managed by the
Scheduler service

3.2.14 global event subscription
configuration element contained in an assembly or in a component configuration
that allows subscribing an entry point to a global event

3.2.15 interface link
link connecting a reference to the model instance that provides, or implements, a
given interface

NOTE Consumed data is the operations of the interface

3.2.16 link
connection between two resolvable objects to allow exchange of data between
them

ECSS-E-ST-40-08C DIR1
30 September 2024

15

NOTE As resolvable objects are either model instances
or child objects of model instances, a link can be
considered as a connection between two model
instances

3.2.17 link base
simulator artefact that contains a collection of links

3.2.18 link client path
in a link, path to the resolvable object that receives the information

NOTE For the interface link, it is the path of the model
instance that implements the interface
operations. For the event link, it is the event sink
path. For the field link, it is the input field path

3.2.19 link client model instance
model instance that contains the resolvable object identified by a link client path

3.2.20 link owner path
in a link, path to the resolvable object that uses the link to deliver information

NOTE For the interface link, it is the path of the model
instance that owns the reference. For the event
link, it is the event source path. For the field link,
it is the output field path

3.2.21 link owner model instance
model instance that contains the resolvable object identified by a link owner path

3.2.22 model fully qualified type name
concatenation of the model namespaces and the model name separated by “::”

NOTE The fully qualified type name is a C++ concept
that applies to C++ classes. As a model is
mapped on a C++ class, the model fully qualified
type name has the same meaning as in C++

3.2.23 model instance connection
synonym of link

3.2.24 model integrator
in a simulator artefact exchange relationship, role of the user who performs
integration of simulator artefacts in a simulator

3.2.25 model provider
in a simulator artefact exchange relationship, role of the user who develops and
provides simulator artefacts

ECSS-E-ST-40-08C DIR1
30 September 2024

16

NOTE Thus, a model provider delivers simulator
artefacts to the model integrator, who is in
charge of integrating these in a simulator

3.2.26 operation call
configuration element contained in an assembly or in a component configuration,
that allows calling a model operation by dynamic invocation

3.2.27 parent model instance
model instance that contains model instances via the composition relationship

3.2.28 property value
model property configuration value contained in an assembly or in a component
configuration

NOTE Property values can be typed like field values.

3.2.29 resolvable object
object implementing Smp::IObject (see ECSS-E-ST-40-07), found in the simulator
hierarchy and identified by a path, which can be resolved by the Resolver service

NOTE Resolvable objects that can appear in the
simulator artefacts include model instance, field,
property, event source, event sink, entry point
and operation

3.2.30 resolvable object path
character string obtained by the concatenation of the names of the model
instances on the path separated by the separator “/” with the terminal object
name

NOTE A path is unique in an assembly and is unique in
a simulator. The path is thus an unambiguous
identifier for an object in the simulator

3.2.31 sub-model instance
synonym of child model instance

3.2.32 simulator artefact
general term used for an XML metadata file corresponding to the assembly, the
schedule, the link base or the SMP Level 1 configuration

NOTE SMP Level 1 configuration is defined in ECSS-E-
ST-40-07

3.2.33 simulator artefact loading
process by which the simulator artefact is read and stored into the computer
memory

ECSS-E-ST-40-08C DIR1
30 September 2024

17

3.2.34 simulator artefact application
process by which the previously loaded artefact in the computer memory is
actually instantiated in the simulator that is being configured

NOTE Depending on the implementation optimization,
application can occur immediately after loading
so that it is not necessary to store the elements in
the computer memory

3.2.35 simulator artefact instantiation
synonym of simulator artefact application

3.2.36 sub-assembly
synonym of assembly instance

3.2.37 template argument
element that allows to define parameters by substitution for a simulator artefact

NOTE Template arguments are pre-processed when
the artefact is loaded before the actual
application of the artefact in the simulator

3.3 Abbreviated terms
For the purpose of this Standard, the same abbreviated terms and symbols from
ECSS-S-ST-00-01, ECSS-E-ST-40-07 and the following apply:

Abbreviation Meaning

XSD XML Schema Definition

3.4 Conventions
The following conventions apply throughout this document:

a. In the list of terms provided in 3.2, an underlined term indicates that there
exists as well a definition of that term in the same clause.

b. The main purpose of this Standard is to specify the requirements for the
SMP Level 2 information model, which is expressed with the XSD
provided in the Annexes. When the descriptive text refers to an Element
or a Concept defined in the information model, the corresponding name
in the information model is used.

c. For the specification of software interfaces, conventions in ECSS-E-ST-40-
07 are followed.

d. The present and past tenses are used in this Standard to express statements
of fact, and therefore they imply descriptive text.

e. The term “SMP Object” is used to refer to a software component that
implements Smp::IObject as specified in ECSS-E-ST-40-07.

ECSS-E-ST-40-08C DIR1
30 September 2024

18

f. The word “feature” has the same meaning as in ECSS-E-40-07. It means an
“attribute”, a “field”, an UML-like “property” of an element. As all these
have also their own meaning in SMP Level 1, “feature” is used instead. A
“feature” map at XML level to an “XML attribute” or a “child XML
element”. When referring a “feature”, the name given in the information
model is used in the descriptive text.

g. The word “collection” is used for an element in the information model that
has multiplicity 0..*. Case 0 corresponds to an empty collection, or the
absence of the corresponding XML element. The use of “may contain” is a
synonym of “contains a collection of”.

h. When used in a requirement, “parent model instance” refers to the model
instance that owns the element, which is the focus subject of the current
requirement.

3.5 Nomenclature
The following nomenclature applies throughout this document:

a. The word “shall” is used in this Standard to express requirements. All the
requirements are expressed with the word “shall”.

b. The word “should” is used in this Standard to express recommendations.
All the recommendations are expressed with the word “should”.

NOTE It is expected that, during tailoring,
recommendations in this document are either
converted into requirements or tailored out.

c. The words “may” and “need not” are used in this Standard to express
positive and negative permissions, respectively. All the positive
permissions are expressed with the word “may”. All the negative
permissions are expressed with the words “need not”.

d. The word “can” is used in this Standard to express capabilities or
possibilities, and therefore, if not accompanied by one of the previous
words, it implies descriptive text.

NOTE In ECSS “may” and “can” have completely
different meanings: “may” is normative
(permission), and “can” is descriptive.

ECSS-E-ST-40-08C DIR1
30 September 2024

19

4
Principles

4.1 Objectives
As the objective of this standard aims at specifying the SMP Level 2 information
model supporting the definition of SMP Level 2 artefacts, the principles are
defined in conceptual and functional terms, which are normally independent of
the chosen implementation software technology or exchange format such as
XML.

This clause provides definitions and explanations for the following SMP Level 2
elements and concepts:

a. Assembly

b. Model Instance: (Root)Model Instance and (Sub-)Model Instance

c. Assembly Instance

d. Link

e. Template Argument

f. Component Configuration

g. Field Value

h. Property Value

i. Operation Call

j. Global Event Subscription

k. Schedule

l. Epoch Time and Mission Start

m. Task

n. Activity

o. Event

Explanations of the concepts follow a top-down approach starting from the
Assembly and Schedule architectures. In the text, an element is referred to with
the name like it appears in the above list.

The used exchange format, which is XML for ECSS-E-ST-40-08, is then briefly
explained in Clause 4.3.

4.2 Architecture
The SMP Level 2 simulator architecture is built on the basis of the Assembly,
Schedule and Link Base artefacts. The architectures of these and their building
blocks are explained in this clause.

ECSS-E-ST-40-08C DIR1
30 September 2024

20

4.2.1 Assembly Architecture
The Assembly is the main building block of a simulator. In order to build-up a
simulator, at least one Assembly needs to be provided.

The Assembly defines a hierarchy of model instances, their inter-connections and
the elements needed for their configurations. Following elements are the
building blocks of a simulator assembly:

a. Exactly one Model Instance, which is the top-level or root model instance
of the hierarchy of model instances defined in this Assembly.

b. Zero or more Template Arguments, which define optional parameters for
controlling at instantiation time user variables defined in the Assembly.

c. Zero or more Component Configurations, each defining the configuration
for one Component, that is a model instance node, in the Assembly
hierarchy.

The root Model Instance can contain child Model Instances (i.e. Sub-Model
Instances) or child Assembly Instances as well as Links (i.e. model connections)
and corresponding elements that allow defining their configurations (i.e. Field
Value, Property Value, Operation Call or Global Event Subscription). Each Sub-
Model Instance has the same structure as its parent instance, that is, it can contain
the same kinds of elements as its parent.

Figure 4-1 shows the overview of an Assembly with all possible elements which
can be contained therein:

Figure 4-1: Assembly Architecture

In Figure 4-1, (Root) Model Instance and (Sub-)Model Instance are both model
instances with a subtle difference:

• (Root) denotes the root node of the Assembly, which is not contained in
another model instance.

• (Sub-) denotes that the node is well contained in another model instance.

The arrow “instances of” shown in Figure 4-1 means that a Model Instance
(respectively Assembly Instance) needs to reference the Model (respectively

ECSS-E-ST-40-08C DIR1
30 September 2024

21

Assembly) from which it has been instantiated. Note that Models are elements
defined in ECSS-E-ST-40-07.

4.2.1.1 Model Instance
Each model instance in the Assembly is identified by a unique Path relative to
the top-level or root instance.

Each Model Instance, referred to as the current Model Instance below, contains:

a. A collection of child Model Instances.

b. A collection of child Assembly Instances, which are instantiated from
Assemblies and not from Models.

c. A collection of Links (or Model Instance Connections) where a Link can be
an Interface Link or an Event Link or a Field Link: these Links connect only
Model Instances that are direct or indirect children of the current Model
Instance.

d. A collection of Field Values whose purpose is to configure fields of the
current Model Instance.

e. A collection of Property Values whose purpose is to configure properties
of the current Model Instance.

f. A collection of Operation Calls whose purpose is to call operations for the
configuration of the current Model Instance.

g. A collection of Global Event Subscription whose purpose is to register
Entry Points of the current Model Instance with global events.

4.2.1.2 Assembly Instance
Next to the Model Instances, the Assembly can contain Assembly Instances
created from external Assemblies, these external Assemblies following as well
the architecture shown in Figure 4-1. Identical Assemblies, which define the same
hierarchy and model connections but the related configuration values can be
different, are called instances of the same Assembly. The Assembly Instance
allows thus to create multiple instances of the same model hierarchy. An external
Assembly can be plugged unmodified in another Assembly in the same way as
with Russian Dolls. This flexibility for playing with Assemblies allows to increase
their reusability, exchange and integration in simulators.

An Assembly Instance refers always to the Assembly it is an instance of. It
appears as an instance node in the simulator hierarchy, this node corresponds
then to the unique root Model Instance contained in the source Assembly. As
such, each assembly instance in the Assembly can also be identified by a unique
Path relative to the simulator top-level instance.

Each Assembly Instance contains:

a. A collection of Template Arguments defining the arguments applied to the
source Assembly template parameters.

b. A collection of Component Configurations, which mean to override the
configurations defined in the source assembly.

ECSS-E-ST-40-08C DIR1
30 September 2024

22

4.2.1.3 Link
A Link defines a connection between two models. Following kinds of Link exist:

• A Field Link connects an Output Field to an Input Field.

• An Event Link connects an Event Source to an Event Sink.

• An Interface Link connects a Reference to an Interface provider that is a
Component that implements the Interface. The Interface Link corresponds
exactly to the Usage – Implementation pattern in UML. Furthermore, an
Interface Link can be bidirectional meaning that there is a reverse interface
link running from the client instance back to the owner instance (their
respective roles in the link are reversed). This pattern is very useful to
model for instance a full-duplex data communication interface such as an
UART link or a Spacewire link as it allows to reduce two identical interface
links to one single link between the components. Another use case
concerns the simulation of the power interface: the forward interface link
connects a voltage provider to a voltage consumer and the back interface
link connects a current provider to a current consumer.

The three kinds of Link are illustrated in Figure 4-2.

Figure 4-2: Three types of Link

In Figure 4-2, owner and client model instances are presented to express that
Reference, Field, Event Source and Event Sink are sub-elements that belong
always to a model instance. In reality, the link end objects can be found with their
paths using the Resolver service, that allows to search for any SMP Object in the
simulator hierarchy. In the information model, the three kinds of Link derive
from Link, which has an Owner Path feature and a Client Path feature, which are:

• respectively the Output Field and Input Field paths in a Field Link.

ECSS-E-ST-40-08C DIR1
30 September 2024

23

• respectively the Event Source and Event Sink paths in an Event Link.

• respectively the Interface Consumer Model Instance and Interface
Provider Model Instance paths in an Interface Link.

Figure 4-3 illustrates the bidirectional Interface Link:

Figure 4-3: Bidirectional Interface Link

A bidirectional Interface Link models the communication in both the forward
and the back directions. The Reference feature connects the owner instance to the
client instance as a normal monodirectional link. If the link is bidirectional, the
additional BackReference feature connects back the client instance, which becomes
thus owner, to the owner instance, which becomes thus client.

A “bidirectional Field Link” can also be envisaged but there is currently no use
case identified for such Link.

While a “bidirectional Event Link” cannot exist because due to the nature of an
Event Link, attempting to model bidirectional communication for such Link does
not really make sense.

4.2.1.4 Component Configuration
The Assembly and the Assembly Instance have a collection of Component
Configurations as their direct children, which allows to override the
configuration of the components that are direct or indirect children of the
respective Assembly or Assembly Instance in the hierarchy. The Component
Configuration element can be used to configure a Component, or a model
instance, in the simulator, it contains the sub-elements shown in Figure 4-4.

ECSS-E-ST-40-08C DIR1
30 September 2024

24

Figure 4-4: Component Configuration

In Figure 4-4, the following information is shown:

• Instance Path defines the path to the component that is being configured
by the Component Configuration.

• The Field Value defines a value for a field belonging to the Component.
See ECSS-E-ST-40-07 for the Field Value definition.

• The Property Value defines a value for a Property belonging to the
Component.

• The Operation Call defines an operation belonging to the Component and
that is invoked for the configuration of the Component.

• The Global Event Subscription specifies which Entry Point from the
Component needs to register with which Global Event for the
configuration of the Component.

The Component Configurations that are parts of a top-level Assembly, which is
an Assembly loaded at the simulator root level, can contain configuration for
Model components as well as well as for Service components. In this latter case,
the related Instance Paths are the absolute paths to the targeted Service
components.

The Component Configurations that are parts of a non-top-level Assembly or of
an Assembly Instance, contain only configurations for Model components. That
is, the related Instance Paths are paths relative to the parent root nodes.

As Component Configuration can be used to deal with potentially a numerous
quantity of configuration data, an initialisation order is necessary to ensure a
coherent Component state. The initialisation order of elements found in a
Component Configuration corresponds to the processing order during
application of the Assembly artefact. Within elements of the same kind, the order
corresponds to the order specified in the Component Configuration element.

As a configuration element in a Component Configuration (element can be Field
Value, Property Value, Operation Call, Global Event Subscription) can be set as
well in a Model Instance, it is important to specify an application order:

• First, the element found in the Model Instance is applied.

ECSS-E-ST-40-08C DIR1
30 September 2024

25

• Second, the element found in the Component Configuration, that is part of
the Assembly and that has the instance path pointing to the same model
instance, is applied.

• Last, the element found in the Component Configuration, that is part of
the Assembly Instance created from the same Assembly and that has the
instance path pointing to the same model instance, is applied.

Thus, a Component Configuration under an Assembly Instance is the last applied
elements because its purpose is to override the successive configurations set for
the related Model Instance and for the related Assembly (from which the
Assembly Instance is created).

4.2.1.5 Template Argument
In a way analogue to a software function, an Assembly can define parameters for
which values are assigned when the Assembly is instantiated. The parameters
mean to allow some degree of freedom to customise the information found in the
Assembly to the need of users (e.g. make a model instance name configurable).
The parameters are associated with corresponding placeholders in the Assembly
file, these respect a fixed syntax and are to be substituted with the parameter
values at instantiation time.

Template Arguments allow to implement these parameters. In the current
specification, Int32 and String8 Template Argument are supported. A Template
Argument specifies a Parameter name and a Parameter default value. The
placeholder is specified using the {<parameter name>} syntax. To include a literal
“{“ or “}” in the Assembly, escaping is done by putting double braces, that is “{{“
or “}}”.

When the Assembly is instantiated (i.e. creation of an Assembly Instance), at the
placeholder specified for a parameter, the {<parameter name>} string is substituted
by the actual argument value that is provided as part of the Assembly Instance
specification.

Parameter substitution needs to be processed during loading and before the
Assembly or the Assembly Instance information resulting from the substitution
is actually applied to the simulator.

Figure 4-5 provides an example for the usage of Template Arguments.

ECSS-E-ST-40-08C DIR1
30 September 2024

26

Figure 4-5: Example of Template Argument Usage

In the example shown in Figure 4-5, the Prefix and Identifier parameters are
defined in the Assembly with their default values (respectively an empty string
for Prefix and the value “0” for Identifier). In some element found in the Assembly,
called here AnElement for illustration (e.g. AnElement can be ModelInstance), the
placeholders are set as {Prefix} in the AnElement Name attribute and {Identifier} in
the AnElement FieldValue attribute. When the Assembly is instantiated as an
Assembly Instance with the provision of new Template Argument values, the
placeholders are substituted with the argument values, that is {Prefix} with
“MyNameIs” and {Identifier} with “5”, resulting in AnElement Name =
“MyNameIsBond” and AnElement FieldValue = “5”. The resulting values
“MyNameIsBond” and “5” are then sent for application to the simulator after
parameter substitution is performed. In the simulator, AnElement is named
“MyNameIsBond” and has a FieldValue equal to “5”. Note that if the Assembly
Instance is created without specifying Template Argument values, then the
placeholders are substituted with the default values from the Assembly. In this
case, if AnElement is a model instance, the Name to be applied in the simulator
would be “Bond” because the default value of the Prefix parameter is an empty
string. This situation can raise a processing error for the Assembly if the final
value for the AnElement Name is unexpected.

As a summary, Template Arguments are elements of the Assembly used at the
file level. They are not functional building blocks of an assembly and are rather
software elements, which need interpretation and substitution prior to the real
application to the simulator. This is offered as a mean to customise the Assembly
file content with user-defined parameters.

4.2.1.6 Black-box Assembly
Well before the existence of ECSS-E-ST-40-08, Assemblies have been used quite
successfully to configure simulators. The Assembly either followed the SMP2
format or was simply created using C++ code. After the SMP Level 1 standard, or
ECSS-E-ST-40-07, is released, this practice using C++ code is still allowed because

ECSS-E-ST-40-08C DIR1
30 September 2024

27

the SMP Level 1 standard does not cover the simulator assembly aspects. Thus,
there is no reason to not allow the instantiation and configuration of simulators
using solely C++ code. When used in conjunction with the ECSS-E-ST-40-08
Assembly artefact, the assembly provider can obviously specify the root model
instance in the Assembly. Then at run time, the hierarchy of models below the
root instance can be instantiated in many possible ways using C++ code:

• In the root model instance constructor.

• When the model Configure() is called.

• By calling a user operation that belongs to that root model instance: this is
possible because user operations can be invoked when loading and
applying an Assembly artefact.

The Assembly containing only one root model instance, which can afterwards
create the full model hierarchy below it, is called a “full black-box assembly”
because the whole content of the Assembly with the exception of the root instance
is not visible to the model integrator, this latter having the task to assemble the
simulation models to build-up the simulator.

Although possible, using full black-box assemblies has a serious issue in terms of
simulator exchange as the model integrator does not know a priori how external
models can connect to models contained in the assembly, neither which
configuration values can be set in the assembly. Normally, this information is
specified in the documentation that is delivered along with the Assembly (SMP
Catalogues, models ICD…). Needless to say, this documentation is out of the
scope of ECSS-E-ST-40-07 but at the end, using black-box assemblies is still not a
good idea for simulator artefact exchange. Therefore, ECSS-E-ST-40-08 does not
recommend this practice implicitly by not allowing the use of “full” black-box
assemblies in simulator artefact exchange. Instead, ECSS-E-ST-40-08 allows the
use of “partial” black-box assemblies by stating that when a model instance is
required to connect to model instances external to the Assembly, meaning model
instances found outside the perimeter of the hierarchy of models defined by the
Assembly, that model instance needs to be created explicitly in the Assembly.
Once specified, documentation about these model instances can be obtained from
another source, for instance the corresponding SMP Catalogue or a model ICD,
because these model instances refer to the corresponding models via their fully
qualified type names.

4.2.2 Link Base Architecture
The Link Base is another useful optional artefact that can contribute to building
the simulator. Basically, the Link Base contains a collection of Links (note that
Link has been explained in 4.2.1.3) as shown in Figure 4-6.

ECSS-E-ST-40-08C DIR1
30 September 2024

28

Figure 4-6: Link Base architecture

The Link Base can be used in some situation where there is the need to update
the model connections in a simulator without modifying the model hierarchy and
the corresponding configuration values. Typically, when the simulator has
several top-level model instances, a Link Base can be used to create Links
between them if needed because it is not allowed to add links in the sub-
assemblies, which were served to instantiate those top-level instances. If used,
the Link Base can be applied either during simulator startup or during the
simulator Reconnecting state.

4.2.3 Schedule Architecture
The Schedule is an optional artefact that contributes to building up a simulator.
It allows to schedule the events in the simulator scheduler to execute tasks.
Following elements are the building blocks of a simulator schedule:

a. Zero or one Epoch Time to configure the Epoch time at the start of the
simulation.

b. Zero or one Mission Start to configure the mission start time of the
simulation.

c. Zero or more Tasks, each containing zero or more Activities.

d. Zero or more Events, each is associated with exactly one Task, which is the
one that is executed by the Event when the Event occurs.

e. Zero or more Template Arguments, which work exactly like template
arguments found in the Assembly (see description in 4.2.1 and 4.2.1.5).

Figure 4-7 shows the overview of a Schedule with all possible elements, which
are contained therein:

ECSS-E-ST-40-08C DIR1
30 September 2024

29

Figure 4-7: Schedule Architecture

The arrow “associated with” shown on Figure 4-7 means that an Event needs to
reference the Task that it executes when occurred. An event can execute a Task
defined in the same Schedule or a Task defined in an external Schedule via the
“Execute Task Activity”. If used, the Execute Task Activity can thus reference
Tasks defined in the same Schedule (“associated with local Task” arrow) as well
as defined in another Schedule (“associated with external Task” arrow). This
referenced external Schedule can be considered as a schedule associated with a
sub-assembly (see 4.2.1.2), which is typically associated with an equipment
model. The “Execute Task Activity” offers a solution to reuse the Tasks defined
in an external Schedule. On the other hand, it is not foreseen to reuse events
defined in an external Schedule because this scheme creates an issue relative to
the order of scheduling for events occurring at the same simulation date: if events
were allowed to be specified in several schedules, additional semantics would be
needed to handle the scheduling order events occurring at the same simulation
date when these different schedules are applied to the simulator. Thus, a
simulator is allowed to load and to apply at most one Schedule file containing at
least one Event (without events, the Schedule would be useless!) and that single
Schedule can possibly refer to Tasks defined in additional Schedules.

It is important to understand that the Schedule allows to plan execution of
predictable Events for which occurrence times can be predicted at the start of a
simulation. For instance, the event scheduled when an equipment is powered on
is not predictable. Another term used for this kind of non-predictable event is
“asynchronous” because it is impossible to know in advance from the start of a
simulation when an equipment is turned on by the onboard software.

On the contrary of Events, Tasks are static information because they are linked
to the simulation models which participate to the simulation and which are
created via Assemblies from the simulation start.

4.2.3.1 Epoch Time
The Epoch time at simulation start can be configured using the Epoch Time
element. See ECSS-E-ST-40-07 for Epoch time definition and handling details.

ECSS-E-ST-40-08C DIR1
30 September 2024

30

4.2.3.2 Mission Start
The mission start time of the simulation can be configured using the Mission Start
element. See ECSS-E-ST-40-07 for mission time definition and handling details.

4.2.3.3 Template Argument
See 4.2.1.5 for details about Template Arguments.

Template Argument can be used to specify the root path in all the element paths
that appear in the Activity definitions.

4.2.3.4 Task
A Task allows specifying the actions that can be performed in various ways when
an event, which is associated with the Task and which is scheduled in the
Scheduler, is executed. These various ways are defined through the Activities
contained in the Task.

4.2.3.5 Activity
An Activity is a sub-element of, or contained in, a Task. The kind of an activity
defines which actions are performed when the Activity is executed. The different
activity kinds are defined in the following sub-clauses.

4.2.3.5.1 Trigger Activity

The Trigger Activity executes an Entry Point from a Model Instance. It is thus
specified by the Resolver path to that related Entry Point.

4.2.3.5.2 Transfer Activity
The Transfer Activity performs the transfer of the Output field value to the
connected Input field, these two are not necessary connected with each other via
a Field Link. It is thus specified by the respectively Resolver paths to the Output
and Input fields.

4.2.3.5.3 Set Property Activity
The Set Property Activity calls the setter of a Property from a Model Instance. It
is thus specified by the Resolver path to the corresponding Property.

4.2.3.5.4 Call Operation Activity
The Call Operation Activity calls an Operation from a Model Instance. It is thus
specified by the Resolver path to the corresponding Operation and by the
collection of parameter values provided for the operation call.

4.2.3.5.5 Emit Global Event Activity
The Emit Global Event Activity emits a global event, that is an event managed by
the Event Manager service. It is thus specified by the name of the global event
plus an optional synchronous flag. See the definition in ECSS-E-ST-40-07.

ECSS-E-ST-40-08C DIR1
30 September 2024

31

4.2.3.5.6 Execute Task Activity

The Execute Task Activity execute a Task, which can be defined in the same
Schedule, called a local Task in this first case, or in an external Schedule, called
external Task in this second case. In this second case, as the external Schedule is
usually associated with a sub-assembly, the Execute Task Activity needs two
additional information to resolve the referenced Task:

• The Root Path pointing to the Assembly Instance that is created from the
corresponding sub-assembly.

• A collection of Template Arguments in the case that those are used in the
corresponding sub-assembly. The template argument values are needed to
resolve by substitution the paths that are found in the activities contained
in the Task.

4.2.3.6 Event
An Event corresponds to an event scheduled for execution in the Scheduler
service. Like defined in ECSS-E-ST-40-07, an event is defined by:

• A cycle time for a cyclic event or 0 for a one-shot event, which is an event
that executes exactly one time.

• A repetition count, i.e. the number of occurrences of the event. For a one-
shot event, the repetition count is 0.

• The time at which the event occurs for the first time: as there exist four
kinds of time, which are Simulation, Epoch, Mission or Zulu time, this
leads to four kinds of Event as well.

In addition to the Simulation, Epoch, Mission or Zulu event kinds, a new event
kind is introduced by ECSS-E-ST-40-08: Global Event Triggered Event that
triggers upon occurrence of a specific global event, which is a simulator-wise
notification managed by the Event Manager service.

An Event is always associated with exactly one Task, that is executed each time
that the event occurs.

Following sub-clauses provide details for the different kinds of event.

4.2.3.6.1 Simulation Time Event

The Simulation Time Event has its first occurrence time defined as a Simulation
Time, i.e. a relative time since simulation starts.

4.2.3.6.2 Epoch Time Event

The Epoch Time Event has its first occurrence time defined as an Epoch Time, i.e.
an absolute time. This kind of event might depend on the Epoch time specified
for time 0 of the simulation.

4.2.3.6.3 Mission Time Event

The Mission Time Event has its first occurrence time defined as a Mission Time,
i.e. a relative time since the mission start time. This kind of event might depend
on the mission start time specified for the simulation.

ECSS-E-ST-40-08C DIR1
30 September 2024

32

4.2.3.6.4 Zulu Time Event

The Zulu Time Event has its first occurrence time defined as a Zulu Time, which
corresponds to the absolute system time, or wall-clock time. This kind of event
can obviously not keep its specification of time from one simulation to another.

4.2.3.6.5 Global Event Triggered Event
The Global Event Triggered Event is not triggered by a time, it is triggered by
occurrence of a global event. Thus, this kind of event does not specify a first
occurrence time. Instead, the event is triggered for the first time when a Start
global event occurs and the event ceases to exist when a Stop global event occurs.
This means that this kind of event is specified through a couple of Start and Stop
global event names, which are defined and known to the Event Manager service.
An example of use case of global event triggered event includes an OBSW mode
change event, which triggers scheduling of a bunch of time events performed at
the start global event. These scheduled time events can then be removed from the
scheduler at the end of the event, which corresponds to the end of the OBSW
mode. Especially, this scheme can be used to re-schedule a Zulu time event from
the execution of a simulation to another. A global event triggered event can be
scheduled to start or to end when the Enter/LeaveExecuting global events are
triggered. When that event occurs, the related Zulu time event can be scheduled
to fulfil the purpose.

4.2.4 Simulator Architecture
First of all, it is important to note that there is no artefact corresponding to the
simulator architecture, which is rather composed of the simulator artefacts
defined earlier, which are Assembly, Schedule and Link Base artefacts.

The simulator architecture excluding the simulation environment consists in a
set of Assemblies, at least one needs to be provided, zero or one Schedule and
zero or more Link Bases. If specified, the unique Schedule can use Tasks, never
Events, defined in other Schedules. The simulator architecture and its
relationships with simulator artefacts are illustrated in Figure 4-8.

Figure 4-8: Simulator Architecture

Once loaded and applied, each Assembly results in one root Model Instance in
the simulator hierarchy of Model Instances. One of them can be the Spacecraft
Platform Assembly, others can be Assemblies modelling the Spacecraft Payloads

ECSS-E-ST-40-08C DIR1
30 September 2024

33

or modelling supporting components of the spacecraft simulation. For example,
there can be one Ground Segment root model instance containing Ground Station
model instances. Alternatively, the simulator can be defined by one single
Assembly in which Assembly Instances are created from external Assemblies. In
this case, there is one single root Model Instance called for instance “Spacecraft”.
Which simulator structure is followed is a choice that is made at design time in
the spacecraft simulator development phase.

The hierarchical organization of a simulator, that is, of the corresponding
Assemblies, reflects often the actual hardware components hierarchy of the real
system that is being simulated.

Use of Schedules is optional and depends also on the choices made during the
simulator design and integration. If used, exactly one Schedule is loaded and
applied in the simulator. This unique schedule may use Tasks defined in other
schedules, which can for example be associated with sub-assemblies. This means
that the simulation infrastructure loads more than one Schedules but it applies
only the one associated with the simulator and only the Tasks in external
Schedules that are referred to.

Use of Link Bases is optional, it depends also on the choices made during the
simulator design and integration.

A simulator can use as well one or more SMP Level 1 Configuration artefacts.
This last artefact has been specified in ECSS-E-ST-40-07 and is thus not defined
in ECSS-E-ST-40-08 but as the main use of a Configuration artefact is with a
simulator, this standard focuses mainly on its usage in harmony with the other
simulator artefacts.

4.3 Simulator Metadata
The Assembly, Schedule and Link Base data models as presented in Clause 4.2
are stored in SMDL files, which are XML documents called respectively
Assembly, Schedule and Link Base artefacts. These XML documents are
compliant with the XML Schemas defined by ECSS-E-ST-40-08.

A simulator can thus be configured from its set of associated Assembly, Schedule
and Link Base XML documents.

4.3.1 Assembly
Meta data for the Assembly elements is stored in an XML document called the
Assembly. Having the Assembly elements defined in XML assemblies allows
taking benefit from the XML language, for example to define the building blocks
and data of a simulator in a highly structured language.

The XML document structure and content reflects exactly the data model defined
in Clause 4.2.1. In the Assembly XML file, the Assembly root node corresponds
to a Document root node, that contains:

• One root Model Instance node, which in turn contains
− Zero or more (Sub-) Model Instance nodes (each can contain

recursively (Sub-) Instance nodes). Note that the names in the

ECSS-E-ST-40-08C DIR1
30 September 2024

34

metamodel, or in the XML data model, are slightly different than the
ones used in this document:
o XML element name is “ModelInstance” for the (Root) Model

Instance
o XML element name is “SubModelInstance” for the (Sub-)

Model Instance
− Zero or more Assembly Instance nodes (each can contain

recursively Instance nodes)
− Zero or more Link nodes
− Zero or more Field Value nodes
− Zero or more Property Value nodes
− Zero or more Operation Call nodes
− Zero or more Global Event Subscription nodes

• Zero or more Template Argument nodes

• Zero or more Component Configuration nodes, each containing in turn:
− Zero or more Field Value nodes
− Zero or more Property Value nodes
− Zero or more Operation Call nodes
− Zero or more Global Event Subscription nodes

4.3.2 Link Base
The XML document structure and content reflects exactly the data model defined
in Clause 4.2.2. In the Link Base XML file, the Links root node corresponds to a
Document root node, that contains one or more Component Link Base nodes,
each contains one or more Link nodes.

4.3.3 Schedule
The XML document structure and content reflects exactly the data model defined
in Clause 4.2.3. In the Schedule XML file, the Schedule root node corresponds to
a Document root node, that contains zero or one Epoch Time node, zero or one
Mission Start node, one or more Task nodes, each Task contains one or more
Activity nodes, and one or more Event nodes among the four possible event
kinds.

4.4 Simulator Initialisation and Configuration
This clause explains the principles that are at the basis of a standardised
simulator initialisation sequence performed from the Assembly, Schedule, Link
Base and Configuration artefacts, the latter being specified in the SMP Level 1
ECSS-E-ST-40-07 standard. It is critical to agree on a standardised simulator
initialisation sequence to increase portability in the exchange of the simulator
artefacts, which can potentially be used in different simulation infrastructures.

ECSS-E-ST-40-08C DIR1
30 September 2024

35

To shorten the description, the generic term “Value” is used to designate a
configuration element read from the Assembly. Thus, when mentioned, a “Value”
can be one of the following:

• A Field Value

• A Property Value, i.e. a call to the corresponding Property setter

• An Operation Call

• A Global Event Subscription

The term “Link” has the same meaning as defined in 4.2.1.3.

4.4.1 Use Cases and Assumptions
Prior to tackling the simulator init sequence, it is important to analyse the use
cases, which can be encountered when a simulator is initialised and configured
from an Assembly. Some simplification assumptions need as well to be
considered in order to standardise an Assembly utilization, which suits all in
practice for an effective simulator exchange scheme.

4.4.1.1 Compliance with the Early Simulator States
In order to build and to configure correctly a simulator starting from the set of
Assembly, Schedule and Link Base files, the simulation infrastructure needs to
load and apply them in accordance with the states of the simulation environment
and in such a way that the configuration Values can be taken into account in the
expected order to reach a coherent state of the simulator at the end of the
initialisation phase. This ensures also that no false errors are detected in the
simulator Assemblies, Schedules and Link Bases.

The simulation environment state machine from ECSS-E-ST-40-07 is reminded in
Figure 4-9:

Figure 4-9: ECSS-E-ST-40-07 Simulation Environment state machine

ECSS-E-ST-40-08C DIR1
30 September 2024

36

Conformingly to ECSS-E-ST-40-07, it is possible to perform simulator
instantiation and configuration from the artefacts while in the Building state.

4.4.1.2 Creation of new elements during simulator startup
In Clause 4.2.1.6, it has been stated that full black-box assemblies are not
supported in ECSS-E-ST-40-08 for the purpose of simulator artefact exchange. If
new model instances are created in C++ code during simulator startup, they are
obviously not of interest in the model integration work. Such instances are not
under management of the simulation infrastructure while it is loading and
applying an Assembly. Thus, the full black-box assembly case can be ruled out
in the simulator init sequence specification.

But the application of the Assemblies needs to be able to cope with the case where
additional model instance sub-elements such as Fields, Properties, Event Source,
Event Sinks, Entry Points, References, Operations are created dynamically
during simulator startup. Those are usually child elements created by their
parent model when the model Configure() method is called or when an
Operation call specified in the Assembly is applied. Those elements do not exist
yet at the Assembly loading time but their paths are well allowed in Links and
Values configuration data. Thus, these paths are invalid, meaning that they
cannot be resolved by the Resolver service, at the start of the assembly
application but become valid after the new elements are created.

Furthermore, other artefacts like Link Base, Configuration and Schedule can be
used together with Assemblies to configure a simulator. The case of non-existing
elements in those artefacts can also be considered.

4.4.1.3 Assumption for Operation Calls
Correct behavior of an operation called on a model requires a properly
configured model state. Model internal configuration is achieved after the model
Configure() is called while connection with the simulation environment can only
be obtained after the model Connect() is called. E.g. in the called operation, the
model might use the Scheduler service, which is possible only after the model
Connect(). This means that a model can be considered as completely configured
only after both the model Configure() and the model Connect() are called. In the
most general case, it is thus expected that an operation call specified in the
Assembly can be applied successfully only if this happens after the model
Connect(). Supporting the general case makes however the implementation of an
Assembly Loader more complex as it needs to defer the handling of Operation
Calls until the Connecting state.

Therefore, a simplification assumption needs to be taken by stating that the
operations called while processing Assembly concern only operations dedicated
to the internal configuration of the called models. This means that these
operations cannot use the simulation environment services other than the Logger
service, which is available early to the model as it is already available for use
from the model Configure() call onwards. Furthermore, it has to be noted that
depending on the moment where a model Operation from an Assembly is
applied, before or after the Configure() call, it can or cannot use the Logger
service.

ECSS-E-ST-40-08C DIR1
30 September 2024

37

This rule cannot be enforced by the simulation infrastructure Assembly Loader
because all this does is to apply the Operation Calls set in the provided Assembly.
It has to be ensured of instead by the assembly provider. Call to operations,
which change the model dynamic behavior, can for example be specified instead
in the Schedules which provide a better support for the model dynamic
behaviour.

4.4.1.4 Assumption for Property Values
Handling of Property Values specified in an Assembly faces an ambiguity
because there are two possible options for setting a Property:

• If the Property has an Attached Field, it is sufficient to set the Attached
Field. This means that in this case, the Property Value can be handled like
a Field Value.

• If the Property does not have an Attached Field, there is no other choice
than calling the Property setter.

As ECSS-E-ST-40-07 does not define an operation in Smp::IProperty to determine
whether a Property has an Attached Field or not, the decision on how to
configure a Property is left with the provider of the Assembly, who has the
knowledge of whether the Property has an Attached Field and who knows what
the init order that allows reaching an overall coherent simulator state. The
assembly provider can:

• Either decide to specify a Field Value when the property is attached to a
field.

• Or decide to use a Property Value. Property Value found in an Assembly
is always handled by calling the Property setter.

• Or even decide to use a Property Value in all cases for the sake of
simplification.

4.4.2 Simulator Initialisation Process Description
The process described in this clause is based on the assumptions and use cases
analyzed in Clause 4.4.1.

The simulator is initialized and configured entirely in the Building state from one
or more top-level Assemblies, from one or more Link Bases, from one or more
Configurations and from at most one Schedule (this Schedule can refer to Tasks
defined in additional Schedules). The process is executed when calling methods
defined in the Smp::ISimulatorL2 interface (see [SMP_FILES]) for the purpose of
loading and applying the various simulator artefacts:

• LoadAssembly() to load and to apply a top-level Assembly file. This method
can be called multiple times.

• LoadLinkBase() to load and to apply a Link Base file. This method can be
called multiple times.

• LoadConfiguration() to load and to apply a Configuration file. This method
can be called multiple times. Note that the SMDL Configuration is a file
already specified in ECSS-E-ST-40-07 but there is no explicit method
specified in Smp::ISimulator for the processing of that file. As a

ECSS-E-ST-40-08C DIR1
30 September 2024

38

Configuration can be used in the initialization of a Level 2 simulator
together with the other Level 2 artefacts, it is considered important to
dedicate a specific method to load the Configuration file in the Level 2
specification.

• LoadSchedule() to load and to apply a Schedule file. This method can be
called at most one time.

To provide full flexibility, these methods can be called in any order while in the
simulator Building state.

LoadAssembly() allows and is able to handle elements that do not exist at loading
time of the file. While LoadLinkBase(), LoadConfiguration() and LoadSchedule()
allow non-existing elements in the respective processed files but it is not possible
to resolve these during their application because there are no model Publish()
calls or model Configure() calls during the processing of these files.

LoadAssembly() runs the process followed for loading and for applying a top-
level Assembly. Processing a sub-assembly follows the same process because a
sub-assembly can be considered as a particular case of a top-level assembly.
Loading a sub-assembly requires in input the path to the parent model instance,
the name of the container in which the assembly instance is created plus the
assembly instance name that overrides the root model instance name in the sub-
assembly. In the case of a top-level assembly, these parameters are respectively
“/” (path to the model hierarchy root, a top-level assembly has no parent), “”
(empty container name, a top-level assembly has no parent) and “” (empty
assembly instance name, meaning that the assembly root model instance name is
the name of the node created at the root of the simulator).

The Assembly loading starts in the Building state after all the model executable
code as defined in Packages has been loaded.

During Assembly loading, the Template Arguments need to be processed first.
They are to be applied immediately after reading in the corresponding
parameters from the Assembly file and before that the values are effectively
applied to the simulator. Template Arguments are processed by value
substitution in order to create the final Assembly, which is applied to the
simulator that is being initialized.

When Assembly loading is terminated, all Assembly objects specified in the file
should be available in the computer memory. Subsequently, the application of
the Assembly data happens in several steps:

a. All Model Instances are first created: this corresponds to the handling of
the Model Instance and Assembly Instance elements from the loaded
Assemblies.

b. Call ISimulator.Publish().

c. Model Instances are then connected with each other: this corresponds to
the handling of the Link elements from the loaded assemblies.

d. Unresolved Links resulting from model sub-elements that are created
dynamically later (refer to the analysis given in Clause 4.4.1.2) are stored
in a list, their application is deferred for later.

e. The Model Instance configuration via Component Configurations and
Field Values from the loaded Assemblies are then applied: this is to ensure

ECSS-E-ST-40-08C DIR1
30 September 2024

39

that model initialization performed during the model Configure() call can
use the values specified in the Assemblies.

f. Unresolved Field Values (because of Fields which are created dynamically
later – refer to the analysis given in Clause 4.4.1.2) are stored in a list, their
application is deferred for later.

g. Next, the Model Instance configuration via Component Configurations,
Property Values and Operation Call elements from the loaded Assemblies
are applied.

h. Unresolved Property Values and Operation Calls (because of
Properties/Operations which are created dynamically later – refer to the
analysis given at Clause 4.4.1.2) are stored in a list, their application is
deferred for later.

i. Last, the Global Event Subscriptions, the ones contained in Model Instance
and the ones contained in Component Configurations, are processed.

j. Unresolved Entry Points (because of Entry Points which are created
dynamically later – refer to the analysis given at Clause 4.4.1.2) are stored
in a list, their application is deferred for later.

k. Call ISimulator.Configure().

1. This call traverses the model hierarchy and calls Configure() on each
model instance. Before each model Configure() is called, the
unresolved lists are checked to attempt resolving additional
elements because new elements can have been created during the
previous model Configure() call or a previous model Operation call
or a Property setter call (see steps f. to j.).

2. At the end of the simulator Configure() loop before exiting the call,
resolution of elements is performed one more time to resolve
remaining Links and Values.

Upon exit of the Configure() call, all unresolved elements are normally resolved
because models are not allowed to create additional elements in the simulator
Connecting state and because an Assembly is self-contained by design.

If used, LoadLinkBase() can be interleaved with the loading of the other artefacts.
Unresolved links found in the Link Base are added to the corresponding list (see
step d. above) for later processing in a subsequent LoadAssembly() call.

If used, LoadConfiguration() can be interleaved with the loading of the other
artefacts. Unresolved field values found in the Configuration are added to the
corresponding list (see step f. above) for later processing in a subsequent
LoadAssembly() call.

If used, LoadSchedule(), which can be called only once, can be interleaved with
the loading of other artefacts. Unresolved elements found in the Schedule are
added to corresponding lists for later processing in a subsequent
LoadAssembly() call. Note that Template Arguments can also be present in a
Schedule. In that case, they are substituted during loading of a Schedule prior to
the application of the Schedule data to the simulator.

ECSS-E-ST-40-08C DIR1
30 September 2024

40

The whole simulator initialization process can be visualized in Figure 4-10. To
ease the process understanding, step numbering for LoadAssembly() is shown as
well in the figure and is the same as in the description.

Figure 4-10: Simulator Initialisation

In Figure 4-10, the details of the steps for applying an Assembly are shown as
well as the steps performed by the SMP Level 1 simulator. For the artefacts other
than the Assembly, processing complexity is normally less than with the
Assembly, hence details are not explicitly shown on the figure.

4.5 Simulator Reconfiguration
Simulator reconfiguration happens in the Reconnecting state. The Link Base, the
Assembly, Schedule and Configuration artefacts can be applied to instantiate and
to connect a new model hierarchy branch in the Reconnecting state. Loading and
applying these artefacts to perform a reconfiguration happens exactly like
specified in Clause 4.4.

ECSS-E-ST-40-08C DIR1
30 September 2024

41

5
Requirements

5.1 Common requirements

5.1.1 General
Assembly, Model Instance, Assembly Instance, Template Argument, Schedule,
Task, Activity and Event have all a Name and a Description feature.

5.1.2 Requirements
a. The Name feature shall be a character string with the following features:

1. Not be empty;

2. Start with a letter;

3. Contain only letters, digits, and underscore (ʺ_ʺ);

b. The Description feature shall be a user free format character string.

c. The Name of an object belonging to a collection shall be unique in the
context of that collection.

d. As an extension to 5.1.2.c, names of Model Instances and Assembly
Instances found at the same hierarchy level in different Containers shall be
unique.

NOTE That is to say, even if these instances are created
in different Containers, they have unique names.

e. Paths shall not contain “..”.

NOTE Using “..” can allow potentially to navigate out
of the model hierarchy defined within the
current Assembly. Therefore, paths containing
“..” are not allowed in an Assembly artefact.

5.2 Assembly requirements

5.2.1 Template Argument

5.2.1.1 General
Template Argument elements are Parameters for an Assembly and Arguments
for an Assembly Instance. Note that the used terminology is the same as for a
software function.

ECSS-E-ST-40-08C DIR1
30 September 2024

42

5.2.1.2 Requirements
a. A Template Argument shall be identified by a Name feature.

b. A Template Argument shall have a Description feature.

c. A Template Argument shall have a Value feature.
NOTE 1 When specified in an Assembly, a template

argument defines its default value.
NOTE 2 When specified in an Assembly Instance, a

template argument defines the actually applied
value.

d. In the Assembly, the parameter placeholder shall be specified with the
syntax “{<parameter name>}” where <parameter name> is equal to the
corresponding Template Argument Name feature.

e. When the Assembly is instantiated, “{<parameter name>}” shall be
substituted with the value specified as argument of the related Assembly
Instance.

f. To escape the “{“, respectively “}”, literal “{{“, respectively “}}”, shall be
used.

g. Integer32 Template Argument shall be supported.

h. String8 Template Argument shall be supported.

i. Template argument interpretation and substitution shall be performed
during the loading of the Assembly and before applying the Assembly
content to the simulator.

5.2.2 Field Value

5.2.2.1 General
A Field Value used in the configuration of a Model Instance contains the value of
the field belonging to the model from which the model instance has been created.
The Field Value specification details can be found in ECSS-E-ST-40-07.

A Field Value can be used to set the Attached Field of a Property at the place of
a Property Value.

5.2.2.2 Requirements
a. Non-published Field found after unresolved elements processing or found

Field with a different value type than the published one shall result in an
error in the loading of the Assembly, which specifies the Field Value.

NOTE Unresolved elements processing is described in
clause 5.5.1.2

ECSS-E-ST-40-08C DIR1
30 September 2024

43

5.2.3 Property Value

5.2.3.1 General
For the configuration of a Model Instance, a Property Value contains the value of
the property belonging to the model from which the model instance has been
created. Property Values can exist only for Read-Write or Write-Only properties
(see the related definitions in ECSS-E-ST-40-07).

5.2.3.2 Requirements
a. Property Value shall provide the Property feature that contains the name

of the corresponding property in the parent model instance.

b. Property Value shall provide the Value feature that contains the value to
set for the corresponding property in the parent model instance.

c. Setting the Property Value in the Assembly shall invoke the corresponding
Property setter operation.

d. Setting Property Value for a property that is Read-Only shall result in an
error in the application of the Assembly, which specifies that Property
Value.

NOTE The property access kind and type can be
checked against the property published
information and the type information stored in
the Type Registry, when loading the Assembly.

e. Non-published Property (found after unresolved elements processing –
see clause 5.5.1.2) or found Property with a different value type than the
published one shall result in an error in the loading of the Assembly which
specifies the Property Value.

5.2.4 Operation Call

5.2.4.1 General
For the configuration of a Model Instance, the Operation Call element allows
invoking an Operation provided by that Model Instance.

5.2.4.2 Requirements
a. Operation Call shall provide the Operation feature that contains the name

of the corresponding operation in the parent model instance.

b. Operation Call shall contain a collection of ordered Parameter Values of
the corresponding operation.

NOTE “first appearance in collection” is equal to “first
appearance in the operation signature”.

c. Each Parameter Value shall provide the Name feature that identifies the
name of the corresponding parameter of the corresponding operation.

ECSS-E-ST-40-08C DIR1
30 September 2024

44

d. Each Parameter Value shall provide the Value feature that contains the
simple value of the corresponding parameter of the corresponding
operation.

e. A return type Parameter Value shall be interpreted as the expected return
value when applying the Operation Call.

f. When the Operation with a return value is called, the actual return value
shall be compared with the return type Parameter Value to validate the
success/failure status of the Operation Call.

g. Processing the Operation Call in the Assembly shall use
Smp::IDynamicInvocation to invoke the corresponding Operation that
belongs to the parent Model Instance.

NOTE See ECSS-E-ST-40-07 for details about
Smp::IDynamicInvocation

h. Non-published Operation (found after unresolved elements processing –
see clause 5.5.1.2) or found Operation with a different signature than the
specified one shall result in an error in the loading of the Assembly which
specifies the Operation Call.

NOTE 1 The operation existence or the operation
signature can be checked against the operation
published information and the type information
stored in the Type Registry, when loading the
Assembly.

NOTE 2 An operation is not published if it contains
complex type parameters. Call to such
Operation can also not be specified in an
Assembly.

5.2.5 Global Event Subscription

5.2.5.1 General
The Global Event Subscription element allows registering an Entry Point
belonging to a Model Instance with a global event, which is a simulator-wide
event managed by the Event Manager service. The Model Instance is the parent
model instance if the element is placed under a Model Instance or the Model
Instance pointed to by the InstancePath attribute if it is placed under a Component
Configuration

5.2.5.2 Requirements
a. The Global Event Subscription shall provide the EntryPointName feature

that specifies the name of the Entry Point to be registered with the global
event.

b. The Global Event Subscription shall provide the GlobalEventName feature
that specifies the name of the global event to register the Entry Point with.

NOTE The global event is either a predefined global
event or a new global event that has been created

ECSS-E-ST-40-08C DIR1
30 September 2024

45

in the Event Manager service - see ECSS-E-ST-
40-07 for details

c. An Entry Point name unknown to the parent Model Instance (found after
unresolved elements processing – see clause 5.5.1.2) shall result in an error
in the application of the Assembly which contains the Global Event
Subscription.

NOTE The “Global Event name unknown to the Event
Manager service” cannot be an error case
because ECSS-E-ST-40-07 specifies that a non-
existing global event is always created at the first
subscription.

5.2.6 Component Configuration

5.2.6.1 General
A Component Configuration can be defined for any Assembly or Assembly
Instance in the hierarchy. It contains a collection of Field Values, Property Values,
Operation Calls, Global Event Subscriptions plus the path to the Model Instance
that owns those. Component Configuration is a mean in the Assembly or
Assembly Instance to group all configuration elements that belong to the same
component.

5.2.6.2 Requirements
a. The Component Configuration shall be defined as child element of an

Assembly or of an Assembly Instance.

b. A Component Configuration shall provide the InstancePath feature that
contains the relative Path with regards to the parent Assembly or
Assembly Instance.

NOTE 1 For an Assembly Instance, the path is relative to
the root Model Instance.

NOTE 2 The relative path does not include the Assembly
Instance name or the Assembly root model
instance name.

c. A Component Configuration may contain Field Values of the fields
belonging to the component instance defined by the InstancePath feature.

d. A Component Configuration may contain Property Values of the
properties belonging to the component instance defined by the
InstancePath feature.

e. A Component Configuration may contain Operation Calls belonging to
the component instance defined by the InstancePath feature.

f. A Component Configuration may contain Global Event Subscriptions
relative to the component instance defined by the InstancePath feature.

ECSS-E-ST-40-08C DIR1
30 September 2024

46

5.2.7 Link
a. The Link shall be a child of a Model Instance.

NOTE Place of a Link can be found anywhere in the
hierarchy below an instance but it is preferably
specified directly under the root Model Instance
in the Assembly. This use has the advantage to
group all Links at one predefined place to allow
increasing readability of the Assembly.

b. The Link shall provide an Owner Path feature that contains the path to the
Object being the Link source.

NOTE The owner object is the object from which the
link originates. It is a model instance path in the
case of an Interface Link or otherwise a model
instance sub-element path that is necessarily an
output field or an event source.

c. The Link shall provide a Client Path feature that contains the path to the
Object being the Link target.

NOTE The client object is the object in which the link
ends. It is a model instance path in the case of an
Interface Link or otherwise a model instance
sub-element path that is necessarily an input
field or an event sink.

d. A Link shall be either an Interface Link, an Event Link or a Field Link.

e. The Client Path shall refer to either an object in the current model instance
or an object found in its children.

f. The Owner Path shall refer to either an object in the current model instance
or an object found in its children.

5.2.7.2 Interface Link
a. The Interface Link shall connect a Reference with a Model Instance that

implements the Interface that corresponds to the type of the Reference.
NOTE 1 Interface consumer and provider Model

Instance are reached thanks to respectively the
link Owner Path and the link Client Path

NOTE 2 Reference and Interface can be defined in SMP
Catalogues (see ECSS-E-ST-40-07).

b. The Reference of the Owner Model Instance shall be identified by its
Name.

c. The Interface Link may provide the BackReference feature that allows
connecting back the Client Reference to the Owner Model Instance.

NOTE That is to say, the Interface Link is bidirectional
and the participating model instance roles are
reversed for the BackReference when it is
present.

ECSS-E-ST-40-08C DIR1
30 September 2024

47

d. When BackReference exists, the Owner Model Instance shall implement
the interface that corresponds to the type of the BackReference reference.

e. The BackReference of the Client Model Instance shall be identified by its
Name.

f. Mismatch between the Interface implemented by the client model instance
and the type of the Reference shall result in an error in the application of
the Assembly which contains the Interface Link.

g. Mismatch between the Interface implemented by the owner model
instance and the type of the BackReference shall result in an error in the
application of the Assembly which contains the Interface Link.

5.2.7.3 Event Link
a. The Event Link shall connect an Event Source to an Event Sink, both being

of the same Event Type.

NOTE Event source and sink are reached thanks to
respectively the link Owner Path and the link
Client Path

b. Mismatch in the Event Type between the event source and the event sink
shall result in an error in the application of the Assembly which contains
the Event Link.

NOTE The Event Type is defined in a SMP Catalogue
(see ECSS-E-ST-40-07).

5.2.7.4 Field Link
a. The Field Link shall connect an Output Field to an Input Field.

NOTE Output and input fields are reached thanks to
respectively the link Owner Path and the link
Client Path

b. The Field Link shall allow connecting a sub-Field from a Structure Field.

c. If the Input or Output Field of a Field Link is a sub-Field of a Structure
Field, the syntax <StructureFieldName>/<subFieldName> shall be used in the
respective Owner or Client Path.

d. The Field Link shall allow connecting an Array Item from an Array Field.

e. If the Input or Output Field of a Field Link is an Array Item at the index
position from an Array Field, the syntax <ArrayFieldName>[index] shall be
used in the respective Owner and Client Path.

f. Non-strict compatibility or non-semantically equivalence between the
output field and the input field shall result in an error in the application of
the Assembly which contains the Field Link.

NOTE See strict compatibility and semantic
equivalence definitions in ECSS-E-ST-40-07,
4.6.3.3.2.a

ECSS-E-ST-40-08C DIR1
30 September 2024

48

5.2.8 Model Instance
a. The Model Instance shall have a Name.

b. The Model Instance shall have a Description.

c. The Model Instance shall provide the Implementation feature, which
contains either the fully qualified type name or the implementation UUID
of the Model of which it is an instance.

NOTE 1 The fully qualified type name is the one of the
Model C++ class.

NOTE 2 The Implementation UUID is as specified in
ECSS-E-ST-40-07.

d. The Model Instance may contain Field Values.

e. The Model Instance may contain Links.

f. A Link belonging to a Model Instance shall connect two instances, Model
Instance or Assembly Instance, one of which can be the current instance or
both can be found in the hierarchy below that Model Instance.

g. The Model Instance may contain child Model Instances.

NOTE The Model Instance is able to contain child
Model Instances if it is an instance of a Model
that is a Composite, implying that it has
Containers.

h. The Model Instance may contain child Assembly Instances.

NOTE The Model Instance is able to contain child
Assembly Instances if it is an instance of a Model
that is a Composite, implying that it has
Containers.

i. A Model Instance, which is not the root instance of an Assembly, shall have
the Container feature, which provides the Name of the parent Model
Instance container in which the model instance is created.

NOTE A child instance is added to one of the
compatible Containers of the parent instance,
meaning it is the container with the object type
that is compatible with the child instance type
(same implemented Interface).

5.2.9 Assembly Instance (or Sub-Assembly)
a. The Assembly Instance, or Sub-Assembly, shall have a Name.

b. The Assembly Instance, or Sub-Assembly, shall have a Description.

c. The Assembly Instance, or Sub-Assembly, shall provide the Assembly
feature that contains the SMDL file name of the Assembly of which it is an
instance.

d. The hierarchy of model instances defined in the Assembly shall be inserted
at the place where the Assembly Instance is created and with the Assembly
Instance taking the place of the Assembly root instance.

ECSS-E-ST-40-08C DIR1
30 September 2024

49

e. The assembly instance Name shall override the Name of the root model
instance found in the referenced Assembly.

NOTE In other words, the name of the node in the
simulator hierarchy is the Assembly Instance
name, not the referred Assembly root instance
name.

f. The Assembly Instance, or Sub-Assembly, shall provide the Container
feature containing the Name of the container in the parent Model Instance
in which it is instantiated.

g. The Assembly Instance, or Sub-Assembly, may provide the Configuration
feature that contains the file name of an associated SMDL Configuration
file.

NOTE SMDL Configuration file details are specified in
ECSS-E-ST-40-07

h. The SMDL Configuration file given by the Configuration feature shall be
loaded and applied after the Assembly has been instantiated.

i. The Assembly Instance, or Sub-Assembly, may contain a collection of
Component Configurations.

j. The Assembly Instance, or Sub-Assembly, may contain a collection of
Template Arguments.

5.2.10 Assembly
a. The Assembly shall contain exactly one standalone root Model Instance.

NOTE “standalone Model Instance” means that the
root model instance of the Assembly does not
become yet a child of another Model Instance.

b. The unique root Model Instance found in the Assembly needs not have a
Container feature.

NOTE This is a consequence of the Assembly being a
standalone Model Instance as the Container can
exist only in a parent instance.

c. The Assembly may contain a collection of Links.

d. The Assembly may contain a collection of Component Configurations.

e. The Assembly may contain a collection of Template Arguments.

5.3 Link Base requirements
a. The Link Base shall contain a collection of Component Link Base.

b. The Component Link Base shall contain a collection of Links.

NOTE Refer to Clause 5.2.7 for requirements about the
Link.

c. The collection shall contain at least one Link.

ECSS-E-ST-40-08C DIR1
30 September 2024

50

NOTE Otherwise, the Link Base artefact does not
contain useful data.

5.4 Schedule requirements

5.4.1 Epoch Time
a. The Schedule may initialize the Epoch Time at the simulation start.

NOTE Epoch Time is defined in ECSS-E-ST-40-07

5.4.2 Mission Start
a. The Schedule may specify the Mission Time start at the simulation start.

NOTE Mission Start is defined in ECSS-E-ST-40-07

5.4.3 Template Argument

5.4.3.1 General
Requirements for Template Arguments defined for the Assembly in Clause 5.2.1
apply also to Schedule.

5.4.3.2 Requirements
a. Template argument interpretation and substitution shall be performed

during the loading of the Schedule and before applying the Schedule
content to the simulator.

b. At least one String8 Template Argument shall be used to specify the root
path relative to which all element paths in the Schedule are interpreted.

5.4.4 Task
a. Task shall have a Name.

b. Task shall have a Description.

c. Task shall contain a collection of Activity.

NOTE An Activity type is one of the following: Trigger,
Transfer, Set Property, Call Operation, Emit
Global Event, Execute Task.

5.4.5 Activity
a. An Activity shall have a Name.

b. An Activity shall have a Description.

ECSS-E-ST-40-08C DIR1
30 September 2024

51

c. Trigger Activity shall provide the EntryPoint feature that contains the path
to the Entry Point that the activity triggers when it executes.

d. Transfer Activity shall provide the OutputFieldPath feature that contains
the path to the Output Field of which the activity transfers the value when
it executes.

e. Transfer Activity shall provide the InputFieldPath feature that contains the
path to the Input Field to which the activity transfers the value when it
executes.

f. Emit Global Event Activity shall provide the EventName feature that
contains the name of the global event to emit when the activity executes.

g. Emit Global Event Activity may provide the synchronous feature (Boolean
flag) that defines the flag associated with the global event emission.

NOTE See ECSS-E-ST-40-07 for details regarding this
flag.

h. In absence of the synchronous feature, its default value shall be as specified
in ECSS-E-ST-40-07.

i. Set Property Activity shall provide the PropertyPath feature that contains
the path to the Property of which the activity sets the value when it
executes.

j. Call Operation Activity shall provide the OperationPath feature that
contains the path to the Operation that the activity calls when it executes.

k. Execute Task Activity shall be associated with exactly one Task, which can
be defined in the same or in a different Schedule, that the activity executes.

l. Execute Task Activity may provide the RootPath feature that contains the
root model instance path of the sub-assembly with which the referenced
external Schedule is associated.

m. Absence of RootPath shall default the root model instance path to the
simulator root path

NOTE Simulator root path is “/”.

n. Execute Task Activity may contain a collection of TemplateArguments to
resolve the ones found in the referenced external Schedule.

5.4.6 Event
a. An Event shall have a Name.

b. An Event shall have a Description.

c. An Event shall provide the CycleTime feature that specifies the event cycle
duration.

NOTE Semantics of this feature is as specified in ECSS-
E-ST-40-07.

d. An Event may provide the RepeatCount feature that specifies the number
of repetitions of the event occurrence.

ECSS-E-ST-40-08C DIR1
30 September 2024

52

NOTE Semantics of this feature is as specified in ECSS-
E-ST-40-07.

e. Simulation Time Event shall provide the SimulationTime feature that
specifies the event first occurrence simulation time.

f. Epoch Time Event shall provide the EpochTime feature that specifies the
event first occurrence Epoch time.

g. Mission Time Event shall provide the MissionTime feature that specifies the
event first occurrence mission time.

h. Zulu Time Event shall provide the ZuluTime feature that specifies the event
first occurrence Zulu time.

i. Global Event Triggered Event shall provide the StartEvent feature that
contains the name of the global event that, when emitted, triggers the start
of existence of the event.

j. Global Event Triggered Event may provide the StopEvent feature that
contains the name of the global event that, when emitted, triggers the end
of existence of the event.

k. Global Event Triggered Event may provide the TimeKind feature that
contains the time kind to use for the Event, which is one of the four
available SMP Time Kinds.

NOTE SMP time kinds are specified in ECSS-E-ST-40-
07.

l. Global Event Triggered Event may provide the Delay feature that contains
the delay after which the cyclic events scheduled from StartEvent are
executed the first time.

m. An Event shall be associated with exactly one Task defined in the same
Schedule.

NOTE An Event can reach an external Task via the
Execute Task Activity.

n. An Event shall execute the associated Task when the event occurs.

5.5 Simulator initialisation and configuration

5.5.1 Simulator initialisation and configuration
with Assemblies, Link Bases and
Configurations

5.5.1.1 General
To ease understanding, the requirement numbering is identical to the step
numbering used in Clause 4.4.2.

The simulator Publis() call refers to the Smp::ISimulator::Publish() method as
specified in ECSS-E-ST-40-07.

ECSS-E-ST-40-08C DIR1
30 September 2024

53

The simulator Configure() call refers to the Smp::ISimulator::Configure() method as
specified in ECSS-E-ST-40-07.

A model Configure() call refers to the Smp::IComponent::Configure() method as
specified in ECSS-E-ST-40-07.

5.5.1.2 Requirements
a. First, all Model Instances, regular Model Instances as well as Assembly

Instances, specified in Assemblies shall be created.

b. The simulator Publish() method shall be called.

c. Links specified in Assemblies and in Link Bases shall then be created.

NOTE The Publish() call allows elements appearing in
Links to be published and thus become visible to
the simulation environment so that it can later
resolve and create successfully the
corresponding Links.

d. Unresolved Links, which cannot be created in 5.5.1.2.c, shall be stored in
UNRESOLVED_LINKS.

NOTE 1 They are memorized in order to be resolved later
in the process.

NOTE 2 UNRESOLVED_LINKS is the name of a variable
used in the implementation for the purpose of
memorizing the unresolved links.

e. The field values, including the values which are part of Component
Configuration elements, specified in all Assemblies shall be applied after
the Links creation.

NOTE The models can use the field values specified in
Assemblies to perform internal configuration
(see requirements related to the model
Configure() call).

1. The field values under a Model Instance shall be applied first.

2. The field values under a Component Configuration in the same
Assembly pointing to the same model instance shall be applied
second.

3. The field values under a Component Configuration that is part of
the Assembly Instance shall be applied last.

f. Unresolved field values, which cannot be applied in 5.5.1.2.e, shall be
stored in UNRESOLVED_FIELD_VALUES.

NOTE 1 They are memorized in order to be resolved later
in the process.

NOTE 2 UNRESOLVED_FIELD_VALUES is the name of
a variable used in the implementation for the
purpose of memorizing the unresolved field
values.

ECSS-E-ST-40-08C DIR1
30 September 2024

54

g. The operation calls and property values, these latter correspond to the
property setters, specified in all Assemblies shall be applied after the field
values.

NOTE The models can use the configuration data
provided by these elements to perform internal
configuration (see requirements related to the
model Configure() call).

1. The operation calls and property values under a Model Instance
shall be applied first.

2. The operation calls and property values under a Component
Configuration in the same Assembly pointing to the same model
instance shall be applied second.

3. The operation calls and property values under a Component
Configuration that is part of the Assembly Instance shall be applied
last.

h. Unresolved operation calls and property values, which cannot be applied
in 5.5.1.2.g, shall be stored in UNRESOLVED_OPERATIONS.

NOTE 1 They are memorized in order to be resolved later
in the process.

NOTE 2 UNRESOLVED_OPERATIONS is to be replaced
by the name of a variable used in the
implementation for the purpose of memorizing
the unresolved property values and operation
calls.

i. The Global Event Subscriptions, including the ones that are part of
Component Configurations, specified in all Assemblies shall be applied
after the Operation Calls and Property Values.

NOTE Order of subscription to global events is not
important.

1. The global event subscriptions under a Model Instance shall be
applied first.

2. The global event subscriptions under a Component Configuration
in the same Assembly pointing to the same model instance shall be
applied second.

3. The global event subscriptions under a Component Configuration
that is part of the Assembly Instance shall be applied last.

j. Unresolved global event subscriptions, which cannot be applied in
5.5.1.2.i, shall be stored in UNRESOLVED_GEVENT_SUBSCRIPTIONS.

NOTE 1 They are memorized in order to be resolved later
in the process.

NOTE 2 UNRESOLVED_GEVENT_SUBSCRIPTIONS is
to be replaced by the name of a variable used in
the implementation for the purpose of
memorizing the unresolved global event
subscriptions.

k. The simulator Configure() method shall be called.

ECSS-E-ST-40-08C DIR1
30 September 2024

55

1. Within the simulator Configure() call, before calling a model
Configure(), attempt shall be made to resolve elements in
UNRESOLVED_LINKS, UNRESOLVED_FIELD_VALUES,
UNRESOLVED_OPERATIONS and
UNRESOLVED_GEVENT_SUBSCRIPTIONS.

2. After having called all model Configure() and before exiting the
simulator Configure() call, attempt shall be made one more time to
resolve elements in UNRESOLVED_LINKS,
UNRESOLVED_FIELD_VALUES, UNRESOLVED_OPERATIONS
and UNRESOLVED_GEVENT_SUBSCRIPTIONS.

l. Unresolved elements left at the end of the init sequence shall raise an
Assembly application error.

m. The application order of field values, property values and operation calls
shall follow their specification order in the Assembly or in the Link Base
artefact.

NOTE The specification order is in general the order in
which the loader reads in from the file: elements
at the top are read-in first, the loader progressing
towards the bottom of the file.

n. Adding elements to unresolved element lists shall respect the order in
which the elements appear in the Assembly.

o. The loading and application of a Configuration artefact may be interleaved
with the loading and application of the other simulator artefacts.

p. Unresolved elements found in a Configuration artefact are added to
UNRESOLVED_FIELD_VALUES for a later processing.

q. The loading and application of a Link Base artefact may be interleaved
with the loading and application of the other simulator artefacts.

r. Unresolved elements found in a Link Base artefact are added to
UNRESOLVED_LINKS for a later processing.

5.5.2 Simulator initialisation and configuration
with one Schedule

a. The Activities shall be an ordered collection for which the order shall be
the order in which they are specified in the Schedule.

b. The scheduling order for Events occurring at the same simulation date
shall be the order in which they are specified in the Schedule.

c. The loading and application of a Schedule artefact may be interleaved with
the loading and application of the other simulator artefacts.

d. Unresolved elements found in a Schedule artefact are added to
UNRESOLVED_TASKS for a later processing.

NOTE 1. UNRESOLVED_TASKS is the name of a variable
used in the implementation for the purpose of
memorizing the unresolved links.

ECSS-E-ST-40-08C DIR1
30 September 2024

56

NOTE 2. Unresolved Events follow the unresolved Tasks
because an Event is associated with a Task.

5.5.3 Simulator reconfiguration
a. During the simulator Reconnecting state, Assemblies, Link Bases,

Configurations and at most one Schedule may be loaded and applied
following the same sequence as specified in Clause 5.5.1 and Clause 5.5.2.

b. Conflicts found with the model hierarchy already in place shall raise an
artefact loading errors.

NOTE Reconfiguration like it is defined in ECSS-E-ST-
40-07 cannot delete, change or replace the
existing model hierarchy. Reconfiguration can
only add new models or change the current
model configuration.

5.5.4 Level 2 Simulator (ISimulatorL2)
a. The simulation environment shall provide a Simulator Object

implementing the Level 2 Simulator interface as ISimulatorL2.h in
[SMP_FILES].

NOTE ISimulatorL2 extends the Level 1 ISimulator
interface to add Level 2 simulator artefacts
loading and application functionalities.

b. The ISimulatorL2 LoadAssembly method shall load and apply a top-level
Assembly (not a sub-assembly) file according to Clause 5.5.1.

NOTE 1. LoadAssembly can be called multiple times to
load and apply multiple Assemblies in the
simulator.

NOTE 2. Implementation can consider that the
instantiation of a sub-assembly is a particular
case of the LoadAssembly implementation

c. The ISimulatorL2 LoadAssembly method shall throw
Smp::InvalidSimulatorState if called while simulator is neither in the
Building nor in the Reconnecting state.

d. The ISimulatorL2 LoadLinkBase method shall load and apply a Link Base file
according to Clause 5.5.1.

NOTE LoadLinkBase can be called multiple times to load
and apply multiple Link Bases in the simulator.

e. The ISimulatorL2 LoadLinkBase method shall throw
Smp::InvalidSimulatorState if called while simulator is neither in the
Building nor in the Reconnecting state.

f. The ISimulatorL2 LoadSchedule method shall load and apply a Schedule file
according to Clause 5.5.2.

ECSS-E-ST-40-08C DIR1
30 September 2024

57

g. The ISimulatorL2 LoadSchedule method shall throw
Smp::InvalidSimulatorState if called while simulator is neither in the
Building nor in the Reconnecting state.

h. If called more than one time, the ISimulatorL2 LoadSchedule method shall
write a warning in the logbook and return immediately.

NOTE This is because a simulator can use at most one
Schedule.

i. The ISimulatorL2 LoadConfiguration method shall load and apply a
Configuration file.

NOTE LoadConfiguration can be called multiple times to
load and apply multiple Configurations in the
simulator

j. The ISimulatorL2 LoadConfiguration method shall throw
Smp::InvalidSimulatorState if called while simulator is in the Executing
state.

5.5.5 Assembly and Link Base error handling

5.5.5.1 General
Errors can occur while loading an Assembly for the purpose of initialisation and
configuration of a simulator. An error results in throwing an Assembly Error
Exception. This exception has the following attributes:

• an Error Kind attribute that is an enumeration allowing to identify all the
possible errors.

• an Error Element attribute that provides the path to the element in the
Assembly causing the error. For an XML file, this can be the XPath pointer
of the element or a string giving the Assembly path in case that the error
occurs in a sub-assembly (path starting from the top-level assembly down
to the sub-assembly).

• an optional user-defined built character string providing the error details
(e.g. location in the file or line number, where the error is detected).

The Assembly Error Exception inherits from Smp::Exception (see ECSS-E-ST-40-
07).

Two types of error are possible:

• Syntax error: when the Assembly file contains a file format or syntactic
error, i.e. in this case, the Assembly file is not conforming with the
metadata syntax as specified in 5.7.1.1a

• Functional error: any error found in the Assembly data that is not a syntax
error and that prevents the correct application of the data in the simulator.
For example, a non-existing model instance path or a non-existing event
source or event sink is a functional error.

The AssemblyErrorKind enumeration type defines an identifier for each possibly
encountered Assembly error cause.

ECSS-E-ST-40-08C DIR1
30 September 2024

58

The Assembly error is raised with the Smp::Assembly::InvalidFile exception that is
thrown when the error occurs. The exact error kind is then identified thanks to
the AssemblyErrorKind enumeration.

Errors that can occur for a Link Base artefact are the same as the Link errors in an
Assembly. Thus, the Assembly error identifiers and exception apply as well to
Link Bases.

5.5.5.2 Requirements
a. The assembly error identifiers shall be in compliance with identifiers from

Table 5-1.

NOTE Error identifiers are defined in an enumeration
type in [SMP_FILES].

Table 5-1: Assembly error identifiers
Error Kind Description Error Element

AEK_InvalidSyntax Invalid syntax. This error
results from an XSD
validation failure.

Assembly file

AEK_InvalidName Invalid name. This error
results from a non-
conforming name.

Related named element

AEK_DuplicatedName Duplicated name in a
collection or for children
instance nodes at the same
level.

Related named element

AEK_InvalidImplementation Invalid Implementation
attribute, which is neither a
valid UUID nor a valid
TypeName.

Model Instance

AEK_ContainerDoesNotExist Container with the given
name and in which a child
instance is instantiated
does not exist.

(Parent) Model Instance

AEK_ObjectTypeMismatch Object type of the container
in which a child instance is
instantiated does not match
the added instance type.

(Parent) Model Instance

AEK_AssemblyFileNotFound Assembly file not found. Assembly Instance

AEK_ConfigurationFileNotFound Configuration file not
found.

Assembly Instance

AEK_CannotResolveInstancePath The given path cannot be
resolved by the Resolver.

Component Configuration

AEK_FieldDoesNotExist Field with the given name
does not exist.

Field Value

ECSS-E-ST-40-08C DIR1
30 September 2024

59

Error Kind Description Error Element
AEK_FieldTypeMismatch Mismatch between the field

type and the published
type.

Field Value

AEK_PropertyDoesNotExist Property with the given
name does not exist.

Property Value

AEK_PropertyTypeMismatch Mismatch between the
property type and the
published type.

Property Value

AEK_ReadOnlyProperty Attempt to initialise a read-
only property.

Property Value

AEK_OperationDoesNotExist Operation with the given
name does not exist.

Operation Call

AEK_OperationReturnTypeMismatch Mismatch between the
operation return type and
the published type.

Operation Call

AEK_OperationParameterTypeMismatch Mismatch between the
operation parameter type
and the published type.

Operation Call

AEK_OperationParameterCountMismatch Mismatch between the
operation parameter type
and the published type.

Operation Call

AEK_OperationReturnValueMismatch Mismatch between the
operation return value and
the expected value.

Operation Call

AEK_EntryPointDoesNotExist Entry point with the given
name does not exist.

Global Event Subscription

AEK_TemplateArgumentDoesNotExist Template argument with
the given name does not
exist.

Template Argument

Assembly

Assembly Instance

AEK_UnknownTemplateArgumentType Neither a string nor an
Int32 template argument

Template Argument,
Assembly, Assembly Instance

AEK_CannotResolveLinkOwnerPath Owner path cannot be
resolved by the Resolver.

Link

AEK_CannotResolveLinkClientPath Client path cannot be
resolved by the Resolver.

Link

AEK_LinkNotAnEventSource Object specified by the
given name does not
implement
Smp::IEventSource

Event Link

AEK_LinkNotAnEventSink Object specified by the
given name does not
implement
Smp::IEventSink

Event Link

ECSS-E-ST-40-08C DIR1
30 September 2024

60

Error Kind Description Error Element
AEK_LinkEventTypeMismatch Event type mismatch

between event source and
event sink.

Event Link

AEK_LinkReferenceDoesNotExist Link reference specified
with the given name does
not exist.

Interface Link

AEK_LinkBackReferenceDoesNotExist Link back reference
specified with the given
name does not exist.

Interface Link

AEK_LinkProvidedInterfaceMismatch Interface not implemented
by the client instance.

Interface Link

AEK_BackLinkProvidedInterfaceMismatch Interface not implemented
by the owner instance in a
bidirectional link.

Interface Link

AEK_LinkInputFieldDoesNotExist Input field does not exist. Field Link

AEK_LinkOutputFieldDoesNotExist Output field does not exist. Field Link

AEK_LinkIncompatibleField Input field type not strictly
compatible with output
field.

Field Link

b. Upon occurrence of an Assembly error, the Smp::Assembly::InvalidFile
exception shall be thrown.

c. Any error happening during the loading or the application of an Assembly
or a Link Base that does not concern an unresolved element shall stop the
process.

d. Unresolved elements left when the simulator goes from the Building state
to the Connecting state shall raise an Assembly error.

e. Unresolved elements left when the simulator goes from the Reconnecting
state back to the Standby state shall raise an Assembly error.

f. Any error resulting from the application of an Assembly shall fail the
simulator initialization in the Building state

g. Any error resulting from the application of an Assembly shall fail the
simulator re-configuration in the Reconnecting state.

5.5.6 Schedule error handling

5.5.6.1 General
The approach to the Schedule error handling is the same as in case of Assembly
errors:

• Distinction between syntax errors and functional errors.

• The ScheduleErrorKind enumeration type identifies the possible Schedule
error kinds.

ECSS-E-ST-40-08C DIR1
30 September 2024

61

• The exception Smp::Schedule::InvalidFile is thrown in case of errors. The
error identifier is an attribute of this exception.

5.5.6.2 Requirements
a. The schedule errors shall be in compliance with Table 5-2.

NOTE Error identifiers are defined in an enumeration
type in [SMP_FILES].

b. The exceptions thrown upon occurrence of a Schedule error shall be
Smp::Schedule::InvalidFile.

c. Any error happening during the loading or the application of a Schedule
shall stop the process.

d. Unresolved elements left when the simulator goes from the Building state
to the Connecting state shall raise a Schedule error.

e. Unresolved elements left when the simulator goes from the Reconnecting
state to the Standby state shall raise a Schedule error.

f. Any error happening during the application of a Schedule shall fail the
simulator initialization in the Building state.

g. Any error happening during the application of a Schedule shall fail the
simulator re-configuration in the Reconnecting state.

Table 5-2: Schedule error identifiers
Error Kind Description Error Element

SEK_InvalidSyntax Invalid syntax. This error
results from an XSD validation
failure

Schedule file

SEK_InvalidName Invalid name. This error
results from a non-conforming
name.

Related named element

SEK_DuplicatedName Duplicated name in a
collection.

Related named element

SEK_ActivityEntryPointDoesNotExist Entry point specified in an
Activity with the given name
not found.

Trigger Activity

Emit Global Event
Activity

SEK_ActivityOutputFieldDoesNotExist Output field specified in an
Activity with the given name
not found.

Transfer Activity

SEK_ActivityInputFieldDoesNotExist Input field specified in an
Activity with the given name
not found.

Transfer Activity

SEK_ActivityPropertyDoesNotExist Property specified in an
Activity with the given name
not found.

Set Property Activity

ECSS-E-ST-40-08C DIR1
30 September 2024

62

Error Kind Description Error Element
SEK_ActivityOperationDoesNotExist Operation specified in an

Activity with the given name
not found.

Call Operation Activity

SEK_ActivityOperationTypeMismatch Return type of the operation
specified in an Activity with
the given name does not match
the published type.

Call Operation Activity

SEK_ActivityOperationParameterTypeMismatch Type of the operation
parameter specified in an
Activity with the given name
does not match the published
type.

Call Operation Activity

SEK_ActivityOperationParameterCountMismatch Operation specified in an
Activity with the given name
has a parameter count that
does not match the published
count.

Call Operation Activity

SEK_ActivityTemplateArgDoesNotExist Template argument with the
given name does not exist.

Execute Task Activity

SEK_ActivityUnknownTemplateArgType Neither a string nor an Int32
template argument

Execute Task Activity

SEK_ActivityCannotResolveRootPath Root instance path cannot be
resolved by Resolver.

Execute Task Activity

SEK_InvalidEventCycleTime Invalid cycle time, i.e. is 0 with
a non-zero repetition count.
Note that the reverse case, i.e.
is non-zero with repetition
count 0, should be ignored but
is not an error.

All Events

SEK_TaskDoesNotExist Task specified is not found. All Events

Execute Task Activity

SEK_TemplateArgumentDoesNotExist Template argument with the
given name does not exist.

Template Argument

Schedule

Execute Task Activity

SEK_UnknownTemplateArgumentType Neither a string nor an Int32
template argument

Template Argument

Schedule

Execute Task Activity

ECSS-E-ST-40-08C DIR1
30 September 2024

63

5.6 Simulator reconfiguration
a. One or more Assemblies may be loaded and applied before entering or

during the Reconnecting state.

NOTE Each corresponds to a new branch in the model
hierarchy.

b. One or more Link Bases may be loaded and applied before entering or
during the Reconnecting state.

c. One Schedule may be loaded and applied before entering or during the
Reconnecting state.

5.7 Metadata

5.7.1 Overview
In order to make the requirements short, the generic term “Value” is used to
designate a configuration element read from the Assembly. Thus, a “Value” can
be one of the following:

• A Field Value

• A Property Value, i.e. a call to the corresponding Property setter

• An Operation Call

• A Global Event Subscription

The term “Link” has the same meaning as defined in Clause 5.2.7.

5.7.2 Assembly

5.7.2.1 File format specification
a. The Assembly file shall be in conformance with the Assembly file DRD of

Annex A.

5.7.2.2 Validation rules
a. The Assembly XML syntax shall be compliant with Assembly.xsd.

b. The Assembly shall be validated at run time in a SMP compliant
simulation infrastructure by calling ISimulatorL2.LoadAssembly().

NOTE The Assembly can be validated offline by using
the type-name form of the Implementation feature
of model instances to navigate to the models
defined in associated Catalogues.

5.7.2.3 Utilization of the Assembly
a. A simulator shall be configured or reconnected from at least one Assembly

artefact.

ECSS-E-ST-40-08C DIR1
30 September 2024

64

NOTE One root model instance is created in the
simulator corresponding to the Assembly. The
model hierarchy below that root can instantiate
assembly instances from additional Assembly
artefacts.

b. A simulator may be configured or reconnected from more than one
Assembly artefacts.

NOTE Each Assembly results in a different root model
instance, which is the root of a new branch in the
simulator model hierarchy. The model hierarchy
below that root can instantiate assembly
instances from additional Assembly artefacts.

c. Model Instances bearing Links from or to the Assembly needed for
integration in a simulator shall be defined in the Assembly.

NOTE Model instances, which do not bear any
Assembly external interface, can be created in
C++ and thus, they do not appear in the
Assembly.

d. Model Instances bearing Values that can be configured by the model
integrator shall be defined in the Assembly.

NOTE Model instances, which do not contain any
Value served to configure the simulator may be
created in C++ and thus, they do not appear in
the Assembly.

e. The model integrator shall make use of the Implementation feature of a
Model Instance to discover the model interfaces in the documentation.

NOTE Documentation is out of the scope of ECSS-E-ST-
40-08 but it can be either a SMP Catalogue or a
plain Word model ICD.

f. A Link may specify paths to elements that do not exist at loading time and
that are created dynamically during the simulator Building state or during
the simulator Reconnecting state.

g. A Value may specify paths to elements that do not exist at loading time
and that are created dynamically during the simulator Building state or
during the simulator Reconnecting state.

h. The only simulation environment service that Operations called in the
Assembly shall use is the Logger service.

5.7.3 Link Base

5.7.3.1 File format specification
a. The Link Base file shall be in conformance with the Link Base file DRD of

Annex B.

ECSS-E-ST-40-08C DIR1
30 September 2024

65

5.7.3.2 Validation rules
a. The Link Base XML syntax shall be compliant with LinkBase.xsd.

b. The Link Base shall be validated at run time in a SMP compliant simulation
infrastructure by calling ISimulatorL2.LoadLinkBase().

NOTE It is impossible to perform the Link Base
semantics validation offline.

5.7.3.3 Utilization of the Link Base
a. A simulator may be configured or reconnected from zero or several Link

Base artefacts.

b. A Link may specify paths to elements that do not exist at loading time and
that are created dynamically during the simulator Building state, during
the simulator Reconnecting state and the model Configured state.

5.7.4 Schedule

5.7.4.1 File format specification
a. The Schedule file shall be in conformance with the Schedule file DRD of

Annex C.

5.7.4.2 Validation rules
a. The Schedule XML syntax shall be compliant with Schedule.xsd.

b. The Schedule shall be validated at run time in a SMP compliant simulation
infrastructure by calling ISimulatorL2.LoadSchedule().

NOTE It is impossible to perform the Schedule
semantics validation offline except for Execute
Task Activities.

c. Execute Task Activities defined in a Schedule may be validated offline.

5.7.4.3 Utilization of the Schedule
a. A simulator shall be configured or reconnected from at most one Schedule

artefact.

NOTE This unique Schedule, which a simulator is
associated with, can refer to Tasks defined in
additional Schedule artefacts.

b. The unique Schedule specified in requirement 5.7.3.3.a shall contain at
least one Event.

NOTE If no events are defined, the Schedule served to
configure a simulator is useless.

ECSS-E-ST-40-08C DIR1
30 September 2024

66

5.8 Implementation mapping

5.8.1 General
This section specifies the mapping of Assembly, Link Base and Schedule concepts
to C++. This allows showing clearly the relationships between SMP Level 2 and
SMP Level 1, which has been specified in ECSS-E-ST-40-07.

All Assembly and LinkBase elements do have a C++ mapping.

Schedule elements do have a C++ mapping with the exception of the Transfer
Activity and the Execute Task Activity.

5.8.2 Requirements
a. All Paths specified in the Assembly, Link Base and Schedule shall be

resolved by the Resolver service.

NOTE Use of ResolveAbsolute() or ResolveRelative() is
left to the implementation convenience.

b. The Model Instance shall be mapped to an instance of the C++ class
defining the Model.

c. The Interface Link shall be created by calling AddComponent() on the
Reference object of the Owner Model Instance passing the Client Model
Instance as parameter.

d. The Event Link shall be created by calling Subscribe() on the Event Source
object of the Owner Model Instance passing the Event Sink of the Client
Model Instance as parameter.

e. The self-propagation capable Field Link shall be created by calling
Connect() on the Output Field object of the Owner Model Instance passing
the Input Field of the Client Model Instance as parameter.

f. The non-self-propagation capable (or scheduled propagation) Field Link
shall be created by the simulation environment, which binds the Output
Field to the Input Field using the associated published information.

g. The Field Value shall be mapped to the value of the corresponding Field.

h. The data type specified in the Field Value shall be checked against the
corresponding Field data type.

i. The Property Value shall be mapped to a call to SetValue() on the
Smp::IProperty interface.

j. The Operation Call shall be mapped to a call to Invoke() on the
Smp::IDynamicInvocation or Smp::IOperation interface.

k. The Global Event Subscription shall be mapped to a call to Subscribe() on
the Event Manager service.

l. The initialisation of the Epoch Time shall be mapped on the call to
SetEpochTime() on the Smp::Services::ITimeKeeper interface.

ECSS-E-ST-40-08C DIR1
30 September 2024

67

m. The initialisation of the Mission Start shall be mapped on the call to
SetMissionStartTime() on the Smp::Services::ITimeKeeper interface.

n. The Trigger Activity execution shall be mapped on the call to Execute() on
the Smp::IEntryPoint interface.

o. The Call Operation Activity execution shall be mapped to a call to Invoke()
on the Smp::IDynamicInvocation interface or on the Smp::IOperation
interface.

p. The Set Property Activity execution shall be mapped to a call to SetValue()
on the Smp::IProperty interface.

q. Scheduling a Simulation Time Event shall call the
AddSimulationTimeEvent() on the Smp::Services::IScheduler interface.

r. Scheduling an Epoch Time Event shall call the AddEpochTimeEvent() on
the Smp::Services::IScheduler interface.

s. Scheduling a Mission Time Event shall call the AddMissionTimeEvent()
on the Smp::Services::IScheduler interface.

t. Scheduling a Zulu Time Event shall call the AddZuluTimeEvent() on the
Smp::Services::IScheduler interface.

u. Scheduling a Global Event Triggered Event shall subscribe entry points to
the Start and Stop global events by calling Subscribe() on the
Smp::Services::IEventManager interface.

ECSS-E-ST-40-08C DIR1
30 September 2024

68

Annex A (normative)
Assembly file - DRD

A.1 DRD identification

A.1.1 Requirement identification and source document
This DRD is called from ECSS-E-ST-40-08, requirement 5.7.1.1.a.

A.1.2 Purpose and objective
The purpose of the Assembly file is to contain all the metadata of the Assembly
that contributes to the definition and configuration of a simulator model
hierarchy.

A.2 Expected response

A.2.1 Scope and content
a. The suffix for assembly files shall be “smpasb”.

b. The document shall be compliant with the Assembly XML XSD in
XML/Smdl/Assembly.xsd.

A.2.2 Special remarks
None.

ECSS-E-ST-40-08C DIR1
30 September 2024

69

Annex B (normative)
Link Base file - DRD

B.1 DRD identification

B.1.1 Requirement identification and source document
This DRD is called from ECSS-E-ST-40-08, requirement 5.7.2.1.a

B.1.2 Purpose and objective
The purpose of the Link Base file is to contain all the metadata of the Link Base
and allows to define Links between model instances that are part of a simulator.

B.2 Expected response

B.2.1 Scope and content
a. The suffix for assembly files shall be “smplnk”.

b. The document shall be compliant with the Assembly XML XSD in
XML/Smdl/LinkBase.xsd.

B.2.2 Special remarks
None.

ECSS-E-ST-40-08C DIR1
30 September 2024

70

Annex C (normative)
Schedule file - DRD

C.1 DRD identification

C.1.1 Requirement identification and source document
This DRD is called from ECSS-E-ST-40-08, requirement 5.7.3.1.a

C.1.2 Purpose and objective
The purpose of the Schedule file is to contain all the metadata of the Schedule
allows to define Tasks and Events for the model scheduling purpose as well as
new Global Events in the simulator.

C.2 Expected response

C.2.1 Scope and content
a. The suffix for assembly files shall be “smpsed”.

b. The document shall be compliant with the Assembly XML XSD in
XML/Smdl/Schedule.xsd.

C.2.2 Special remarks
None.

ECSS-E-ST-40-08C DIR1
30 September 2024

71

Bibliography

ECSS-S-ST-00 ECSS system – Description, implementation and general
requirements

ISO 9000 series Quality management systems standards International Organization
for Standardization (ISO) http://www.iso.org

ISO/IEC 9899:2011 ISO/IEC 9899:2011 Information technology -- Programming
languages -- C

ISO/IEC 14882:2011 ISO/IEC 14882:2011 Information technology -- Programming
languages -- C++

SMP v1.2 Simulation Model Portability Specification version 1.2

XML Extensible Markup Language World Wide Web Consortium (W3C)
http://www.w3.org/XML

	Simulation modelling platform (SMP) - Level 2
	Change log
	Table of contents
	Introduction
	1 Scope
	2 Normative references
	3 Terms, definitions and abbreviated terms
	3.1 Terms from other standards
	3.2 Terms specific to the present standard
	3.3 Abbreviated terms
	3.4 Conventions
	3.5 Nomenclature

	4 Principles
	4.1 Objectives
	4.2 Architecture
	4.2.1 Assembly Architecture
	4.2.1.1 Model Instance
	4.2.1.2 Assembly Instance
	4.2.1.3 Link
	4.2.1.4 Component Configuration
	4.2.1.5 Template Argument
	4.2.1.6 Black-box Assembly

	4.2.2 Link Base Architecture
	4.2.3 Schedule Architecture
	4.2.3.1 Epoch Time
	4.2.3.2 Mission Start
	4.2.3.3 Template Argument
	4.2.3.4 Task
	4.2.3.5 Activity
	4.2.3.5.1 Trigger Activity
	4.2.3.5.2 Transfer Activity
	4.2.3.5.3 Set Property Activity
	4.2.3.5.4 Call Operation Activity
	4.2.3.5.5 Emit Global Event Activity
	4.2.3.5.6 Execute Task Activity

	4.2.3.6 Event
	4.2.3.6.1 Simulation Time Event
	4.2.3.6.2 Epoch Time Event
	4.2.3.6.3 Mission Time Event
	4.2.3.6.4 Zulu Time Event
	4.2.3.6.5 Global Event Triggered Event

	4.2.4 Simulator Architecture

	4.3 Simulator Metadata
	4.3.1 Assembly
	4.3.2 Link Base
	4.3.3 Schedule

	4.4 Simulator Initialisation and Configuration
	4.4.1 Use Cases and Assumptions
	4.4.1.1 Compliance with the Early Simulator States
	4.4.1.2 Creation of new elements during simulator startup
	4.4.1.3 Assumption for Operation Calls
	4.4.1.4 Assumption for Property Values

	4.4.2 Simulator Initialisation Process Description

	4.5 Simulator Reconfiguration

	5 Requirements
	5.1 Common requirements
	5.1.1 General
	5.1.2 Requirements

	5.2 Assembly requirements
	5.2.1 Template Argument
	5.2.1.1 General
	5.2.1.2 Requirements

	5.2.2 Field Value
	5.2.2.1 General
	5.2.2.2 Requirements

	5.2.3 Property Value
	5.2.3.1 General
	5.2.3.2 Requirements

	5.2.4 Operation Call
	5.2.4.1 General
	5.2.4.2 Requirements

	5.2.5 Global Event Subscription
	5.2.5.1 General
	5.2.5.2 Requirements

	5.2.6 Component Configuration
	5.2.6.1 General
	5.2.6.2 Requirements

	5.2.7 Link
	5.2.7.2 Interface Link
	5.2.7.3 Event Link
	5.2.7.4 Field Link

	5.2.8 Model Instance
	5.2.9 Assembly Instance (or Sub-Assembly)
	5.2.10 Assembly

	5.3 Link Base requirements
	5.4 Schedule requirements
	5.4.1 Epoch Time
	5.4.2 Mission Start
	5.4.3 Template Argument
	5.4.3.1 General
	5.4.3.2 Requirements

	5.4.4 Task
	5.4.5 Activity
	5.4.6 Event

	5.5 Simulator initialisation and configuration
	5.5.1 Simulator initialisation and configuration with Assemblies, Link Bases and Configurations
	5.5.1.1 General
	5.5.1.2 Requirements

	5.5.2 Simulator initialisation and configuration with one Schedule
	5.5.3 Simulator reconfiguration
	5.5.4 Level 2 Simulator (ISimulatorL2)
	5.5.5 Assembly and Link Base error handling
	5.5.5.1 General
	5.5.5.2 Requirements

	5.5.6 Schedule error handling
	5.5.6.1 General
	5.5.6.2 Requirements

	5.6 Simulator reconfiguration
	5.7 Metadata
	5.7.1 Overview
	5.7.2 Assembly
	5.7.2.1 File format specification
	5.7.2.2 Validation rules
	5.7.2.3 Utilization of the Assembly

	5.7.3 Link Base
	5.7.3.1 File format specification
	5.7.3.2 Validation rules
	5.7.3.3 Utilization of the Link Base

	5.7.4 Schedule
	5.7.4.1 File format specification
	5.7.4.2 Validation rules
	5.7.4.3 Utilization of the Schedule

	5.8 Implementation mapping
	5.8.1 General
	5.8.2 Requirements

	Annex A (normative) Assembly file - DRD
	A.1 DRD identification
	A.1.1 Requirement identification and source document
	A.1.2 Purpose and objective

	A.2 Expected response
	A.2.1 Scope and content
	A.2.2 Special remarks

	Annex B (normative) Link Base file - DRD
	B.1 DRD identification
	B.1.1 Requirement identification and source document
	B.1.2 Purpose and objective

	B.2 Expected response
	B.2.1 Scope and content
	B.2.2 Special remarks

	Annex C (normative) Schedule file - DRD
	C.1 DRD identification
	C.1.1 Requirement identification and source document
	C.1.2 Purpose and objective

	C.2 Expected response
	C.2.1 Scope and content
	C.2.2 Special remarks

	Bibliography

