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Foreword 

This Handbook is one document of the series of ECSS Documents intended to be used as supporting 
material for ECSS Standards in space projects and applications. ECSS is a cooperative effort of the 
European Space Agency, national space agencies and European industry associations for the purpose 
of developing and maintaining common standards. 

This handbook has been prepared by the ECSS-E-HB-40-02A Working Group, reviewed by the ECSS 
Executive Secretariat and approved by the ECSS Technical Authority. 

Disclaimer  

ECSS does not provide any warranty whatsoever, whether expressed, implied, or statutory, including, 
but not limited to, any warranty of merchantability or fitness for a particular purpose or any warranty 
that the contents of the item are error-free. In no respect shall ECSS incur any liability for any damages, 
including, but not limited to, direct, indirect, special, or consequential damages arising out of, resulting 
from, or in any way connected to the use of this Standard, whether or not based upon warranty, business 
agreement, tort, or otherwise; whether or not injury was sustained by persons or property or otherwise; 
and whether or not loss was sustained from, or arose out of, the results of, the item, or any services that 
may be provided by ECSS. 

Published by:  ESA Requirements and Standards Section 
 ESTEC, P.O. Box 299, 
 2200 AG Noordwijk 
 The Netherlands 
Copyright:  2024© by the European Space Agency for the members of ECSS 
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1 
Scope 

1.1 Purpose 
The Machine Learning Handbook provides guidelines on how to create reliable 
machine learning functions and perform the verification and validation 
considering the specifics of machine learning development practices. 

Guidelines are provided for selecting, preparing, and validating data, as well as 
for training, testing, and applying machine learning models within a so-called 
'safety cage' architecture. The handbook focused on data driven approaches with 
both supervised and unsupervised learning methods. 

1.2 Executive Summary 

1.2.1 AI & ML application in space domain 
Breakthroughs in AI are enabling new paradigms, including in the field of 
software development which can be see a change from developers writing source 
code directly to an increased use of machine learning system that take a desired 
behaviour as goal and generate the relevant source code automatically. Further 
significant changes related to increasing utilization of AI to augment or even 
replace functions and systems are likely to affect a diverse set of areas such as 
engineering and manufacturing of space systems, operations and eventual 
knowledge discovery in data collected by space systems. 

There are many exciting opportunities to consider the entire software 
development ecosystem and how it can be adapted to this new programming 
paradigm.  Ideally AI algorithms can offer time and cost savings, as well as 
greater versatility and the ability to respond more intelligently to system 
behaviours not encountered during the training phase as long as it is within the 
training domain. 

Although the working group members are working in space industry, they 
analysed the initial results from standardization activities on certification in 
aerospace and military, as they are well connected to the other domains and 
could bring in valuable guidelines and reference documentation. 

Machine Learning AI is a revolution that will not disappear but will change the 
space software development world permanently.  

Throughout the handbook, the AI taxonomy from [EASA Roadmap], as 
illustrated in Figure 1-1, is applied: 
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Figure 1-1: [EASA Roadmap] AI Taxonomy 

1.2.2 AI @ ESA 
AI is already intensively used in mostly all European space missions. More than 
300 studies have been done or are in execution around AI applications in all 
domains (Science, Exploration, Navigation, Earth Observation, Technology & 
Engineering, Operations, Launchers and Telecommunication).  

AI is the key enabler for higher levels of automation in data processing on ground 
and for autonomous operations for all future missions.  

Different operational AI solutions exist, mainly on ground (e.g. for satellite image 
analysis or operations assistance) and first flight tests are done. NASA seems to be 
quite advanced for example at the Perseverance rover, which is heavily using AI.  

An AI function is always part of a complete system, contributing to a hybrid 
solution that could involve a mix of manual programming, classical AI (symbolic 
AI), or machine learning modules. In the handbook also guidelines are provided 
on how to connect different kind of AI functions in a clever way, the safety cage 
architecture. 

Like ESA also other space agencies do not yet have finalized AI engineering and 
qualification standardization, instead it is up to each project to define its own 
standards. This handbook it the first step to provide state-of-the-art guidelines to 
a broad community to ease AI applications at ESA. 
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1.3 Justification and Scope of the Handbook 
Nowadays AI and specifically machine learning applications, cannot be verified 
and validated for critical applications based on standard requirements, as the 
ECSS requirements on software quality are not adapted to be applied for learning 
systems but for deterministic control algorithms. Likewise, there are a multitude 
of potential use-cases for AI within the space domain, e.g., health monitoring, 
AOCS, VBN, image processing and more, from engineering to exploitation, but 
the verification and validation of such developments has to consider application 
specific constraints.  

1.3.1 Intended programs and target users 
The ML Handbook can be used for AI software development in European Space 
Domain, except Cat A criticality.  

AI will be a major driver for raising space systems autonomy especially for future 
exploration activities but also for reducing operations costs of LEO systems and 
for other autonomous/robotic elements. 

Today the major use of AI is on ground, but major value will be generated by 
also using AI in flight systems and potentially in the frame of decision making. 

This handbook is intended for any space programs which have the interest in 
utilizing AI and can be applied (and is already applied) in all space program 
domains: 

• Exploration 

• Navigation 

• Earth Observation 

• Launchers 

• Telecommunication 
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3 
Terms, definitions and abbreviated terms 

3.1 Terms from other documents 
a. For the purpose of this document, the terms and definitions from ECSS-S-

ST-00-01 apply. 

b. For the purpose of this document, the terms and definitions from ECSS-E-
ST-40 apply, in particular for the following term: 

1. validation <software> 

2. verification <software> 

3.2 Terms specific to the present document 
3.2.1 Accuracy (of the data) 
degree of conformance between the estimated or measured value and its true 
value. 

[Source: EASA, ISO 5725] 

3.2.2 Artificial intelligence 
technology that appears to emulate human performance typically by learning, 
coming to its own conclusions, appearing to understand complex content, 
engaging in natural dialogues with people, enhancing human cognitive 
performance (also known as cognitive computing) or replacing people on 
execution of non-routine tasks 

[Source: EASA] 

3.2.3 Data set 
sample of data used for various development phases of the model, i.e. the model 
training, the learning process verification, and the inference model verification 

[Source: EASA] 

3.2.4 Data set (test data) 
data used to assess the performance of the model, independent of the training 
data set 

[Source: EASA] 
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3.2.5 Data set (training data) 
data that is input to an ML model in order to establish its behaviour 

[Source: EASA] 

3.2.6 Data set (validation data) 
Data used to tune a subset of the hyper-parameters of a model (e.g. number of 
hidden layers, learning rate, etc.). 

[Source: EASA] 

3.2.7 Explainability 
This guidance makes a clear distinction between two types of explainability 
driven by the profile of the user and their needs: 

• The information required to make a machine learning model 
understandable; and 

• Understandable information for the user on how the systems came to its 
results. 

[Source: EASA] 

3.2.8 Evaluation (of the model) 
Model Evaluation is the process of assessing a machine learning model's 
performance by comparing its outputs to predefined performance metrics such 
as accuracy, recall, precision, mean squared error, and others. This process is 
focused on quantitative measurements that help determine the model's 
effectiveness in performing its designated tasks. 

For instance, a common metrics used for the classification task is the F1 score 
(harmonic mean between precision and recall), ranging between 0 and 1. The 
acceptability level is highly dependent on the application, how critical the ML 
algorithm is, and its context. Yet, as a rule of thumb, practitioner should seek a 
value greater than 0.9 to consider the algorithm has very good performance, and 
discard algorithms whose F1-score is lower than 0.8. 

3.2.9 Feature (in computer science) 
any piece of information which is relevant for solving the computational task 
related to a certain application 

• Feature (in machine learning in general) — A feature is an individual 
measurable property or characteristic of a phenomenon being observed. 

• Feature (in computer vision) — A feature is a piece of information about 
the content of an image; typically, about whether a certain region of the 
image has certain properties. 

[Source: EASA] 
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3.2.10 Hyperparameter 
parameter that is used to control the algorithm’s behaviour during the learning 
process (e.g., for deep learning with neural networks, the learning rate, the batch 
size or the initialisation strategy).  

NOTE Hyper-parameters affect the time and memory cost of running the 
algorithm, or the quality of the model obtained at the end of the 
training process. By contrast, other parameters, such as node 
weights or biases, are the result of the training process. 

[Source: EASA] 

3.2.11 Inference 
process of feeding the machine learning model an input and computing its 
output 

NOTE See also related definition of Training. 

[Source: EASA] 

3.2.12 Intended functionality 
behaviour specified for a system 

[Source: ISO] 

3.2.13 Label 
In the context of machine learning, the target variable assigned to a sample 

[Source: ISO] 

3.2.14 Machine learning 
branch of AI concerned with the development of algorithms that allow 
computers to evolve behaviours based on observing data and making inferences 
on this data 

[Source: EASA] 

3.2.15 Machine learning (supervised) 
process of learning in which the ML algorithm processes the input data set, and 
a cost function measures the difference between the ML model output and the 
labelled data. The ML algorithm then adjusts the parameters to increase the 
accuracy of the ML model. 

[Source: EASA] 

3.2.16 Machine learning (unsupervised) 
process of learning in which the ML algorithm processes the data set, and a cost 
function indicates whether the ML model has converged into a stable solution. 
The ML algorithm then adjusts the parameters to increase the accuracy of the ML 
model. 

[Source: EASA] 
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3.2.17 Machine learning (reinforcement) 
process of learning in which the agent(s) is (are) rewarded positively or 
negatively based on the effect of the actions on the environment. The ML model 
parameters are updated from this trial-and-error sequence to optimise the 
outcome. 

[Source: EASA] 

3.2.18 Machine learning inference model 
The ML model obtained after transformation of the trained model, so that the 
model is adapted to the target platform. 

[Source: EASA] 

3.2.19 Machine learning model 
parameterised function that maps inputs to outputs. The parameters are 
determined during the training process. 

[Source: EASA] 

3.2.20 Machine learning trained model 
ML model which is obtained at the end of the learning/training phase 

[Source: EASA] 

3.2.21 Offline learning 
The process of learning where the ML model is frozen at the end of the 
development phase; 

[Source: EASA] 

3.2.22 Online learning 
The process of learning where the ML model parameters can be updated based 
on data acquired during operation (see also adaptivity). 

[Source: EASA] 

3.2.23 Overfitting 
creating a model that matches the training data so closely that the model fails to 
make correct predictions on new data. Overfitting can be caused by 
characteristics of the training set (size of dataset, relation of training set 
distribution relative to distribution in population), characteristics of the model 
(tendency to create high bias or variance errors) and/or aspects of the training 
(number of iterations, utilization of regularization or other mitigating options). 

[Source: Ying 2019] 



ECSS-E-HB-40-02A 
15 November 2024 

19 

3.2.24 Precision 
metric for classification models, also known as positive predictive value. 
Precision identifies the frequency with which a model was correct when 
predicting the positive class. In other words, it is the fraction of relevant instances 
among the retrieved instances 

[Source: Powers 2007] 

3.2.25 Prediction (predictability) 
degree to which a correct forecast of a system’s state can be made quantitatively 

NOTE Limitations on predictability could be caused by factors such as a 
lack of information or excessive complexity. 

[Source: EASA] 

3.2.26 Reliability 
probability that an item will perform a required function under specified 
conditions, without failure, for a specified period of time. 

3.2.27 Resilience 
In the context of this guidance, the resilience definition is derived from DEEL 
White Paper on Machine learning in Certified System (DEEL Certification 
Workgroup, 2021) where resilience is defined as the ability of a system to 
continue to operate while an error or a fault has occurred. 

[Source: EASA] 

3.2.28 Robustness 
For an input varying in a region of the input state space, a system producing 
expected outputs. 

In [DEEL] White Paper on Machine learning in Certified System (DEEL 
Certification Workgroup, 2021), robustness is defined as the ability of the system 
to perform the intended function in the presence of abnormal or unknown inputs, 
and to provide equivalent response within the neighbourhood of an input. 

[Source: EASA] 

3.2.29 Safety of the intended functionality (SOTIF) 
Absence of unreasonable risk due to hazards resulting from functional 
insufficiencies of the intended functionality or from reasonably foreseeable 
misuse by persons. Nominal performance includes intended functionality and 
the implementation of intended functionality that can be affected by performance 
limitations or by foreseeable misuse by persons. 

[Source: ISO] 

3.2.30 Test case 
Set of conditions to determine if a system is working according to its intended 
functionality 

[Source: ISO] 
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3.2.31 Training 
The process of setting appropriate weights for a machine learning model, via 
optimization. For example, in supervised learning the training data consists of 
input (e.g. an image) / output (e.g. a class label) pairs and the ML model ‘learns’ 
the function that maps the input to the output, by optimising its internal 
parameters. See also the related definition of Inference. 

[Source: EASA] 

3.2.32 Underfitting 
Producing a model with poor predictive ability because the model hasn't 
captured the complexity of the training data. Many problems can cause 
underfitting, including: 

• Training on the wrong or incomplete set of features. 

• Training for too few epochs or at too low a learning rate. 

• Training with too high a regularization rate. 

• Providing too few hidden layers in a deep neural network. 

[Source: Sehra 2021] 

3.2.33 Verification 
This process is intended to confirm that adequate specifications for the data 
product and the machine learning model product exist, and that the machine 
learning software product outputs are interchangeable and consistent with 
outputs of the machine learning model product trained with the data product. 

3.2.34 Validation 
This process is intended to confirm that the data and model quality properties 
and baseline requirements are completely implemented in the data product, 
machine learning model product, and machine learning-based system product. 

3.3 Abbreviated terms 
For the purpose of this Standard, the abbreviated terms and symbols from ECSS-
S-ST-00-01 and the following apply: 

Abbreviation Meaning 

AI Artificial Intelligence 

AOCS Attitude and Orbit Control System 

ASIC Application-Specific Integrated Circuit 

ConOps Concept of Operations 

CPU Central Processing Unit 

EDA Exploratory data analysis  

FDIR Fault detection and isolation 

FMEA Failure mode and effects analysis 
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Abbreviation Meaning 

FMECA Failure mode, effects, and criticality analysis 

FPGA Field-programmable gate array 

GPU Graphics processing unit 

HazOp Hazard and operability study 

HSIA Hardware Software Interaction Analysis 

LEO Low Earth Orbit 

LIDAR Laser imaging, detection, and ranging 

LIME Local surrogate models 

LSIs Less significant institutions 

MBSE Model Based System Engineering 

ML Machine Learning 

NN Neural Network 

ODD Operational Design Domain  

OOD Out-Of-Distribution 

QA Quality Assurance 

ReLU Rectified linear unit 

RL Reinforcement Learning 

ROI Return-Of-Investment 

SAE Sparse Autoencoders 

SEU Single Event Upset 

SFMEA Software Failure Modes and Effects Analysis 

SLT Statistical learning theory 

SOTIF Safety of the intended functionality  

SWOT Strengths, Weaknesses, Opportunities, and 
Threats 

UML Unified Modeling Language 

V&V Verification and validation 

VBN Vision Based Navigation 

XAI Explainable Artificial Intelligence 
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4 
Overview 

4.1 Perimeter and objectives 
The Handbook recommends guidelines applicable to the machine learning 
development process, encompassing data gathering, data processing, training, 
model testing. The concept of “safety cage” architecture is also introduced.  

The Handbook is limited to software criticality categories B/C/D software 
(excluding life critical Cat. A functions). 

4.2 Perimeter 
In the following subsection, some of the research which have been performed as 
part of the ad hoc working group is presented. This work does not represent the 
full extent of research and discussions that were brought about, however, it 
highlights some of the major findings which will impact the further work on the 
actual handbook. 

Software including the use of machine learning should follow ECSS standards to 
the extend which is plausible (i.e. tailoring out activities that cannot be performed 
due to not available artefacts). ML models are very complex, and complete 
validation / verification of all possible behaviours is typically not feasible. To 
mitigate the risk from incomplete validation, it is advised to apply SW standards 
to the maximum possible extend. 

However, based on our work so far, it is also clear that the current standards do 
not cover all challenges coming from Machine Learning, and likewise, that there 
are aspects of Machine Learning that have to be clearly understood in context of 
the space industry before we can safely implement such solutions for higher 
criticality functions.  

Based on our findings we now have a high-level overview of ML applications 
and the challenges related to its verification and validation. Failure mitigation of 
ML systems is also addressed, initially relying on the concept of a safety-cage 
architecture. 
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4.3 Objectives and Challenges 
As shown on the Figure 1-1 [EASA Roadmap] AI Taxonomy, section 1.2.1, 
Machine Learning, and Deep Learning are respectively sub-parts of Artificial 
intelligence. However, another way of understanding AI, as shown on the Figure 
4-1 below, is by differentiate between data driven AI and User-input 
driven/symbolic AI. 

Artificial 
Intelligence

Machine Learning

Deep Learning

Expert/rule-based Systems

Data Driven User-input driven

 

Figure 4-1: AI split into data driven methods 

Symbolic AI, which represents artificial intelligence as expert systems, also 
known as knowledge-based systems or rule-based systems. These systems are 
created by allowing the user to write "if-then" rules, stored in a so-called 
knowledge base, that define how a system has to interact with its environment 
(see [Puppe 1993]).  These sort of AI system, have been around since the 1950s, 
and as their functionality is based around user-written deterministic code, this 
code can be inspected, reviewed, and tested, following the same practice as 
presented through software standards ECSS-E-ST-40 and ECSS-Q-ST-80. 

However, data driven AI, also known as machine learning, including the sub-
field of deep learning, represents “the ability (of AI systems…) to acquire their 
own knowledge, by extracting patterns from raw data”, [Goodfellow et al. 2016]. 
Machine learning embodies stochastic processes, e.g. for learning or 
optimization, as it is trying to teach the models to estimate quantitative values 
outside of dataset from which the model has been created, i.e. generalization. 

However, this stochastic nature also drives a lot of problems for the verification 
and validation of such data driven AI, which is ultimately what has initiated the 
work for the ECSS-E-HB-40-02 Handbook. 

As per ECSS-Q-ST-80 requirement 5.2.7.2a., under the topic of “Quality 
requirements and quality models”, a list of characteristics, high-level properties, 
is presented which shall be used to specify SW quality: 

1. functionality; 

2. reliability; 

3. maintainability; 

4. reusability; 

5. suitability for safety; 
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6. security; 

7. usability; 

8. efficiency; 

9. portability; 

10. software development effectiveness. 

However, when dealing with Machine Learning, many of the above 
characteristics of a good quality SW model, as per current ECSS standards, 
become highly challenging to apply, due to the nature of the ML. Not only does 
the stochastic nature imply issues for such topics as functionality and reliability, 
but as the model relies mainly on data, the quality of the data and understanding 
of data representativeness, also has large impact, which currently are questions 
outside of the above characteristics. And to make things worse, many of the more 
complex ML models are also black boxes, for which inspection of code does not 
make sense. A full review of the ECSS-Q-ST-80 standard, including evaluation of 
the limitation of the above high-level properties was performed by one of the 
consortium members [ESA-TECQQS-TN-022868]. 

Part of the inspiration for this review is based on the [DEEL] paper, written by 
some of the members of this ad-hoc working group, which have derived similar 
high-level properties, but purely focusing on what good quality ML models 
should represent, being more considered of machine learning functionality and 
procedures, and original created outside of space industry setup: 

1. Auditability: The extent to which an independent examination of 
the development and verification process of the system can be 
performed. 

2. Data Quality: The extent to which data are free of defects and 
possess desired features. 

3. Explainability: The extent to which the behaviour of a Machine 
Learning model can be made understandable to humans. 

4. Maintainability: Ability of extending/improving a given system 
while maintaining its compliance with the unchanged 
requirements. 

5. Resilience: Ability for a system to continue to operate while an error 
or a fault has occurred. 

6. Robustness: (Global) Ability of the system to perform the intended 
function in the presence of abnormal or unknown inputs / (Local) 
The extent to which the system provides interchangeable responses 
for similar inputs. 

7. Specifiability: The extent to which the system can be correctly and 
completely described through a list of requirements. 

8. Verifiability: Ability to evaluate an implementation of requirements 
to determine that they have been met. 
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As can be seen, many topics overlap with the list from ECSS-Q-ST-80, and as it is 
written in ESA-TECQQS-TN-022868, minor updates can be done for making this 
applicable also to ML. 

However, as mentioned earlier, due to the stochastic nature of ML, in the training 
phase, but also sometimes during operation, certain general challenges arise for 
ML from trying to satisfy such high-level properties [DEEL]: 

MAIN CHALLENGE #1: PROBABILISTIC ASSESSMENT 

For safety critical systems, quantitative safety analysis is used to assess properties such 
as “the probability of a catastrophic event of an aircraft shall be lower than 10-9 per flight 
hour”. Similarly, Machine Learning techniques rely on mathematic practices that include 
statistics and probabilities. Nevertheless, despite their similarities, the two domains often 
employ different definitions and interpretations of key concepts. This makes the 
endeavour of establishing a safety assessment methodology for ML-based systems 
difficult. 

MAIN CHALLENGE #2: RESILIENCE 

Resilience is crucial to ensure safe operation of the system. Resilience typically raises 
challenges regarding the definition of an “abnormal behaviour”, the monitoring of the 
system at runtime, and the identification of mitigation strategies. With Machine 
Learning, these challenges are made more complex because of the usually wider range of 
possible inputs (e.g. images), the difficulties to adopt classical strategies (e.g., redundancy 
with dissimilarity), and the ML-specific vulnerabilities. 

MAIN CHALLENGE #3: SPECIFIABILITY 

Specifiability is the ability to describe the intended function of a system in terms of 
functional, safety, operational, and environmental aspects. This practice allows engineers 
to designate the target of the development process and to demonstrate that this target has 
been hit. Nowadays, this is a pillar to build acceptably safe systems. Because ML 
techniques are often used to address problems that are by nature hard to specify, they raise 
specific challenges to include them in safe systems, the question of trust being one of these 
challenges. 

MAIN CHALLENGE #4: DATA QUALITY AND REPRESENTATIVENESS 

Machine Learning-based systems rely on the exploitation of information contained in 
datasets. Therefore, the quality of these data, and in particular their representativeness, 
determines the confidence on the outputs of the ML-based components. 

The verification of a dataset with respect to properties related to quality can be 
particularly complex and depends strongly on the use case. 

Conversely, a very representative ML model concentrates relevant knowledge of the 
behaviour of the physics and behaviour of the systems, which can be reverse engineered 
from the model. 

Therefore, access to the model should be treated with equal care as the raw data 
themselves. 

MAIN CHALLENGE #5: EXPLAINABILITY 

The opacity of ML models is seen as a major limitation for their development and 
deployment, especially for systems delivering high stake decisions. Quite recently, this 
concern has caught the attention of the research community through XAI (eXplain-able 
Artificial Intelligence) initiative which aims to make these models explainable. The 
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ongoing investigations highlight many challenges which are not only technical but also 
conceptual. The problem is not only to open the black box but to also establish the purpose 
of explanations, the properties they must fulfil and their inherent limits, in particular in 
the scope of certification. 

MAIN CHALLENGE #6: ROBUSTNESS 

Robustness is defined as the ability of the system to perform the intended function in the 
presence of abnormal or unknown inputs, and to provide equivalent responses within the 
neighbourhood of an input (local robustness). This property, which is one of the major 
stakes of certification, is also a very active research domain in Machine Learning. 
Robustness raises many challenges, from the definition of metrics for assessing robust-
ness or similarity, to out-of-domain detection, and obviously adversarial attacks and 
defence. 

MAIN CHALLENGE #7: VERIFIABILITY  

A large and ever-growing set of methods and tools, ranging from formal mathematical 
methods to massive testing, is available to verify ML-based systems. However, under-
standing the applicability and limits of each of them, and combining them to reach the 
verification objectives raises many challenges...  

The [DEEL]paper and ESA-TECQQS-TN-022868 both go more into detail regarding 
how to handle such challenges, e.g., by employing best standards for ML model 
creation and mathematical proofs, which scope is outside of today’s ECSS 
standards. And it should also be noted that depending on the specific application 
for ML solution that is being created, the demand to the different high-level 
properties can be varying. However, as the topic of dealing with these challenges 
is ongoing research, e.g., explainability, adoption of recommendations on how to 
handle such challenges should be considered adaptable as the field develops. 

Another topic which was explored within the working group has been axes for 
AI deployment classification, as drivers for the verification and validation 
process. Within the space domain, there are certain properties driving the 
verification and validation of software. Examples of such properties are safety 
criticality, it is the function of the software linked to potential safety critical 
outcome which could lead to a loss of mission, or on-board versus on-ground 
applications, i.e. is the application placed on-board a spacecraft with only 
delayed communication with operators placed on-ground.  

The Ad-hoc working group has analysed several potential properties of software 
application, which might likewise have an impact on the verification and 
validation of machine learning applications. The attempt with the following list, 
is to create axes for AI deployment classification that can help the reader to 
understand the commonalties of the verification and validation processes, 
between different types of applications.  

The list of axes for AI deployment classification is as following: 
1. Safety Criticality 
2. Complexity of Function  
3. On-board vs. On-ground 
4. Embeddability 
5. Data and Use-case Understanding 
6. Online vs. Offline Learning 
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It can be noted that the first three axes for AI deployment classification are driven 
by the wished application and the system for which the ML model is supposed 
to work, whereas the last three axes are driven by the functionality of the ML 
model itself. An additional quasi-axis, Autonomy, could also be added to the 
above list. However, since autonomy can be seen as driven by axes 1 and 2 Safety 
Criticality and Complexity of Function, it was decided to not treat it as its own 
axis, but more as a special case. 
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5 
Intelligence Environment on ML 

Verification and Validation 

5.1 Objective 
The objective of the Chapter is to provide an overview of the initiatives that are 
relevant to machine learning verification and validation, both within and outside 
the space domain, at the time of preparation of this Handbook. Initiatives on-
going or completed in Agencies and LSIs are primarily collected and within the 
scope of the Chapter; a brief outline of each activity and its relevance to this 
Handbook is provided, along with references where additional information can 
be found. 

5.2 Activities / Initiatives in the space domain 

5.2.1 European Space Agency (ESA) 
The European Space Agency has been actively pursuing the spin-in of AI 
technologies in the space domain for the last two decades. A number of activities 
have been completed and some have successfully been operationalised, across 
different domains of the space mission lifecycle. Detailed descriptions of the 
vision, activities and domains of interest can be found on the relevant documents 
[AI@ESA] [Harmo] and the recently completed Artificial Intelligence for 
Automation (A2I) Roadmap [RD-OpsRm] that covers the application of AI 
technologies in the spacecraft operations domain.  

In collaboration with the European Space Industry, ESA is pursuing the creation 
of this ECSS Handbook for the verification and validation of Machine Learning 
applications. In preparation for this task, a Technical Note has been prepared [RD-
TN-ESA-Q] to describe the work done to fill the void between Machine Learning 
projects and Software Product Assurance. Currently, there is a chasm between 
the two areas, as it has not been possible to standardise the development of ML 
projects and to ensure process and product quality within a space context; the 
TN tackles ML development from a product assurance angle. 

5.2.2 National Agencies 

5.2.2.1 German Aerospace Center (DLR) 
The German Space Agency at DLR is funding various machine learning projects 
across many of its departments like Earth Observation and Navigation. It 
recognizes generally increasing interest in machine learning, but also in 
tomorrow’s approaches like quantum machine learning that will provide new 
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perspectives on machine learning and its evaluation. The department of Robotics, 
Digitalization and Artificial Intelligence has a long history of funding artificial 
intelligence-related projects with a focus on robotics in space. As a consequence 
of the increased interest in technologies like machine learning, the group 
Digitalization, Software and Artificial Intelligence was founded in the 
department in 2021 to bring forward the respective technologies in the field of 
space. As one of its topics, the group focuses on supporting the development of 
technologies for the qualification of machine learning methods for space 
applications. The group is still under development but will generate relevant 
results in the next years. 

As a persistent funder of numerous projects with machine learning elements, the 
agency is interested in evaluation and qualification of machine learning systems. 
It uses the experience from its projects to experiment with indicators and metrics 
that could help to establish high level data-driven analysis methods. Currently, 
the set of key figures is being developed and refined. The initial data collection 
methods are mainly ad-hoc and based on human-in-the-loop survey methods. 
However, the toolset is actively evolving. The already collected data identifies 
and compares different evaluation methods. The agency is also preparing to 
integrate machine learning metrics with the ECSS-based software metrication 
system AENEAS in order to support monitoring the development of and 
qualification of such systems. Tried and tested results are expected to be available 
in three to five years. 

The agency is also funding the consortium-based project VeriKI which 
investigates verification methods for artificial neural networks used in robotics 
applications. The project sees a major problem of qualifying such systems in the 
outstanding importance of its training process. It therefore focuses on analysis 
methods of the trained system to establish evidence of its correctness. While the 
project has not yet finished, preliminary results have already been provided as 
input to the standard to the members of the ECSS working group. 

By decision of the DLR senate from 2020, a new research Institute for AI Safety 
and Security has been founded in DLR’s research branch. The institute conducts 
research in the direction of protection against external attacks (security) and 
reliability of operation (safety). It covers research topics like the engineering of 
AI systems, AI algorithms, security-critical data, and reliable execution 
environments for AI. The institute’s research will make significant contributions 
to methods for qualifying machine learning once it is fully established. 

5.2.2.2 CNES 
CNES considers artificial intelligence as a key issue in its avant-garde policy for 
the coming years. With the democratisation of access to space, CNES wants to 
help actors involved with space domain to reach sufficient technological maturity 
in AI, in order to support the development of digital-related skills. The approach 
adopted is an investment per project with an exploratory method that will lead 
to feedback and standardisation once there is sufficient material. Nevertheless, 
there is crosscutting work in progress on some themes, oriented towards 
Learning Assurance, such as a study on “model factory”: on a similar way CNES 
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works on legacy software, using such factory for machine learning is studied to 
empower model production and make it more reliable. CNES is also actively 
involved in raising the awareness of its teams to the use of machine learning by 
organizing regular internal training sessions. 

5.2.2.3 UKSA 
The UK Space Agency has recently published National Space Strategy [RD-
UK Space] and National AI strategy [RD-UKAI]; the wide interest in using AI for 
space is highlighted in both documents. The qualification of AI systems has been 
found as a very important aspect in adopting the technology operationally, as 
global technical standards are mentioned to be required for: supporting R&D and 
innovation, supporting trade, giving UK business more opportunities, delivering 
on safety, security and trust and supporting conformity assessments and 
regulatory compliance.  

5.2.3 European Space Industry – Large System 
Integrators 

• Airbus Defence and Space: As part of Airbus Group, including Airbus 
Commercial and Airbus Helicopters, an extensive internal AI research 
roadmap and a dedicated AI synergy project exist= The synergy project 
called CTAI (Certifiable and Trusted Artificial Intelligence) covers several 
initiatives around the three directions of “Embeddable AI”, “Certification, 
Regulation and Standardization of AI”, and “Trusted/Explainable AI”, in 
addition to an overall project management function to keep an up-to-date 
holistic view on the different topics within the company, and external 
developments, to allow maximum synchronization of the different 
initiatives, while keep exploring potential synergies. Examples of such 
initiatives which Airbus is part of can be mentioned the [DEEL] paper 
team, EUROCAE (Section 5.3.2) and likewise this ECSS handbook. 

• Ariane Group: The Ariane Group has a Working Group dedicated on 
machine learning qualification. A first issue of company-wide technical 
operating standard has been internally published to set common grounds 
for the use of data analytics and artificial intelligence methods in all fields 
of engineering/manufacturing of space launchers. It is so far mainly 
dealing with taxonomy and vocabulary. Another internal operating 
standard is being written with contribution of the whole data science 
specialist network, dealing with a stepwise process for the construction 
and certification of machine learning based algorithms. Measures to 
control data quality are already quite well prescribed. They are a 
prerequisite for the certification / qualification part, which is yet to be 
consolidated, although acceptability measures have already been 
identified. 
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5.3 Activities / Initiatives outside the space domain 

5.3.1 Dependable and Explainable Learning 
(DEEL) Project 

The DEEL (Dependable and Explainable Learning) consortium involves 
academic and industrial partners in the development of dependable, robust, 
explainable and certifiable AI technological bricks applied to critical systems; 
certification experts and AI specialists from the aeronautics, railway and 
automotive sectors were part of the Consortium. The objective is threefold: 

• share knowledge on certification and ML,  

• identify the main difficulties raised by the usage of ML in safety critical 
systems, 

• feed the core team with relevant scientific challenges. 

After monthly face-to-face meetings, a White Paper [DEEL] has been published 
covering the full collection of best practices and lessons learned around AI 
certification, qualification and explainable AI; the White Paper has been used as 
reference for this Handbook preparation. 

5.3.2 EUROCAE / SAE 
EUROCAE and SAE are the leading standardisation organizations developing 
the worldwide recognised industry standards for aviation. Joint EUROCAE/SAE 
WG-114/G-34 working group “Artificial Intelligence in Aviation” comprised of 
500+ members from leading aerospace companies was created in 2019 to develop 
and maintain Technical Reports on implementation and certification aspects of 
quickly advancing AI and ML technology for on and off-board aerospace systems 
and vehicles. 

The first document published by this joint working group [RD-EUROCAE] 
reviews the current aviation assurance practices for safety-critical systems with 
respect to Artificial Intelligence (AI) / Machine Learning (ML) development 
approach and provides a list of concerns that need to be addressed in order to 
produce a future means of compliance for AI/ML-based systems. 

The next planned deliverable of the joint working group is a process standard for 
development and certification of aeronautical safety-related products based on 
AI/ML-technology. This standard is planned to be published in 2023 and will 
provide the detailed guidance including objectives and means of compliance for 
development, verification and validation of AI/ML-based safety-critical airborne 
systems. This standard is targeting a broad coverage of AI/ML assurance and 
certification practices and use cases – this is considered highly relevant to the 
goal of this handbook and can be widely reused and adjusted to space domain. 
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Figure 5-1: [ER-022/AIR6988] AIRBORNE AI/ML ASSURANCE LIFE CYCLE  

© - 2019 – EDA, European Defence Agency, Certain parts are licensed under 
conditions to the EU. 

5.3.3 German Standardisation Roadmap on 
Artificial Intelligence 

In this Standardization Roadmap on Artificial Intelligence [DE-Standard RM], a 
comprehensive analysis of the current state of and need for international 
standards and specifications for the technology are presented. In the first edition, 
the technical, ethical and social aspects of standards in AI are taken into account 
in detail. The roadmap was drawn up in seven working groups which developed 
important questions and recommendations for action on Ethics, 
Quality/conformity assessment/certification and IT security, as horizontal topics, 
in addition to the basic principles and three AI application fields: industrial 
automation, mobility/ logistics and medicine. This Roadmap is an ongoing 
document that is required to be regularly updated in order to reflect the 
enormously dynamic development of AI technologies and their rapidly 
expanding fields of application. 

A set of additional initiatives can be found on References [RD1- RD6]. 
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6 
Guidelines 

6.1 Introduction 
Machine learning is a rapidly evolving field that has brought a paradigm shift in 
the way we can solve complex problems. However, the application of ML is not 
straightforward, and it requires a systematic approach to ensure the quality and 
reliability of the ML models and systems. In the following sub-chapters, this 
handbook presents the reader with recommendations of how to approach the 
verification and validation of machine learning in the usage of space software 
applications, within criticality categories B/C/D. 

In the following sub-sections the topic of verification and validation has been 
addressed. The structure of the section is as follows. First, the importance of 
understanding the business value and implications of utilizing machine learning 
is introduced. Next, a comparison with data-driven approaches and non-data-
driven approaches is presented, with a focus on a SWOT analysis. Lastly, specific 
guidelines are introduced. The guidelines have been split into four sub-sections 
with the aim of providing a comprehensive and systematic framework for 
ensuring the quality and reliability of ML models and systems. Each of the three 
sections focuses on a specific aspect of ML life cycle, from data gathering to 
system testing, and provides guidance on best practices, testing methodologies, 
and performance metrics. By following these guidelines, the handbook attempts 
to provide the reader with an understanding of testing the quality and reliability 
of ML applications, which is crucial in ensuring the safety and effectiveness of 
these types of applications. 

6.2 Business value consideration 
In this section, the understanding of business value from using machine learning 
is discussed, to provide the reader with guidelines on how to approach the 
question whether to go for a ML solution or not. 

As an initial consideration, organizations who want to optimally utilize data 
engineering, especially Machine Learning, are often characterized by having the 
following: 

• Strategy for data acquisitions, to assure capturing maximum value. 

• Some form of unified data warehouses, to allow teams of developers and 
engineers to have easy access. 

• Some form of development environment, with access to the data 
warehouse. 

• Some form of application deployment environment, allowing streaming of 
data to applications, and monitoring of performance. 
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• Dedicated personal to work with the data, e.g. data scientist, data 
manager, AI/ML product manager, machine learning engineer, etc. 

NOTE There exist a lot of material already on the topic of transforming 
companies and organizations towards a data/AI approach, this 
section will not focus on the steps for the transformation itself, but 
more be looking at some of the technical topics which should be 
considered as part of the transformation process. 

Second consideration for optimal usage of ML, is the data quality available for 
model training. 

First of all, not all data holds equal value for machine learning and AI. In other 
words, if the data available does not hold the “correct” correlation to the business 
objectives, no AI team will be able to create products of value. So, to avoid 
inflated expectations, it is important to have an overview of available data, and a 
dedicated team of data/ML engineers to analyse if a given project is possible 
based on the available input and expected output, before committing to further 
project developments and results. Hence, the creation of processes of gathering, 
sorting, evaluating and storing data is important to be able to use it later. This 
will in turn lead to the questions of data availability/quantity and quality, as 
further discussed in the following sections. 

However, before even getting to these questions, initially there is a certain mind-
set which organizations have to adopt:  

Just because we have data, does not mean we have to build an AI/ML model. 

Just because the problem can be solved with AI/ML, does not mean that it is the 
best solution.  

 

To expand a bit more on the above statements, the buzz-words of “artificial 
intelligence”, “machine learning” have to be considered in the realistic of usage 
versus hype. It is true that AI represents a large potential improvement, 
independent of further discussions on general artificial intelligence, and with the 
massive amount of data which is being generated on daily basis, it can be 
assumed that there are plenty of possible applications for machine learning. 
However, the problem with this sort of mind-set is that it does not consider real 
business needs: rather than looking at problems and pain-points that often are 
tied to real value, often organizations and businesses get too caught up in 
opportunistic thinking. As indicated from the Venn diagram below, Figure: AI 
versus Value, the aim can from the start be to spend most time working on 
projects in the intersection, to avoid wasting time and resources. Often seen in 
the industry, is that projects end up with nice proof-of-concept models, but no 
further implementation, hence lacking monetary Return-Of-Investment (ROI). 

That being said, seeing opportunities based on available data should not be 
discouraged, however, the difference here is to realistically consider whether the 
opportunities can be tied to existing business needs before starting, to ensure 
there exist internal stakeholders, and therefore people who have enough interest 
in the continued development of the AI project, until a product with value has 
been created. If not, maybe the resources should be spent elsewhere. 

Of course, in cases where the motivation for the usage of ML-based solutions is 
based on a need from a space mission, the steps are more in reverse, first 
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exploring what mission requirements are driving a need which ML could solve, 
realistically evaluating whether non-ML solution could be equally good/better, 
with less effort, including consideration of data gathering and life-cycle 
maintenance of the ML solution. 

 

Figure 6-1: AI vs. Value 

Once the organization has taken the above statements into account, the next step 
is to create a good business/usage understanding. This process, specifically for 
ML, can as a minimum follow these two steps: 

• Identify valuable/costly business problems and pain points (which is not 
the same as specifically ML problems and solutions). 

• Evaluate the possibility of using an ML based solution for the problems 
and pain points, both compared to technical feasibility, business value, and 
in comparison to non-ML based solutions. 

Essentially, ML is supposed to be a part of the general digital workflow and 
should therefore not be treated separately from normal problem solving, but 
more as another tool in the toolbox. However, as AI currently still represents a 
highly specialized skill, it can be noted that finding good AI and ML projects 
require both AI specialists and also specific domain experts. The domain experts 
can generally identify issues that need to be solved for the organization (“what 
are 3 things you wish were working better?”), and then the AI specialists can 
determine the feasibility of using AI for a possible solution, based on the 
availability and quality of data, the availability of simulators, or the need for 
automatization using rule-based systems. 

That being said, this does not mean that an AI specialist cannot find some 
interesting data and come with a suggestion for a project, but the idea can be 
verified by the domain experts and considered also from a business/product 
point of view. But the important point is to always consider how a product could 
be a driver of business value, or how it ties together with pain points for day-to-
day work. 

For the feasibility of using an ML based solution, technical questions to be 
answered would be to assess whether it is known how much data would be 
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needed, if there is a benchmark for the results (from literature or competitors), 
would it be possible to create an approximation for Bayes error, e.g., compared 
to human level performance or currently used systems, and what would be the 
engineering timeline for such a project.  

Of business-related questions it is important to clarify the profitability, e.g., 
quantify what cost can be saved or revenue can be generated by the use of the AI 
solution. Will the solution substitute parts of existing products/functions, or does 
it represent something new, and how does it practically affect the workflow (also 
compared to people's day-to-day work routines)?  

Finally, the business and technical teams will have to agree on how to measure 
performance (evaluation metric). Especially talking about machine learning, the 
technical team might suggest metrics such as F1 score (e.g. harmonic mean of 
precision and recall), to show direct performance on the dataset for the ML 
models to be tried and optimized, but from a business perspective there might 
also be things that have to be considered, the speed of the algorithm might be 
linked to revenue generation, or as for anomaly detection for operations, to avoid 
causing additional work overhead for spacecraft operators we can have 
minimum false alarms. 

A self-explanatory extension of the above-mentioned process, can be seen in 
Figure 6-2.  

 

Figure 6-2: Simplified process of finding good AI projects 

6.3 Data driven approach vs non-data driven approach 
In general, the data driven approach refers to a development process based on 
data and other hard facts, by opposition to historical points, observations subject 
to various interpretations or even feelings. 

In the context of non-data driven approach, a system is classically driven by a set 
of rules stemming from the knowledge corpus of one or several technical fields. 
These rules are analytical descriptions of the physical behaviour of the system, 
stemming from axioms widely accepted by the community. Some of these rules 
can be tuned to better match real observations or can be adapted to the system of 
interest, but they form a strong a priori of the dependency structure of the 
underlying physics.  

By opposition, purely data-driven approaches are agnostic of the physical rules: 
they reconstruct or approximate the physical behaviour suited to the system of 
interest using only the data from the observations. 

Nevertheless, intermediate approaches exist, infusing physical understanding 
into data-driven models, resulting in hybrid models. For instance, convolution-
based approaches are inspired by classical image analysis; recurrent net by 
higher order dynamical systems. 
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A data-driven approach can be quite beneficial for a project, however in general 
it can be avoided when formal models (e.g. mathematical equations) exist 
already. Below, in Table 6-1, we propose the use of a SWOT matrix as a to 
quantify the benefits of applying a data-driven approach over a non-data-driven 
approach.  

The matrix can be consulted at the start of a project, in order to conclude whether 
or not ML is the most suitable solving method for a problem. 

Table 6-1: SWOT matrix for data-driven models in ML 
STRENGTHS WEAKNESSES 

Satisfactory behaviour in many cases when 
confronted with unseen input conditions (2) 

Enabling new applications 

Performance, often close or beyond human 
standards 

Industrial property not easy to steal (1) 

Moderate computing requirements at inference 

Quick development of a proof-of-concept 

Stochastic behaviour, lack of confidence 
intervals 

Data dependant (in particular, sensitive to 
corrupted or biased data) 

High computing power required to train and 
validate the model from the data; accessing a 
huge quantity of data can add strong 
infrastructure constraints 

Limited explainability for a single inference 

Subcontracting the design of the model 
requires to share the entire dataset 

OPPORTUNITIES THREATS 

Business reusability across different 
applications (2) 

Large community of enthusiasts of data-driven 
models 

Many freely available repositories of published 
or work-in-progress models, available for reuse 
in space applications (3) 

Rising trend in hybrid solutions, mixing data- 
and non-data-driven models 

Availability of specialized hardware for data-
driven model generation and evaluation: 
performance boost with affordable investment 

Speed of evolution of dedicated AI libraries 
and HW leading to maintenance cost 

Reduction of the key players in AI libraries 
leading to monopoly or high dependency 

Overconfidence in the capacities of fully data-
driven approaches in the literature 

Underestimation of the industrialization and 
maintenance of data-driven models 

(1) since a ML model consists of a model architecture, a set of hyper-parameters and large parameter set, it is not easy 
to publish and quite inconvenient to steal. Partial information about the model is almost useless. 

(2) unseen input is still required to come from the same distribution as the training data to avoid out-of-distribution 
errors 

(3) such published models can be reused in their entirety, or just partially (transfer learning) or selectively retrained for 
a specific application. 
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6.4 Guidelines 

6.4.1 Data Quality 
Data quality is of primordial importance in ML based applications. Low quality 
data can lead to inaccurate output and an improvement in the quality of the data 
can enhance dramatically the efficiency of the application. It is often seen [e.g. 
Jain et al. 2020] that improving the quality of the data leads to greater 
improvement of the global application outputs than the fine tunings of the model 
used.  

This section starts by describing high level properties that help characterizing the 
quality of the data. Then the data lifecycle of a typical ML project is described, as 
well as the concept of operational scenarios. As data can originate from various 
sources, these sources and their impact on data quality is discussed. Finally, 
guidelines related to specific ML applications are given. 

It can be noted that the definition of data includes all meta-data attached to it. In 
case of supervised learning the quality and the consistency of the labelling is of 
the greatest importance. For example, in time series, the time stamps of the data 
are essential, whereas for images the knowledge of camera characteristics can be 
of great help.  

The type, amount and completeness of relevant metadata are as important for 
the quality assessment of the data as the quality of the actual data. In the 
following sections the term “data” includes all relevant meta-data that could be 
attached. 

It can also be noted that the data quality assessment process described in this 
chapter is not a one time job, but it is advised to do continuously through the 
project as there are often iteration loops in the development process. 

In order to formalise the concept of quality for data, several high-level properties 
are introduced in the next section, which describes in more detail how these 
properties can be evaluated for specific cases. Several guidelines for data 
manipulations are then also proposed. 

6.4.1.1 High level properties 
The DEEL white paper [DEEL] defines the following properties for data quality: 

• Accuracy depends on data gathering/generation and measures the 
faithfulness to the real value. It also measures the degree of ambiguity of 
the representation of the information. 

• Accessibility measures the effort required to access data. 

• Consistency measures the deviation of values, domains, and formats 
between the original dataset and a pre-processed dataset. 

• Relevance and Fitness, with two-level requirements: 
− The amount of accessed data used and if they are sufficient to realise 

the intended function and  
− the degree to which the data produced matches users’ needs.  
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• Timeliness measures the “time delay from data generation and 
acquisition to utilization”. If required data cannot be collected in real time 
or if the data need to be accessible over a very long time and are not 
regularly updated, then information can be outdated or invalid. 

• Traceability reflects how much both the data source and the data pipeline 
are available. Activities to identify all the data pipeline components have 
to be considered in order to guarantee such quality. 

• Usability is a quality bound to the credibility of data, i.e. if their 
correctness is regularly evaluated, and if data exist in the range of known 
or acceptable values. 

These properties are very generic, and it is likely difficult to directly try to assess 
quality from them in a specific project. However, we might try to specify them a 
bit further. Accessibility here refers to the effort required to obtain the data. It can 
be the physical retrieval which can be difficult because the data are stored in a 
satellite for example or the legal access to the data can be difficult because they 
are proprietary. For the Relevance and Fitness, whether or not the data match the 
user needs refers to content of the data and the specific application at hand. For 
example, perfect image of clouds could check all other properties but are not 
relevant for searching for boats in ocean or assessing the state of forests. Whether 
or not the data are complete or not, whether they are a lot of missing values or 
not, this would then fall into the Usability property. Considering Timeliness, it is 
advised to verify obsolescence criteria if any. 

In addition, the concept of quality for the data is strongly application dependent. 
A good quality set does not have the same meaning for the application of a 
supervised learning on images and for an unsupervised learning on time series 
for example. 

The documents [ESA-TECQQS-TN-022868] and [EASA-Concept] go further than 
the high-level properties and propose specific verification points that can be 
applied to all data regardless of the applications. Verifications that can be 
considered at start before going further in the data quality assessment are: 

• Legal/ethical aspects are considered 

• The format of the data is suitable for the work at hand 

• Possible missing or duplicated values are addressed 

• Possible bias or noise in data are searched for and addressed. 

• The possible need for data augmentation is analysed 

• The origin of the data is known as well as the pipeline of operations 
applied on them (traceability) 

• A mechanism is defined to ensure data will not be corrupted during 
storage and processing. 

 

In order to further refine verifications of the data quality, the discussion can be 
targeted on more specific applications as it is done in the following sections. 
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6.4.1.2 Data lifecycle 

6.4.1.2.1 Overview 
At the beginning of a project involving ML, a first assessment about data quality 
is recommended to be performed. As part of this assessment, it is recommended 
to perform an exploratory data analysis (EDA) not only to assess the quality 
properties defined before but also to understand the underlying structure of the 
data. This includes the identification of patterns and trends, anomaly and outlier 
detection, and an evaluation of the data's fitness with respect to the requirements 
associated with the ML model to be developed. As the types of data and the 
available amount can rule out certain types of ML models, this process is advised 
to be performed first in the project timeline, and in any case before any model 
selection. The document [ESA-TECQQS-TN-022868] suggests a possible 
milestone that concludes this review process called Data Readiness Review. In 
the document, a set of verification and data properties to consider are listed as a 
methodology to assess the quality of the data, such as: accessibility of data, 
faithfulness and representation of data, and data context.  

The development of a component using ML is usually an iterative process. Once 
data are gathered and a first assessment of data quality is performed, the next 
step is to prepare the data for training and testing. The general guideline for data 
splitting is to create three different datasets: training datasets, validation dataset 
and test dataset. The first two, training and validation datasets, will be used 
during the learning (training) phase, which involves hyper-parameter tuning 
and model’s weights fit. The last one, test dataset, should be used only once, to 
evaluate the performance of the best candidate model. The final size of each 
dataset can be determined per use case, in accordance with different factors such 
as total data size available. As a reference a common percentage split goes in the 
line of 80-10-10/ 70-20-10 for training-validation-test, usually in the cases where 
less than 10.000 data samples are available for the training. However, when using 
substantially large datasets, above 1 million data samples, splits such as 98-1-1 
starts to be appropriate. Data splitting is one of the most sensitive steps in the 
data lifecycle as it will impact both: the learning and evaluation phase. The 
following are aspects to take into consideration when performing the data 
splitting. 

• Dataset representativeness: All the possible cases, that the model needs to 
consider, should be properly represented in the data distribution of each 
of the datasets. Note that missing scenarios from the training/validation 
datasets would lead to an underperforming model . In such case, the 
model could underperform to the point of providing wrong or inaccurate 
answers which would question the model robustness or resilience.  
Missing scenarios from the test dataset would lead to an inadequate 
evaluation of the model performance. The concept of “operational 
scenarios” is introduced later to help with the representativeness 
assessment of the data. 

• Hold-out test dataset: The test dataset can be kept unmodified during the 
model development process and effort should be put to ensure there is no 
data leakage from the training/validation datasets. This also means that 
new data generated with techniques like data augmentation should only 
be used to increase the representativeness and size of the training and 
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validation datasets but never be included in the test dataset. If the data sets 
nevertheless need to be updated because of mission definition 
consolidation, it is advised to re-assess its quality characteristics. 

 

Figure 6-3: Data Process 

The training-validation-test splitting is the preferred approach, however there 
are cases when it can be difficult to apply, especially when working with small 
datasets. In these cases, a data split considering only two datasets namely 
training, for the learning phase, and test, for the evaluation phase, can also be 
considered. However, such a split is only recommended if bias is not an 
important factor for the model. Alternatively, k-fold cross validation procedure 
can also be applied, especially when the dataset is too small to ensure enough 
representativeness through the data splits. 

If during this process, bias or data quality related problems are discovered, the 
data set could be updated to address the issues and the data split process can be 
initiated again afterward. In many cases, the original data set goes through a set 
of transformations to be more suited to the model training (ex. categorical data 
treatment). At each evolution of the data set, it is advised to repeat the quality 
assessment. 

It is also advised to store all data splits used during the training, validation and 
testing process to ensure reproducibility of the entire process. 

After the system quality has been assessed and it has been deployed, data used 
by the system in its business application can be monitored on a regular basis, so 
that any drift between the test set input distribution and the real application 
input distribution can be detected and investigated. Even if input values remain 
within the span of test set values, data drift can negatively impact the system 
performance by operating the ML model more frequently in input subsets with 
lower performance. 

6.4.1.2.2 Operational scenarios and operational design domain 

To assess the representativeness of the data, one can consider the concept of 
operational scenarios and operational design domain (ODD) to ensure that all 
cases that will be met in real life are met in the data.  

Data

Learning process 
(training)

Training dataset

Validation 
dataset

Evaluation 
process Test dataset
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The definitions of operational scenario and operational design domain are taken 
from [EASA ConceptPaper]. Operational scenarios are defined through the 
definition of the associated operational designed domain, that describes the 
operating limitations and conditions associated to the proposed operations for 
the AI-based system. The ODD, for instance, can define the value range for the 
different operating parameters or enumerate the valid values for categorical 
parameters. Therefore, the representativeness of the data can be assessed by 
comparing the data population against the defined ODD.  

Figure 6-4 from [EASA ConceptPaper] depicts the relation between operational 
scenarios and operational design domain. 

 

Figure 6-4: Operational Design 

For example, in the case of a data set made of images, it is advised to ensure that 
the data set contains pictures with the range of variations, defined by the ODD 
that will be met by the applications, in particular addressing worst-case scenarios 
and corner cases. For instance, luminosity variations or background variations. 

In the case of time dependent data like time series, the time tag of these data is of 
course of primordial importance. These data are usually periodic coming from a 
sampling at a given rate or a telemetry generation at a given frequency. It is 
advised to search for missing data, holes in the time series and to identify a 
method to deal with the issue. Depending on the specific application, a certain 
precision in the time tag can be required. 

It is thus advised to define operational scenarios and the associated ODD to 
verify the relevance and fitness of the data and to ensure that the model is trained, 
validated and tested on a data population that is representative of the real data 
population. 

In addition, the relevance analysis can be supported by matching the data sources 
with the system engineering models that can be provided using the MBSE 
methodologies and tools. 
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The concept of operational scenarios and ODD is also relevant to ensure the 
correctness of the model interfaces or to set the context for the model testing (see 
6.4.3 “Machine Learning Model Testing”). 

6.4.1.3 Data sources 

6.4.1.3.1 Overview 
Before entering the various possible applications, the data sources are discussed. 
The types of data identified are: 

• real data 

• simulation/synthetic data 

• augmentation data 

• surrogate data 

• lab data. 

Although all properties defined in the previous sections for data can be applied 
to the various types of data, their importance vary. For example, 
representativeness is not so much an issue for real data, but it is for the other 
types. On the other hand, completeness and labelling are typical challenges for 
real data but are rarely a problem for the other types. 

6.4.1.3.2 Real data 

Data can be gathered by sensors, camera or recorders of any kind, in this case, 
these are real data. The representativeness of this type of data is not questioned 
but the fitness of these data for the application at hand can be questioned; for 
example, pictures of clouds are of no use in the training of a model trying to 
recognise boats in satellite images. 

Real data comes with important metadata such as the date, the type of sensors, 
etc. These metadata can be used to assess quality through the high-level 
properties listed above. In particular, the accuracy and usability by verifying if 
the data were gathered by a properly functioning sensor and if the data received 
were recorded in the expected range of data acquisition for this sensor. For 
timeliness, the presence of a time tag is essential. 

6.4.1.3.3 Simulation and Synthetic data 

Simulated data are generated by a highly representative complex simulation or 
a Digital Twin. For example, the telemetry generated by an on-board software 
running on an operational simulator. Such simulators run the actual Flight 
Software usually on a processor emulator and simulate all satellite equipment's 
as well as the space environment (Sun and Moon positions, forces and torques 
applied on the satellite etc...).   When using such high-fidelity simulators, 
differences between these data and real data are generally very limited, albeit 
hard to quantify. They still could cause bias in the training process; it is thus 
important to assess their representativeness. 

Other data, not specifically generated by a dedicated simulation, called synthetic 
data, can also be used. For example, it can be images generated by a 3D modelling 
tool that allows to finely reproduce the expected image that will be seen from a 
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camera. It could also be data generated by a functional model of a given sensor. 
The difficulty is assessing their representativeness is the same as for simulation 
data. 

For this type of data, assessing the accuracy is the key. There are rarely missing 
data problems, and more data can always be generated. If measurement data is 
available, the measurement data can be used to calibrate the simulation model. 

In space application, real data are rarely accessible and when they are, there is 
often missing data. This means that in practice simulation and synthetic data will 
often be used. 

6.4.1.3.4 Augmentation data 

Synthetic data that are based on real data and used to augment the data set are 
another type of data. They are closer to real data and have less representativeness 
problem. However, they can still introduce bias in the ML training and should 
be generated with caution. 

The accuracy and consistency are the properties on which to focus for this type 
of data. 

6.4.1.3.5 Surrogate data 

In the case where data are proprietary and cannot be used directly or in order to 
ensure confidentiality, it is good practice to anonymise data or modify in a way 
that does not modify the underlying information we want to learn from the data. 
In such case, data are called surrogate. 

6.4.1.3.6 Lab data 

Lab data are somewhat in between real data and simulated data, they are data 
generated using the real equipment but, in a lab and not in space. The main 
problem with this type of data is their amount as they are time consuming to 
generate. Furthermore, their usability and relevance and fitness need to be 
assessed. Although they are generated by real equipment, they are not in the 
space environment. This implies that some effects like change in temperature or 
luminosity can induce a lack of representativeness on the generated data. 

In practice, real data are rarely available, either because the mission is not yet 
launched or because the data are sensitive and not shared. It is thus often 
required to mix these various types of data to develop the intended application 

6.4.1.4 Specific applications 
6.4.1.4.1 Supervised learning 

Supervised learning represents the training of machine learning models using 
labelled data, providing specific examples of what the model should learn. In the 
case of supervised learning, the quality of the labelling is essential. It is advised 
to have a close involvement with experts of the field to make sure to build an 
understanding of the data at hand. Giving precise rules for labelling can also help 
reaching an acceptable consistency in the labelling. Standardization of the 
labelling procedure is key, especially whenever labelling is performed by 
humans. 

Especially in the case of citizen science (i.e. crowd labelling) it is advised to check 
the labelling in the assessment of the quality of the data. 
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6.4.1.4.2 Unsupervised Learning 

In the case of unsupervised learning, labelling is not relevant. For example, this 
type of technique can be used to learn a  generic behaviours (e.g. Nominal 
behaviour) such that later any different behaviours (e.g. Faulty behaviour) can 
be identified. In that case, the data set is expected to represent the targeted 
behaviour in all its variations otherwise, a misclassification can occur. This 
example falls into the search for bias in the data. 

6.4.1.4.3 Reinforcement learning 

Reinforcement learning is a type of machine learning that involves training an 
agent to make decisions in an environment to maximize a reward signal. The 
agent learns through trial and error, by taking actions in the environment and 
receiving feedback in the form of rewards or penalties. The goal of reinforcement 
learning is to develop an optimal model, which contain is a set of rules that the 
agent uses to select actions based on the current state of the environment, to 
maximize a reward scheme. 

 In reinforcement learning (RL), there are two primary learning approaches: 
model-based and model-free learning, [neptune.ai]. Both approaches can utilize 
environments built from real data or simulations, but they differ in how they use 
this information. 

Model-based learning involves constructing a detailed model of the 
environment, which is then used to simulate future states and rewards. This 
allows the agent to engage in extensive planning and predictive decision-making. 
The model provides the flexibility to explore different scenarios without the need 
for actual interactions, enhancing sample efficiency. However, the success of this 
method is contingent upon the fidelity of the model to the real environment, and 
it requires accurate and representative environmental data or simulations. 

Model-free learning, on the other hand, does not involve building a model of the 
environment. Instead, it learns a policy directly through trial-and-error based on 
real or simulated experiences, relying entirely on observed state transitions and 
rewards. This method is generally simpler and more robust, as it is not 
susceptible to inaccuracies in a model. However, it usually requires a larger 
volume of interactions to develop an optimal policy due to its direct reliance on 
data for learning. 

Both simulated and real data environments have their applications in either 
approach. Simulated environments are particularly valuable in situations where 
real interactions are too costly, risky, or impractical. They allow both model-
based and model-free methods to operate under controlled, repeatable 
conditions for training. Real data environments offer the advantage of training 
and testing agents in real-world conditions, providing them with realistic 
challenges and variabilities that are difficult to simulate accurately. 

Choosing between model-based and model-free learning, and deciding whether 
to use simulated or real data, depends on several factors, including the specific 
goals of the application, the availability and quality of data, the computational 
resources at hand, and the acceptable trade-offs between accuracy, efficiency, 
and robustness. For the topic of verification and validation of data vs simulation, 
please see section 6.4.1.2. 
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6.4.1.4.4 On Board training 

On Board training comes with additional challenges regarding data quality. For 
example, in the case of supervised learning how to ensure proper labelling of 
data? In the case of unsupervised learning, how to ensure the faithfulness of the 
data (for example data from a broken sensor could introduce a bias)?  

Since on board training is unlikely to be used in space application in the close 
future, it is left outside the scope of this document. 

Possible solutions could be to compute data health checks on board or download 
samples of data used for re-training to the ground on a regular basis and to 
perform a data quality review on these data. In such case, the guidelines listed 
above apply directly. 

6.4.2 Model development process 

6.4.2.1 Overview 
Once the data set is selected, and its quality has been assessed, the ML model to 
train is chosen. This section describes the best practice to select a model. After a 
brief discussion on frameworks, a list of model characteristics is given. Then 
model selection itself is discussed. Finally, common issues that can be 
encountered when working with ML and a possible solution to overcome them 
are given. 

The overall workflow in the model development process is the following: 

• As mentioned already in the section “Data lifecycle” the data is split into 
different datasets.  

• The training process begins, in which the model is fit. The training process 
will also involve the tuning of the different training hyper-parameters, 
such as: optimizer algorithms, learning rate, or epochs. During this phase 
different models can be trained in parallel, helping to find the best 
candidate (see 6.4.2.4 Model Selection). 

• Once the performance of a model in the training phase is found adequate 
the next step would be to evaluate it against the test dataset. The 
evaluation of the model against the hold-out dataset will give an indication 
of its generalization capabilities.  

After either the training or the validation part, it is possible that problems with 
the data or the selected model are encountered. In case of a data issue, it is 
advised to update or correct the data set and re-assess its quality. Then the model 
selection process can be repeated. Alternatively, multiple iterations on the model 
selection or design (optimisation) might be needed to meet specific performance 
(e.g. accuracy) or inference requirements (e.g. speed, power, etc.). 

It is important to mention that the development process of most machine learning 
algorithms is a stochastic process. For instance, stochastics optimization 
algorithms such as stochastic gradient descent are used to find the optima during 
the training process. For this reason, the outcome of the training process can be 
different each time, even if the same training process is followed using the same 
data. 
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It can also be mentioned that despite that the aim is to create the best possible 
model, there is a theoretical upper limit of performance that the model can 
achieve, also known as Bayes Optimal Error, see Figure 6-5 as it is practical 
impossible to build a perfect system (containing all information). 

However, through reduction of uncertainty of the model or data, e.g., based on 
error-analysis or adding use-case-specific knowledge, it is possible to get closer 
to the Bayes Optimal, which is an important part of training ML models if high 
performance is demanded (related to performance need vs. effort to achieve such 
performance), but is especially important for ML models if intended to be used 
for safety hazardous systems. Hence, a lot of ongoing research efforts are going 
towards such reduction: from a critical consideration assessment of the data 
quality (See section 6.4.1 “Data Quality”) to the application of specific tests to 
reduce model uncertainty (See section 6.4.3 “Machine Learning Model Testing”). 

 

Figure 6-5: [Ng et al.] Example of theoretical upper limit (Bayes Optimal Error) 

Of course, the Bayes Optimal Error is more of a theoretical concept, however, by 
defining a proxy for this error it is possible to use Bayes optimal error as a 
benchmark to evaluate the performance of a ML model and identify areas for 
improvement. Examples of such proxies could be a standard software solution 
or a group of experts, which you can test on the same tasks as the ML model and 
compare performance. This is especially interesting within deep learning where 
with the right amount of quality data and models for some use-cases the 
performance can get better than human abilities, for example image recognition. 
By comparing the model’s performance to the proxy, it can help on to approach 
further minimization of bias and variance, beyond what can be seen from 
training on an isolated dataset, and provide a more accurate understanding of 
how the ML model is likely to perform in the real world. 

To use an approximate Bayes optimal error the following steps are 
recommended: 

• Train the model following the guidelines already defined in previous 
sections (See section 6.4.2 “Model development process”). 

• Once the ML model has been trained, find a proxy which can be used as 
the approximate Bayes optimal error, to be functioning as benchmark for 
performance evaluate of the model. This could involve consulting with 
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domain experts to measure their performance of the task, or using other 
software or models that are known to perform well on similar tasks. 

• Compare the performance of the trained ML model to that of the 
approximate Bayes optimal error based on the test dataset. If the model's 
performance is significantly worse than the Bayes optimal error, this could 
indicate that there are underlying issues with the model that need to be 
addressed. On the other hand, if the model's performance is close to the 
Bayes optimal error, this suggests that the model is performing well and 
can be ready for deployment. 

• Iterate and refine the ML model as necessary. If the model is not 
performing as well as expected, it might need more good quality data, or 
the model type might not be good enough in capturing the complexity of 
the data and it would be worth trying a different type of model altogether.  

6.4.2.2 Framework 
A wide list of frameworks for the development of ML applications are available 
like TensorFlow, PyTorch, Scikit-learn, etc. No framework is identified as 
preferred for the development process and choosing one over other answer to 
different factors such as: previous experience, functionality provided or 
compatibility. However, in the case of cat C or B, it is advised to consider the 
qualification need of the inference engine required to execute the model or to 
consider compensating measures. 

6.4.2.3 Model quality characteristics 
The following characteristics are associated with machine learning model 
quality. These definitions are taken from [ESA-TECQQS-TN-022868] which 
adapts the concepts from general software quality characteristics to machine 
learning). 

• Functionality: The capability of the ML model to provide functions which 
meet stated and implied needs when it is being used under specified 
conditions. 

• Reliability: The capability of an ML-based component to maintain a 
specified level of performance when used under specified conditions. 

• Robustness: Robustness has two different definitions: 
− Local robustness: The extent to which the system provides 

equivalent responses for similar inputs.  
−  Global robustness: Ability of the ML component to perform the 

intended function in the presence of abnormal or unknown inputs.  

• Resilience: The ability for a system to continue to operate while an error 
or a fault has occurred. 

• Explainability: The ease with which a human can comprehend an ML 
model, its data, and its results and outputs. This characteristic is especially 
noteworthy for the validation, debugging, and program approval of ML 
models, as well as for any system that involve a Human in the Loop (for 
details and delineation from interpretability see 6.4.2.4.2). 
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These quality characteristics help to build a proper quality reference framework 
to support different decisions during the machine learning development life 
cycle such as the model selection and/or model testing phases. It is important to 
mention that some of these characteristics can already be initially evaluated 
during the model evaluation phase while other need to be assessed during the 
model testing phase (see section 6.4.3 “Machine Learning Model Testing”). 

Table 6-2 describes to which phase these characteristics can be initially 
associated. This distinction assumes that in the model selection only the 
performance metrics associated with the test dataset are evaluated while in the 
model testing other techniques are applied. 

Table 6-2: Phases and characteristics 
Characteristics Model selection Model testing Rationale 
Functionality ✔ ✔ Functionality can initially be evaluated 

during model selection using the 
performance evaluation metric of the 
model on the test data set.  

Reliability  ✔ Reliability is better evaluated during the 
test phase. See section 6.4.3 “Machine 
Learning Model Testing”.  

Robustness ✔ ✔ Robustness can be initially evaluated by 
augmenting the training dataset with 
noise. Other techniques like OOD 
testing or adversarial testing can be 
applied later.  

Resilience:  ✔ Resilience can be better tested on an 
already trained model. 

Interpretability/ 
Explainability 

✔ ✔ Model interpretability can already be 
assessed at model selection as it is an 
intrinsic characteristic of each model. 
Some XAI method can also be evaluated 
during model selection as they can be 
included in the training phase, like 
attention mechanisms for instance. 
Other XAI method can be better 
evaluated during the testing phase. 

Finally, it is important to understand the concept of stochasticity at model level. 
In the previous section the stochastic aspect of the training process was 
introduced, in this sense, machine learning applications are also usually referred 
as being stochastic. The reason is twofold, firstly some machine learning model, 
such as probabilistic models, are inherently stochastics. Secondly, there are 
multiple sources of uncertainty associated with machine learning applications, 
such as aleatoric or epistemic uncertainty. Note that, most machine learning 
models, once they are trained and their weight are fixed are not stochastic and 
have a deterministic behaviour, always giving the same output for the same 
inputs. However, even in this case, they are generally referred as being 
stochastics because of the level of uncertainty associated with the output when 
new inputs are processed. 
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6.4.2.4 Model selection 

6.4.2.4.1 Overview 
Given the ease with which machine learning models can be applied using 
popular frameworks it is important to distinguish between experimentation for 
the sake of learning and model training in projects. In the latter case it is advisable 
to refer back to the section 6.2 “Business value consideration“ in order to test 
whether the problem to be solved is adequately defined, including an integration 
of model metrics with the expected business impact. A clear understanding of 
the project’s goal will facilitate with model selection: requirements for the models 
can include, aside from technical aspects such as required classification 
thresholds or challenges related to the data, a consideration of relevant 
constraints such as  

• Need for explainability (See section 6.4.2.4.2 “Machine Learning 
Interpretability and Explainability”) 

• Availability of resources for training and at inference time to meet the 
target performance (speed, latency, etc.). 

• Sensitivity of data with respect to data privacy and confidentiality) 

• Amount of data available 

• Need for formal mathematical validation 

• Anticipate and mitigate possible findings from post-training optimization 

 

Awareness of constraints will support a better definition of the solution space 
and likely remove potential model families from further consideration. Good 
practices regarding project definition prior to model fitting are available in the 
literature on design of experiments. 

Generically, it is advised to define requirements that need to be fulfilled by the 
model. The model selection can then be done following these requirements. It is 
expected for the process to be iterative as it is likely that several models are 
selected at first. Following several tests and performance evaluation, the list of 
possible models then shrinks towards the best one for the application at hand. 

It is advised to always start by testing the simplest model that can satisfy the 
needs considering the available data quality and quantity. This initial exploratory 
analysis can also include, when possible, given the requirements, non-ML-
solution. The attempt of going directly to a more complex model can add 
complexity to the solution for the wrong reasons. It is in the case where simple 
models cannot learn the underlying pattern or show large bias in their 
predictions that the use of more complex models is justified. For deep learning 
models it is advised to, if possible, start with an architecture found in the 
literature for which often implementations are available. 

However, as the model complexity, the chances of a model showing large 
variance in the predictions or signs of overfitting the training data increase. For 
this reason, it is advised to always consider the bias and the variance of a given 
model and to minimise them as much as possible. The trade-off between variance 
and bias is a key aspect to consider in the model selection as high variance is 
associated with overfitting while high bias is associated with underfitting We 
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mean by variance in this context, the variation of a given ML model when 
assessed on different data sub-sets. Data bias is defined further down in this 
document. 

Depending on the application and its criticality, it might be useful to consider in 
the selection process the possibility to formally compute boundaries on the 
performance of the model. Such proof can be obtained through statistical 
learning theory (SLT) for example. However, such mathematical boundaries on 
the performance of an ML model cannot be computed for all types of models. 

It is advised to favour explainability in the model selection when possible. In case 
of errors, this will allow a better understanding of the problem. However, 
sometimes an application does not gain from explainability, and performances 
could be favoured. 

In order to compare the performance of a model, it is advised to use benchmark 
datasets whether public or internal datasets, whose adequacy is confirmed by 
specialists of ML and technical domains. If the dataset is generic and not related 
to the application at hand, such performance evaluation can be limited to first-
order trade-off. This allows to rapidly compare performances of various types of 
models. However, a careful selection of the benchmark is important as the 
benchmark data are expected to represent as much as possible the complexity of 
the data at hand. 

An important habit is to keep track of all steps leading to model selection such as 
the various model tested, the framework (its exact version), the data set etc. It is 
important to justify the model choice and to be able to reproduce the selection 
process. 

6.4.2.4.2 Machine Learning Interpretability and Explainability 
In previous sections the need for explainability was identified as a key driver in 
the model selection process. Explainability, and the closely related concept of 
interpretability, are fundamental concepts in machine learning and therefore it is 
important to understand their meaning and impact in the machine learning life 
cycle. 

Explainable Machine Learning is a set of methods/tools that help to understand 
predictions made by the ML model.  In the field of machine learning the term 
explainability is commonly used interchangeably with “interpretability” 
however, although related, they have different meanings. In the context of the 
handbook the meaning of “interpretability” is borrowed from [RD Miller2017] 
and is defined as “the degree to which a human can understand the cause of a 
decision", It is thus a property of the algorithm. In contrast, explainability, refers 
to a set of mechanisms aimed at making algorithms that have intrinsically low 
interpretability more understandable. T Explainability methods are especially 
useful when applied to algorithms with low degree of interpretability. From a 
practical point of view, there are algorithms that have a better degree of 
interpretability, like linear regression or decisions trees, than others, like NNs: is 
for the latter group of algorithms where explainability methods are most 
valuable.  

The need for interpretable or explainable ML models becomes more obvious in 
higher-risk environments, where a mistake could result in serious consequences; 
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for certain problems or tasks it is not enough to get the prediction (the what), but 
the model must also explain how it came to the prediction (the why), because a 
correct prediction only partially solves the original problem. Other reasons why 
interpretability and explainability are important for ML applications are found 
in detecting bias and ensuring fairness, increase social 
acceptance/trustworthiness, debugging and auditing, ensuring reliability or 
robustness and checking causality. 

At the same time, ML gets a bad reputation when it negatively impacts business 
profits. This often happens because of disconnection between technical team and 
the business team. Explainability has the potential to connect the technical people 
and non-technical people, improving knowledge exchange, and giving all 
stakeholders a better understanding of product requirements and limitations. 

6.4.2.4.2.1. Taxonomy 

Different taxonomies can be found for machine learning interpretability and 
explainability methods, and it is a very active field of research, which means the 
taxonomy presented here should not be seen as exhaustive. In Figure 6-6, Figure 
6-7 and Figure 6-8 one high level classification is depicted starting with 
intrinsically interpretable models and moving to explainability methods to apply 
to less interpretable algorithms. This taxonomy is taken from [INT-ML] and for 
more information on the specific methods it is advice to go to the original source 
of the reference. 

 
Intrinsically interpretable models 

Refers to ML models algorithms that 
are considered interpretable due to 

their simple structure. 

Linear regression 

Logistic regression 

Decision trees 

RuleFit 

Naïve Bayes 

k-nearest neighbours 

Figure 6-6: Examples of classical ML techniques 
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Figure 6-7: Taxonomy of deep learning techniques from [Sarker 2021] 

 

Post-hoc interpretation methods 
 
Refers to the application of explainability methods after model training. 
Note: They can also be applied to intrinsically interpretable models. 

Global Model-Agnostic methods 

Describe the average behaviour of 
an ML model 

Local Model-Agnostic 

Explain individual predictions 

Neural Network Interpretation 

Partial dependence plot Individual conditional expectation 
curves 

Learned Features: 
- Feature Visualisation 
- Network Dissection 

Accumulated local effect plots Local surrogate models (LIME) Pixel Attribution (Saliency Maps) 

Feature interaction (H-statistic) Scoped rules (anchors) Concepts 

Functional decomposition Counterfactual explanations Counterfactual explanations 

Permutation feature importance Shapley values Influential instances 

Global surrogate models(*)  SHAP  

(*) If a coarser global model still makes sense for expert review. 

Figure 6-8: Post-hoc interpretation methods 
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Figure 6-6, Figure 6-7 and Figure 6-8 describe methods to be applied post-hoc 
that is, once the model has been trained. There are also other methods that can 
be applied during training, like attention mechanism. 

As a practical guideline one can start, whenever possible given the specific 
application, with algorithms that are less complex but with a higher degree of 
interpretability and then move to more complex algorithms when the 
performance is deemed not sufficient, understanding that more complex 
algorithms can achieve better performance but at the cost of interpretability. This 
trade-off between complexity, interpretability and performance needs to be done 
carefully, per application, avoiding the use of more complicated algorithms when 
the delta increase in performance does not justify the increase in complexity and 
the decrease in interpretability.  

It is also important to understand that the different explainability methods 
provide only a partial understanding of the algorithm’s behaviour and are 
subject to its own limitations, therefore, any conclusion derived from its 
application needs to be taken carefully. To give some context in [STOP-BB] some 
general limitations and problems associated to different explainability methods 
are described. 

6.4.2.5 Common issues with Machine Learning model 
training 

6.4.2.5.1 Overview 
This section aims to highlight common issues encountered in the training of ML 
models and provides references for further information on how to avoid these 
pitfalls. An awareness of common issues is deemed important due to the wide-
spread popularity and ease of use of modern machine learning framework. 
Conversely, the section does not aim to be exhaustive and should not be regarded 
as complete list of all potential errors that can be introduced into model training. 
For additional information please refer to [Lones 2021], [Ng et al.], [Kapoor et al. 
2022], [Vandewiele et al. 2022]. 

6.4.2.5.2 Lack of normalization 

Optimization methods used in machine learning often assume normalized inputs 
and often do not perform well on un-normalized data. Another common pitfall 
is the use of different normalization methods or normalization parameters 
between training and serving. For instance, with the Min-Max normalization, the 
bounds computed with the training set are used identically for the test or serving 
data, and not recomputed on the test set. 

6.4.2.5.3 Data leakage  

In supervised learning, contamination of a model with information that is not 
available in production can seriously impact the model’s ability to generalize and 
gravely distort reported results. Leakage can occur column- or row-wise. While 
splitting of data into multiple subsets is common practice, data leakage is still a 
frequent issue. Complexity in the dataset (such as hierarchical or time-series 
structure of training data) can be considered when testing for leakage as well as 
the specific order of steps in the machine learning pipeline (e.g. leakage due to 
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over-sampling prior to splitting). Data leakage can occur in non-obvious 
scenarios where test-set information is used implicitly during training and is thus 
a wide-spread issue. Common symptoms include suspiciously good 
performance metrics combined with low performance in productive systems 
(note that similar symptoms can be caused by other issues such as not 
compensating for missing input data). 

6.4.2.5.4 Lack of familiarity with data 

The ease with which models can be trained could tempt users to neglect 
exploratory analysis of the dataset. This can lead to issues such as failure to detect 
important edge cases, failure to adequately consider imbalanced datasets, failure 
to detect incorrectly labelled data or incomplete coverage of input domain with 
respect to space application and/or environment. 

6.4.2.5.5 Data mismatch 
When training and validation (or test) data come from different distributions this 
can lead to varying performance per dataset which could be incorrectly 
attributed to a high variance issue. Different data distributions can arise in 
various circumstances such as training data being simulated or sensors used for 
model training and validation differ from sensors used in production. 

6.4.2.5.6 Data drift 

This issue is very similar to the previous point but often encountered in online 
systems where shifts in data generating distribution are frequent. Symptoms 
include degrading performance of the live system over time. 

6.4.2.5.7 Incorrect application of model metrics 
A wide range of metrics exist, and their differences may not always be clear to 
practitioners. Care should be taken to select a suitable metric, one that is unbiased 
and appropriate for the relevant dataset, model, and application.  

It is recommended to conduct exploratory data analysis to identify the most 
suitable metric. For example, accuracy might not be appropriate for a 
classification problem if the dataset is imbalanced. It is also recommended to 
consider the model and end application to find a metric that meets the specific 
requirements. For instance, if the goal is to minimize false positives in a 
classification problem, focus on precision. If the aim is to minimize false 
negatives, focus on recall. These examples illustrate how the choice of metric can 
impact model performance evaluation, but they are not intended to be an 
exhaustive analysis. For more information, you can refer to specific 
documentation on this topic. 

6.4.2.5.8 Time traveling data 
A special case which is recommended to avoid when dealing with time series 
data, is to mix-up the order which the data is represented when training a model. 
In machine learning applications, the use of "time-traveling" data, or data that is 
out of sequence or does not respect the order in which it was collected, is 
generally not allowed. This is because the order in which data is collected often 
corresponds to the order in which events occurred, and ignoring this order can 
result in inaccurate or unreliable models. 
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To ensure that the order of the data is respected, time stamps on the data can be 
taken into account when training machine learning models. This includes 
information about the past that might have been received later. 

The time stamps allow the data to be properly sequenced and can be used to 
ensure that the models are trained on the correct data. For example, if a model is 
being trained to predict future events based on past data, it is important that the 
past data are properly ordered based on the time stamps to ensure accurate 
predictions. 

It is important to note that violating the time ordering of data can also result in 
"data leakage," where information from the future is inadvertently used to make 
predictions about the past. This can lead to overly optimistic performance 
estimates and inaccurate models. 

6.4.2.5.9 Data bias 
Data bias refers to the presence of errors in the dataset, such as underrepresented 
data, overrepresented data, or inaccurate data. These errors can lead to incorrect, 
unfair, or inaccurate results. There are different types of data bias, including 
confirmation bias, sampling bias, selection bias, or cultural bias, to name a few. 

For instance, when collecting data, it may not always be possible to obtain an 
equal number of training examples for each class of the input domain. Some 
classes may be underrepresented or missing entirely, leading to selection bias. 
Training data that does not sufficiently cover the input domain can result in out-
of-distribution cases in production. Therefore, the ML model learns to interpolate 
the area of the provided input domain but may fail to cover the complete input 
distribution. This type of bias can be addressed by means of data augmentation 
or by gathering new data to increase the representation of the underrepresented 
class. 

 

Performing an exploratory data analysis, as mentioned in section 6.4.2.5.4 can 
help to identify the presence of bias in the dataset. 

6.4.3 Machine Learning Model Testing 

6.4.3.1 Model Testing 

6.4.3.1.1 Overview 

Performance metrics can be used as the main performance indicators during the 
model development phase. Performance metrics against the training and 
validation datasets help us to identify the best candidate model. The same 
performance metrics against the test dataset allow us to evaluate the behaviour 
of the model under unseen data.  

Model testing aims at improving the model trustworthiness, by applying 
different methods, to complement the model evaluation based on performance 
metrics. Most of these testing methods can be applied to an already trained model 
while others can be included in the training phase already. 
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The structure of the chapter is the following. First the concepts of operational 
scenario and operational design domain (ODD) are introduced in the context of 
model testing. Then different methods to test the model are presented, with 
respect to the ODD and the model quality characteristics introduced before in 
section 6.4.2.3 “Model quality characteristics”. Lastly, Explainability is discussed 
in one dedicated section.  

6.4.3.1.2 Testing context 

The concept of operational scenario and operational design domain, which were 
already introduced in the previous section, setting the context of data 
representativeness, can also help to set the context for the model testing process. 
Requirements allocated to the AI/ML model can be derived from the operational 
scenarios and operational design domain definition. The following are some of 
these requirements relevant to the model testing process that are taken from the 
[EASA paper]. 

• functional requirements allocated to the AI/ML model 

• safety requirement allocated to the AI/ML model 

• operational requirements allocated to the AI/ML model, including ODD. 

• non-functional requirements allocated to AI/ML model (e.g. performance, 
scalability, reliability, resilience, etc.) 

• interface requirements 

These requirements can be used to define the context and the scope of the model 
testing. 

6.4.3.1.3 Testing methods 

6.4.3.1.3.1. Specific examples testing 

Requirements allocated to the AI/ML model can define specific outcomes and 
performance thresholds on a subset of specific examples under specific 
operational scenarios. The model can therefore be tested on a test set of these 
specific examples or corner cases to ensure compliance.  

This testing approach follows the concept of slicing testing. In slicing testing a 
subpopulation of interest it is identified and a subset from the test dataset is 
created. If the test dataset was not representative enough for this subpopulation 
new data can be obtained to improve the representativeness of the test subset. 
Then, the model is tested on this new subset and performance metrics are 
obtained and evaluated.  

Different criteria, whether technical or business-related, can be used to define the 
subpopulation of interest, and eventually it depends on the application at hand. 
Below two main criteria are initially identified: 

• Input's importance: Underperforming conditions associated with specific 
inputs can have a bigger impact on the overall performance of the AI/ML 
model. A subset can be created, containing only these specific inputs, and 
performance metrics obtained and evaluated. For instance, a multi-image 
classifier model is trained to detect different types of hazards for a collision 
avoidance system. Different risk levels, depending on the associated risk 
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to the identified hazard, are defined. A subset containing only inputs 
identified as high-risk can be created to evaluate the performance of the 
model on those specifics' critical inputs.  

• Specific ranges of the ODD: A subpopulation, from the original operating 
parameter's range defined in the ODD, can be identified as more critical or 
problematic. A subset can be created, containing only input that meet these 
specific operating parameter’ range, and performance metrics obtained 
and evaluated. For instance, a model is trained to perform image 
classification under a certain range of luminosity conditions. In order to 
better evaluate the performance of the model under low range of 
luminosity conditions a subset can be created to only contain images from 
the lower luminosity spectrum of the operational range.  

As a result of this testing approach, if underperforming situations are identified, 
actions can be taken to improve the model performance. For instance, when 
possible, new training data can be obtained, following the distribution of the 
identified underperforming examples to retrain the model.  

6.4.3.1.3.2. Neural Network coverage testing 

In a similar vein to branch and decision coverage in traditional software, neural 
networks can be subjected to coverage metrics, offering a proxy for the 
effectiveness of the test dataset. This can lead to the automated generation of test 
cases: new inputs transformed from the original data (in the case of image data, 
either through pixel-value transformations or affine transformations) with the 
aim to optimize some test adequacy criteria. The metrics used to identify 
neuronal coverage is based on the idea of measuring the proportion of neurons 
activated in a neural network given a test set as input. Below is a summary of 
tools and techniques that provide ways to perform neuronal coverage: 

• DeepXplore offers an automated white-box testing approach for deep 
learning systems that provides neuronal coverage metric for a neural 
network that uses the ReLU as its activation functions. In this approach, a 
test suite is said to achieve full coverage if for every hidden unit in the 
neural network, there is some input for which that hidden unit has a 
positive value (the neuron has been “activated”) (Pei, 2017). 

• Tensorfuzz uses coverage-guided fuzzing, an existing technique from 
traditional software engineering, and adapts it to be applicable to testing 
neural networks. (Odena, 2018). TensorFuzz is particularly useful in its 
ability to surface disagreements between models and their quantized 
versions. 

• DeepEvolution builds upon neuronal coverage and offers a search-based 
testing approach with local neurons coverage (new neurons covered by 
the mutated test input that have not been covered by its corresponding 
original test input) and global neurons coverage (new neurons covered by 
the mutated test input that have not been covered by all the previous test 
inputs, including both genuine and synthetic test inputs) as metrics 
(Networks, 2019). Deep-Evolution proved better suited at detecting 
disagreements between models and their quantized versions than 
TensorFuzz. 
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6.4.3.1.3.3. Out of distribution testing 

The model can be tested on a test set that contains Out-of-Distribution (OOD) 
examples to see how the model behaves on unpredictable data. OOD examples 
are those that are drawn from a different distribution than the training dataset. 
This testing approach is also relevant at system level. When done at system level 
this approach allows to see if any back-up systems implemented (non-ML safety 
nets, rule-based encapsulations of the ML systems) correctly deal with known-
unknowns (see 5.1.4.2.2 for more details). This level of testing can be automated 
through scripts; the scripts will have to be validated and verified. 

6.4.3.1.3.4. Augmented data set - Noise 

Noise can be added to the training data set to improve generalization of the 
model under its presence. The type of noise to be added depends on the specific 
application. If the expected noise during operations can be modelled, then the 
data can be augmented following that model. This is generally the case for 
payload data, for which several noise models are available throughout the 
development process (committed, expected, worst-case). Considering ageing 
effects on the expected noise (model)  can also be considered in the testing 
strategy. 

In the case where the operating noise is unknown other types of noise can be 
used, depending on the type of inputs, such as: Gaussian noise, salt and pepper 
noise or speckle noise.  

6.4.3.1.3.5. Adversarial testing  

Different taxonomies on adversarial attacks exits, at higher level they can be 
classified as: white-box attacks, grey-box attacks, or black-box attacks, depending 
on the degree of knowledge the attacker has on the system. At lower level they 
can be classified in poisoning attacks, evasion attacks or model extraction attacks. 
One common characteristic of these attacks is that they try to force mistakes or 
misbehaviour on the model's prediction by using altered inputs called 
adversarial examples. Adversarial testing consists of evaluating the vulnerability 
of the model, by feeding it adversarial examples, and evaluating the prediction. 
If the model is found vulnerable to adversarial attack different mitigation 
methods can be applied, such as: adversarial training, input regularization, 
gradient masking, defensive distillation, defensive dropout, or by providing a 
mechanism that can detect and clean deceptive inputs. It is out of the scope of 
this document to provide a detail description on the different type of attacks, 
adversarial testing methods and mitigation techniques. However, it is important 
to mention that adversarial testing can be considered per application, evaluating 
the feasibility of each attack and taking measures to mitigate their impact when 
vulnerabilities are found in the system. 

6.4.3.1.3.6. Formal Methods and Mathematical Verification  

Formal methods refer to mathematically-based techniques that are used to 
analyse certain properties of a model that can be proven mathematically in a 
formal manner. Examples of formal methods include abstract interpretation, 
property checking, symbolic execution and other. Different formal methods can 
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be applied for ML models to analyse local robustness, robustness to adversarial 
attacks, model stability, model execution timing.  

This approach was shortly discussed earlier in the context of confidence, as this 
method is to mathematically prove that the ML model, based on type of 
algorithm and/or the data solution space covered by the model, is enough to 
exclude certain fault modes from happening. When achievable, this type of 
formal mathematical verification avoids the architectural changes of additional 
software/hardware for monitoring and limiting the functionalities. Formal 
verification requires a strict and extensive method: 

• To formalize the properties to secure, 

• To identify the most suitable technique with regards to the complexity 
of the problem, 

• To use tools with good maturity 

• To properly handle scalability of complex systems, despite the state 
space explosion problem. 

A trade-off between formal methods and safety cages options is recommended 
to weight the pros and cons of both paths, as neither of them is simpler by default.  

This topic is considered ongoing research within the field of machine learning; 
not only does it requires strong algebra background to apply, but verification 
currently becomes difficult as soon as the model is non-trivial / academic, e.g. 
even for a shallow neural network type models with elementary layers. Besides, 
mathematical doesn’t mean analytical: some mathematical verification may 
require much computational power, even higher than training the model. It 
equally benefits from the efficiency of GPUs for this task. Therefore, it is generally 
recommended to use these methods with care, until they are more widespread, 
and complement them with sampling techniques to confirm the conclusion. 

Formal methods in machine learning is an active research area and can be 
evaluated and applied on cases-by-case basis depending on relevance for a 
specific project. For example, usually formal methods may require a lot of 
computational resources and may not be practical to apply for large machine 
learning models. Examples of research studies on ML formal methods include 
[Gehr et al. 2018] [Singh et al. 2019] [Cheng et al. 2017]. 

To keep-up with on-going practical advances in this field, the reader will find 
interesting information in the proceedings of the Workshops on Formal 
Verification of Machine Learning (WFVML). Research has been especially active 
to cover 3 types of verifications: 

a. Bounding of the output space: given an allowed hyperspace χ included 
into the possible input space of the model f, compute a minimized output 
hyperspace encompassing all the possible values of f(χ); the verification is 
achieved if this bounding area remains inside the safe zone of the system. 
See also illustration in Figure 6-9. 
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Figure 6-9: ML Bounding Region 

b. Robustness to input variation: by extension of the previous case, for a ML 
model driving the system as a validated classifier, the output classification 
is not degraded if any of the inputs of the allowed hyperspace χ is affected 
by a perturbation δ. In Figure 6-10 below, despite the uncertainty δ in the 
input parameters, the resulting uncertainty on the output space does not 
cross the partitioning rule on which the correct behaviour of the algorithm 
has been validated. 

 

Figure 6-10: Robustness to input variation 

Both problems can be seen: 

• Either as constrained non-convex optimization tasks, that can be solved 
thanks to several convex relaxation options (altering the activation 
function), so that the problem can be addressed by semidefinite relaxation 
(see [MATHVERIF1]), or linear programming (see [MATHVERIF2]) 

• Or as the resolution of a dynamic system where each time step would be a 
progression through a layer of the ML model. Hence it can be interpreted 
as a linear system with non-linear feedback (i), or as a linear system 
quadratic wise constrained (ii): 
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(i)  (ii)  

 

Figure 6-11: Dynamic system interpreted as non-linear feedback (i) or as a linear 
system quadratic wise constrained 

Once expressed as quadratic constraints: 

 
the problem can be resolved using the techniques of semidefinite programming 
(see [MATHVERIF3]). 

 

c. Robustness of neural network driven closed-loop system, see Figure 6-12, 
when subject to disturbances and uncertainties:  

 

Figure 6-12: Robustness of neural network driven closed-loop system 

For this kind of ML algorithms as well, both semidefinite relaxations (see 
[MATHVERIF1]) and semidefinite programming (see [MATHVERIF3]) as 
mentioned in the previous cases are relevant to verify the behaviour of the ML 
algorithm. 

6.4.3.1.3.7. Statistical Testing 

Statistical testing relies on the generation of test data according to a probabilistic 
model, in order to assess the likelihood that the observed behaviour of the system 
matches the specification with a certain confidence level. In general ML models 
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and their input domain are highly complex so that it is not practically possible to 
apply equivalence classes testing approach. Statistical testing methods include 
for example traditional Monte Carlo sampling approaches and more advanced 
Markov Chain Monte Carlo with subset simulation that aims to generate samples 
to get closer to a specific area of interest such as a failure domain for machine 
learning components. Current research aims at utilizing this concept to support 
the identification of suitable and sufficient number of test cases for machine 
learning components [Au et al. 2014] [Schwaiger et al. 2022]. 

6.4.3.1.3.8. Detection of unintended behaviour 

ML models complexity and obscurity can result in model unintended behaviour 
that might not be revealed by requirements-based testing. For example, transfer 
learning techniques can cause residual functionality of ML models irrelevant to 
the intended operational domain. Mitigation measure that can address the 
unintended behaviour include: 

• Gradient-weighted class activation mapping or saliency analysis to 
identify inputs causing unexpected response 

• Out of distribution detection to ensure operation in the intended domain 

• Architectural mitigation (safety cage) 

• Transfer learning avoidance 

6.4.3.1.3.9. SEU testing 

Bit-Flip Attacks (BFA) on model parameters can be used to simulate the 
consequences of SEUs on the model’s performance. Mitigation techniques can 
include techniques that are already used in space systems such as: voting systems 
or ensemble methods. 

Figure 6-13 associates each method with the most relevant model quality 
characteristic. 
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Figure 6-13: Model Quality Characteristics 

6.4.3.1.4 Post-Training Optimization Testing 

The goal of post-training optimization is to adapt to the final target architecture 
with the best compromise in terms of performance degradation; it is not to 
improve the raw performance that should have reached its reasonable asymptote 
in the steps before. 

Trained models can be subject to post-training optimization methods. There are 
different optimization methods including, but not limited to, pruning, 
quantization, model knowledge distillation, half-size floating point operators, 
simplified activation functions, operator/layer fusion or deep learning compilers. 
These methods are especially relevant when on-board execution of AI is 
identified as the operational environment and therefore the resources associated 
with the final embedded HW are limited compared to the available ground HW. 
Different execution performance aspects are affected by the optimization, being 
the main ones: inference/execution time, throughput, power consumption and 
memory footprint. 

Note that in the case of on-board execution, optimization techniques can be 
necessary to allow the deployment of the AI software in the target embedded 
HW. In the case of ground segment, optimization techniques can still be applied 
to optimize some of the execution performance aspects mentioned before, but 
are, in general, less critical. Note that there is always a trade-off to be considered 
between the level of optimization on the execution performance aspects and the 
associated drop in the AI performance metrics. 

 

For the above reason when an optimization method is applied to a trained model 
the resulting optimized model can go again through all the evaluation and test 
steps defined before: 
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• The optimized model can be evaluated against the test dataset and AI 
performance metrics obtained. The objective is to ensure that the drop in 
performance associated with the optimization, if any, it is acceptable.  

• The optimized model can be tested against the different existing test sets 
as defined in section 6.4.3.1.3 “Testing methods”. 

 

Figure 6-14: Post-Training Optimization Testing 

If underperforming or misbehaviour of the optimized model is detected during 
the evaluation or testing phase it is recommended to take different actions to 
correct the situation: 

• Trying different optimization techniques: Depending on the specific 
constrains and optimization objectives, different optimization techniques 
can be applied. For instance, if the objective of the optimization is to reduce 
the size of the model, but no constrains are identified regarding the use of 
float-point data types, pruning can be evaluated as post-training 
optimization method over quantization. Alternatively, some machine 
learning frameworks allow aware training optimization methods, such as 
quantization-aware training. This can be an option, especially when post-
training optimization techniques have an unacceptable impact in the 
model performance. Quantization-aware training can lead to optimized 
models with lower performance impact, at the cost of a more intensive and 
demanding training process.  

• Going back to the model development process: If no optimization method 
is found that yields an acceptable performance one might need to go back 
to the model development process and try more drastic approaches: 
− Try different architectures: Try smaller architectures or 

architectures specifically design for embedded use. While these 
architectures might yield worse performances before quantization, 
compared with more complex one, they might be less impacted by 
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optimization methods or might not require an optimization step 
prior deployment in the embedded target. 

− Try retraining the model with new data: If underperforming of the 
optimized model can be identified to specific data input 
distributions, it is recommended to evaluate the feasibility of 
improving the training dataset targeting that input distribution. 
This alternative will depend on the specific data availability as it 
might not be possible to get new data to improve the training 
dataset.  

Finally, optimization methods can be applied on the development machine or in 
the final target HW, this depends on the framework used to optimize the model 
and on the final target HW type. If the optimization is applied in the development 
machine, the optimized model can be initially evaluated and tested in this same 
machine, but it can be evaluated and tested again when integrated in the final 
target HW. The reason is that some metrics are HW dependant and cannot be 
evaluated in the development machine, such as: inference time or power 
consumption. This process is called target specific testing and it allows to: 

• Check the compatibility of the model with the target HW and execution 
platform, for instance quantization, network support. 

• Check the model performance in the target HW: inference time, 
throughput, memory, power consumption. 

• Reconfigure inferencing platform based on performance/implementation 
needs: 
− Increase/decrease parallel processing of the model (configure 

parallel threads). 
− Optimize the model architecture. 

• Apply other optimizations such as resource sharing or target specific 
resource utilization 

6.4.4 System Testing 

6.4.4.1 Overview 
In this section, the topic of testing, verifying and validating systems that use 
machine learning as a component is examined, and guidance on best practices 
for ensuring their reliability and safety is provided. 

As machine learning is increasingly being integrated into various systems and 
applications, it is essential to ensure that these systems are properly tested, 
verified and validated. A failure in the machine learning component of a system 
can have severe consequences, including safety hazards, financial losses, or 
damage to the reputation of the system and its developers. Therefore, the 
reliability and safety of ML-based systems must be thoroughly evaluated before 
deployment. 

The structure of the chapter is the following. First a definition of AI-based 
systems are provided together with classification of AI applications. Then 
follows the presentation of a proposed verification and validation process for AI-
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based systems which includes ML models. Lastly step by step methods and tools 
are presented both for performing the analysis of failures for said system 
(FMEA/FMECA), but also how to mitigate the failures using safety cage 
architectures. 

6.4.4.2 Overview of ML on system level 

6.4.4.2.1 Overview 

When the application of Machine Learning is discussed, an emphasis is often 
placed on the underlying algorithm, or on the data used for training and 
validation of the ML models. However, if ML is to ultimately be implemented as 
part of any space system, in similar fashion to good systems engineering practice, 
the interactions between the ML software solution and the surrounding systems 
have to be analysed, in an attempt to uncover failure modes which could 
represent an unacceptable risk to the system. Hence, such analysis is 
recommended to be one of the driving efforts in verification and validation of 
ML for space applications, to find potential mitigative actions which can bring 
the risk down to an acceptable level. 

When taking the systems engineering approach to verification and validation, 
performing such activity for ML -based solutions, allows us to follow the already 
existing general approaches for building and qualifying space systems, including 
software, where micro-environments (individual sub-parts and components) are 
analysed with respect to interactions with macro-environments (overall 
subsystems and systems). 

The verification and validation need of a space system is normally already 
identified during the solution design phase where mission requirements are 
analysed with respect to planned system performance, which then can be used 
to define a system architecture for the mission, for which suitable sub-systems 
and sub-components are chosen, including software such as ML. It is therefore 
recommended only once the mission requirements are available, to define what 
is acceptable (or undesired) performance (for example limiting false positives), 
and not isolated focus purely on the models performance on the data, when 
evaluating the performance of Machine Learning applications for space systems 
and missions. As these topics tend to be more related to model evaluation, 
verification and validation, they will not be discussed further here, but it should 
be understood that if such mission requirements cannot be satisfied on data and 
model level, then it might be possible, or needed in case of having a connected 
risk, to be handled on solution and system level. A specific example of such is 
Autonomy, as discussed in section 6.4.4.2.3. 

In the following section, the acceptance of a space system using ML is discussed, 
and what is proposed is to look at ML part as a black-box component, which then 
allows the verification and validation of a proposed solution much similar to 
normal systems engineering verification and validation of software. 
6.4.4.3.3However, as it will also be elaborated, certain additional aspects have to 
be considered when dealing with the stochastic nature of the ML models. 
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6.4.4.2.2 AI-based System definition  
To allow the further discussion of Machine Learning on system level, the 
definition of a ML- and likewise AI-based systems, as per the [EASA paper] and 
can be described as following:  

• An AI-based system (a.k.a. ML-based system) is composed of several 
traditional subsystems, and at least one of them is an AI-based subsystem. 
This system can include hardware and software. 

• An AI-based subsystem (ML-based subsystem) embeds at least one AI/ML 
constituent. 

• An AI/ML constituent is a collection of hardware and/or software items 
(including the necessary pre- and post-processing elements), and at least 
one specialised hardware or software item containing one (or several) ML 
model(s). 

• Within the ML constituent, some form of ML model is usually found. It 
can refer to directly, or indirectly as a part of the software connected to the 
ML model/models (for example in case of an application), which can then 
be referred to as ML-based software component, ML-software or ML 
application. Additionally, an AI-based system can of course also include 
traditional hardware and software items that do not include an ML 
inference model and can generally be qualified independently, as long as 
they are not within the AI/ML constituent which is indicated as the area 
which might be affect by the output of the ML model(s). How to find the 
line between what is included in the AI/ML constituent, and what is not is 
discussed further is in section 6.4.4.3.3 on FMEA/FMECA. 

It is here assumed that the AI-based systems are containing some form of 
machine learning, which introduces the stochastic nature into the design of the 
system, and in some cases into the system itself. Although this does not imply 
that it is solely ML. Moreover, as discussed in the upcoming subsection 6.4.4.3.4.2 
on Safety cage architecture, AI hybrid solutions are often created to allow for a 
more dependable system, e.g. as part of a safety cage. 

However, as it will be discussed in section 6.4.4.3.3, based on the interfaces and 
types of interactions between the parts within a given AI-based system that 
contain ML, the FMEA/FMECA and potential HSIA are derived, which will 
provide the overview of needs that have to be meet for a solution acceptance. 
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Figure 6-15: [EASA paper] Decomposition of the AI-based system  

6.4.4.2.3 Classification of autonomy for AI applications 
In the previous section 6.4.4.2.2 a definition of an AI-based system was provided, 
but another topic that is worth considering on system level is the concept of 
operations (ConOps) with respect to the unique characteristic often associated 
within the usage of artificial intelligence, autonomy.  

ConOps should here be understood as the high-level statements which explains 
the characteristics of a system from the user’s point of view. This would 
ultimately be the statements which describes exactly the “what, how and why”, 
for the usage of an AI-based system, which can then be further broken down into 
mission and system requirements. One of the unique features of the “how”, 
which AI especially makes possible, is the opportunity to create autonomous 
decision making.  

One of the areas which particularly comes to mind when discussing the need for 
automatization and autonomy to create a higher efficiency is space operations. 
All of the operations during a space mission rely on planning and monitoring, 
performed significantly in advance of actual operations, and is most often relying 
on the work and actions of humans. Here, only some action might be automated, 
such as calculations of certain parameters, but most things need to be initiated by 
a human, and ultimately most, if not all, decision making is done by a human. 
With the developments within Artificial Intelligence, a re-distribute of 
responsibilities between the ground segments and the spacecraft, introducing 
more automated operations, can be introduced, which can reduce operation 
costs, increase scientific return and support future missions beyond LEO where 
significant time delay is present. Likewise, AI can also support operations of 
ground station allocation and management with advanced scheduling tools 
providing flexibility in allocation, mixed-initiative approaches, what-if analysis, 
multi-objective optimization and automation. Examples of such ConOps where 
autonomy would be relevant can be mentioned the operation of large 
constellations or for vehicles such as planetary rovers and space probes, where 
there might be a signification delay in communication to the ground stations.  

Of course, there are also areas where the autonomy is not as important or simply 
taken for granted, in the sense that we automatically assume that the autonomy 
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is there, without a need for further evaluation, as no real decision was taken in 
the frame of an operation-like scenario. Of such areas can be mentioned using AI 
for Data transformation or compression, where the algorithm “intelligently” 
performs the trained function independent of a human (autonomously), but the 
function is seen as independent from any application where the consequences of 
wrong doing is high enough that it can  be considered whether a person should 
be in the loop, for final evaluation or decision making. 

In summary, what could ultimately be considered is that the level of autonomy 
is a measure of how independent the system is of a human for decision-making, 
and based on the level needed/chosen, the risk and complexity of said system 
might in turn heighten. This could be linked to the consequence of the AI-based 
system making a wrong decision, and whether a man-in-the-loop can mitigate 
the risk, by e.g. evaluating the suggestion of the system before it is implemented. 
Section 6.4.4.3.3 takes the reader through the suggested FMEA/FMECA analysis, 
which is here recommended as the analysis for evaluating the AI-based system 
compared to internal and external interfaces and potential failure modes. 
However, it is additionally recommended that the designers of an AI application, 
could consider the possible consequence of the application being wrong. And, as 
discussed in the subsection on Safety cage building blocks and tools, the man-in-
the-loop is only one of the tools which can then be used to mitigate the risk and 
consequences if found too severe.  

Additional considerations here include the general assumption that, unless an 
AI-based solution is specifically designed to be part of a man-in-the-loop system, 
e.g. in the case of co-bots or cognitive assistants for decision support, the aim is 
generally to have as high a level of autonomy possible within acceptable risk, in 
order to create solutions that are as independent and effective as possible.  

Based on the definition in the [EASA paper], three general levels of AI autonomy 
have been identified, as a means of classifying the AI-based systems and 
applications. This scheme has been proposed based on prognostics from the 
Aeronautics industry regarding the types of use cases foreseen by AI-based 
systems, which is similar to what is found in the Aerospace industry. Figure 6-16 
shows the three scenarios of staged approaches for the deployment of an AI 
applications with different levels of conjunctions with a human, starting with 
assisting functions (Level 1 AI), human-machine collaboration (Level 2 AI) and 
at lastly higher autonomy of the machine (Level 3 AI). 

 

Figure 6-16: [EASA paper] Classification of AI applications autonomy 
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Note: The topic of autonomy will not be handled more in depth within this handbook as 
it is an ongoing research topic, hence the scope presented here does not do the complexity 
justice. For example, the level of autonomy can be further split into sub-categories based 
on type of function and how it is built. However, the approach presented for verification 
and validation of AI-based systems in the following sub-sections can still be applied. 

6.4.4.3 Verification and validation process of AI-based 
systems 

6.4.4.3.1 Overview 
An AI-based system can contain both hardware and software which is either 
directly or indirectly coupled to an AI software component(s), see also 6.4.4.2.2. 
The main point which can be considered for such systems is whether the 
mechanisms for the generation of the output from the AI parts of the system are 
stochastic. The data-driven part of AI, which is the predominantly machine 
learning, represents stochastic models, which is the main focus of this handbook. 
However, one should be aware that very large rule-based systems can artificially 
have similar stochastic nature, if the complexity of interactions between their 
rules and knowledge is high enough. Therefore, the suggestion from this 
handbook goes as following: 

If the system contains data-driven AI, such as machine learning, or any user input-driven 
AI which decision logic cannot be described easily by a decision tree, AI-specific processes 
of verification and validation have to be considered. 

In the following sub-sections, the process of verification and validation of 
stochastic-natured AI is described. 

6.4.4.3.2 Safety criticality assessment 
The key driving factors on system level for the usage of ML-based systems is 
safety criticality. From the point of view of this handbook, AI/ML constituent can 
be categorized like “traditional” software in line with ECSS-Q-ST-80 as show on 
the Table 6-3. 

Table 6-3: Software Criticality 
Software 
criticality 
category 

Definition 

A Software involved in category I functions 
AND: no compensating provisions exist 
Software included in compensating provisions for category I functions 

B Software involved in category I functions 
AND: at least one of the following compensating provisions is available, meeting the 
requirements defined in ECSS-Q-ST-30 clause 5.4 and ECSSQ-ST-40 clause 6.5.6.3: 

• A hardware implementation 
• A software implementation; this software implementation shall be classified as 

criticality A 
• An operational procedure 

Software involved in category II functions 
AND: no compensating provisions exist 
Software included in compensating provisions for category II functions 
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Software 
criticality 
category 

Definition 

C Software involved in category II functions 
AND: at least one of the following compensating provisions is available, meeting the 
requirements defined in ECSS-Q-ST-30 clause 5.4 and ECSSQ-ST-40 clause 6.5.6.3: 

• A hardware implementation 
• A software implementation; this software implementation shall be classified as 

criticality B 
• An operational procedure 

Software involved in category III functions 
AND: no compensating provisions exist 
Software included in compensating provisions for category III functions 

D Software involved in category III functions 
AND: at least one of the following compensating provisions is available, meeting the 
requirements defined in ECSS-Q-ST-30 clause 5.4 and ECSSQ-ST-40 clause 6.5.6.3: 

• A hardware implementation 
• A software implementation; this software implementation shall be classified as 

criticality C 
• An operational procedure 

Software involved in category IV functions 
AND: no compensating provisions exist 

 

Criticality categories are assigned to software products as specified in ECSS-Q-
ST-30 clause 5.4, and ECSS-Q-ST-40 clause 6.5.6.3, see Table 6-4. 

Table 6-4: Comparing Dependability and Safety 
SEVERITY SAFETY DEPENDABILITY 

(ECSS-Q-ST-30) 

SAFETY (ECSS-Q-ST-40) 

Extract from ECSS-Q-ST-40 

Catastrophic 1 Failure 
propagation 

(requirement 4.2c.) 

• Loss of life, life-threatening or permanently 
disabling injury or occupational illness. 

• Loss of an interfacing manned flight system 
• Severe detrimental environmental effects 
• Loss of launch site facilities 
• Loss of system 

Critical 2 Loss of mission • Temporarily disabling but not life- 
threatening injury, or temporary 
occupational illness 

• Major detrimental environmental effects 
• Major damage to public or private 

properties 
• Major damage to interfacing flight systems 
• Major damage to ground facilities 
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SEVERITY SAFETY DEPENDABILITY 

(ECSS-Q-ST-30) 

SAFETY (ECSS-Q-ST-40) 

Extract from ECSS-Q-ST-40 

Major 3 Major mission 
degradation 

  

Minor or 
Negligible 

4 Minor mission 
degradation or any 
other effect 

  

 

As indicated from the two tables above, even software of criticality B could lead 
to safety critical effects. Therefore, the recommendation is to at least establish a 
FMEA to identify critical functions and allow for proper risk mitigations, as it 
will be discussed in the following sections. 

6.4.4.3.3 FMEA/FMECA 

6.4.4.3.3.1. Overview 

Generally when dealing with space assets, due to the complexity of the several 
interacting systems and subsystems, as an integral part of the design process and 
as tools to drive the design along the project life cycle, the following two methods 
are proposed “failure modes and effects analysis” (FMEA) and “failure modes, 
effects and criticality analysis” (FMECA). 

The primary purpose of the FMEA is to identify possible failure modes of the 
system components and evaluate their impact on safety and system performance. 
FMECA is the extended version of FMEA that classify potential failure modes 
according to their criticality, the combined measure of the severity of failure 
modes together with the probability of occurrence. Technically, both FMEA and 
FMECA can be created without knowledge of how the machine learning models 
functionality will be implemented, as it is more concerning interfaces and failure 
mode propagation. 

Although the FMEA/FMECA is primarily a reliability analysis, it provides 
information and support to safety, maintainability, logistics, test and 
maintenance planning, and failure detection, isolation and recovery (FDIR) 
design (ECSS-Q-ST-30-02, Introduction). 

A more software related version/approach is described in ECSS-Q-HB-80-03A, 
chapter 6.2 as SFMEA (Software Failure Modes and Effects Analysis). 

This philosophy and the specific approach is also valid for Machine Learning 
models. 

It is assumed that during the training phase of ML no safety relevant aspects 
must be considered especially not any which are part of the resulting system and 
the ML models is treated as the lowest unit of software. 

6.4.4.3.3.2. Failure Mode Taxonomy 

To support the identification of modes for Machine Learning, Figure 6-17 
presents a failure mode taxonomy to support the creation of the FMEA.  
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In general, it is recommended to focus on reasonable failure modes based on the 
functional view (requirements), high level architecture and input/output (I/O) 
interfaces.  Any other aspects such as environmental impacts are not addressed 
in this handbook because they are part of budget considerations similar to 
“traditional” software development. 

A failure mode can be created either because of an incorrect implementation of 
the function or Input/Output (I/O) errors. I/O errors refer to the inputs or outputs 
of the unit. The most obvious I/O errors can be  

• a wrong amount of input data provided to the module, e.g. not enough or 
too much input for model evaluation (too much, too little), 

• an incorrect value provided by the previous processing step, 

• I/O values outside the specified value range, 

• type error if actual and expected I/O type doesn’t match, e.g. 
− signed/unsigned int 
− 32-bit number instead of a 16-bit number 

 

Figure 6-17: Failure mode taxonomy for Machine Learning 

6.4.4.3.3.3. FMEA 

As a minimum this handbook recommends to perform a FMEA which is 
intended to examine: 

• each module for each Failure Mode, 

• determine the local effects and  

• the effects at the system level. 
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Creating a FMEA 
Details and guidelines on how to conduct and create a FMEA can be found in 
ECSS-Q-ST-30-02C (Annex B, FMEA worksheet – DRD) and Q-HB-80-03A (6.2.2 
Procedure) 

It is recommended to use taxonomy path as steps to perform the FMEA in order 
to find all known possible failure modes (see Figure 6-17). 

Implementing (functional) FMEA 
As the name indicates in a functional FMEA the functions of the module, rather 
than the items used in their implementation, are analysed. 

Figure 6-18 shows an example of using our defined failure mode taxonomy 
above. 

 

FMEA 

Product: System: Subsystem: Equipment
: 

No. Item Function Failure mode Failur
e 
Cause 

Failur
e 
effects 

… 

    E.g. 
Calculate 
pressure 

Function.Not_Performed       

   
Function.Performed_Wrong
ly 

   

   
Function.Performed_Wrong
_Timing 

   

      I/O.Amount.Too_Much       

      I/O.Amount.Too_Little       

      I/O.Value.Incorrect       

      I/O.Range.Out_Of_Range       

      I/O.Type.Missmatch       

      …       

Figure 6-18: Example of a FMEA table 

6.4.4.3.4 Risk mitigation 

6.4.4.3.4.1. Overview 

Once the FMEA has been carried out, an understanding of the failure modes 
should have been established. If any failures are of Severity level 2 or higher, it 
should be considered what mitigative measures can be done. For this please also 
look at Q-ST-30C Rev1, chapter 5.4.2 Assignment of software criticality category. To 
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avoid common cause/common mode failures, it is recommended that one ML 
instance cannot be used to compensate for another ML instance. 

6.4.4.3.4.2. Safety cage architecture 

A more conservative method, compared to the mathematical verification, is the 
usage of safety cage architecture. This method allows the application designer to 
look past many of the ML specific challenges and focus on lowering or 
eliminating the potential likelihood of the identified failures from the 
FMEA/FMECA to occur. This is done by ensuring that there are no to limited 
interaction between the ML model and other components/systems which could 
lead to an error mode. In other words, the ML model/AI application is placed 
inside an architecture to ensure that we can block any non-wanted interactions. 

However, the art here is to create an architecture which is neither too tight, to 
avoid limiting the functionality of the AI application, but also not loose, to avoid 
any faulty output that could lead to a failure, to exit the AI application. And there 
is not only one way of creating such architecture, as it will be discussed in the 
subsection on Safety cage principles. 

The definitions and principles described in this paragraph are strongly inspired 
by [SMOF]. 

Safety cage definition 
The safety cage, also known as a safety strategy, is a set of safety rules to ensure 
a set of safety invariants, designed to abort all paths to the catastrophic states.  

As indicated from the figure, the safety invariant is a sufficient condition from 
which it is possible to still avoid a hazardous situation, however, whose further 
violation would lead the system to a catastrophic state. Example could be the 
temperature of a component which is heated up above recommended the range 
for optimal performance, but if the temperature keep rising it could lead outside 
of the non-critical range, and ultimately have a critical impact. To avoid this, 
safety rules are defined, which consists of a condition and a scripted behaviour 
of the system and is linked with safety interventions. A safety intervention is the 
ability to perform system monitoring with sufficient means and cadence to 
prevent it of violating a safety invariant, if a set of preconditions are fulfilled. Its 
intention is to cut the path from safe state to catastrophic state of the system.  

These interventions can be divided into inhibition (prevention of change in 
system state) and action (forced change in system state). The different types of 
interventions are discussed further in practice in the subsection on Safety cage 
building blocks and tools. 
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Figure 6-19: Simplified representation of the safety cage, warning states and 
catastrophic states within the solution space 

Safety cage principles 
In the previous section, the high-level definition of the safety cage was provided. 
In this, and the following sections, more practical advice for the implementation 
of a safety cage architecture is provided. 

As mentioned earlier, the principle of safety cage is to intervene in the usage of 
the AI model output, as soon as this output exceeds the bounds of a safe domain, 
before reaching a catastrophic domain. This can be done either by the usage of 
additional software, hardware of a combination, with the choice intervention 
type relying on what is possible/optimal to be implemented as part of the overall 
AI-based system/application, and by answering the following questions for each 
of the different failure modes identified in the FMEA/FMECA: 

a. What types of intervention can be done to avoid this type failure from 
propagating? 

b. What rules needs to govern the interventions, including monitoring to 
create a functioning (verifiable) system 

c. What intervention is the least limiting for the AI application, and is the 
easiest implemented as part of the overall application/system architecture?  

By going through the above questions for each of the failure modes from the 
FMEA/FMECA, it should be possible to come up with individually strategies for 
the different failure modes.  
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An example for such an evaluation could be as following: 

Problem description:  

In the case of an AI application that estimates the distance to the surface of the 
Moon, to assess when the Lunar lander should fire its boosters to slow down for 
the landing.  

Failure modes:  

Here a possible failure mode could be that if it fires too late (a false negative), it 
will crash land, likely causing an earlier “end of mission”. On the flip side, if it 
fires too early (false positive), it will potentially use more fuel, prolonging the 
descent, but if enough margin of fuel available, and time enough to correct other 
potential consequences of the too early burn, this should theoretically not have 
the same major impact on the mission execution. All these information should be 
clear based on the FMEA/FMECA analysis. There could of course be many 
reasons for the failure to take place, but likely it is due to some form of 
Input/Output error (for example the failure of the sensory for measuring 
distance) or a functional error of the AI model (e.g. it is trying to estimate the 
distance, however, part of the values for the input data is underrepresented in 
the dataset used for the training and testing of the model, i.e. outside of the 
known input data space, and the models resulting inference came out wrong).  

Mitigation: 

a. Based on the above description, it can be assumed that the main issue to 
solve is the case of “false negative”, i.e. the crash landing, as this failure 
likely would be a severity category of critical. The question to first answer 
is what types of intervention can be used for mitigating this type of failure 
propagation. Of options it could be decided to use additional HW, for 
example having a redundant sensor instrumentation to measure the 
distance to the surface. If it is here assumed that the mission is using 
LIDAR, it could be proposed that there would be one or two redundant 
systems, also using LIDAR, or even that the Lunar lander would use a 
visual camera as well for a different source of information. Another option 
could be the use of additional SW, for example by having additional 
algorithms for estimating the distance, this could be an additional ML 
algorithm, but to avoid adding additional stochastic models to the system 
it might be preferred to be a classical algorithm for estimating the distance. 
However, another type of SW which could also be added would be an 
algorithm that compare if the output of the ML model for new incoming 
data is within the expected value distribution for similar data which the 
AI models have been trained and tested, to understand the reliability 
compared to the instantaneous ingoing data. Such a method would likely 
have to also consider the time aspect of data points perceived timewise 
earlier that the given “false observation”. 

b. With the above potential tools suggested, it is clear that we could make the 
AI application more robust, by placing both action and inhibition-based 
interventions, where the case of the HW update, we would minimise the 
chance of failures due to issues equipment, but this would also imply that 
software have to be created which monitor the data of the sensor 
instrumentation, to be able to judge when the information is wrong in one 
of the systems, and which one is the wrong one. Here could of course be a 
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rule written that the deterministic system, although less accurate, might be 
the correct one, the information could be cross check with another system 
(such as the visual camera), or in case there are three measuring systems, 
then it can be a voting scheme. In regards to the SW tools suggested, a part 
of the architecture could be to always have a classical algorithm (non-ML) 
running and evaluating the distance, parallel to the ML model (it is here 
assumed that the ML model would be more precise than the non-ML 
model, and be the reason to why it is used in the first place). The results of 
the two methods can then be compared for every estimation, as they likely 
should be in somewhat close range of each other. However, in case that 
they are not, the system could then use the fact that all incoming data is 
compared to the distribution of the previous seen dataset by the ML-
model. This can give an understanding of how reliable the ML-based 
system is at any given moment, and rules can be made whether the overall 
booster control application should favour the estimation of the classical 
algorithm with limited granularity, or the ML-model, with its stochastic 
nature. 
Of course, it should be mentioned that in any such system, the reaction 
time needed to respond to failures have to be a driving factor of the design 
of the safety cage architecture. 

c. Lastly, an evaluation can be done for the feasibility of the system. Is it 
possible to have additional hardware on the mission? Would it be possible 
to have the additional software running on the on-board computer, 
performing calculations before and after the ML model? In case the visual 
video feed also should be used, can a ML-model be trained on this also, or 
if yes, is there enough data for training a good model, or is it time and 
money-wise too expense to create good data in the case there is not 
enough? 

 

Except the HW considerations, the architecture coming out of the example above 
could end up looking something like shown in Figure 6-20 below. This is a fairly 
generic example of a safety cage architecture with parts running in parallel, but 
it could be imagined that the box called “safety cage algorithm” would contain 
the comparison function, of comparing incoming data with the past seen data, 
and while also comparing the output of the ML algorithm with the non-ML 
model, which would also be running there in parallel to the ML-Model. Based on 
the conclusion, a gate is implemented which decides which system to trust, 
which can be seen as the boxes to the right side of Figure 6-20. 

It should though be mentioned, that depending on system where the AI-based 
SW and the safety cage SW is running, it is recommended to design base on the 
possible limitations of the available HW (e.g. CPU and memory budget for a 
spacecraft). 



ECSS-E-HB-40-02A 
15 November 2024 

80 

 

Figure 6-20: Generic example of a safety cage architecture, with processes running 
in parallel 

Although the example above is limited in scope, as there could likely be other 
types of failure modes which also would be needed to be addressed as part of the 
architecture, which was not discussed here for simplicity’s sake. However, the 
above example could still provide a broad idea of the process which goes into 
finding a safety cage architecture, and that there are potentially multiple ways of 
creating such an architecture.  

It should also be mentioned that, although safety cage architectures are currently 
needed, this of course also limits the capabilities of the ML application and 
additional software has to be placed together with the ML applications.  

However, new ML methods focusing on explainability, robustness, verifiability, 
etc. are under development and will allow to remove AI functions from the safety 
cage, enabling self-standing safety critical AI functions that can fully rely on 
formal verification methods. 

Practical architecture recommendations 
Following considerations are advised by the handbook for building an 
appropriate safety cage: 

• Criticality of software components within the architecture needs to be 
defined following the guidelines described in ECSS-Q-HB-80-03 and in 
compliance with ECSS-Q-ST-30, ECSS-Q-ST-40 and ECSS-Q-ST-80. They 
are particularly relevant for the requirements about avoiding failure 
propagation of criticality components of different category, and the ones 
relative to the criticality of the software when acting as a compensating 
provision. 

• Consider that tools can be used both before, after and parallel to the ML-
model/application. 

• Generally, you can avoid adding stochastic models, or models with high 
uncertainty to the safety cage architecture as this could introduce 
additional failure models. Likewise, it is recommended that the tools 
which are added also are qualified, which can be done the easiest if they 
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represent classical SW and HW.  
Hence, we also recommend: “Do not mitigate ML with more ML”. 

• Once an architecture is created, remember to consider if any new failure 
modes are introduced. 

• The safety cage can run synchronously or asynchronously with the ML 
algorithm, depending on the time constraints. For ML-applications that 
perform live evaluation, such as anomaly detection and command & 
control applications, synchronous architecture is recommended as the 
default. 

• Consider whether the application is an open loop or a closed loop system, 
and if the safety cage architecture is still adequate. 

• Consider taking the possible update of the ML-model into account, and 
the impact it could have on the Safety cage architecture. 

• For criticality category B applications, the ML algorithm and the safety 
cage algorithms can run on hardware platforms limiting shared resources 
and minimizing the risk of common failure (e.g., power supply, memory, 
data interfaces), and no failure propagation from the ML algorithm to the 
safety cage algorithms should generally be the aim. 

• Whenever a safety cage is enabled and detects an invalid ML algorithm 
output, the values of the ML algorithm inputs and outputs, as well as the 
safety cage inputs and outputs can be logged in a text file for offline 
investigation. In case the safety cage state is recorded on a rolling window, 
the parameters just before the invalidation could be logged as well.  

• In the case of an ML-based application which is set up to run and retrain 
itself continuously, it is recommended to consider what is the need from  a 
safety cage architecture, to allow the continuous training to take place, but 
still control it enough to assure that the model performance is within  a 
safe state.  

• Consider whether some form of running evaluation of the model 
performance can be part of the safety cage architecture, as a way to avoid 
performance drift. 

• As a best practice for the ML training, as soon as the rules driving the safety 
cage are defined, they can direct the learning of the ML algorithm: quite 
naturally, giving the direction of forbidden outputs to the model, not only 
will reduce the likelihood to abide the safety cage rules, but also will 
increase the overall convergence towards better performance of the model. 
For instance, the distance to the safety cage limits can be added as a penalty 
to the loss function (with a weight as a hyper-parameter to choose). 

• Transition from the unsafe state detected by the safety cage into the safe 
state driven by the back-up algorithm can drive the system across 
intermediate unsafe states. These transitions can be carefully considered 
as part of the mitigation strategy. 

Lastly, it is recommended to validate the behaviour of the input parameters, to 
assure that the safety cage is reliable compared to the intended functionality. 
Validation of data is discussed in section 6.4.1. Part of this validation is also to 
understand the device/system which produces the input to the safety cage. This 
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can be understood as trying to classify the system as stable vs. unstable, where 
an unstable system could over time create a divergence between the intended 
function of the ML model and the actual performance, which in turn could affect 
the efficiency of the safety cage architecture. It is therefore recommended when 
building the safe cage architecture to consider the impact of performance 
slippage of the ML model, and unstable input parameters to the safety cage. For 
unstable system periodic offset readjustment, also linked to the performance 
monitoring mentioned in a previous bullet above.  

Safety cage building blocks and tools 
In the previous sections a safety cage architecture was presented. In this section 
a breakdown of some of the tooling which can be used are provided, generally 
consisting of non-ML methods, but otherwise can be built from traditional 
software, algorithmic models, Symbolic AI, hardware and combinations. Hence, 
the safety cage takes the ML-based application and creates what is known as 
“hybrid AI” applications. 

It should also be noted here that despite that the tools are split up, multiple tools 
are often used together as building blocks for the creation of the final safety cage 
architecture. 

• Symbolic AI/ Implementation of rules/logic gates 
− Description: Rule-based system, mainly consisting of limited 

amount of hard coded rules to avoid complexity. Normally placed 
before or after the ML model(s). 

− Examples of usage: 
o Blocking of forbidden output value by create a binary 

condition which completely blocks the output of the model 
to propagate if triggered (based on predefined relationships 
with other components). 

o Implemented logic gate for when to use a reference model 
instead of the ML-model and reverse.  

o Setting up rules for when to use the ML based model, and 
when to use the redundancy scheme. Can e.g. be linked to 
distribution check, or valid space scenarios. 

− Application example: 
o For an AI system controlling the pressure of propulsion 

pipes, it should never be allowed to suggest that the 
pressure goes above the defined limit of the pipes. In case it 
does, full stop. 

o During satellite docking, the safety cage is only needed in 
close proximity to the target. Logic is integrated to only 
apply the safety cage at specific times, as indicated by a 
distance measuring function. 

• Voting schemes 
− Description: Selection policy between the output of several 

algorithms/models 
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− Examples of usage: 
o Implementation of voting schemes for the choice of correct 

output values to be used further. 
− General code implementation: often implemented right after the 

output of the ML-model and other non-ML software or models.  
− For a voting scheme to be effective, it is recommended to consider 

in what circumstances the different voters can have higher or lower 
priority. This can be done by adding a referee function which will 
prioritise one of the two solutions depending on predefined rules. 
Application example: 
o Having a classical physics-based algorithm, or hardcoded 

rules, which is compared with the output of an ML-model, 
but depending on the confidence of the ML model for the 
specific data input, a voting scheme is set up between the 
classical algorithm and the model. An example of the issue 
with confidence could e.g. be a scenario with severe 
consequences in case of a wrong decision output of the ML 
model. This could be during the landing on the Moon, 
where the ML model is used to control the decent speed by 
measuring the distance to the surface. For this purpose, 
there might be both a ML and a non-ML system (voting 
scheme), with a referee that prioritizes the more robust non-
ML model (having higher voting right) as the lander gets 
closer to the surface. 

• Monitoring schemes 
− Description: General code implementation, setup to monitor the 

drift in performance. Or sudden large changes in output values, etc. 
for the ML-Model. 

− Examples of usage: 
o Often tied together with a rule-based system about 

retraining or confidence assessment of the ML-model. 
− Application example: 

o Implementation of monitoring schemes for a model in 
environment with limited prior knowledge of the data space 
to be expected. 

• Reference software 
− Description: Classical algorithms (non-ML) or physics-based 

software/simulator providing the relationship between parameters. 
Can be placed before, after or parallel to the ML models. 

− Examples of usage: 
o Representing the physics equation-based relationship 

between parameters, used as part of the application, for 
reference of comparison to ML-model output 

− Application example: 
o A physics-based algorithm for estimating the size of the 

burn needed for orbit keeping is compared with the ML-
model for calculating same burn, but the ML model is 
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taught based on feedback from burn-size and reaction from 
in-orbit data 

• Redundant Software system 
− Description: Software or algorithm to be used instead of the ML-

model/application in case of ML-model/application found not 
suitable for certain events/situations. Normally used 
parallel/instead of the ML-model. Can be used together with/as part 
of a reference software system. 

− Examples of usage: 
o In case of high-risk areas in the solution space, or areas of 

low confidence in the ML-model, a software can be made to 
take over for these areas.  

− Application example: 
o Together with out of distribution check, a ML-model is 

found to not be adequate for prediction of upcoming orbit 
events, and the application decides to use a software tool 
instead, which has less precision but is much more 
stable/reliable 

• Reference Hardware 
− Description: Usage of hardware as reference for the ML-application. 

Function Placed normally as input to or part of evaluation after 
running the ML model. 

− Examples of usage: 
o Physical reference points for application (for example based 

on sensors measurements). 
− Application example: 

o The model suggests the angle of the solar panels for optimal 
energy generation, but thanks to some temperature sensors 
located on the spacecraft, it is possible to infer which side of 
the spacecraft is exposed to the sun, and thus coarsely verify 
the ML-model chose the correct orientation.  

• Physical gate/filter 
− Description: Usage of hardware for blocking, limiting the ML-

application. Function placed normally before or after the ML 
models. 

− Examples of usage: 
o Physical gate for triggering a boundary condition for the 

output of the ML-model. 
o A physical filter to limit output.  

− Application example: 
o Electrical Safety switch placed to physically trigger if certain 

event takes place (for example too high current in circuit 
suggested by the AI-model)  
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• Distribution check 
− Description: Check if the incoming data is within the data 

distribution of data which the ML-model has seen before, allowing 
the gauging of confidence. Function normally placed before the ML 
models. 

− Examples of usage: 
o Confidence evaluation, often linked with a voting scheme or 

a reference/backup scheme.  
− Application example: 

o For a ML-model which is expected to function initially 
poorly due to having limited knowledge about the data 
solution space. Although expected retraining over time. 

• Backup System “Man-in-the-Loop 
− Description: Allowing a human person fully or partially, for 

example with the use of veto rights, to have the final decision 
making. 

− Examples of usage: 
o In case of high risk without code other option for safety cage 

tooling, or simple due to limited trust, human-in-the-loop 
can be introduced.  

− Application example: 
o Mission plan is calculated for a rocket launch, but a person 

performs the check to ensure the model is not wrong on any 
major things.  

Real world examples of safety cages 
See also [SCAGE] 

The previous section introduced different tools that can be used to create safety 
cages. In this section a few real-life safety cage are presented. 

 

Example from the space industry: Safety cage for distance estimation during 
in-orbit rendezvous. 

For a mission that will include an in-orbit rendezvous with a target that is already 
flying, ML component for close proximity operations will be used. The ML 
component is based on an image recognition algorithm and will be used to 
determine the distance between the spacecraft and the target.  

There is a risk of collision between the spacecraft and the target, which is 
considered a catastrophic event. To avoid this hazardous situation, it is decided 
to put a safety cage in place. A Kalman filter will be implemented in the 
application SW of the spacecraft to calculate the bounds for the estimated 
distance. The measurements of the distance provided by the ML algorithm will 
be compared to the range provided by the Kalman filter to check if the values are 
within expected bounds.  An alarm can be raised when it is detected that the ML 
component starts showing unexpected behaviour, which can be used as input for 
FDIR to handle the malfunctioning of the ML component and either fall-back to 
sensor inputs only or perform collision avoidance manoeuvres. Corrective 



ECSS-E-HB-40-02A 
15 November 2024 

86 

actions on the ML component can be performed once the spacecraft is again in a 
nominal mode. 

 

Examples of safety cage found outside of the space industry. 

There are different applications of the safety cage principle in the literature. Some 
of the references use different names, such as “safety bag” or “safety monitor” 
but all they have common elements.  

One of the first references quoting the use of a safety bag is [ELEKTRA]. This 
paper describes the implementation of a rule-based expert system (safety 
channel) to be used as a mean to check the suitability of the commands issued by 
a different logic (logic channel). In this case the use of the safety bag is not linked 
to autonomous systems, but simply seen as a mechanism to implement diversity 
(logic and safety channels are implemented using different programming 
paradigms). 

Reference [SPAAS] presents the results of a study in which different alternatives 
are explored to protect from potential faults from AI—based system. The 
approach is based on the underlying assumption that these AI-based systems 
might be less dependable and safe than systems based on “classic” algorithms. 
The use of a safety bag is described, in order to monitor on-line a set of safety 
properties so as to authorise or not the execution of commands to the spacecraft 
elaborated by the autonomous software applications.  

Paper [SMOF] describes a framework for the design and implementation of a 
safety monitor (or safety bag) as a device responsible for safety. The principle 
here is that there is safety channel (safety bag), being implemented following 
higher integrity requirements, and a control channel that is responsible to 
implement all the functionalities of the system. The reference describes in detail 
the process for the formalisation of a safety invariant, the synthesis and analysis 
of a safety strategy (set of rules that ensure the safety invariant), and the 
deployment in a real time safety monitor. An example of application is presented 
using a mobile manipulator robot. 

Paper [AVEHIC] describes an application of the safety bag principle in the 
automotive domain. The purpose, as in other references, is to design a safety bag 
that monitors the state of the system, and moves it into a safe state in case of a 
hazardous situation. One of the main goals of the reference is to compare the use 
of different techniques: HazOp-UML and FMEA in order to derive safety 
requirements.  

6.4.4.4 Keeping ML system validation in operations 
Once the system has formally been verified and validated for operation on a 
space system, it can be deployed in production or used for real application. Yet, 
it is good practice to monitor its performance during its operational life. 

Several reasons can explain why a verified and validated system could have a 
degraded performance during the system lifetime, compared to the performance 
obtained during the development and verification and validation cycle: 

• Behaviour drift: the relationship between the observed inputs and the 
desired response from the system is no longer correct (e.g., in a degraded 
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case, if a propulsion engine is out of order, the attitude control system 
based on a full set of engines will fail to steer the vehicle properly) 

• Data drift: the inputs observed by the system gradually or suddenly shift 
from the distribution of the test set (e.g., by wear-out of an image sensor, 
the recorded images become extremely dark or lose contrast below the 
range of illumination/contrast of the training data, therefore the computer 
vision algorithm fails to locate/identify target system to dock on). However 
even if the risk is considered and mitigated at training, monitoring remains 
mandatory. 

To facilitate the investigation of suspicious output, it is always highly 
recommended to keep both the original ML algorithm resulting from the 
development and/or stable checkpointed versions of the algorithm, in addition 
to the final version used for serving where all the post-training optimization have 
been implemented. Therefore, it is essential to prepare the monitoring capacity 
of the system in operations in the very early stage of the design of a ML system, 
with proper logging of the inference results. The information to be recorded and 
the quantity of logs is tailored to the storage capacity granted to the ML system, 
and to the transfer capacity of the data to the monitoring team. In the case of 
space systems, storage capacity on board is costly and ground transfer of large 
amount of data is extremely expensive and often a challenge: selection of key 
indicators albeit sufficiently detailed to allow investigation of faulty behaviour 
can be integral part of the verification and validation of the ML system. 

The metrics can cover: 

• Inference metrics: memory load, CPU/GPU load, throughput, server load, 
exceptions like overflow or division by zero. 

• Input metrics: histogram or repartition in the inputs space, malformed or 
missing values, synthetic data associated to the metrics of the training/test 
set. 

• Output metrics: number of invalid outputs, proximity to safety cage, 
proximity to limits of validity. 

Besides, to allow recovery actions against the issues listed above, it is strongly 
advised that the ML system features secure upload of ML parameters, while in 
operations, or even upload of the entire set algorithm + parameters. 

This ML upgrade feature shouldn’t come as a total and immediate replacement 
of the current ML algorithm, lest the new algorithm operates worse than the 
original one, or even locks the system. The ML system upgrade in operations can 
follow the same usual schemes as classical software among which: 

• Shadow deployment: the new algorithm is run in parallel with the 
previous one; the system only uses the previous algorithm output; the 
results of both are compared by the development team before further 
deployment. 

• Canary deployment: the new algorithm is applied on a small fraction of 
the cases; the performance is monitored, and the fraction of the inputs 
directed to the new algorithm is progressively increased. 
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• Blue green deployment: a router directs the inputs either to the previous 
or the new algorithm depending on which algorithm best behaves on sub-
classes of inputs. 

Since the exact environment of space systems is sometimes hard to simulate in 
the process of ML model development, it is also possible to automatically 
complement the training of an ML model during its operational life. Except for 
rather simple models, this approach isn’t suitable for space systems in general, 
because of: 

• the specific computing environment required for the training, 

• the necessity to convey large quantity of data from the system to the 
development team to execute or even just assess the result of non-
regression tests, 

• the risk of self-loop, when the system favours actions that will provide data 
improving its local ML performance rather than the overall efficiency of 
the system. 

It is rather recommended to transfer additional data to the development team 
(even down-sampled for faster transmission) so that the retraining is performed 
on ground with the best computing and diagnosis means. 
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7 
Conclusion 

This handbook has aimed at providing an overview of applicable resources and 
initial framework towards verification and validation of ML/AI systems in the 
space domain. Given the dynamic nature of this discipline, it is likely that 
updates will be required to reflect changes related to advances in AI research 
(such as generative AI with its unprecedented growth over the time it took to 
write this handbook), available of hardware that facilitates novel use-cases (as 
was the case with most of the deep learning achievements over the past years) 
and availability of data (which is of particular interest to space agencies given the 
dramatic increase in data volume collected from various domains). 
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