
ECSS-E-HB-40-02A
15 November 2024

Space engineering
Machine learning handbook

ECSS Secretariat
ESA-ESTEC

Requirements & Standards Section
Noordwijk, The Netherlands

ECSS-E-HB-40-02A
15 November 2024

2

Foreword

This Handbook is one document of the series of ECSS Documents intended to be used as supporting
material for ECSS Standards in space projects and applications. ECSS is a cooperative effort of the
European Space Agency, national space agencies and European industry associations for the purpose
of developing and maintaining common standards.

This handbook has been prepared by the ECSS-E-HB-40-02A Working Group, reviewed by the ECSS
Executive Secretariat and approved by the ECSS Technical Authority.

Disclaimer

ECSS does not provide any warranty whatsoever, whether expressed, implied, or statutory, including,
but not limited to, any warranty of merchantability or fitness for a particular purpose or any warranty
that the contents of the item are error-free. In no respect shall ECSS incur any liability for any damages,
including, but not limited to, direct, indirect, special, or consequential damages arising out of, resulting
from, or in any way connected to the use of this Standard, whether or not based upon warranty, business
agreement, tort, or otherwise; whether or not injury was sustained by persons or property or otherwise;
and whether or not loss was sustained from, or arose out of, the results of, the item, or any services that
may be provided by ECSS.

Published by: ESA Requirements and Standards Section
 ESTEC, P.O. Box 299,
 2200 AG Noordwijk
 The Netherlands
Copyright: 2024© by the European Space Agency for the members of ECSS

ECSS-E-HB-40-02A
15 November 2024

3

Change log

ECSS-E-HB-40-02A

15 November 2024

First issue

ECSS-E-HB-40-02A
15 November 2024

4

Table of contents

1 Scope .. 6
1.1 Purpose ... 6
1.2 Executive Summary ... 6
1.3 Justification and Scope of the Handbook ... 8

2 References ... 9

3 Terms, definitions and abbreviated terms ... 15
3.1 Terms from other documents ... 15
3.2 Terms specific to the present document .. 15
3.3 Abbreviated terms.. 20

4 Overview ... 22
4.1 Perimeter and objectives ... 22
4.2 Perimeter ... 22
4.3 Objectives and Challenges .. 23

5 Intelligence Environment on ML Verification and Validation 28
5.1 Objective ... 28
5.2 Activities / Initiatives in the space domain .. 28
5.3 Activities / Initiatives outside the space domain ... 31

6 Guidelines .. 33
6.1 Introduction .. 33
6.2 Business value consideration .. 33
6.3 Data driven approach vs non-data driven approach 36
6.4 Guidelines ... 38

7 Conclusion ... 89

Figures
Figure 1-1: [EASA Roadmap] AI Taxonomy .. 7
Figure 4-1: AI split into data driven methods .. 23
Figure 5-1: [ER-022/AIR6988] AIRBORNE AI/ML ASSURANCE LIFE CYCLE 32
Figure 6-1: AI vs. Value ... 35
Figure 6-2: Simplified process of finding good AI projects ... 36
Figure 6-3: Data Process ... 41

ECSS-E-HB-40-02A
15 November 2024

5

Figure 6-4: Operational Design .. 42
Figure 6-5: [Ng et al.] Example of theoretical upper limit (Bayes Optimal Error) 47
Figure 6-6: Examples of classical ML techniques .. 52
Figure 6-7: Taxonomy of deep learning techniques from [Sarker 2021] 53
Figure 6-8: Post-hoc interpretation methods .. 53
Figure 6-9: ML Bounding Region ... 61
Figure 6-10: Robustness to input variation .. 61
Figure 6-11: Dynamic system interpreted as non-linear feedback (i) or as a linear

system quadratic wise constrained .. 62
Figure 6-12: Robustness of neural network driven closed-loop system 62
Figure 6-13: Model Quality Characteristics .. 64
Figure 6-14: Post-Training Optimization Testing .. 65
Figure 6-15: [EASA paper] Decomposition of the AI-based system 69
Figure 6-16: [EASA paper] Classification of AI applications autonomy 70
Figure 6-17: Failure mode taxonomy for Machine Learning ... 74
Figure 6-18: Example of a FMEA table .. 75
Figure 6-19: Simplified representation of the safety cage, warning states and

catastrophic states within the solution space ... 77
Figure 6-20: Generic example of a safety cage architecture, with processes running in

parallel .. 80

Tables
Table 6-1: SWOT matrix for data-driven models in ML .. 37
Table 6-2: Phases and characteristics ... 49
Table 6-3: Software Criticality .. 71
Table 6-4: Comparing Dependability and Safety.. 72

ECSS-E-HB-40-02A
15 November 2024

6

1
Scope

1.1 Purpose
The Machine Learning Handbook provides guidelines on how to create reliable
machine learning functions and perform the verification and validation
considering the specifics of machine learning development practices.

Guidelines are provided for selecting, preparing, and validating data, as well as
for training, testing, and applying machine learning models within a so-called
'safety cage' architecture. The handbook focused on data driven approaches with
both supervised and unsupervised learning methods.

1.2 Executive Summary

1.2.1 AI & ML application in space domain
Breakthroughs in AI are enabling new paradigms, including in the field of
software development which can be see a change from developers writing source
code directly to an increased use of machine learning system that take a desired
behaviour as goal and generate the relevant source code automatically. Further
significant changes related to increasing utilization of AI to augment or even
replace functions and systems are likely to affect a diverse set of areas such as
engineering and manufacturing of space systems, operations and eventual
knowledge discovery in data collected by space systems.

There are many exciting opportunities to consider the entire software
development ecosystem and how it can be adapted to this new programming
paradigm. Ideally AI algorithms can offer time and cost savings, as well as
greater versatility and the ability to respond more intelligently to system
behaviours not encountered during the training phase as long as it is within the
training domain.

Although the working group members are working in space industry, they
analysed the initial results from standardization activities on certification in
aerospace and military, as they are well connected to the other domains and
could bring in valuable guidelines and reference documentation.

Machine Learning AI is a revolution that will not disappear but will change the
space software development world permanently.

Throughout the handbook, the AI taxonomy from [EASA Roadmap], as
illustrated in Figure 1-1, is applied:

ECSS-E-HB-40-02A
15 November 2024

7

Figure 1-1: [EASA Roadmap] AI Taxonomy

1.2.2 AI @ ESA
AI is already intensively used in mostly all European space missions. More than
300 studies have been done or are in execution around AI applications in all
domains (Science, Exploration, Navigation, Earth Observation, Technology &
Engineering, Operations, Launchers and Telecommunication).

AI is the key enabler for higher levels of automation in data processing on ground
and for autonomous operations for all future missions.

Different operational AI solutions exist, mainly on ground (e.g. for satellite image
analysis or operations assistance) and first flight tests are done. NASA seems to be
quite advanced for example at the Perseverance rover, which is heavily using AI.

An AI function is always part of a complete system, contributing to a hybrid
solution that could involve a mix of manual programming, classical AI (symbolic
AI), or machine learning modules. In the handbook also guidelines are provided
on how to connect different kind of AI functions in a clever way, the safety cage
architecture.

Like ESA also other space agencies do not yet have finalized AI engineering and
qualification standardization, instead it is up to each project to define its own
standards. This handbook it the first step to provide state-of-the-art guidelines to
a broad community to ease AI applications at ESA.

ECSS-E-HB-40-02A
15 November 2024

8

1.3 Justification and Scope of the Handbook
Nowadays AI and specifically machine learning applications, cannot be verified
and validated for critical applications based on standard requirements, as the
ECSS requirements on software quality are not adapted to be applied for learning
systems but for deterministic control algorithms. Likewise, there are a multitude
of potential use-cases for AI within the space domain, e.g., health monitoring,
AOCS, VBN, image processing and more, from engineering to exploitation, but
the verification and validation of such developments has to consider application
specific constraints.

1.3.1 Intended programs and target users
The ML Handbook can be used for AI software development in European Space
Domain, except Cat A criticality.

AI will be a major driver for raising space systems autonomy especially for future
exploration activities but also for reducing operations costs of LEO systems and
for other autonomous/robotic elements.

Today the major use of AI is on ground, but major value will be generated by
also using AI in flight systems and potentially in the frame of decision making.

This handbook is intended for any space programs which have the interest in
utilizing AI and can be applied (and is already applied) in all space program
domains:

• Exploration

• Navigation

• Earth Observation

• Launchers

• Telecommunication

ECSS-E-HB-40-02A
15 November 2024

9

2
References

ECSS-S-ST-00-01 ECSS System - Glossary of terms

ECSS-E-ST-40 Space engineering – Software

ECSS-Q-ST-30 Space product assurance - Dependability

E CSS-Q-ST-30-02 Space product assurance - Failure modes, effects (and criticality)
analysis (FMEA/FMECA)"

ECSS-Q-ST-40 Space product assurance – Safety

ECSS-Q-ST-60-02 Space product assurance - ASIC and FPGA development

ECSS-Q-ST-80 Space product assurance - Software product assurance

ECSS-Q-HB-80-03 Space product assurance - Software dependability and safety
handbook

ECSS-E-HB-40-02A
15 November 2024

10

ID References Link
[AI@ESA] Artificial Intelligence in ESAv1.3 The document is available on request from ESA

[AVEHIC] Manel Brini, Paul Crubille, Benjamin Lussier, Walter Schön.
Validation of safety necessities for a

Safety-Bag component in experimental autonomous vehicles. 14th
European Dependable Computing

Conference (EDCC), Sep 2018, Iasi, Romania. pp.33-40,
10.1109/EDCC.2018.00017

https://hal.archives-ouvertes.fr/hal-01998333

[DE-Standard RM] German Standardisation Roadmap on Artificial Intelligence https://www.din.de/resource/blob/772610/e96c34dd6b12900ea75b460538805349
/normungsroadmap-en-data.pdf

[DEEL] DEEL Whitepaper https://arxiv.org/ftp/arxiv/papers/2103/2103.10529.pdf"

[DSG] Data Safety Guidance https://scsc.uk/r127F:2

[EASA Roadmap] EASA AI Roadmap V1 https://www.coursehero.com/file/63688696/EASA-AI-Roadmap-v10pdf/

[EASA ConceptPaper] EASA Concept Paper: First usable guidance for Level 1 machine
learning applications – A deliverable of the EASA AI Roadmap

https://www.easa.europa.eu/en/downloads/126648/en

[ELEKTRA] P. Klein, “The safety-bag expert system in the electronic railway
interlocking system Elektra,” Expert Systems with Applications,
vol. 3, pp. 499 – 506, 1991.

[ER-022/AIR6988] 19.ISE.OP.200 EDA Service contract for the Safe Autonomous
Flight Termination (SAFE-Term) - Standardisation, Certification
and Regulation Report

https://www.safeterm.eu/sites/default/files/2022-03/D2.5%20SAFETERM%20-
%20Standardisation%20Certification%20and%20Regulation%20Report-
Issue_3_4.pdf

https://hal.archives-ouvertes.fr/hal-01998333
https://www.din.de/resource/blob/772610/e96c34dd6b12900ea75b460538805349/normungsroadmap-en-data.pdf
https://www.din.de/resource/blob/772610/e96c34dd6b12900ea75b460538805349/normungsroadmap-en-data.pdf
https://scsc.uk/r127F:2
https://www.coursehero.com/file/63688696/EASA-AI-Roadmap-v10pdf/
https://www.easa.europa.eu/en/downloads/126648/en
https://www.safeterm.eu/sites/default/files/2022-03/D2.5%20SAFETERM%20-%20Standardisation%20Certification%20and%20Regulation%20Report-Issue_3_4.pdf
https://www.safeterm.eu/sites/default/files/2022-03/D2.5%20SAFETERM%20-%20Standardisation%20Certification%20and%20Regulation%20Report-Issue_3_4.pdf
https://www.safeterm.eu/sites/default/files/2022-03/D2.5%20SAFETERM%20-%20Standardisation%20Certification%20and%20Regulation%20Report-Issue_3_4.pdf

ECSS-E-HB-40-02A
15 November 2024

11

ID References Link
[ESA-TECQQS-TN-022868] Q80-Review Technical Note: ESA-TECQQS-TN-022868.

Machine Learning and Software Product Assurance: Bridging the Gap - YGT
Report, 1.0, 2021 Jonathan Woodburn

[EUROCAE] EUROCAE Statement of concerns Artificial Intelligence in
Aeronautical Systems

https://eurocae.net/

[Goodfellow et al. 2016] Deep Learning book Goodfellow, Ian; Bengio, Yoshua; Courville, Aaron: Deep Learning. The MIT
Press, 2016. – ISBN 9780262035613

[Jain et al. 2020] Jain et, “Overview and Importance of Data Quality for Machine
Learning Tasks”, Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
2020

https://dl.acm.org/doi/proceedings/10.1145/3394486

[Kapoor et al. 2022] Leakage and Reproducibility Crisis in ML-based Science Leakage and the Reproducibility Crisis in ML-based Science

[Lones 2021] ML pitfalls How to avoid machine learning pitfalls: a guide for academic researchers

[MATHVERIF1] Aditi Raghunathan, Jacob Steinhardt, Percy Liang, “Semidefinite
relaxations for certifying robustness to adversarial examples” in
Advances in Neural Information Processing Systems, pp. 10877-
10887. 2018

https://doi.org/10.48550/arXiv.1811.01057

[MATHVERIF2] Ruediger Ehlers, “Formal Verification of Piece-Wise Linear Feed-
Forward Neural Networks”

https://doi.org/10.48550/arXiv.1705.01320

[MATHVERIF3] M. Fazlyab, M. Morari, and G. J. Pappas, “Probabilistic
Verification and Reachability Analysis of Neural Networks via
Semidefinite Programming,” IEEE Conference on Decision and
Control (CDC), 2019.

https://doi.org/10.48550/arXiv.1910.04249

[Ng et al.] Structuring ML Projects Coursera: Structuring Machine Learning Projects

https://eurocae.net/
https://dl.acm.org/doi/proceedings/10.1145/3394486
https://reproducible.cs.princeton.edu/
https://arxiv.org/abs/2108.02497
https://doi.org/10.48550/arXiv.1811.01057
https://doi.org/10.48550/arXiv.1705.01320
https://doi.org/10.48550/arXiv.1910.04249
https://www.coursera.org/learn/machine-learning-projects

ECSS-E-HB-40-02A
15 November 2024

12

ID References Link
[SAO] Safety Assurance Objectives for Autonomous Systems https://scsc.uk/r156A:1

[SCAGE] Safety cage Architecture http://safety.addalot.se/upload/2019/Safety_cage_SCSSS.PDF

[Software2.0] Software 2.0 https://karpathy.medium.com/software-2-0-a64152b37c35

[SPAAS] JP. Blanquart, S. Fleury, M. Hernek, C. Honvault, F. Ingrand, JC.
Poncet, D. Powell, N. Strady-Lécubin, P. Thévenod. Software
Product Assurance for Autonomy On-board Spacecraft. January
2003. Conference: DAta Systems In Aerospace.

https://www.researchgate.net/publication/256494270_Software_Product_Assur
ance_for_Autonomy_On-board_Spacecraft

[Vandewiele et al. 2022] Overly optimistic prediction Overly optimistic prediction results on imbalanced data: a case study of flaws
and benefits when applying over-sampling

[RD-1] Securing Machine Learning Algorithms – European Union

Agency for Cybersecurity (ENISA)
https://www.enisa.europa.eu/publications/securing-machine-learning-
algorithms/@@download/fullReport

[RD-2] European Commission (2020) White Paper on Artificial
Intelligence – a European approach to excellence and trust

https://digital-strategy.ec.europa.eu/en/consultations/white-paper-artificial-intelligence-
european-approach-excellence-and-trust

[RD-3] Special Committee on Artificial Intelligence in a Digital
Age

https://www.europarl.europa.eu/cmsdata/246872/A9-0088_2022_EN.pdf

[RD-4] NIST (USA) - (2021) Artificial Intelligence Risk
Management Framework

https://www.regulations.gov/document/NIST-2021-0004-0001

[RD-5] UK Ministry of Defence, policy paper: Defence Artificial
Intelligence Strategy (June 2022)

https://www.gov.uk/government/publications/defence-artificial-intelligence-strategy

[RD-6] Confiance.ai, France: French community to design and
industrialise trustworthy AI-based critical systems.

https://www.confiance.ai/en/

https://scsc.uk/r156A:1
http://safety.addalot.se/upload/2019/Safety_cage_SCSSS.PDF
https://karpathy.medium.com/software-2-0-a64152b37c35
https://www.researchgate.net/publication/256494270_Software_Product_Assurance_for_Autonomy_On-board_Spacecraft
https://www.researchgate.net/publication/256494270_Software_Product_Assurance_for_Autonomy_On-board_Spacecraft
https://www.sciencedirect.com/science/article/pii/S0933365720312525
https://www.sciencedirect.com/science/article/pii/S0933365720312525
https://www.enisa.europa.eu/publications/securing-machine-learning-algorithms/@@download/fullReport
https://www.enisa.europa.eu/publications/securing-machine-learning-algorithms/@@download/fullReport
https://eur05.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdigital-strategy.ec.europa.eu%2Fen%2Fconsultations%2Fwhite-paper-artificial-intelligence-european-approach-excellence-and-trust&data=05%7C01%7CEvridiki.Ntagiou%40esa.int%7C1a8d707020fe4787ea8508da5e84a366%7C9a5cacd02bef4dd7ac5c7ebe1f54f495%7C0%7C0%7C637926221015257532%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=yGzWTMPetIfbWyZ%2BPOZk%2BJDegyKgXg5ilJA5NKAgn6Y%3D&reserved=0
https://eur05.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdigital-strategy.ec.europa.eu%2Fen%2Fconsultations%2Fwhite-paper-artificial-intelligence-european-approach-excellence-and-trust&data=05%7C01%7CEvridiki.Ntagiou%40esa.int%7C1a8d707020fe4787ea8508da5e84a366%7C9a5cacd02bef4dd7ac5c7ebe1f54f495%7C0%7C0%7C637926221015257532%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=yGzWTMPetIfbWyZ%2BPOZk%2BJDegyKgXg5ilJA5NKAgn6Y%3D&reserved=0
https://www.europarl.europa.eu/cmsdata/246872/A9-0088_2022_EN.pdf
https://eur05.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.regulations.gov%2Fdocument%2FNIST-2021-0004-0001&data=05%7C01%7CEvridiki.Ntagiou%40esa.int%7C1a8d707020fe4787ea8508da5e84a366%7C9a5cacd02bef4dd7ac5c7ebe1f54f495%7C0%7C0%7C637926221015413751%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=SBsmhrWMIbW%2B417D3%2BMUQOiTUKLZx30XP51hWV496EQ%3D&reserved=0
https://eur05.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.gov.uk%2Fgovernment%2Fpublications%2Fdefence-artificial-intelligence-strategy&data=05%7C01%7CEvridiki.Ntagiou%40esa.int%7C1a8d707020fe4787ea8508da5e84a366%7C9a5cacd02bef4dd7ac5c7ebe1f54f495%7C0%7C0%7C637926221015413751%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=OLCt1dSVnC1UDGojMVUmXZKxUjKf2ZsByl7kaQLAfus%3D&reserved=0
https://eur05.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.confiance.ai%2Fen%2F&data=05%7C01%7CEvridiki.Ntagiou%40esa.int%7C1a8d707020fe4787ea8508da5e84a366%7C9a5cacd02bef4dd7ac5c7ebe1f54f495%7C0%7C0%7C637926221015413751%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=pq5SVc9R5Brv3YX6M3NpSai71cbM5A9RXZXmVV90JKQ%3D&reserved=0

ECSS-E-HB-40-02A
15 November 2024

13

Including Airbus, Safran, Thales, and others, Launched
April 2022.

Focus on National level: characterisation of AI, trustworthy
AI by design, data and knowledge engineering, mastering
AI-based system engineering and trustworthy AI for
embedded systems.

[Gehr et al. 2018] AI2: Safety and Robustness Certification of Neural
Networks with Abstract Interpretation"

T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri and M. Vechev, "AI2:
Safety and Robustness Certification of Neural Networks with Abstract Interpretation,"
2018 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 2018, pp. 3-
18, doi: 10.1109/SP.2018.00058.

[Singh et al. 2019] An abstract domain for certifying neural networks Singh, G., Gehr, T., Püschel, M. and Vechev, M., 2019. An abstract domain for certifying
neural networks. Proceedings of the ACM on Programming Languages, 3(POPL), pp.1-30

[Cheng et al. 2017] Maximum Resilience of Artificial Neural Networks Cheng, CH., Nührenberg, G., Ruess, H. (2017). Maximum Resilience of Artificial Neural
Networks. In: D'Souza, D., Narayan Kumar, K. (eds) Automated Technology for
Verification and Analysis. ATVA 2017. Lecture Notes in Computer Science(), vol 10482.
Springer, Cham

[Au et al. 2014] Engineering risk assessment with subset simulation Au, S.K. and Wang, Y., 2014. Engineering risk assessment with subset simulation. John
Wiley & Sons.

[Schwaiger et al. 2022] A modular subset simulation toolbox for Matlab Schwaiger, F., Shi, D., Mishra, C., Höhndorf, L. and Holzapfel, F., 2022. A modular subset
simulation toolbox for Matlab. In AIAA Scitech 2022 Forum (p. 1893).

[Puppe 1993] Systematic Introduction to Expert Systems. Puppe, F. (1993). Systematic Introduction to Expert Systems. Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-642-77971-8

[Sarker 2021] Deep Learning: A Comprehensive Overview on
Techniques, Taxonomy, Applications and Research
Directions

https://link.springer.com/article/10.1007/s42979-021-00815-1

[neptune.ai] Model-Based and Model-Free Reinforcement Learning:
Pytennis Case Study

https://neptune.ai/blog/model-based-and-model-free-reinforcement-learning-pytennis-
case-study

[INT-ML] Interpretable Machine Learning Interpretable Machine Learning (christophm.github.io)

https://neptune.ai/blog/model-based-and-model-free-reinforcement-learning-pytennis-case-study
https://neptune.ai/blog/model-based-and-model-free-reinforcement-learning-pytennis-case-study
https://christophm.github.io/interpretable-ml-book/

ECSS-E-HB-40-02A
15 November 2024

14

[RD Miller2017] Explanation in artificial intelligence: Insights from the
social sciences.

Explanation in artificial intelligence: Insights from the social sciences - ScienceDirect

[Powers 2007] Evaluation: From Precision, Recall and F-Factor to ROC,
Informedness, Markedness & Correlation

https://www.flinders.edu.au/science_engineering/fms/School-
CSEM/publications/tech_reps-research_artfcts/TRRA_2007.pdf

[Ying 2019] An Overview of Overfitting and its Solutions http://dx.doi.org/10.1088/1742-6596/1168/2/022022

[Sehra 2021] Undecidability of Underfitting in Learning Algorithms https://www.researchgate.net/publication/349106886_Undecidability_of_Underfitting_in_
Learning_Algorithms

https://www.sciencedirect.com/science/article/pii/S0004370218305988
https://www.researchgate.net/publication/349106886_Undecidability_of_Underfitting_in_Learning_Algorithms
https://www.researchgate.net/publication/349106886_Undecidability_of_Underfitting_in_Learning_Algorithms

ECSS-E-HB-40-02A
15 November 2024

15

3
Terms, definitions and abbreviated terms

3.1 Terms from other documents
a. For the purpose of this document, the terms and definitions from ECSS-S-

ST-00-01 apply.

b. For the purpose of this document, the terms and definitions from ECSS-E-
ST-40 apply, in particular for the following term:

1. validation <software>

2. verification <software>

3.2 Terms specific to the present document
3.2.1 Accuracy (of the data)
degree of conformance between the estimated or measured value and its true
value.

[Source: EASA, ISO 5725]

3.2.2 Artificial intelligence
technology that appears to emulate human performance typically by learning,
coming to its own conclusions, appearing to understand complex content,
engaging in natural dialogues with people, enhancing human cognitive
performance (also known as cognitive computing) or replacing people on
execution of non-routine tasks

[Source: EASA]

3.2.3 Data set
sample of data used for various development phases of the model, i.e. the model
training, the learning process verification, and the inference model verification

[Source: EASA]

3.2.4 Data set (test data)
data used to assess the performance of the model, independent of the training
data set

[Source: EASA]

ECSS-E-HB-40-02A
15 November 2024

16

3.2.5 Data set (training data)
data that is input to an ML model in order to establish its behaviour

[Source: EASA]

3.2.6 Data set (validation data)
Data used to tune a subset of the hyper-parameters of a model (e.g. number of
hidden layers, learning rate, etc.).

[Source: EASA]

3.2.7 Explainability
This guidance makes a clear distinction between two types of explainability
driven by the profile of the user and their needs:

• The information required to make a machine learning model
understandable; and

• Understandable information for the user on how the systems came to its
results.

[Source: EASA]

3.2.8 Evaluation (of the model)
Model Evaluation is the process of assessing a machine learning model's
performance by comparing its outputs to predefined performance metrics such
as accuracy, recall, precision, mean squared error, and others. This process is
focused on quantitative measurements that help determine the model's
effectiveness in performing its designated tasks.

For instance, a common metrics used for the classification task is the F1 score
(harmonic mean between precision and recall), ranging between 0 and 1. The
acceptability level is highly dependent on the application, how critical the ML
algorithm is, and its context. Yet, as a rule of thumb, practitioner should seek a
value greater than 0.9 to consider the algorithm has very good performance, and
discard algorithms whose F1-score is lower than 0.8.

3.2.9 Feature (in computer science)
any piece of information which is relevant for solving the computational task
related to a certain application

• Feature (in machine learning in general) — A feature is an individual
measurable property or characteristic of a phenomenon being observed.

• Feature (in computer vision) — A feature is a piece of information about
the content of an image; typically, about whether a certain region of the
image has certain properties.

[Source: EASA]

ECSS-E-HB-40-02A
15 November 2024

17

3.2.10 Hyperparameter
parameter that is used to control the algorithm’s behaviour during the learning
process (e.g., for deep learning with neural networks, the learning rate, the batch
size or the initialisation strategy).

NOTE Hyper-parameters affect the time and memory cost of running the
algorithm, or the quality of the model obtained at the end of the
training process. By contrast, other parameters, such as node
weights or biases, are the result of the training process.

[Source: EASA]

3.2.11 Inference
process of feeding the machine learning model an input and computing its
output

NOTE See also related definition of Training.

[Source: EASA]

3.2.12 Intended functionality
behaviour specified for a system

[Source: ISO]

3.2.13 Label
In the context of machine learning, the target variable assigned to a sample

[Source: ISO]

3.2.14 Machine learning
branch of AI concerned with the development of algorithms that allow
computers to evolve behaviours based on observing data and making inferences
on this data

[Source: EASA]

3.2.15 Machine learning (supervised)
process of learning in which the ML algorithm processes the input data set, and
a cost function measures the difference between the ML model output and the
labelled data. The ML algorithm then adjusts the parameters to increase the
accuracy of the ML model.

[Source: EASA]

3.2.16 Machine learning (unsupervised)
process of learning in which the ML algorithm processes the data set, and a cost
function indicates whether the ML model has converged into a stable solution.
The ML algorithm then adjusts the parameters to increase the accuracy of the ML
model.

[Source: EASA]

ECSS-E-HB-40-02A
15 November 2024

18

3.2.17 Machine learning (reinforcement)
process of learning in which the agent(s) is (are) rewarded positively or
negatively based on the effect of the actions on the environment. The ML model
parameters are updated from this trial-and-error sequence to optimise the
outcome.

[Source: EASA]

3.2.18 Machine learning inference model
The ML model obtained after transformation of the trained model, so that the
model is adapted to the target platform.

[Source: EASA]

3.2.19 Machine learning model
parameterised function that maps inputs to outputs. The parameters are
determined during the training process.

[Source: EASA]

3.2.20 Machine learning trained model
ML model which is obtained at the end of the learning/training phase

[Source: EASA]

3.2.21 Offline learning
The process of learning where the ML model is frozen at the end of the
development phase;

[Source: EASA]

3.2.22 Online learning
The process of learning where the ML model parameters can be updated based
on data acquired during operation (see also adaptivity).

[Source: EASA]

3.2.23 Overfitting
creating a model that matches the training data so closely that the model fails to
make correct predictions on new data. Overfitting can be caused by
characteristics of the training set (size of dataset, relation of training set
distribution relative to distribution in population), characteristics of the model
(tendency to create high bias or variance errors) and/or aspects of the training
(number of iterations, utilization of regularization or other mitigating options).

[Source: Ying 2019]

ECSS-E-HB-40-02A
15 November 2024

19

3.2.24 Precision
metric for classification models, also known as positive predictive value.
Precision identifies the frequency with which a model was correct when
predicting the positive class. In other words, it is the fraction of relevant instances
among the retrieved instances

[Source: Powers 2007]

3.2.25 Prediction (predictability)
degree to which a correct forecast of a system’s state can be made quantitatively

NOTE Limitations on predictability could be caused by factors such as a
lack of information or excessive complexity.

[Source: EASA]

3.2.26 Reliability
probability that an item will perform a required function under specified
conditions, without failure, for a specified period of time.

3.2.27 Resilience
In the context of this guidance, the resilience definition is derived from DEEL
White Paper on Machine learning in Certified System (DEEL Certification
Workgroup, 2021) where resilience is defined as the ability of a system to
continue to operate while an error or a fault has occurred.

[Source: EASA]

3.2.28 Robustness
For an input varying in a region of the input state space, a system producing
expected outputs.

In [DEEL] White Paper on Machine learning in Certified System (DEEL
Certification Workgroup, 2021), robustness is defined as the ability of the system
to perform the intended function in the presence of abnormal or unknown inputs,
and to provide equivalent response within the neighbourhood of an input.

[Source: EASA]

3.2.29 Safety of the intended functionality (SOTIF)
Absence of unreasonable risk due to hazards resulting from functional
insufficiencies of the intended functionality or from reasonably foreseeable
misuse by persons. Nominal performance includes intended functionality and
the implementation of intended functionality that can be affected by performance
limitations or by foreseeable misuse by persons.

[Source: ISO]

3.2.30 Test case
Set of conditions to determine if a system is working according to its intended
functionality

[Source: ISO]

ECSS-E-HB-40-02A
15 November 2024

20

3.2.31 Training
The process of setting appropriate weights for a machine learning model, via
optimization. For example, in supervised learning the training data consists of
input (e.g. an image) / output (e.g. a class label) pairs and the ML model ‘learns’
the function that maps the input to the output, by optimising its internal
parameters. See also the related definition of Inference.

[Source: EASA]

3.2.32 Underfitting
Producing a model with poor predictive ability because the model hasn't
captured the complexity of the training data. Many problems can cause
underfitting, including:

• Training on the wrong or incomplete set of features.

• Training for too few epochs or at too low a learning rate.

• Training with too high a regularization rate.

• Providing too few hidden layers in a deep neural network.

[Source: Sehra 2021]

3.2.33 Verification
This process is intended to confirm that adequate specifications for the data
product and the machine learning model product exist, and that the machine
learning software product outputs are interchangeable and consistent with
outputs of the machine learning model product trained with the data product.

3.2.34 Validation
This process is intended to confirm that the data and model quality properties
and baseline requirements are completely implemented in the data product,
machine learning model product, and machine learning-based system product.

3.3 Abbreviated terms
For the purpose of this Standard, the abbreviated terms and symbols from ECSS-
S-ST-00-01 and the following apply:

Abbreviation Meaning

AI Artificial Intelligence

AOCS Attitude and Orbit Control System

ASIC Application-Specific Integrated Circuit

ConOps Concept of Operations

CPU Central Processing Unit

EDA Exploratory data analysis

FDIR Fault detection and isolation

FMEA Failure mode and effects analysis

ECSS-E-HB-40-02A
15 November 2024

21

Abbreviation Meaning

FMECA Failure mode, effects, and criticality analysis

FPGA Field-programmable gate array

GPU Graphics processing unit

HazOp Hazard and operability study

HSIA Hardware Software Interaction Analysis

LEO Low Earth Orbit

LIDAR Laser imaging, detection, and ranging

LIME Local surrogate models

LSIs Less significant institutions

MBSE Model Based System Engineering

ML Machine Learning

NN Neural Network

ODD Operational Design Domain

OOD Out-Of-Distribution

QA Quality Assurance

ReLU Rectified linear unit

RL Reinforcement Learning

ROI Return-Of-Investment

SAE Sparse Autoencoders

SEU Single Event Upset

SFMEA Software Failure Modes and Effects Analysis

SLT Statistical learning theory

SOTIF Safety of the intended functionality

SWOT Strengths, Weaknesses, Opportunities, and
Threats

UML Unified Modeling Language

V&V Verification and validation

VBN Vision Based Navigation

XAI Explainable Artificial Intelligence

ECSS-E-HB-40-02A
15 November 2024

22

4
Overview

4.1 Perimeter and objectives
The Handbook recommends guidelines applicable to the machine learning
development process, encompassing data gathering, data processing, training,
model testing. The concept of “safety cage” architecture is also introduced.

The Handbook is limited to software criticality categories B/C/D software
(excluding life critical Cat. A functions).

4.2 Perimeter
In the following subsection, some of the research which have been performed as
part of the ad hoc working group is presented. This work does not represent the
full extent of research and discussions that were brought about, however, it
highlights some of the major findings which will impact the further work on the
actual handbook.

Software including the use of machine learning should follow ECSS standards to
the extend which is plausible (i.e. tailoring out activities that cannot be performed
due to not available artefacts). ML models are very complex, and complete
validation / verification of all possible behaviours is typically not feasible. To
mitigate the risk from incomplete validation, it is advised to apply SW standards
to the maximum possible extend.

However, based on our work so far, it is also clear that the current standards do
not cover all challenges coming from Machine Learning, and likewise, that there
are aspects of Machine Learning that have to be clearly understood in context of
the space industry before we can safely implement such solutions for higher
criticality functions.

Based on our findings we now have a high-level overview of ML applications
and the challenges related to its verification and validation. Failure mitigation of
ML systems is also addressed, initially relying on the concept of a safety-cage
architecture.

ECSS-E-HB-40-02A
15 November 2024

23

4.3 Objectives and Challenges
As shown on the Figure 1-1 [EASA Roadmap] AI Taxonomy, section 1.2.1,
Machine Learning, and Deep Learning are respectively sub-parts of Artificial
intelligence. However, another way of understanding AI, as shown on the Figure
4-1 below, is by differentiate between data driven AI and User-input
driven/symbolic AI.

Artificial
Intelligence

Machine Learning

Deep Learning

Expert/rule-based Systems

Data Driven User-input driven

Figure 4-1: AI split into data driven methods

Symbolic AI, which represents artificial intelligence as expert systems, also
known as knowledge-based systems or rule-based systems. These systems are
created by allowing the user to write "if-then" rules, stored in a so-called
knowledge base, that define how a system has to interact with its environment
(see [Puppe 1993]). These sort of AI system, have been around since the 1950s,
and as their functionality is based around user-written deterministic code, this
code can be inspected, reviewed, and tested, following the same practice as
presented through software standards ECSS-E-ST-40 and ECSS-Q-ST-80.

However, data driven AI, also known as machine learning, including the sub-
field of deep learning, represents “the ability (of AI systems…) to acquire their
own knowledge, by extracting patterns from raw data”, [Goodfellow et al. 2016].
Machine learning embodies stochastic processes, e.g. for learning or
optimization, as it is trying to teach the models to estimate quantitative values
outside of dataset from which the model has been created, i.e. generalization.

However, this stochastic nature also drives a lot of problems for the verification
and validation of such data driven AI, which is ultimately what has initiated the
work for the ECSS-E-HB-40-02 Handbook.

As per ECSS-Q-ST-80 requirement 5.2.7.2a., under the topic of “Quality
requirements and quality models”, a list of characteristics, high-level properties,
is presented which shall be used to specify SW quality:

1. functionality;

2. reliability;

3. maintainability;

4. reusability;

5. suitability for safety;

ECSS-E-HB-40-02A
15 November 2024

24

6. security;

7. usability;

8. efficiency;

9. portability;

10. software development effectiveness.

However, when dealing with Machine Learning, many of the above
characteristics of a good quality SW model, as per current ECSS standards,
become highly challenging to apply, due to the nature of the ML. Not only does
the stochastic nature imply issues for such topics as functionality and reliability,
but as the model relies mainly on data, the quality of the data and understanding
of data representativeness, also has large impact, which currently are questions
outside of the above characteristics. And to make things worse, many of the more
complex ML models are also black boxes, for which inspection of code does not
make sense. A full review of the ECSS-Q-ST-80 standard, including evaluation of
the limitation of the above high-level properties was performed by one of the
consortium members [ESA-TECQQS-TN-022868].

Part of the inspiration for this review is based on the [DEEL] paper, written by
some of the members of this ad-hoc working group, which have derived similar
high-level properties, but purely focusing on what good quality ML models
should represent, being more considered of machine learning functionality and
procedures, and original created outside of space industry setup:

1. Auditability: The extent to which an independent examination of
the development and verification process of the system can be
performed.

2. Data Quality: The extent to which data are free of defects and
possess desired features.

3. Explainability: The extent to which the behaviour of a Machine
Learning model can be made understandable to humans.

4. Maintainability: Ability of extending/improving a given system
while maintaining its compliance with the unchanged
requirements.

5. Resilience: Ability for a system to continue to operate while an error
or a fault has occurred.

6. Robustness: (Global) Ability of the system to perform the intended
function in the presence of abnormal or unknown inputs / (Local)
The extent to which the system provides interchangeable responses
for similar inputs.

7. Specifiability: The extent to which the system can be correctly and
completely described through a list of requirements.

8. Verifiability: Ability to evaluate an implementation of requirements
to determine that they have been met.

ECSS-E-HB-40-02A
15 November 2024

25

As can be seen, many topics overlap with the list from ECSS-Q-ST-80, and as it is
written in ESA-TECQQS-TN-022868, minor updates can be done for making this
applicable also to ML.

However, as mentioned earlier, due to the stochastic nature of ML, in the training
phase, but also sometimes during operation, certain general challenges arise for
ML from trying to satisfy such high-level properties [DEEL]:

MAIN CHALLENGE #1: PROBABILISTIC ASSESSMENT

For safety critical systems, quantitative safety analysis is used to assess properties such
as “the probability of a catastrophic event of an aircraft shall be lower than 10-9 per flight
hour”. Similarly, Machine Learning techniques rely on mathematic practices that include
statistics and probabilities. Nevertheless, despite their similarities, the two domains often
employ different definitions and interpretations of key concepts. This makes the
endeavour of establishing a safety assessment methodology for ML-based systems
difficult.

MAIN CHALLENGE #2: RESILIENCE

Resilience is crucial to ensure safe operation of the system. Resilience typically raises
challenges regarding the definition of an “abnormal behaviour”, the monitoring of the
system at runtime, and the identification of mitigation strategies. With Machine
Learning, these challenges are made more complex because of the usually wider range of
possible inputs (e.g. images), the difficulties to adopt classical strategies (e.g., redundancy
with dissimilarity), and the ML-specific vulnerabilities.

MAIN CHALLENGE #3: SPECIFIABILITY

Specifiability is the ability to describe the intended function of a system in terms of
functional, safety, operational, and environmental aspects. This practice allows engineers
to designate the target of the development process and to demonstrate that this target has
been hit. Nowadays, this is a pillar to build acceptably safe systems. Because ML
techniques are often used to address problems that are by nature hard to specify, they raise
specific challenges to include them in safe systems, the question of trust being one of these
challenges.

MAIN CHALLENGE #4: DATA QUALITY AND REPRESENTATIVENESS

Machine Learning-based systems rely on the exploitation of information contained in
datasets. Therefore, the quality of these data, and in particular their representativeness,
determines the confidence on the outputs of the ML-based components.

The verification of a dataset with respect to properties related to quality can be
particularly complex and depends strongly on the use case.

Conversely, a very representative ML model concentrates relevant knowledge of the
behaviour of the physics and behaviour of the systems, which can be reverse engineered
from the model.

Therefore, access to the model should be treated with equal care as the raw data
themselves.

MAIN CHALLENGE #5: EXPLAINABILITY

The opacity of ML models is seen as a major limitation for their development and
deployment, especially for systems delivering high stake decisions. Quite recently, this
concern has caught the attention of the research community through XAI (eXplain-able
Artificial Intelligence) initiative which aims to make these models explainable. The

ECSS-E-HB-40-02A
15 November 2024

26

ongoing investigations highlight many challenges which are not only technical but also
conceptual. The problem is not only to open the black box but to also establish the purpose
of explanations, the properties they must fulfil and their inherent limits, in particular in
the scope of certification.

MAIN CHALLENGE #6: ROBUSTNESS

Robustness is defined as the ability of the system to perform the intended function in the
presence of abnormal or unknown inputs, and to provide equivalent responses within the
neighbourhood of an input (local robustness). This property, which is one of the major
stakes of certification, is also a very active research domain in Machine Learning.
Robustness raises many challenges, from the definition of metrics for assessing robust-
ness or similarity, to out-of-domain detection, and obviously adversarial attacks and
defence.

MAIN CHALLENGE #7: VERIFIABILITY

A large and ever-growing set of methods and tools, ranging from formal mathematical
methods to massive testing, is available to verify ML-based systems. However, under-
standing the applicability and limits of each of them, and combining them to reach the
verification objectives raises many challenges...

The [DEEL]paper and ESA-TECQQS-TN-022868 both go more into detail regarding
how to handle such challenges, e.g., by employing best standards for ML model
creation and mathematical proofs, which scope is outside of today’s ECSS
standards. And it should also be noted that depending on the specific application
for ML solution that is being created, the demand to the different high-level
properties can be varying. However, as the topic of dealing with these challenges
is ongoing research, e.g., explainability, adoption of recommendations on how to
handle such challenges should be considered adaptable as the field develops.

Another topic which was explored within the working group has been axes for
AI deployment classification, as drivers for the verification and validation
process. Within the space domain, there are certain properties driving the
verification and validation of software. Examples of such properties are safety
criticality, it is the function of the software linked to potential safety critical
outcome which could lead to a loss of mission, or on-board versus on-ground
applications, i.e. is the application placed on-board a spacecraft with only
delayed communication with operators placed on-ground.

The Ad-hoc working group has analysed several potential properties of software
application, which might likewise have an impact on the verification and
validation of machine learning applications. The attempt with the following list,
is to create axes for AI deployment classification that can help the reader to
understand the commonalties of the verification and validation processes,
between different types of applications.

The list of axes for AI deployment classification is as following:
1. Safety Criticality
2. Complexity of Function
3. On-board vs. On-ground
4. Embeddability
5. Data and Use-case Understanding
6. Online vs. Offline Learning

ECSS-E-HB-40-02A
15 November 2024

27

It can be noted that the first three axes for AI deployment classification are driven
by the wished application and the system for which the ML model is supposed
to work, whereas the last three axes are driven by the functionality of the ML
model itself. An additional quasi-axis, Autonomy, could also be added to the
above list. However, since autonomy can be seen as driven by axes 1 and 2 Safety
Criticality and Complexity of Function, it was decided to not treat it as its own
axis, but more as a special case.

ECSS-E-HB-40-02A
15 November 2024

28

5
Intelligence Environment on ML

Verification and Validation

5.1 Objective
The objective of the Chapter is to provide an overview of the initiatives that are
relevant to machine learning verification and validation, both within and outside
the space domain, at the time of preparation of this Handbook. Initiatives on-
going or completed in Agencies and LSIs are primarily collected and within the
scope of the Chapter; a brief outline of each activity and its relevance to this
Handbook is provided, along with references where additional information can
be found.

5.2 Activities / Initiatives in the space domain

5.2.1 European Space Agency (ESA)
The European Space Agency has been actively pursuing the spin-in of AI
technologies in the space domain for the last two decades. A number of activities
have been completed and some have successfully been operationalised, across
different domains of the space mission lifecycle. Detailed descriptions of the
vision, activities and domains of interest can be found on the relevant documents
[AI@ESA] [Harmo] and the recently completed Artificial Intelligence for
Automation (A2I) Roadmap [RD-OpsRm] that covers the application of AI
technologies in the spacecraft operations domain.

In collaboration with the European Space Industry, ESA is pursuing the creation
of this ECSS Handbook for the verification and validation of Machine Learning
applications. In preparation for this task, a Technical Note has been prepared [RD-
TN-ESA-Q] to describe the work done to fill the void between Machine Learning
projects and Software Product Assurance. Currently, there is a chasm between
the two areas, as it has not been possible to standardise the development of ML
projects and to ensure process and product quality within a space context; the
TN tackles ML development from a product assurance angle.

5.2.2 National Agencies

5.2.2.1 German Aerospace Center (DLR)
The German Space Agency at DLR is funding various machine learning projects
across many of its departments like Earth Observation and Navigation. It
recognizes generally increasing interest in machine learning, but also in
tomorrow’s approaches like quantum machine learning that will provide new

ECSS-E-HB-40-02A
15 November 2024

29

perspectives on machine learning and its evaluation. The department of Robotics,
Digitalization and Artificial Intelligence has a long history of funding artificial
intelligence-related projects with a focus on robotics in space. As a consequence
of the increased interest in technologies like machine learning, the group
Digitalization, Software and Artificial Intelligence was founded in the
department in 2021 to bring forward the respective technologies in the field of
space. As one of its topics, the group focuses on supporting the development of
technologies for the qualification of machine learning methods for space
applications. The group is still under development but will generate relevant
results in the next years.

As a persistent funder of numerous projects with machine learning elements, the
agency is interested in evaluation and qualification of machine learning systems.
It uses the experience from its projects to experiment with indicators and metrics
that could help to establish high level data-driven analysis methods. Currently,
the set of key figures is being developed and refined. The initial data collection
methods are mainly ad-hoc and based on human-in-the-loop survey methods.
However, the toolset is actively evolving. The already collected data identifies
and compares different evaluation methods. The agency is also preparing to
integrate machine learning metrics with the ECSS-based software metrication
system AENEAS in order to support monitoring the development of and
qualification of such systems. Tried and tested results are expected to be available
in three to five years.

The agency is also funding the consortium-based project VeriKI which
investigates verification methods for artificial neural networks used in robotics
applications. The project sees a major problem of qualifying such systems in the
outstanding importance of its training process. It therefore focuses on analysis
methods of the trained system to establish evidence of its correctness. While the
project has not yet finished, preliminary results have already been provided as
input to the standard to the members of the ECSS working group.

By decision of the DLR senate from 2020, a new research Institute for AI Safety
and Security has been founded in DLR’s research branch. The institute conducts
research in the direction of protection against external attacks (security) and
reliability of operation (safety). It covers research topics like the engineering of
AI systems, AI algorithms, security-critical data, and reliable execution
environments for AI. The institute’s research will make significant contributions
to methods for qualifying machine learning once it is fully established.

5.2.2.2 CNES
CNES considers artificial intelligence as a key issue in its avant-garde policy for
the coming years. With the democratisation of access to space, CNES wants to
help actors involved with space domain to reach sufficient technological maturity
in AI, in order to support the development of digital-related skills. The approach
adopted is an investment per project with an exploratory method that will lead
to feedback and standardisation once there is sufficient material. Nevertheless,
there is crosscutting work in progress on some themes, oriented towards
Learning Assurance, such as a study on “model factory”: on a similar way CNES

ECSS-E-HB-40-02A
15 November 2024

30

works on legacy software, using such factory for machine learning is studied to
empower model production and make it more reliable. CNES is also actively
involved in raising the awareness of its teams to the use of machine learning by
organizing regular internal training sessions.

5.2.2.3 UKSA
The UK Space Agency has recently published National Space Strategy [RD-
UK Space] and National AI strategy [RD-UKAI]; the wide interest in using AI for
space is highlighted in both documents. The qualification of AI systems has been
found as a very important aspect in adopting the technology operationally, as
global technical standards are mentioned to be required for: supporting R&D and
innovation, supporting trade, giving UK business more opportunities, delivering
on safety, security and trust and supporting conformity assessments and
regulatory compliance.

5.2.3 European Space Industry – Large System
Integrators

• Airbus Defence and Space: As part of Airbus Group, including Airbus
Commercial and Airbus Helicopters, an extensive internal AI research
roadmap and a dedicated AI synergy project exist= The synergy project
called CTAI (Certifiable and Trusted Artificial Intelligence) covers several
initiatives around the three directions of “Embeddable AI”, “Certification,
Regulation and Standardization of AI”, and “Trusted/Explainable AI”, in
addition to an overall project management function to keep an up-to-date
holistic view on the different topics within the company, and external
developments, to allow maximum synchronization of the different
initiatives, while keep exploring potential synergies. Examples of such
initiatives which Airbus is part of can be mentioned the [DEEL] paper
team, EUROCAE (Section 5.3.2) and likewise this ECSS handbook.

• Ariane Group: The Ariane Group has a Working Group dedicated on
machine learning qualification. A first issue of company-wide technical
operating standard has been internally published to set common grounds
for the use of data analytics and artificial intelligence methods in all fields
of engineering/manufacturing of space launchers. It is so far mainly
dealing with taxonomy and vocabulary. Another internal operating
standard is being written with contribution of the whole data science
specialist network, dealing with a stepwise process for the construction
and certification of machine learning based algorithms. Measures to
control data quality are already quite well prescribed. They are a
prerequisite for the certification / qualification part, which is yet to be
consolidated, although acceptability measures have already been
identified.

ECSS-E-HB-40-02A
15 November 2024

31

5.3 Activities / Initiatives outside the space domain

5.3.1 Dependable and Explainable Learning
(DEEL) Project

The DEEL (Dependable and Explainable Learning) consortium involves
academic and industrial partners in the development of dependable, robust,
explainable and certifiable AI technological bricks applied to critical systems;
certification experts and AI specialists from the aeronautics, railway and
automotive sectors were part of the Consortium. The objective is threefold:

• share knowledge on certification and ML,

• identify the main difficulties raised by the usage of ML in safety critical
systems,

• feed the core team with relevant scientific challenges.

After monthly face-to-face meetings, a White Paper [DEEL] has been published
covering the full collection of best practices and lessons learned around AI
certification, qualification and explainable AI; the White Paper has been used as
reference for this Handbook preparation.

5.3.2 EUROCAE / SAE
EUROCAE and SAE are the leading standardisation organizations developing
the worldwide recognised industry standards for aviation. Joint EUROCAE/SAE
WG-114/G-34 working group “Artificial Intelligence in Aviation” comprised of
500+ members from leading aerospace companies was created in 2019 to develop
and maintain Technical Reports on implementation and certification aspects of
quickly advancing AI and ML technology for on and off-board aerospace systems
and vehicles.

The first document published by this joint working group [RD-EUROCAE]
reviews the current aviation assurance practices for safety-critical systems with
respect to Artificial Intelligence (AI) / Machine Learning (ML) development
approach and provides a list of concerns that need to be addressed in order to
produce a future means of compliance for AI/ML-based systems.

The next planned deliverable of the joint working group is a process standard for
development and certification of aeronautical safety-related products based on
AI/ML-technology. This standard is planned to be published in 2023 and will
provide the detailed guidance including objectives and means of compliance for
development, verification and validation of AI/ML-based safety-critical airborne
systems. This standard is targeting a broad coverage of AI/ML assurance and
certification practices and use cases – this is considered highly relevant to the
goal of this handbook and can be widely reused and adjusted to space domain.

ECSS-E-HB-40-02A
15 November 2024

32

Figure 5-1: [ER-022/AIR6988] AIRBORNE AI/ML ASSURANCE LIFE CYCLE

© - 2019 – EDA, European Defence Agency, Certain parts are licensed under
conditions to the EU.

5.3.3 German Standardisation Roadmap on
Artificial Intelligence

In this Standardization Roadmap on Artificial Intelligence [DE-Standard RM], a
comprehensive analysis of the current state of and need for international
standards and specifications for the technology are presented. In the first edition,
the technical, ethical and social aspects of standards in AI are taken into account
in detail. The roadmap was drawn up in seven working groups which developed
important questions and recommendations for action on Ethics,
Quality/conformity assessment/certification and IT security, as horizontal topics,
in addition to the basic principles and three AI application fields: industrial
automation, mobility/ logistics and medicine. This Roadmap is an ongoing
document that is required to be regularly updated in order to reflect the
enormously dynamic development of AI technologies and their rapidly
expanding fields of application.

A set of additional initiatives can be found on References [RD1- RD6].

ECSS-E-HB-40-02A
15 November 2024

33

6
Guidelines

6.1 Introduction
Machine learning is a rapidly evolving field that has brought a paradigm shift in
the way we can solve complex problems. However, the application of ML is not
straightforward, and it requires a systematic approach to ensure the quality and
reliability of the ML models and systems. In the following sub-chapters, this
handbook presents the reader with recommendations of how to approach the
verification and validation of machine learning in the usage of space software
applications, within criticality categories B/C/D.

In the following sub-sections the topic of verification and validation has been
addressed. The structure of the section is as follows. First, the importance of
understanding the business value and implications of utilizing machine learning
is introduced. Next, a comparison with data-driven approaches and non-data-
driven approaches is presented, with a focus on a SWOT analysis. Lastly, specific
guidelines are introduced. The guidelines have been split into four sub-sections
with the aim of providing a comprehensive and systematic framework for
ensuring the quality and reliability of ML models and systems. Each of the three
sections focuses on a specific aspect of ML life cycle, from data gathering to
system testing, and provides guidance on best practices, testing methodologies,
and performance metrics. By following these guidelines, the handbook attempts
to provide the reader with an understanding of testing the quality and reliability
of ML applications, which is crucial in ensuring the safety and effectiveness of
these types of applications.

6.2 Business value consideration
In this section, the understanding of business value from using machine learning
is discussed, to provide the reader with guidelines on how to approach the
question whether to go for a ML solution or not.

As an initial consideration, organizations who want to optimally utilize data
engineering, especially Machine Learning, are often characterized by having the
following:

• Strategy for data acquisitions, to assure capturing maximum value.

• Some form of unified data warehouses, to allow teams of developers and
engineers to have easy access.

• Some form of development environment, with access to the data
warehouse.

• Some form of application deployment environment, allowing streaming of
data to applications, and monitoring of performance.

ECSS-E-HB-40-02A
15 November 2024

34

• Dedicated personal to work with the data, e.g. data scientist, data
manager, AI/ML product manager, machine learning engineer, etc.

NOTE There exist a lot of material already on the topic of transforming
companies and organizations towards a data/AI approach, this
section will not focus on the steps for the transformation itself, but
more be looking at some of the technical topics which should be
considered as part of the transformation process.

Second consideration for optimal usage of ML, is the data quality available for
model training.

First of all, not all data holds equal value for machine learning and AI. In other
words, if the data available does not hold the “correct” correlation to the business
objectives, no AI team will be able to create products of value. So, to avoid
inflated expectations, it is important to have an overview of available data, and a
dedicated team of data/ML engineers to analyse if a given project is possible
based on the available input and expected output, before committing to further
project developments and results. Hence, the creation of processes of gathering,
sorting, evaluating and storing data is important to be able to use it later. This
will in turn lead to the questions of data availability/quantity and quality, as
further discussed in the following sections.

However, before even getting to these questions, initially there is a certain mind-
set which organizations have to adopt:

Just because we have data, does not mean we have to build an AI/ML model.

Just because the problem can be solved with AI/ML, does not mean that it is the
best solution.

To expand a bit more on the above statements, the buzz-words of “artificial
intelligence”, “machine learning” have to be considered in the realistic of usage
versus hype. It is true that AI represents a large potential improvement,
independent of further discussions on general artificial intelligence, and with the
massive amount of data which is being generated on daily basis, it can be
assumed that there are plenty of possible applications for machine learning.
However, the problem with this sort of mind-set is that it does not consider real
business needs: rather than looking at problems and pain-points that often are
tied to real value, often organizations and businesses get too caught up in
opportunistic thinking. As indicated from the Venn diagram below, Figure: AI
versus Value, the aim can from the start be to spend most time working on
projects in the intersection, to avoid wasting time and resources. Often seen in
the industry, is that projects end up with nice proof-of-concept models, but no
further implementation, hence lacking monetary Return-Of-Investment (ROI).

That being said, seeing opportunities based on available data should not be
discouraged, however, the difference here is to realistically consider whether the
opportunities can be tied to existing business needs before starting, to ensure
there exist internal stakeholders, and therefore people who have enough interest
in the continued development of the AI project, until a product with value has
been created. If not, maybe the resources should be spent elsewhere.

Of course, in cases where the motivation for the usage of ML-based solutions is
based on a need from a space mission, the steps are more in reverse, first

ECSS-E-HB-40-02A
15 November 2024

35

exploring what mission requirements are driving a need which ML could solve,
realistically evaluating whether non-ML solution could be equally good/better,
with less effort, including consideration of data gathering and life-cycle
maintenance of the ML solution.

Figure 6-1: AI vs. Value

Once the organization has taken the above statements into account, the next step
is to create a good business/usage understanding. This process, specifically for
ML, can as a minimum follow these two steps:

• Identify valuable/costly business problems and pain points (which is not
the same as specifically ML problems and solutions).

• Evaluate the possibility of using an ML based solution for the problems
and pain points, both compared to technical feasibility, business value, and
in comparison to non-ML based solutions.

Essentially, ML is supposed to be a part of the general digital workflow and
should therefore not be treated separately from normal problem solving, but
more as another tool in the toolbox. However, as AI currently still represents a
highly specialized skill, it can be noted that finding good AI and ML projects
require both AI specialists and also specific domain experts. The domain experts
can generally identify issues that need to be solved for the organization (“what
are 3 things you wish were working better?”), and then the AI specialists can
determine the feasibility of using AI for a possible solution, based on the
availability and quality of data, the availability of simulators, or the need for
automatization using rule-based systems.

That being said, this does not mean that an AI specialist cannot find some
interesting data and come with a suggestion for a project, but the idea can be
verified by the domain experts and considered also from a business/product
point of view. But the important point is to always consider how a product could
be a driver of business value, or how it ties together with pain points for day-to-
day work.

For the feasibility of using an ML based solution, technical questions to be
answered would be to assess whether it is known how much data would be

ECSS-E-HB-40-02A
15 November 2024

36

needed, if there is a benchmark for the results (from literature or competitors),
would it be possible to create an approximation for Bayes error, e.g., compared
to human level performance or currently used systems, and what would be the
engineering timeline for such a project.

Of business-related questions it is important to clarify the profitability, e.g.,
quantify what cost can be saved or revenue can be generated by the use of the AI
solution. Will the solution substitute parts of existing products/functions, or does
it represent something new, and how does it practically affect the workflow (also
compared to people's day-to-day work routines)?

Finally, the business and technical teams will have to agree on how to measure
performance (evaluation metric). Especially talking about machine learning, the
technical team might suggest metrics such as F1 score (e.g. harmonic mean of
precision and recall), to show direct performance on the dataset for the ML
models to be tried and optimized, but from a business perspective there might
also be things that have to be considered, the speed of the algorithm might be
linked to revenue generation, or as for anomaly detection for operations, to avoid
causing additional work overhead for spacecraft operators we can have
minimum false alarms.

A self-explanatory extension of the above-mentioned process, can be seen in
Figure 6-2.

Figure 6-2: Simplified process of finding good AI projects

6.3 Data driven approach vs non-data driven approach
In general, the data driven approach refers to a development process based on
data and other hard facts, by opposition to historical points, observations subject
to various interpretations or even feelings.

In the context of non-data driven approach, a system is classically driven by a set
of rules stemming from the knowledge corpus of one or several technical fields.
These rules are analytical descriptions of the physical behaviour of the system,
stemming from axioms widely accepted by the community. Some of these rules
can be tuned to better match real observations or can be adapted to the system of
interest, but they form a strong a priori of the dependency structure of the
underlying physics.

By opposition, purely data-driven approaches are agnostic of the physical rules:
they reconstruct or approximate the physical behaviour suited to the system of
interest using only the data from the observations.

Nevertheless, intermediate approaches exist, infusing physical understanding
into data-driven models, resulting in hybrid models. For instance, convolution-
based approaches are inspired by classical image analysis; recurrent net by
higher order dynamical systems.

ECSS-E-HB-40-02A
15 November 2024

37

A data-driven approach can be quite beneficial for a project, however in general
it can be avoided when formal models (e.g. mathematical equations) exist
already. Below, in Table 6-1, we propose the use of a SWOT matrix as a to
quantify the benefits of applying a data-driven approach over a non-data-driven
approach.

The matrix can be consulted at the start of a project, in order to conclude whether
or not ML is the most suitable solving method for a problem.

Table 6-1: SWOT matrix for data-driven models in ML
STRENGTHS WEAKNESSES

Satisfactory behaviour in many cases when
confronted with unseen input conditions (2)

Enabling new applications

Performance, often close or beyond human
standards

Industrial property not easy to steal (1)

Moderate computing requirements at inference

Quick development of a proof-of-concept

Stochastic behaviour, lack of confidence
intervals

Data dependant (in particular, sensitive to
corrupted or biased data)

High computing power required to train and
validate the model from the data; accessing a
huge quantity of data can add strong
infrastructure constraints

Limited explainability for a single inference

Subcontracting the design of the model
requires to share the entire dataset

OPPORTUNITIES THREATS

Business reusability across different
applications (2)

Large community of enthusiasts of data-driven
models

Many freely available repositories of published
or work-in-progress models, available for reuse
in space applications (3)

Rising trend in hybrid solutions, mixing data-
and non-data-driven models

Availability of specialized hardware for data-
driven model generation and evaluation:
performance boost with affordable investment

Speed of evolution of dedicated AI libraries
and HW leading to maintenance cost

Reduction of the key players in AI libraries
leading to monopoly or high dependency

Overconfidence in the capacities of fully data-
driven approaches in the literature

Underestimation of the industrialization and
maintenance of data-driven models

(1) since a ML model consists of a model architecture, a set of hyper-parameters and large parameter set, it is not easy
to publish and quite inconvenient to steal. Partial information about the model is almost useless.

(2) unseen input is still required to come from the same distribution as the training data to avoid out-of-distribution
errors

(3) such published models can be reused in their entirety, or just partially (transfer learning) or selectively retrained for
a specific application.

ECSS-E-HB-40-02A
15 November 2024

38

6.4 Guidelines

6.4.1 Data Quality
Data quality is of primordial importance in ML based applications. Low quality
data can lead to inaccurate output and an improvement in the quality of the data
can enhance dramatically the efficiency of the application. It is often seen [e.g.
Jain et al. 2020] that improving the quality of the data leads to greater
improvement of the global application outputs than the fine tunings of the model
used.

This section starts by describing high level properties that help characterizing the
quality of the data. Then the data lifecycle of a typical ML project is described, as
well as the concept of operational scenarios. As data can originate from various
sources, these sources and their impact on data quality is discussed. Finally,
guidelines related to specific ML applications are given.

It can be noted that the definition of data includes all meta-data attached to it. In
case of supervised learning the quality and the consistency of the labelling is of
the greatest importance. For example, in time series, the time stamps of the data
are essential, whereas for images the knowledge of camera characteristics can be
of great help.

The type, amount and completeness of relevant metadata are as important for
the quality assessment of the data as the quality of the actual data. In the
following sections the term “data” includes all relevant meta-data that could be
attached.

It can also be noted that the data quality assessment process described in this
chapter is not a one time job, but it is advised to do continuously through the
project as there are often iteration loops in the development process.

In order to formalise the concept of quality for data, several high-level properties
are introduced in the next section, which describes in more detail how these
properties can be evaluated for specific cases. Several guidelines for data
manipulations are then also proposed.

6.4.1.1 High level properties
The DEEL white paper [DEEL] defines the following properties for data quality:

• Accuracy depends on data gathering/generation and measures the
faithfulness to the real value. It also measures the degree of ambiguity of
the representation of the information.

• Accessibility measures the effort required to access data.

• Consistency measures the deviation of values, domains, and formats
between the original dataset and a pre-processed dataset.

• Relevance and Fitness, with two-level requirements:
− The amount of accessed data used and if they are sufficient to realise

the intended function and
− the degree to which the data produced matches users’ needs.

ECSS-E-HB-40-02A
15 November 2024

39

• Timeliness measures the “time delay from data generation and
acquisition to utilization”. If required data cannot be collected in real time
or if the data need to be accessible over a very long time and are not
regularly updated, then information can be outdated or invalid.

• Traceability reflects how much both the data source and the data pipeline
are available. Activities to identify all the data pipeline components have
to be considered in order to guarantee such quality.

• Usability is a quality bound to the credibility of data, i.e. if their
correctness is regularly evaluated, and if data exist in the range of known
or acceptable values.

These properties are very generic, and it is likely difficult to directly try to assess
quality from them in a specific project. However, we might try to specify them a
bit further. Accessibility here refers to the effort required to obtain the data. It can
be the physical retrieval which can be difficult because the data are stored in a
satellite for example or the legal access to the data can be difficult because they
are proprietary. For the Relevance and Fitness, whether or not the data match the
user needs refers to content of the data and the specific application at hand. For
example, perfect image of clouds could check all other properties but are not
relevant for searching for boats in ocean or assessing the state of forests. Whether
or not the data are complete or not, whether they are a lot of missing values or
not, this would then fall into the Usability property. Considering Timeliness, it is
advised to verify obsolescence criteria if any.

In addition, the concept of quality for the data is strongly application dependent.
A good quality set does not have the same meaning for the application of a
supervised learning on images and for an unsupervised learning on time series
for example.

The documents [ESA-TECQQS-TN-022868] and [EASA-Concept] go further than
the high-level properties and propose specific verification points that can be
applied to all data regardless of the applications. Verifications that can be
considered at start before going further in the data quality assessment are:

• Legal/ethical aspects are considered

• The format of the data is suitable for the work at hand

• Possible missing or duplicated values are addressed

• Possible bias or noise in data are searched for and addressed.

• The possible need for data augmentation is analysed

• The origin of the data is known as well as the pipeline of operations
applied on them (traceability)

• A mechanism is defined to ensure data will not be corrupted during
storage and processing.

In order to further refine verifications of the data quality, the discussion can be
targeted on more specific applications as it is done in the following sections.

ECSS-E-HB-40-02A
15 November 2024

40

6.4.1.2 Data lifecycle

6.4.1.2.1 Overview
At the beginning of a project involving ML, a first assessment about data quality
is recommended to be performed. As part of this assessment, it is recommended
to perform an exploratory data analysis (EDA) not only to assess the quality
properties defined before but also to understand the underlying structure of the
data. This includes the identification of patterns and trends, anomaly and outlier
detection, and an evaluation of the data's fitness with respect to the requirements
associated with the ML model to be developed. As the types of data and the
available amount can rule out certain types of ML models, this process is advised
to be performed first in the project timeline, and in any case before any model
selection. The document [ESA-TECQQS-TN-022868] suggests a possible
milestone that concludes this review process called Data Readiness Review. In
the document, a set of verification and data properties to consider are listed as a
methodology to assess the quality of the data, such as: accessibility of data,
faithfulness and representation of data, and data context.

The development of a component using ML is usually an iterative process. Once
data are gathered and a first assessment of data quality is performed, the next
step is to prepare the data for training and testing. The general guideline for data
splitting is to create three different datasets: training datasets, validation dataset
and test dataset. The first two, training and validation datasets, will be used
during the learning (training) phase, which involves hyper-parameter tuning
and model’s weights fit. The last one, test dataset, should be used only once, to
evaluate the performance of the best candidate model. The final size of each
dataset can be determined per use case, in accordance with different factors such
as total data size available. As a reference a common percentage split goes in the
line of 80-10-10/ 70-20-10 for training-validation-test, usually in the cases where
less than 10.000 data samples are available for the training. However, when using
substantially large datasets, above 1 million data samples, splits such as 98-1-1
starts to be appropriate. Data splitting is one of the most sensitive steps in the
data lifecycle as it will impact both: the learning and evaluation phase. The
following are aspects to take into consideration when performing the data
splitting.

• Dataset representativeness: All the possible cases, that the model needs to
consider, should be properly represented in the data distribution of each
of the datasets. Note that missing scenarios from the training/validation
datasets would lead to an underperforming model . In such case, the
model could underperform to the point of providing wrong or inaccurate
answers which would question the model robustness or resilience.
Missing scenarios from the test dataset would lead to an inadequate
evaluation of the model performance. The concept of “operational
scenarios” is introduced later to help with the representativeness
assessment of the data.

• Hold-out test dataset: The test dataset can be kept unmodified during the
model development process and effort should be put to ensure there is no
data leakage from the training/validation datasets. This also means that
new data generated with techniques like data augmentation should only
be used to increase the representativeness and size of the training and

ECSS-E-HB-40-02A
15 November 2024

41

validation datasets but never be included in the test dataset. If the data sets
nevertheless need to be updated because of mission definition
consolidation, it is advised to re-assess its quality characteristics.

Figure 6-3: Data Process

The training-validation-test splitting is the preferred approach, however there
are cases when it can be difficult to apply, especially when working with small
datasets. In these cases, a data split considering only two datasets namely
training, for the learning phase, and test, for the evaluation phase, can also be
considered. However, such a split is only recommended if bias is not an
important factor for the model. Alternatively, k-fold cross validation procedure
can also be applied, especially when the dataset is too small to ensure enough
representativeness through the data splits.

If during this process, bias or data quality related problems are discovered, the
data set could be updated to address the issues and the data split process can be
initiated again afterward. In many cases, the original data set goes through a set
of transformations to be more suited to the model training (ex. categorical data
treatment). At each evolution of the data set, it is advised to repeat the quality
assessment.

It is also advised to store all data splits used during the training, validation and
testing process to ensure reproducibility of the entire process.

After the system quality has been assessed and it has been deployed, data used
by the system in its business application can be monitored on a regular basis, so
that any drift between the test set input distribution and the real application
input distribution can be detected and investigated. Even if input values remain
within the span of test set values, data drift can negatively impact the system
performance by operating the ML model more frequently in input subsets with
lower performance.

6.4.1.2.2 Operational scenarios and operational design domain

To assess the representativeness of the data, one can consider the concept of
operational scenarios and operational design domain (ODD) to ensure that all
cases that will be met in real life are met in the data.

Data

Learning process
(training)

Training dataset

Validation
dataset

Evaluation
process Test dataset

ECSS-E-HB-40-02A
15 November 2024

42

The definitions of operational scenario and operational design domain are taken
from [EASA ConceptPaper]. Operational scenarios are defined through the
definition of the associated operational designed domain, that describes the
operating limitations and conditions associated to the proposed operations for
the AI-based system. The ODD, for instance, can define the value range for the
different operating parameters or enumerate the valid values for categorical
parameters. Therefore, the representativeness of the data can be assessed by
comparing the data population against the defined ODD.

Figure 6-4 from [EASA ConceptPaper] depicts the relation between operational
scenarios and operational design domain.

Figure 6-4: Operational Design

For example, in the case of a data set made of images, it is advised to ensure that
the data set contains pictures with the range of variations, defined by the ODD
that will be met by the applications, in particular addressing worst-case scenarios
and corner cases. For instance, luminosity variations or background variations.

In the case of time dependent data like time series, the time tag of these data is of
course of primordial importance. These data are usually periodic coming from a
sampling at a given rate or a telemetry generation at a given frequency. It is
advised to search for missing data, holes in the time series and to identify a
method to deal with the issue. Depending on the specific application, a certain
precision in the time tag can be required.

It is thus advised to define operational scenarios and the associated ODD to
verify the relevance and fitness of the data and to ensure that the model is trained,
validated and tested on a data population that is representative of the real data
population.

In addition, the relevance analysis can be supported by matching the data sources
with the system engineering models that can be provided using the MBSE
methodologies and tools.

ECSS-E-HB-40-02A
15 November 2024

43

The concept of operational scenarios and ODD is also relevant to ensure the
correctness of the model interfaces or to set the context for the model testing (see
6.4.3 “Machine Learning Model Testing”).

6.4.1.3 Data sources

6.4.1.3.1 Overview
Before entering the various possible applications, the data sources are discussed.
The types of data identified are:

• real data

• simulation/synthetic data

• augmentation data

• surrogate data

• lab data.

Although all properties defined in the previous sections for data can be applied
to the various types of data, their importance vary. For example,
representativeness is not so much an issue for real data, but it is for the other
types. On the other hand, completeness and labelling are typical challenges for
real data but are rarely a problem for the other types.

6.4.1.3.2 Real data

Data can be gathered by sensors, camera or recorders of any kind, in this case,
these are real data. The representativeness of this type of data is not questioned
but the fitness of these data for the application at hand can be questioned; for
example, pictures of clouds are of no use in the training of a model trying to
recognise boats in satellite images.

Real data comes with important metadata such as the date, the type of sensors,
etc. These metadata can be used to assess quality through the high-level
properties listed above. In particular, the accuracy and usability by verifying if
the data were gathered by a properly functioning sensor and if the data received
were recorded in the expected range of data acquisition for this sensor. For
timeliness, the presence of a time tag is essential.

6.4.1.3.3 Simulation and Synthetic data

Simulated data are generated by a highly representative complex simulation or
a Digital Twin. For example, the telemetry generated by an on-board software
running on an operational simulator. Such simulators run the actual Flight
Software usually on a processor emulator and simulate all satellite equipment's
as well as the space environment (Sun and Moon positions, forces and torques
applied on the satellite etc...). When using such high-fidelity simulators,
differences between these data and real data are generally very limited, albeit
hard to quantify. They still could cause bias in the training process; it is thus
important to assess their representativeness.

Other data, not specifically generated by a dedicated simulation, called synthetic
data, can also be used. For example, it can be images generated by a 3D modelling
tool that allows to finely reproduce the expected image that will be seen from a

ECSS-E-HB-40-02A
15 November 2024

44

camera. It could also be data generated by a functional model of a given sensor.
The difficulty is assessing their representativeness is the same as for simulation
data.

For this type of data, assessing the accuracy is the key. There are rarely missing
data problems, and more data can always be generated. If measurement data is
available, the measurement data can be used to calibrate the simulation model.

In space application, real data are rarely accessible and when they are, there is
often missing data. This means that in practice simulation and synthetic data will
often be used.

6.4.1.3.4 Augmentation data

Synthetic data that are based on real data and used to augment the data set are
another type of data. They are closer to real data and have less representativeness
problem. However, they can still introduce bias in the ML training and should
be generated with caution.

The accuracy and consistency are the properties on which to focus for this type
of data.

6.4.1.3.5 Surrogate data

In the case where data are proprietary and cannot be used directly or in order to
ensure confidentiality, it is good practice to anonymise data or modify in a way
that does not modify the underlying information we want to learn from the data.
In such case, data are called surrogate.

6.4.1.3.6 Lab data

Lab data are somewhat in between real data and simulated data, they are data
generated using the real equipment but, in a lab and not in space. The main
problem with this type of data is their amount as they are time consuming to
generate. Furthermore, their usability and relevance and fitness need to be
assessed. Although they are generated by real equipment, they are not in the
space environment. This implies that some effects like change in temperature or
luminosity can induce a lack of representativeness on the generated data.

In practice, real data are rarely available, either because the mission is not yet
launched or because the data are sensitive and not shared. It is thus often
required to mix these various types of data to develop the intended application

6.4.1.4 Specific applications
6.4.1.4.1 Supervised learning

Supervised learning represents the training of machine learning models using
labelled data, providing specific examples of what the model should learn. In the
case of supervised learning, the quality of the labelling is essential. It is advised
to have a close involvement with experts of the field to make sure to build an
understanding of the data at hand. Giving precise rules for labelling can also help
reaching an acceptable consistency in the labelling. Standardization of the
labelling procedure is key, especially whenever labelling is performed by
humans.

Especially in the case of citizen science (i.e. crowd labelling) it is advised to check
the labelling in the assessment of the quality of the data.

ECSS-E-HB-40-02A
15 November 2024

45

6.4.1.4.2 Unsupervised Learning

In the case of unsupervised learning, labelling is not relevant. For example, this
type of technique can be used to learn a generic behaviours (e.g. Nominal
behaviour) such that later any different behaviours (e.g. Faulty behaviour) can
be identified. In that case, the data set is expected to represent the targeted
behaviour in all its variations otherwise, a misclassification can occur. This
example falls into the search for bias in the data.

6.4.1.4.3 Reinforcement learning

Reinforcement learning is a type of machine learning that involves training an
agent to make decisions in an environment to maximize a reward signal. The
agent learns through trial and error, by taking actions in the environment and
receiving feedback in the form of rewards or penalties. The goal of reinforcement
learning is to develop an optimal model, which contain is a set of rules that the
agent uses to select actions based on the current state of the environment, to
maximize a reward scheme.

 In reinforcement learning (RL), there are two primary learning approaches:
model-based and model-free learning, [neptune.ai]. Both approaches can utilize
environments built from real data or simulations, but they differ in how they use
this information.

Model-based learning involves constructing a detailed model of the
environment, which is then used to simulate future states and rewards. This
allows the agent to engage in extensive planning and predictive decision-making.
The model provides the flexibility to explore different scenarios without the need
for actual interactions, enhancing sample efficiency. However, the success of this
method is contingent upon the fidelity of the model to the real environment, and
it requires accurate and representative environmental data or simulations.

Model-free learning, on the other hand, does not involve building a model of the
environment. Instead, it learns a policy directly through trial-and-error based on
real or simulated experiences, relying entirely on observed state transitions and
rewards. This method is generally simpler and more robust, as it is not
susceptible to inaccuracies in a model. However, it usually requires a larger
volume of interactions to develop an optimal policy due to its direct reliance on
data for learning.

Both simulated and real data environments have their applications in either
approach. Simulated environments are particularly valuable in situations where
real interactions are too costly, risky, or impractical. They allow both model-
based and model-free methods to operate under controlled, repeatable
conditions for training. Real data environments offer the advantage of training
and testing agents in real-world conditions, providing them with realistic
challenges and variabilities that are difficult to simulate accurately.

Choosing between model-based and model-free learning, and deciding whether
to use simulated or real data, depends on several factors, including the specific
goals of the application, the availability and quality of data, the computational
resources at hand, and the acceptable trade-offs between accuracy, efficiency,
and robustness. For the topic of verification and validation of data vs simulation,
please see section 6.4.1.2.

ECSS-E-HB-40-02A
15 November 2024

46

6.4.1.4.4 On Board training

On Board training comes with additional challenges regarding data quality. For
example, in the case of supervised learning how to ensure proper labelling of
data? In the case of unsupervised learning, how to ensure the faithfulness of the
data (for example data from a broken sensor could introduce a bias)?

Since on board training is unlikely to be used in space application in the close
future, it is left outside the scope of this document.

Possible solutions could be to compute data health checks on board or download
samples of data used for re-training to the ground on a regular basis and to
perform a data quality review on these data. In such case, the guidelines listed
above apply directly.

6.4.2 Model development process

6.4.2.1 Overview
Once the data set is selected, and its quality has been assessed, the ML model to
train is chosen. This section describes the best practice to select a model. After a
brief discussion on frameworks, a list of model characteristics is given. Then
model selection itself is discussed. Finally, common issues that can be
encountered when working with ML and a possible solution to overcome them
are given.

The overall workflow in the model development process is the following:

• As mentioned already in the section “Data lifecycle” the data is split into
different datasets.

• The training process begins, in which the model is fit. The training process
will also involve the tuning of the different training hyper-parameters,
such as: optimizer algorithms, learning rate, or epochs. During this phase
different models can be trained in parallel, helping to find the best
candidate (see 6.4.2.4 Model Selection).

• Once the performance of a model in the training phase is found adequate
the next step would be to evaluate it against the test dataset. The
evaluation of the model against the hold-out dataset will give an indication
of its generalization capabilities.

After either the training or the validation part, it is possible that problems with
the data or the selected model are encountered. In case of a data issue, it is
advised to update or correct the data set and re-assess its quality. Then the model
selection process can be repeated. Alternatively, multiple iterations on the model
selection or design (optimisation) might be needed to meet specific performance
(e.g. accuracy) or inference requirements (e.g. speed, power, etc.).

It is important to mention that the development process of most machine learning
algorithms is a stochastic process. For instance, stochastics optimization
algorithms such as stochastic gradient descent are used to find the optima during
the training process. For this reason, the outcome of the training process can be
different each time, even if the same training process is followed using the same
data.

ECSS-E-HB-40-02A
15 November 2024

47

It can also be mentioned that despite that the aim is to create the best possible
model, there is a theoretical upper limit of performance that the model can
achieve, also known as Bayes Optimal Error, see Figure 6-5 as it is practical
impossible to build a perfect system (containing all information).

However, through reduction of uncertainty of the model or data, e.g., based on
error-analysis or adding use-case-specific knowledge, it is possible to get closer
to the Bayes Optimal, which is an important part of training ML models if high
performance is demanded (related to performance need vs. effort to achieve such
performance), but is especially important for ML models if intended to be used
for safety hazardous systems. Hence, a lot of ongoing research efforts are going
towards such reduction: from a critical consideration assessment of the data
quality (See section 6.4.1 “Data Quality”) to the application of specific tests to
reduce model uncertainty (See section 6.4.3 “Machine Learning Model Testing”).

Figure 6-5: [Ng et al.] Example of theoretical upper limit (Bayes Optimal Error)

Of course, the Bayes Optimal Error is more of a theoretical concept, however, by
defining a proxy for this error it is possible to use Bayes optimal error as a
benchmark to evaluate the performance of a ML model and identify areas for
improvement. Examples of such proxies could be a standard software solution
or a group of experts, which you can test on the same tasks as the ML model and
compare performance. This is especially interesting within deep learning where
with the right amount of quality data and models for some use-cases the
performance can get better than human abilities, for example image recognition.
By comparing the model’s performance to the proxy, it can help on to approach
further minimization of bias and variance, beyond what can be seen from
training on an isolated dataset, and provide a more accurate understanding of
how the ML model is likely to perform in the real world.

To use an approximate Bayes optimal error the following steps are
recommended:

• Train the model following the guidelines already defined in previous
sections (See section 6.4.2 “Model development process”).

• Once the ML model has been trained, find a proxy which can be used as
the approximate Bayes optimal error, to be functioning as benchmark for
performance evaluate of the model. This could involve consulting with

ECSS-E-HB-40-02A
15 November 2024

48

domain experts to measure their performance of the task, or using other
software or models that are known to perform well on similar tasks.

• Compare the performance of the trained ML model to that of the
approximate Bayes optimal error based on the test dataset. If the model's
performance is significantly worse than the Bayes optimal error, this could
indicate that there are underlying issues with the model that need to be
addressed. On the other hand, if the model's performance is close to the
Bayes optimal error, this suggests that the model is performing well and
can be ready for deployment.

• Iterate and refine the ML model as necessary. If the model is not
performing as well as expected, it might need more good quality data, or
the model type might not be good enough in capturing the complexity of
the data and it would be worth trying a different type of model altogether.

6.4.2.2 Framework
A wide list of frameworks for the development of ML applications are available
like TensorFlow, PyTorch, Scikit-learn, etc. No framework is identified as
preferred for the development process and choosing one over other answer to
different factors such as: previous experience, functionality provided or
compatibility. However, in the case of cat C or B, it is advised to consider the
qualification need of the inference engine required to execute the model or to
consider compensating measures.

6.4.2.3 Model quality characteristics
The following characteristics are associated with machine learning model
quality. These definitions are taken from [ESA-TECQQS-TN-022868] which
adapts the concepts from general software quality characteristics to machine
learning).

• Functionality: The capability of the ML model to provide functions which
meet stated and implied needs when it is being used under specified
conditions.

• Reliability: The capability of an ML-based component to maintain a
specified level of performance when used under specified conditions.

• Robustness: Robustness has two different definitions:
− Local robustness: The extent to which the system provides

equivalent responses for similar inputs.
− Global robustness: Ability of the ML component to perform the

intended function in the presence of abnormal or unknown inputs.

• Resilience: The ability for a system to continue to operate while an error
or a fault has occurred.

• Explainability: The ease with which a human can comprehend an ML
model, its data, and its results and outputs. This characteristic is especially
noteworthy for the validation, debugging, and program approval of ML
models, as well as for any system that involve a Human in the Loop (for
details and delineation from interpretability see 6.4.2.4.2).

ECSS-E-HB-40-02A
15 November 2024

49

These quality characteristics help to build a proper quality reference framework
to support different decisions during the machine learning development life
cycle such as the model selection and/or model testing phases. It is important to
mention that some of these characteristics can already be initially evaluated
during the model evaluation phase while other need to be assessed during the
model testing phase (see section 6.4.3 “Machine Learning Model Testing”).

Table 6-2 describes to which phase these characteristics can be initially
associated. This distinction assumes that in the model selection only the
performance metrics associated with the test dataset are evaluated while in the
model testing other techniques are applied.

Table 6-2: Phases and characteristics
Characteristics Model selection Model testing Rationale
Functionality ✔ ✔ Functionality can initially be evaluated

during model selection using the
performance evaluation metric of the
model on the test data set.

Reliability ✔ Reliability is better evaluated during the
test phase. See section 6.4.3 “Machine
Learning Model Testing”.

Robustness ✔ ✔ Robustness can be initially evaluated by
augmenting the training dataset with
noise. Other techniques like OOD
testing or adversarial testing can be
applied later.

Resilience: ✔ Resilience can be better tested on an
already trained model.

Interpretability/
Explainability

✔ ✔ Model interpretability can already be
assessed at model selection as it is an
intrinsic characteristic of each model.
Some XAI method can also be evaluated
during model selection as they can be
included in the training phase, like
attention mechanisms for instance.
Other XAI method can be better
evaluated during the testing phase.

Finally, it is important to understand the concept of stochasticity at model level.
In the previous section the stochastic aspect of the training process was
introduced, in this sense, machine learning applications are also usually referred
as being stochastic. The reason is twofold, firstly some machine learning model,
such as probabilistic models, are inherently stochastics. Secondly, there are
multiple sources of uncertainty associated with machine learning applications,
such as aleatoric or epistemic uncertainty. Note that, most machine learning
models, once they are trained and their weight are fixed are not stochastic and
have a deterministic behaviour, always giving the same output for the same
inputs. However, even in this case, they are generally referred as being
stochastics because of the level of uncertainty associated with the output when
new inputs are processed.

ECSS-E-HB-40-02A
15 November 2024

50

6.4.2.4 Model selection

6.4.2.4.1 Overview
Given the ease with which machine learning models can be applied using
popular frameworks it is important to distinguish between experimentation for
the sake of learning and model training in projects. In the latter case it is advisable
to refer back to the section 6.2 “Business value consideration“ in order to test
whether the problem to be solved is adequately defined, including an integration
of model metrics with the expected business impact. A clear understanding of
the project’s goal will facilitate with model selection: requirements for the models
can include, aside from technical aspects such as required classification
thresholds or challenges related to the data, a consideration of relevant
constraints such as

• Need for explainability (See section 6.4.2.4.2 “Machine Learning
Interpretability and Explainability”)

• Availability of resources for training and at inference time to meet the
target performance (speed, latency, etc.).

• Sensitivity of data with respect to data privacy and confidentiality)

• Amount of data available

• Need for formal mathematical validation

• Anticipate and mitigate possible findings from post-training optimization

Awareness of constraints will support a better definition of the solution space
and likely remove potential model families from further consideration. Good
practices regarding project definition prior to model fitting are available in the
literature on design of experiments.

Generically, it is advised to define requirements that need to be fulfilled by the
model. The model selection can then be done following these requirements. It is
expected for the process to be iterative as it is likely that several models are
selected at first. Following several tests and performance evaluation, the list of
possible models then shrinks towards the best one for the application at hand.

It is advised to always start by testing the simplest model that can satisfy the
needs considering the available data quality and quantity. This initial exploratory
analysis can also include, when possible, given the requirements, non-ML-
solution. The attempt of going directly to a more complex model can add
complexity to the solution for the wrong reasons. It is in the case where simple
models cannot learn the underlying pattern or show large bias in their
predictions that the use of more complex models is justified. For deep learning
models it is advised to, if possible, start with an architecture found in the
literature for which often implementations are available.

However, as the model complexity, the chances of a model showing large
variance in the predictions or signs of overfitting the training data increase. For
this reason, it is advised to always consider the bias and the variance of a given
model and to minimise them as much as possible. The trade-off between variance
and bias is a key aspect to consider in the model selection as high variance is
associated with overfitting while high bias is associated with underfitting We

ECSS-E-HB-40-02A
15 November 2024

51

mean by variance in this context, the variation of a given ML model when
assessed on different data sub-sets. Data bias is defined further down in this
document.

Depending on the application and its criticality, it might be useful to consider in
the selection process the possibility to formally compute boundaries on the
performance of the model. Such proof can be obtained through statistical
learning theory (SLT) for example. However, such mathematical boundaries on
the performance of an ML model cannot be computed for all types of models.

It is advised to favour explainability in the model selection when possible. In case
of errors, this will allow a better understanding of the problem. However,
sometimes an application does not gain from explainability, and performances
could be favoured.

In order to compare the performance of a model, it is advised to use benchmark
datasets whether public or internal datasets, whose adequacy is confirmed by
specialists of ML and technical domains. If the dataset is generic and not related
to the application at hand, such performance evaluation can be limited to first-
order trade-off. This allows to rapidly compare performances of various types of
models. However, a careful selection of the benchmark is important as the
benchmark data are expected to represent as much as possible the complexity of
the data at hand.

An important habit is to keep track of all steps leading to model selection such as
the various model tested, the framework (its exact version), the data set etc. It is
important to justify the model choice and to be able to reproduce the selection
process.

6.4.2.4.2 Machine Learning Interpretability and Explainability
In previous sections the need for explainability was identified as a key driver in
the model selection process. Explainability, and the closely related concept of
interpretability, are fundamental concepts in machine learning and therefore it is
important to understand their meaning and impact in the machine learning life
cycle.

Explainable Machine Learning is a set of methods/tools that help to understand
predictions made by the ML model. In the field of machine learning the term
explainability is commonly used interchangeably with “interpretability”
however, although related, they have different meanings. In the context of the
handbook the meaning of “interpretability” is borrowed from [RD Miller2017]
and is defined as “the degree to which a human can understand the cause of a
decision", It is thus a property of the algorithm. In contrast, explainability, refers
to a set of mechanisms aimed at making algorithms that have intrinsically low
interpretability more understandable. T Explainability methods are especially
useful when applied to algorithms with low degree of interpretability. From a
practical point of view, there are algorithms that have a better degree of
interpretability, like linear regression or decisions trees, than others, like NNs: is
for the latter group of algorithms where explainability methods are most
valuable.

The need for interpretable or explainable ML models becomes more obvious in
higher-risk environments, where a mistake could result in serious consequences;

ECSS-E-HB-40-02A
15 November 2024

52

for certain problems or tasks it is not enough to get the prediction (the what), but
the model must also explain how it came to the prediction (the why), because a
correct prediction only partially solves the original problem. Other reasons why
interpretability and explainability are important for ML applications are found
in detecting bias and ensuring fairness, increase social
acceptance/trustworthiness, debugging and auditing, ensuring reliability or
robustness and checking causality.

At the same time, ML gets a bad reputation when it negatively impacts business
profits. This often happens because of disconnection between technical team and
the business team. Explainability has the potential to connect the technical people
and non-technical people, improving knowledge exchange, and giving all
stakeholders a better understanding of product requirements and limitations.

6.4.2.4.2.1. Taxonomy

Different taxonomies can be found for machine learning interpretability and
explainability methods, and it is a very active field of research, which means the
taxonomy presented here should not be seen as exhaustive. In Figure 6-6, Figure
6-7 and Figure 6-8 one high level classification is depicted starting with
intrinsically interpretable models and moving to explainability methods to apply
to less interpretable algorithms. This taxonomy is taken from [INT-ML] and for
more information on the specific methods it is advice to go to the original source
of the reference.

Intrinsically interpretable models

Refers to ML models algorithms that
are considered interpretable due to

their simple structure.

Linear regression

Logistic regression

Decision trees

RuleFit

Naïve Bayes

k-nearest neighbours

Figure 6-6: Examples of classical ML techniques

ECSS-E-HB-40-02A
15 November 2024

53

Figure 6-7: Taxonomy of deep learning techniques from [Sarker 2021]

Post-hoc interpretation methods

Refers to the application of explainability methods after model training.
Note: They can also be applied to intrinsically interpretable models.

Global Model-Agnostic methods

Describe the average behaviour of
an ML model

Local Model-Agnostic

Explain individual predictions

Neural Network Interpretation

Partial dependence plot Individual conditional expectation
curves

Learned Features:
- Feature Visualisation
- Network Dissection

Accumulated local effect plots Local surrogate models (LIME) Pixel Attribution (Saliency Maps)

Feature interaction (H-statistic) Scoped rules (anchors) Concepts

Functional decomposition Counterfactual explanations Counterfactual explanations

Permutation feature importance Shapley values Influential instances

Global surrogate models(*) SHAP

(*) If a coarser global model still makes sense for expert review.

Figure 6-8: Post-hoc interpretation methods

ECSS-E-HB-40-02A
15 November 2024

54

Figure 6-6, Figure 6-7 and Figure 6-8 describe methods to be applied post-hoc
that is, once the model has been trained. There are also other methods that can
be applied during training, like attention mechanism.

As a practical guideline one can start, whenever possible given the specific
application, with algorithms that are less complex but with a higher degree of
interpretability and then move to more complex algorithms when the
performance is deemed not sufficient, understanding that more complex
algorithms can achieve better performance but at the cost of interpretability. This
trade-off between complexity, interpretability and performance needs to be done
carefully, per application, avoiding the use of more complicated algorithms when
the delta increase in performance does not justify the increase in complexity and
the decrease in interpretability.

It is also important to understand that the different explainability methods
provide only a partial understanding of the algorithm’s behaviour and are
subject to its own limitations, therefore, any conclusion derived from its
application needs to be taken carefully. To give some context in [STOP-BB] some
general limitations and problems associated to different explainability methods
are described.

6.4.2.5 Common issues with Machine Learning model
training

6.4.2.5.1 Overview
This section aims to highlight common issues encountered in the training of ML
models and provides references for further information on how to avoid these
pitfalls. An awareness of common issues is deemed important due to the wide-
spread popularity and ease of use of modern machine learning framework.
Conversely, the section does not aim to be exhaustive and should not be regarded
as complete list of all potential errors that can be introduced into model training.
For additional information please refer to [Lones 2021], [Ng et al.], [Kapoor et al.
2022], [Vandewiele et al. 2022].

6.4.2.5.2 Lack of normalization

Optimization methods used in machine learning often assume normalized inputs
and often do not perform well on un-normalized data. Another common pitfall
is the use of different normalization methods or normalization parameters
between training and serving. For instance, with the Min-Max normalization, the
bounds computed with the training set are used identically for the test or serving
data, and not recomputed on the test set.

6.4.2.5.3 Data leakage

In supervised learning, contamination of a model with information that is not
available in production can seriously impact the model’s ability to generalize and
gravely distort reported results. Leakage can occur column- or row-wise. While
splitting of data into multiple subsets is common practice, data leakage is still a
frequent issue. Complexity in the dataset (such as hierarchical or time-series
structure of training data) can be considered when testing for leakage as well as
the specific order of steps in the machine learning pipeline (e.g. leakage due to

ECSS-E-HB-40-02A
15 November 2024

55

over-sampling prior to splitting). Data leakage can occur in non-obvious
scenarios where test-set information is used implicitly during training and is thus
a wide-spread issue. Common symptoms include suspiciously good
performance metrics combined with low performance in productive systems
(note that similar symptoms can be caused by other issues such as not
compensating for missing input data).

6.4.2.5.4 Lack of familiarity with data

The ease with which models can be trained could tempt users to neglect
exploratory analysis of the dataset. This can lead to issues such as failure to detect
important edge cases, failure to adequately consider imbalanced datasets, failure
to detect incorrectly labelled data or incomplete coverage of input domain with
respect to space application and/or environment.

6.4.2.5.5 Data mismatch
When training and validation (or test) data come from different distributions this
can lead to varying performance per dataset which could be incorrectly
attributed to a high variance issue. Different data distributions can arise in
various circumstances such as training data being simulated or sensors used for
model training and validation differ from sensors used in production.

6.4.2.5.6 Data drift

This issue is very similar to the previous point but often encountered in online
systems where shifts in data generating distribution are frequent. Symptoms
include degrading performance of the live system over time.

6.4.2.5.7 Incorrect application of model metrics
A wide range of metrics exist, and their differences may not always be clear to
practitioners. Care should be taken to select a suitable metric, one that is unbiased
and appropriate for the relevant dataset, model, and application.

It is recommended to conduct exploratory data analysis to identify the most
suitable metric. For example, accuracy might not be appropriate for a
classification problem if the dataset is imbalanced. It is also recommended to
consider the model and end application to find a metric that meets the specific
requirements. For instance, if the goal is to minimize false positives in a
classification problem, focus on precision. If the aim is to minimize false
negatives, focus on recall. These examples illustrate how the choice of metric can
impact model performance evaluation, but they are not intended to be an
exhaustive analysis. For more information, you can refer to specific
documentation on this topic.

6.4.2.5.8 Time traveling data
A special case which is recommended to avoid when dealing with time series
data, is to mix-up the order which the data is represented when training a model.
In machine learning applications, the use of "time-traveling" data, or data that is
out of sequence or does not respect the order in which it was collected, is
generally not allowed. This is because the order in which data is collected often
corresponds to the order in which events occurred, and ignoring this order can
result in inaccurate or unreliable models.

ECSS-E-HB-40-02A
15 November 2024

56

To ensure that the order of the data is respected, time stamps on the data can be
taken into account when training machine learning models. This includes
information about the past that might have been received later.

The time stamps allow the data to be properly sequenced and can be used to
ensure that the models are trained on the correct data. For example, if a model is
being trained to predict future events based on past data, it is important that the
past data are properly ordered based on the time stamps to ensure accurate
predictions.

It is important to note that violating the time ordering of data can also result in
"data leakage," where information from the future is inadvertently used to make
predictions about the past. This can lead to overly optimistic performance
estimates and inaccurate models.

6.4.2.5.9 Data bias
Data bias refers to the presence of errors in the dataset, such as underrepresented
data, overrepresented data, or inaccurate data. These errors can lead to incorrect,
unfair, or inaccurate results. There are different types of data bias, including
confirmation bias, sampling bias, selection bias, or cultural bias, to name a few.

For instance, when collecting data, it may not always be possible to obtain an
equal number of training examples for each class of the input domain. Some
classes may be underrepresented or missing entirely, leading to selection bias.
Training data that does not sufficiently cover the input domain can result in out-
of-distribution cases in production. Therefore, the ML model learns to interpolate
the area of the provided input domain but may fail to cover the complete input
distribution. This type of bias can be addressed by means of data augmentation
or by gathering new data to increase the representation of the underrepresented
class.

Performing an exploratory data analysis, as mentioned in section 6.4.2.5.4 can
help to identify the presence of bias in the dataset.

6.4.3 Machine Learning Model Testing

6.4.3.1 Model Testing

6.4.3.1.1 Overview

Performance metrics can be used as the main performance indicators during the
model development phase. Performance metrics against the training and
validation datasets help us to identify the best candidate model. The same
performance metrics against the test dataset allow us to evaluate the behaviour
of the model under unseen data.

Model testing aims at improving the model trustworthiness, by applying
different methods, to complement the model evaluation based on performance
metrics. Most of these testing methods can be applied to an already trained model
while others can be included in the training phase already.

ECSS-E-HB-40-02A
15 November 2024

57

The structure of the chapter is the following. First the concepts of operational
scenario and operational design domain (ODD) are introduced in the context of
model testing. Then different methods to test the model are presented, with
respect to the ODD and the model quality characteristics introduced before in
section 6.4.2.3 “Model quality characteristics”. Lastly, Explainability is discussed
in one dedicated section.

6.4.3.1.2 Testing context

The concept of operational scenario and operational design domain, which were
already introduced in the previous section, setting the context of data
representativeness, can also help to set the context for the model testing process.
Requirements allocated to the AI/ML model can be derived from the operational
scenarios and operational design domain definition. The following are some of
these requirements relevant to the model testing process that are taken from the
[EASA paper].

• functional requirements allocated to the AI/ML model

• safety requirement allocated to the AI/ML model

• operational requirements allocated to the AI/ML model, including ODD.

• non-functional requirements allocated to AI/ML model (e.g. performance,
scalability, reliability, resilience, etc.)

• interface requirements

These requirements can be used to define the context and the scope of the model
testing.

6.4.3.1.3 Testing methods

6.4.3.1.3.1. Specific examples testing

Requirements allocated to the AI/ML model can define specific outcomes and
performance thresholds on a subset of specific examples under specific
operational scenarios. The model can therefore be tested on a test set of these
specific examples or corner cases to ensure compliance.

This testing approach follows the concept of slicing testing. In slicing testing a
subpopulation of interest it is identified and a subset from the test dataset is
created. If the test dataset was not representative enough for this subpopulation
new data can be obtained to improve the representativeness of the test subset.
Then, the model is tested on this new subset and performance metrics are
obtained and evaluated.

Different criteria, whether technical or business-related, can be used to define the
subpopulation of interest, and eventually it depends on the application at hand.
Below two main criteria are initially identified:

• Input's importance: Underperforming conditions associated with specific
inputs can have a bigger impact on the overall performance of the AI/ML
model. A subset can be created, containing only these specific inputs, and
performance metrics obtained and evaluated. For instance, a multi-image
classifier model is trained to detect different types of hazards for a collision
avoidance system. Different risk levels, depending on the associated risk

ECSS-E-HB-40-02A
15 November 2024

58

to the identified hazard, are defined. A subset containing only inputs
identified as high-risk can be created to evaluate the performance of the
model on those specifics' critical inputs.

• Specific ranges of the ODD: A subpopulation, from the original operating
parameter's range defined in the ODD, can be identified as more critical or
problematic. A subset can be created, containing only input that meet these
specific operating parameter’ range, and performance metrics obtained
and evaluated. For instance, a model is trained to perform image
classification under a certain range of luminosity conditions. In order to
better evaluate the performance of the model under low range of
luminosity conditions a subset can be created to only contain images from
the lower luminosity spectrum of the operational range.

As a result of this testing approach, if underperforming situations are identified,
actions can be taken to improve the model performance. For instance, when
possible, new training data can be obtained, following the distribution of the
identified underperforming examples to retrain the model.

6.4.3.1.3.2. Neural Network coverage testing

In a similar vein to branch and decision coverage in traditional software, neural
networks can be subjected to coverage metrics, offering a proxy for the
effectiveness of the test dataset. This can lead to the automated generation of test
cases: new inputs transformed from the original data (in the case of image data,
either through pixel-value transformations or affine transformations) with the
aim to optimize some test adequacy criteria. The metrics used to identify
neuronal coverage is based on the idea of measuring the proportion of neurons
activated in a neural network given a test set as input. Below is a summary of
tools and techniques that provide ways to perform neuronal coverage:

• DeepXplore offers an automated white-box testing approach for deep
learning systems that provides neuronal coverage metric for a neural
network that uses the ReLU as its activation functions. In this approach, a
test suite is said to achieve full coverage if for every hidden unit in the
neural network, there is some input for which that hidden unit has a
positive value (the neuron has been “activated”) (Pei, 2017).

• Tensorfuzz uses coverage-guided fuzzing, an existing technique from
traditional software engineering, and adapts it to be applicable to testing
neural networks. (Odena, 2018). TensorFuzz is particularly useful in its
ability to surface disagreements between models and their quantized
versions.

• DeepEvolution builds upon neuronal coverage and offers a search-based
testing approach with local neurons coverage (new neurons covered by
the mutated test input that have not been covered by its corresponding
original test input) and global neurons coverage (new neurons covered by
the mutated test input that have not been covered by all the previous test
inputs, including both genuine and synthetic test inputs) as metrics
(Networks, 2019). Deep-Evolution proved better suited at detecting
disagreements between models and their quantized versions than
TensorFuzz.

ECSS-E-HB-40-02A
15 November 2024

59

6.4.3.1.3.3. Out of distribution testing

The model can be tested on a test set that contains Out-of-Distribution (OOD)
examples to see how the model behaves on unpredictable data. OOD examples
are those that are drawn from a different distribution than the training dataset.
This testing approach is also relevant at system level. When done at system level
this approach allows to see if any back-up systems implemented (non-ML safety
nets, rule-based encapsulations of the ML systems) correctly deal with known-
unknowns (see 5.1.4.2.2 for more details). This level of testing can be automated
through scripts; the scripts will have to be validated and verified.

6.4.3.1.3.4. Augmented data set - Noise

Noise can be added to the training data set to improve generalization of the
model under its presence. The type of noise to be added depends on the specific
application. If the expected noise during operations can be modelled, then the
data can be augmented following that model. This is generally the case for
payload data, for which several noise models are available throughout the
development process (committed, expected, worst-case). Considering ageing
effects on the expected noise (model) can also be considered in the testing
strategy.

In the case where the operating noise is unknown other types of noise can be
used, depending on the type of inputs, such as: Gaussian noise, salt and pepper
noise or speckle noise.

6.4.3.1.3.5. Adversarial testing

Different taxonomies on adversarial attacks exits, at higher level they can be
classified as: white-box attacks, grey-box attacks, or black-box attacks, depending
on the degree of knowledge the attacker has on the system. At lower level they
can be classified in poisoning attacks, evasion attacks or model extraction attacks.
One common characteristic of these attacks is that they try to force mistakes or
misbehaviour on the model's prediction by using altered inputs called
adversarial examples. Adversarial testing consists of evaluating the vulnerability
of the model, by feeding it adversarial examples, and evaluating the prediction.
If the model is found vulnerable to adversarial attack different mitigation
methods can be applied, such as: adversarial training, input regularization,
gradient masking, defensive distillation, defensive dropout, or by providing a
mechanism that can detect and clean deceptive inputs. It is out of the scope of
this document to provide a detail description on the different type of attacks,
adversarial testing methods and mitigation techniques. However, it is important
to mention that adversarial testing can be considered per application, evaluating
the feasibility of each attack and taking measures to mitigate their impact when
vulnerabilities are found in the system.

6.4.3.1.3.6. Formal Methods and Mathematical Verification

Formal methods refer to mathematically-based techniques that are used to
analyse certain properties of a model that can be proven mathematically in a
formal manner. Examples of formal methods include abstract interpretation,
property checking, symbolic execution and other. Different formal methods can

ECSS-E-HB-40-02A
15 November 2024

60

be applied for ML models to analyse local robustness, robustness to adversarial
attacks, model stability, model execution timing.

This approach was shortly discussed earlier in the context of confidence, as this
method is to mathematically prove that the ML model, based on type of
algorithm and/or the data solution space covered by the model, is enough to
exclude certain fault modes from happening. When achievable, this type of
formal mathematical verification avoids the architectural changes of additional
software/hardware for monitoring and limiting the functionalities. Formal
verification requires a strict and extensive method:

• To formalize the properties to secure,

• To identify the most suitable technique with regards to the complexity
of the problem,

• To use tools with good maturity

• To properly handle scalability of complex systems, despite the state
space explosion problem.

A trade-off between formal methods and safety cages options is recommended
to weight the pros and cons of both paths, as neither of them is simpler by default.

This topic is considered ongoing research within the field of machine learning;
not only does it requires strong algebra background to apply, but verification
currently becomes difficult as soon as the model is non-trivial / academic, e.g.
even for a shallow neural network type models with elementary layers. Besides,
mathematical doesn’t mean analytical: some mathematical verification may
require much computational power, even higher than training the model. It
equally benefits from the efficiency of GPUs for this task. Therefore, it is generally
recommended to use these methods with care, until they are more widespread,
and complement them with sampling techniques to confirm the conclusion.

Formal methods in machine learning is an active research area and can be
evaluated and applied on cases-by-case basis depending on relevance for a
specific project. For example, usually formal methods may require a lot of
computational resources and may not be practical to apply for large machine
learning models. Examples of research studies on ML formal methods include
[Gehr et al. 2018] [Singh et al. 2019] [Cheng et al. 2017].

To keep-up with on-going practical advances in this field, the reader will find
interesting information in the proceedings of the Workshops on Formal
Verification of Machine Learning (WFVML). Research has been especially active
to cover 3 types of verifications:

a. Bounding of the output space: given an allowed hyperspace χ included
into the possible input space of the model f, compute a minimized output
hyperspace encompassing all the possible values of f(χ); the verification is
achieved if this bounding area remains inside the safe zone of the system.
See also illustration in Figure 6-9.

ECSS-E-HB-40-02A
15 November 2024

61

Figure 6-9: ML Bounding Region

b. Robustness to input variation: by extension of the previous case, for a ML
model driving the system as a validated classifier, the output classification
is not degraded if any of the inputs of the allowed hyperspace χ is affected
by a perturbation δ. In Figure 6-10 below, despite the uncertainty δ in the
input parameters, the resulting uncertainty on the output space does not
cross the partitioning rule on which the correct behaviour of the algorithm
has been validated.

Figure 6-10: Robustness to input variation

Both problems can be seen:

• Either as constrained non-convex optimization tasks, that can be solved
thanks to several convex relaxation options (altering the activation
function), so that the problem can be addressed by semidefinite relaxation
(see [MATHVERIF1]), or linear programming (see [MATHVERIF2])

• Or as the resolution of a dynamic system where each time step would be a
progression through a layer of the ML model. Hence it can be interpreted
as a linear system with non-linear feedback (i), or as a linear system
quadratic wise constrained (ii):

ECSS-E-HB-40-02A
15 November 2024

62

(i) (ii)

Figure 6-11: Dynamic system interpreted as non-linear feedback (i) or as a linear
system quadratic wise constrained

Once expressed as quadratic constraints:

the problem can be resolved using the techniques of semidefinite programming
(see [MATHVERIF3]).

c. Robustness of neural network driven closed-loop system, see Figure 6-12,
when subject to disturbances and uncertainties:

Figure 6-12: Robustness of neural network driven closed-loop system

For this kind of ML algorithms as well, both semidefinite relaxations (see
[MATHVERIF1]) and semidefinite programming (see [MATHVERIF3]) as
mentioned in the previous cases are relevant to verify the behaviour of the ML
algorithm.

6.4.3.1.3.7. Statistical Testing

Statistical testing relies on the generation of test data according to a probabilistic
model, in order to assess the likelihood that the observed behaviour of the system
matches the specification with a certain confidence level. In general ML models

ECSS-E-HB-40-02A
15 November 2024

63

and their input domain are highly complex so that it is not practically possible to
apply equivalence classes testing approach. Statistical testing methods include
for example traditional Monte Carlo sampling approaches and more advanced
Markov Chain Monte Carlo with subset simulation that aims to generate samples
to get closer to a specific area of interest such as a failure domain for machine
learning components. Current research aims at utilizing this concept to support
the identification of suitable and sufficient number of test cases for machine
learning components [Au et al. 2014] [Schwaiger et al. 2022].

6.4.3.1.3.8. Detection of unintended behaviour

ML models complexity and obscurity can result in model unintended behaviour
that might not be revealed by requirements-based testing. For example, transfer
learning techniques can cause residual functionality of ML models irrelevant to
the intended operational domain. Mitigation measure that can address the
unintended behaviour include:

• Gradient-weighted class activation mapping or saliency analysis to
identify inputs causing unexpected response

• Out of distribution detection to ensure operation in the intended domain

• Architectural mitigation (safety cage)

• Transfer learning avoidance

6.4.3.1.3.9. SEU testing

Bit-Flip Attacks (BFA) on model parameters can be used to simulate the
consequences of SEUs on the model’s performance. Mitigation techniques can
include techniques that are already used in space systems such as: voting systems
or ensemble methods.

Figure 6-13 associates each method with the most relevant model quality
characteristic.

ECSS-E-HB-40-02A
15 November 2024

64

Figure 6-13: Model Quality Characteristics

6.4.3.1.4 Post-Training Optimization Testing

The goal of post-training optimization is to adapt to the final target architecture
with the best compromise in terms of performance degradation; it is not to
improve the raw performance that should have reached its reasonable asymptote
in the steps before.

Trained models can be subject to post-training optimization methods. There are
different optimization methods including, but not limited to, pruning,
quantization, model knowledge distillation, half-size floating point operators,
simplified activation functions, operator/layer fusion or deep learning compilers.
These methods are especially relevant when on-board execution of AI is
identified as the operational environment and therefore the resources associated
with the final embedded HW are limited compared to the available ground HW.
Different execution performance aspects are affected by the optimization, being
the main ones: inference/execution time, throughput, power consumption and
memory footprint.

Note that in the case of on-board execution, optimization techniques can be
necessary to allow the deployment of the AI software in the target embedded
HW. In the case of ground segment, optimization techniques can still be applied
to optimize some of the execution performance aspects mentioned before, but
are, in general, less critical. Note that there is always a trade-off to be considered
between the level of optimization on the execution performance aspects and the
associated drop in the AI performance metrics.

For the above reason when an optimization method is applied to a trained model
the resulting optimized model can go again through all the evaluation and test
steps defined before:

ECSS-E-HB-40-02A
15 November 2024

65

• The optimized model can be evaluated against the test dataset and AI
performance metrics obtained. The objective is to ensure that the drop in
performance associated with the optimization, if any, it is acceptable.

• The optimized model can be tested against the different existing test sets
as defined in section 6.4.3.1.3 “Testing methods”.

Figure 6-14: Post-Training Optimization Testing

If underperforming or misbehaviour of the optimized model is detected during
the evaluation or testing phase it is recommended to take different actions to
correct the situation:

• Trying different optimization techniques: Depending on the specific
constrains and optimization objectives, different optimization techniques
can be applied. For instance, if the objective of the optimization is to reduce
the size of the model, but no constrains are identified regarding the use of
float-point data types, pruning can be evaluated as post-training
optimization method over quantization. Alternatively, some machine
learning frameworks allow aware training optimization methods, such as
quantization-aware training. This can be an option, especially when post-
training optimization techniques have an unacceptable impact in the
model performance. Quantization-aware training can lead to optimized
models with lower performance impact, at the cost of a more intensive and
demanding training process.

• Going back to the model development process: If no optimization method
is found that yields an acceptable performance one might need to go back
to the model development process and try more drastic approaches:
− Try different architectures: Try smaller architectures or

architectures specifically design for embedded use. While these
architectures might yield worse performances before quantization,
compared with more complex one, they might be less impacted by

ECSS-E-HB-40-02A
15 November 2024

66

optimization methods or might not require an optimization step
prior deployment in the embedded target.

− Try retraining the model with new data: If underperforming of the
optimized model can be identified to specific data input
distributions, it is recommended to evaluate the feasibility of
improving the training dataset targeting that input distribution.
This alternative will depend on the specific data availability as it
might not be possible to get new data to improve the training
dataset.

Finally, optimization methods can be applied on the development machine or in
the final target HW, this depends on the framework used to optimize the model
and on the final target HW type. If the optimization is applied in the development
machine, the optimized model can be initially evaluated and tested in this same
machine, but it can be evaluated and tested again when integrated in the final
target HW. The reason is that some metrics are HW dependant and cannot be
evaluated in the development machine, such as: inference time or power
consumption. This process is called target specific testing and it allows to:

• Check the compatibility of the model with the target HW and execution
platform, for instance quantization, network support.

• Check the model performance in the target HW: inference time,
throughput, memory, power consumption.

• Reconfigure inferencing platform based on performance/implementation
needs:
− Increase/decrease parallel processing of the model (configure

parallel threads).
− Optimize the model architecture.

• Apply other optimizations such as resource sharing or target specific
resource utilization

6.4.4 System Testing

6.4.4.1 Overview
In this section, the topic of testing, verifying and validating systems that use
machine learning as a component is examined, and guidance on best practices
for ensuring their reliability and safety is provided.

As machine learning is increasingly being integrated into various systems and
applications, it is essential to ensure that these systems are properly tested,
verified and validated. A failure in the machine learning component of a system
can have severe consequences, including safety hazards, financial losses, or
damage to the reputation of the system and its developers. Therefore, the
reliability and safety of ML-based systems must be thoroughly evaluated before
deployment.

The structure of the chapter is the following. First a definition of AI-based
systems are provided together with classification of AI applications. Then
follows the presentation of a proposed verification and validation process for AI-

ECSS-E-HB-40-02A
15 November 2024

67

based systems which includes ML models. Lastly step by step methods and tools
are presented both for performing the analysis of failures for said system
(FMEA/FMECA), but also how to mitigate the failures using safety cage
architectures.

6.4.4.2 Overview of ML on system level

6.4.4.2.1 Overview

When the application of Machine Learning is discussed, an emphasis is often
placed on the underlying algorithm, or on the data used for training and
validation of the ML models. However, if ML is to ultimately be implemented as
part of any space system, in similar fashion to good systems engineering practice,
the interactions between the ML software solution and the surrounding systems
have to be analysed, in an attempt to uncover failure modes which could
represent an unacceptable risk to the system. Hence, such analysis is
recommended to be one of the driving efforts in verification and validation of
ML for space applications, to find potential mitigative actions which can bring
the risk down to an acceptable level.

When taking the systems engineering approach to verification and validation,
performing such activity for ML -based solutions, allows us to follow the already
existing general approaches for building and qualifying space systems, including
software, where micro-environments (individual sub-parts and components) are
analysed with respect to interactions with macro-environments (overall
subsystems and systems).

The verification and validation need of a space system is normally already
identified during the solution design phase where mission requirements are
analysed with respect to planned system performance, which then can be used
to define a system architecture for the mission, for which suitable sub-systems
and sub-components are chosen, including software such as ML. It is therefore
recommended only once the mission requirements are available, to define what
is acceptable (or undesired) performance (for example limiting false positives),
and not isolated focus purely on the models performance on the data, when
evaluating the performance of Machine Learning applications for space systems
and missions. As these topics tend to be more related to model evaluation,
verification and validation, they will not be discussed further here, but it should
be understood that if such mission requirements cannot be satisfied on data and
model level, then it might be possible, or needed in case of having a connected
risk, to be handled on solution and system level. A specific example of such is
Autonomy, as discussed in section 6.4.4.2.3.

In the following section, the acceptance of a space system using ML is discussed,
and what is proposed is to look at ML part as a black-box component, which then
allows the verification and validation of a proposed solution much similar to
normal systems engineering verification and validation of software.
6.4.4.3.3However, as it will also be elaborated, certain additional aspects have to
be considered when dealing with the stochastic nature of the ML models.

ECSS-E-HB-40-02A
15 November 2024

68

6.4.4.2.2 AI-based System definition
To allow the further discussion of Machine Learning on system level, the
definition of a ML- and likewise AI-based systems, as per the [EASA paper] and
can be described as following:

• An AI-based system (a.k.a. ML-based system) is composed of several
traditional subsystems, and at least one of them is an AI-based subsystem.
This system can include hardware and software.

• An AI-based subsystem (ML-based subsystem) embeds at least one AI/ML
constituent.

• An AI/ML constituent is a collection of hardware and/or software items
(including the necessary pre- and post-processing elements), and at least
one specialised hardware or software item containing one (or several) ML
model(s).

• Within the ML constituent, some form of ML model is usually found. It
can refer to directly, or indirectly as a part of the software connected to the
ML model/models (for example in case of an application), which can then
be referred to as ML-based software component, ML-software or ML
application. Additionally, an AI-based system can of course also include
traditional hardware and software items that do not include an ML
inference model and can generally be qualified independently, as long as
they are not within the AI/ML constituent which is indicated as the area
which might be affect by the output of the ML model(s). How to find the
line between what is included in the AI/ML constituent, and what is not is
discussed further is in section 6.4.4.3.3 on FMEA/FMECA.

It is here assumed that the AI-based systems are containing some form of
machine learning, which introduces the stochastic nature into the design of the
system, and in some cases into the system itself. Although this does not imply
that it is solely ML. Moreover, as discussed in the upcoming subsection 6.4.4.3.4.2
on Safety cage architecture, AI hybrid solutions are often created to allow for a
more dependable system, e.g. as part of a safety cage.

However, as it will be discussed in section 6.4.4.3.3, based on the interfaces and
types of interactions between the parts within a given AI-based system that
contain ML, the FMEA/FMECA and potential HSIA are derived, which will
provide the overview of needs that have to be meet for a solution acceptance.

ECSS-E-HB-40-02A
15 November 2024

69

Figure 6-15: [EASA paper] Decomposition of the AI-based system

6.4.4.2.3 Classification of autonomy for AI applications
In the previous section 6.4.4.2.2 a definition of an AI-based system was provided,
but another topic that is worth considering on system level is the concept of
operations (ConOps) with respect to the unique characteristic often associated
within the usage of artificial intelligence, autonomy.

ConOps should here be understood as the high-level statements which explains
the characteristics of a system from the user’s point of view. This would
ultimately be the statements which describes exactly the “what, how and why”,
for the usage of an AI-based system, which can then be further broken down into
mission and system requirements. One of the unique features of the “how”,
which AI especially makes possible, is the opportunity to create autonomous
decision making.

One of the areas which particularly comes to mind when discussing the need for
automatization and autonomy to create a higher efficiency is space operations.
All of the operations during a space mission rely on planning and monitoring,
performed significantly in advance of actual operations, and is most often relying
on the work and actions of humans. Here, only some action might be automated,
such as calculations of certain parameters, but most things need to be initiated by
a human, and ultimately most, if not all, decision making is done by a human.
With the developments within Artificial Intelligence, a re-distribute of
responsibilities between the ground segments and the spacecraft, introducing
more automated operations, can be introduced, which can reduce operation
costs, increase scientific return and support future missions beyond LEO where
significant time delay is present. Likewise, AI can also support operations of
ground station allocation and management with advanced scheduling tools
providing flexibility in allocation, mixed-initiative approaches, what-if analysis,
multi-objective optimization and automation. Examples of such ConOps where
autonomy would be relevant can be mentioned the operation of large
constellations or for vehicles such as planetary rovers and space probes, where
there might be a signification delay in communication to the ground stations.

Of course, there are also areas where the autonomy is not as important or simply
taken for granted, in the sense that we automatically assume that the autonomy

ECSS-E-HB-40-02A
15 November 2024

70

is there, without a need for further evaluation, as no real decision was taken in
the frame of an operation-like scenario. Of such areas can be mentioned using AI
for Data transformation or compression, where the algorithm “intelligently”
performs the trained function independent of a human (autonomously), but the
function is seen as independent from any application where the consequences of
wrong doing is high enough that it can be considered whether a person should
be in the loop, for final evaluation or decision making.

In summary, what could ultimately be considered is that the level of autonomy
is a measure of how independent the system is of a human for decision-making,
and based on the level needed/chosen, the risk and complexity of said system
might in turn heighten. This could be linked to the consequence of the AI-based
system making a wrong decision, and whether a man-in-the-loop can mitigate
the risk, by e.g. evaluating the suggestion of the system before it is implemented.
Section 6.4.4.3.3 takes the reader through the suggested FMEA/FMECA analysis,
which is here recommended as the analysis for evaluating the AI-based system
compared to internal and external interfaces and potential failure modes.
However, it is additionally recommended that the designers of an AI application,
could consider the possible consequence of the application being wrong. And, as
discussed in the subsection on Safety cage building blocks and tools, the man-in-
the-loop is only one of the tools which can then be used to mitigate the risk and
consequences if found too severe.

Additional considerations here include the general assumption that, unless an
AI-based solution is specifically designed to be part of a man-in-the-loop system,
e.g. in the case of co-bots or cognitive assistants for decision support, the aim is
generally to have as high a level of autonomy possible within acceptable risk, in
order to create solutions that are as independent and effective as possible.

Based on the definition in the [EASA paper], three general levels of AI autonomy
have been identified, as a means of classifying the AI-based systems and
applications. This scheme has been proposed based on prognostics from the
Aeronautics industry regarding the types of use cases foreseen by AI-based
systems, which is similar to what is found in the Aerospace industry. Figure 6-16
shows the three scenarios of staged approaches for the deployment of an AI
applications with different levels of conjunctions with a human, starting with
assisting functions (Level 1 AI), human-machine collaboration (Level 2 AI) and
at lastly higher autonomy of the machine (Level 3 AI).

Figure 6-16: [EASA paper] Classification of AI applications autonomy

ECSS-E-HB-40-02A
15 November 2024

71

Note: The topic of autonomy will not be handled more in depth within this handbook as
it is an ongoing research topic, hence the scope presented here does not do the complexity
justice. For example, the level of autonomy can be further split into sub-categories based
on type of function and how it is built. However, the approach presented for verification
and validation of AI-based systems in the following sub-sections can still be applied.

6.4.4.3 Verification and validation process of AI-based
systems

6.4.4.3.1 Overview
An AI-based system can contain both hardware and software which is either
directly or indirectly coupled to an AI software component(s), see also 6.4.4.2.2.
The main point which can be considered for such systems is whether the
mechanisms for the generation of the output from the AI parts of the system are
stochastic. The data-driven part of AI, which is the predominantly machine
learning, represents stochastic models, which is the main focus of this handbook.
However, one should be aware that very large rule-based systems can artificially
have similar stochastic nature, if the complexity of interactions between their
rules and knowledge is high enough. Therefore, the suggestion from this
handbook goes as following:

If the system contains data-driven AI, such as machine learning, or any user input-driven
AI which decision logic cannot be described easily by a decision tree, AI-specific processes
of verification and validation have to be considered.

In the following sub-sections, the process of verification and validation of
stochastic-natured AI is described.

6.4.4.3.2 Safety criticality assessment
The key driving factors on system level for the usage of ML-based systems is
safety criticality. From the point of view of this handbook, AI/ML constituent can
be categorized like “traditional” software in line with ECSS-Q-ST-80 as show on
the Table 6-3.

Table 6-3: Software Criticality
Software
criticality
category

Definition

A Software involved in category I functions
AND: no compensating provisions exist
Software included in compensating provisions for category I functions

B Software involved in category I functions
AND: at least one of the following compensating provisions is available, meeting the
requirements defined in ECSS-Q-ST-30 clause 5.4 and ECSSQ-ST-40 clause 6.5.6.3:

• A hardware implementation
• A software implementation; this software implementation shall be classified as

criticality A
• An operational procedure

Software involved in category II functions
AND: no compensating provisions exist
Software included in compensating provisions for category II functions

ECSS-E-HB-40-02A
15 November 2024

72

Software
criticality
category

Definition

C Software involved in category II functions
AND: at least one of the following compensating provisions is available, meeting the
requirements defined in ECSS-Q-ST-30 clause 5.4 and ECSSQ-ST-40 clause 6.5.6.3:

• A hardware implementation
• A software implementation; this software implementation shall be classified as

criticality B
• An operational procedure

Software involved in category III functions
AND: no compensating provisions exist
Software included in compensating provisions for category III functions

D Software involved in category III functions
AND: at least one of the following compensating provisions is available, meeting the
requirements defined in ECSS-Q-ST-30 clause 5.4 and ECSSQ-ST-40 clause 6.5.6.3:

• A hardware implementation
• A software implementation; this software implementation shall be classified as

criticality C
• An operational procedure

Software involved in category IV functions
AND: no compensating provisions exist

Criticality categories are assigned to software products as specified in ECSS-Q-
ST-30 clause 5.4, and ECSS-Q-ST-40 clause 6.5.6.3, see Table 6-4.

Table 6-4: Comparing Dependability and Safety
SEVERITY SAFETY DEPENDABILITY

(ECSS-Q-ST-30)

SAFETY (ECSS-Q-ST-40)

Extract from ECSS-Q-ST-40

Catastrophic 1 Failure
propagation

(requirement 4.2c.)

• Loss of life, life-threatening or permanently
disabling injury or occupational illness.

• Loss of an interfacing manned flight system
• Severe detrimental environmental effects
• Loss of launch site facilities
• Loss of system

Critical 2 Loss of mission • Temporarily disabling but not life-
threatening injury, or temporary
occupational illness

• Major detrimental environmental effects
• Major damage to public or private

properties
• Major damage to interfacing flight systems
• Major damage to ground facilities

ECSS-E-HB-40-02A
15 November 2024

73

SEVERITY SAFETY DEPENDABILITY

(ECSS-Q-ST-30)

SAFETY (ECSS-Q-ST-40)

Extract from ECSS-Q-ST-40

Major 3 Major mission
degradation

Minor or
Negligible

4 Minor mission
degradation or any
other effect

As indicated from the two tables above, even software of criticality B could lead
to safety critical effects. Therefore, the recommendation is to at least establish a
FMEA to identify critical functions and allow for proper risk mitigations, as it
will be discussed in the following sections.

6.4.4.3.3 FMEA/FMECA

6.4.4.3.3.1. Overview

Generally when dealing with space assets, due to the complexity of the several
interacting systems and subsystems, as an integral part of the design process and
as tools to drive the design along the project life cycle, the following two methods
are proposed “failure modes and effects analysis” (FMEA) and “failure modes,
effects and criticality analysis” (FMECA).

The primary purpose of the FMEA is to identify possible failure modes of the
system components and evaluate their impact on safety and system performance.
FMECA is the extended version of FMEA that classify potential failure modes
according to their criticality, the combined measure of the severity of failure
modes together with the probability of occurrence. Technically, both FMEA and
FMECA can be created without knowledge of how the machine learning models
functionality will be implemented, as it is more concerning interfaces and failure
mode propagation.

Although the FMEA/FMECA is primarily a reliability analysis, it provides
information and support to safety, maintainability, logistics, test and
maintenance planning, and failure detection, isolation and recovery (FDIR)
design (ECSS-Q-ST-30-02, Introduction).

A more software related version/approach is described in ECSS-Q-HB-80-03A,
chapter 6.2 as SFMEA (Software Failure Modes and Effects Analysis).

This philosophy and the specific approach is also valid for Machine Learning
models.

It is assumed that during the training phase of ML no safety relevant aspects
must be considered especially not any which are part of the resulting system and
the ML models is treated as the lowest unit of software.

6.4.4.3.3.2. Failure Mode Taxonomy

To support the identification of modes for Machine Learning, Figure 6-17
presents a failure mode taxonomy to support the creation of the FMEA.

ECSS-E-HB-40-02A
15 November 2024

74

In general, it is recommended to focus on reasonable failure modes based on the
functional view (requirements), high level architecture and input/output (I/O)
interfaces. Any other aspects such as environmental impacts are not addressed
in this handbook because they are part of budget considerations similar to
“traditional” software development.

A failure mode can be created either because of an incorrect implementation of
the function or Input/Output (I/O) errors. I/O errors refer to the inputs or outputs
of the unit. The most obvious I/O errors can be

• a wrong amount of input data provided to the module, e.g. not enough or
too much input for model evaluation (too much, too little),

• an incorrect value provided by the previous processing step,

• I/O values outside the specified value range,

• type error if actual and expected I/O type doesn’t match, e.g.
− signed/unsigned int
− 32-bit number instead of a 16-bit number

Figure 6-17: Failure mode taxonomy for Machine Learning

6.4.4.3.3.3. FMEA

As a minimum this handbook recommends to perform a FMEA which is
intended to examine:

• each module for each Failure Mode,

• determine the local effects and

• the effects at the system level.

ECSS-E-HB-40-02A
15 November 2024

75

Creating a FMEA
Details and guidelines on how to conduct and create a FMEA can be found in
ECSS-Q-ST-30-02C (Annex B, FMEA worksheet – DRD) and Q-HB-80-03A (6.2.2
Procedure)

It is recommended to use taxonomy path as steps to perform the FMEA in order
to find all known possible failure modes (see Figure 6-17).

Implementing (functional) FMEA
As the name indicates in a functional FMEA the functions of the module, rather
than the items used in their implementation, are analysed.

Figure 6-18 shows an example of using our defined failure mode taxonomy
above.

FMEA

Product: System: Subsystem: Equipment
:

No. Item Function Failure mode Failur
e
Cause

Failur
e
effects

…

 E.g.
Calculate
pressure

Function.Not_Performed

Function.Performed_Wrong
ly

Function.Performed_Wrong
_Timing

 I/O.Amount.Too_Much

 I/O.Amount.Too_Little

 I/O.Value.Incorrect

 I/O.Range.Out_Of_Range

 I/O.Type.Missmatch

 …

Figure 6-18: Example of a FMEA table

6.4.4.3.4 Risk mitigation

6.4.4.3.4.1. Overview

Once the FMEA has been carried out, an understanding of the failure modes
should have been established. If any failures are of Severity level 2 or higher, it
should be considered what mitigative measures can be done. For this please also
look at Q-ST-30C Rev1, chapter 5.4.2 Assignment of software criticality category. To

ECSS-E-HB-40-02A
15 November 2024

76

avoid common cause/common mode failures, it is recommended that one ML
instance cannot be used to compensate for another ML instance.

6.4.4.3.4.2. Safety cage architecture

A more conservative method, compared to the mathematical verification, is the
usage of safety cage architecture. This method allows the application designer to
look past many of the ML specific challenges and focus on lowering or
eliminating the potential likelihood of the identified failures from the
FMEA/FMECA to occur. This is done by ensuring that there are no to limited
interaction between the ML model and other components/systems which could
lead to an error mode. In other words, the ML model/AI application is placed
inside an architecture to ensure that we can block any non-wanted interactions.

However, the art here is to create an architecture which is neither too tight, to
avoid limiting the functionality of the AI application, but also not loose, to avoid
any faulty output that could lead to a failure, to exit the AI application. And there
is not only one way of creating such architecture, as it will be discussed in the
subsection on Safety cage principles.

The definitions and principles described in this paragraph are strongly inspired
by [SMOF].

Safety cage definition
The safety cage, also known as a safety strategy, is a set of safety rules to ensure
a set of safety invariants, designed to abort all paths to the catastrophic states.

As indicated from the figure, the safety invariant is a sufficient condition from
which it is possible to still avoid a hazardous situation, however, whose further
violation would lead the system to a catastrophic state. Example could be the
temperature of a component which is heated up above recommended the range
for optimal performance, but if the temperature keep rising it could lead outside
of the non-critical range, and ultimately have a critical impact. To avoid this,
safety rules are defined, which consists of a condition and a scripted behaviour
of the system and is linked with safety interventions. A safety intervention is the
ability to perform system monitoring with sufficient means and cadence to
prevent it of violating a safety invariant, if a set of preconditions are fulfilled. Its
intention is to cut the path from safe state to catastrophic state of the system.

These interventions can be divided into inhibition (prevention of change in
system state) and action (forced change in system state). The different types of
interventions are discussed further in practice in the subsection on Safety cage
building blocks and tools.

ECSS-E-HB-40-02A
15 November 2024

77

Figure 6-19: Simplified representation of the safety cage, warning states and
catastrophic states within the solution space

Safety cage principles
In the previous section, the high-level definition of the safety cage was provided.
In this, and the following sections, more practical advice for the implementation
of a safety cage architecture is provided.

As mentioned earlier, the principle of safety cage is to intervene in the usage of
the AI model output, as soon as this output exceeds the bounds of a safe domain,
before reaching a catastrophic domain. This can be done either by the usage of
additional software, hardware of a combination, with the choice intervention
type relying on what is possible/optimal to be implemented as part of the overall
AI-based system/application, and by answering the following questions for each
of the different failure modes identified in the FMEA/FMECA:

a. What types of intervention can be done to avoid this type failure from
propagating?

b. What rules needs to govern the interventions, including monitoring to
create a functioning (verifiable) system

c. What intervention is the least limiting for the AI application, and is the
easiest implemented as part of the overall application/system architecture?

By going through the above questions for each of the failure modes from the
FMEA/FMECA, it should be possible to come up with individually strategies for
the different failure modes.

ECSS-E-HB-40-02A
15 November 2024

78

An example for such an evaluation could be as following:

Problem description:

In the case of an AI application that estimates the distance to the surface of the
Moon, to assess when the Lunar lander should fire its boosters to slow down for
the landing.

Failure modes:

Here a possible failure mode could be that if it fires too late (a false negative), it
will crash land, likely causing an earlier “end of mission”. On the flip side, if it
fires too early (false positive), it will potentially use more fuel, prolonging the
descent, but if enough margin of fuel available, and time enough to correct other
potential consequences of the too early burn, this should theoretically not have
the same major impact on the mission execution. All these information should be
clear based on the FMEA/FMECA analysis. There could of course be many
reasons for the failure to take place, but likely it is due to some form of
Input/Output error (for example the failure of the sensory for measuring
distance) or a functional error of the AI model (e.g. it is trying to estimate the
distance, however, part of the values for the input data is underrepresented in
the dataset used for the training and testing of the model, i.e. outside of the
known input data space, and the models resulting inference came out wrong).

Mitigation:

a. Based on the above description, it can be assumed that the main issue to
solve is the case of “false negative”, i.e. the crash landing, as this failure
likely would be a severity category of critical. The question to first answer
is what types of intervention can be used for mitigating this type of failure
propagation. Of options it could be decided to use additional HW, for
example having a redundant sensor instrumentation to measure the
distance to the surface. If it is here assumed that the mission is using
LIDAR, it could be proposed that there would be one or two redundant
systems, also using LIDAR, or even that the Lunar lander would use a
visual camera as well for a different source of information. Another option
could be the use of additional SW, for example by having additional
algorithms for estimating the distance, this could be an additional ML
algorithm, but to avoid adding additional stochastic models to the system
it might be preferred to be a classical algorithm for estimating the distance.
However, another type of SW which could also be added would be an
algorithm that compare if the output of the ML model for new incoming
data is within the expected value distribution for similar data which the
AI models have been trained and tested, to understand the reliability
compared to the instantaneous ingoing data. Such a method would likely
have to also consider the time aspect of data points perceived timewise
earlier that the given “false observation”.

b. With the above potential tools suggested, it is clear that we could make the
AI application more robust, by placing both action and inhibition-based
interventions, where the case of the HW update, we would minimise the
chance of failures due to issues equipment, but this would also imply that
software have to be created which monitor the data of the sensor
instrumentation, to be able to judge when the information is wrong in one
of the systems, and which one is the wrong one. Here could of course be a

ECSS-E-HB-40-02A
15 November 2024

79

rule written that the deterministic system, although less accurate, might be
the correct one, the information could be cross check with another system
(such as the visual camera), or in case there are three measuring systems,
then it can be a voting scheme. In regards to the SW tools suggested, a part
of the architecture could be to always have a classical algorithm (non-ML)
running and evaluating the distance, parallel to the ML model (it is here
assumed that the ML model would be more precise than the non-ML
model, and be the reason to why it is used in the first place). The results of
the two methods can then be compared for every estimation, as they likely
should be in somewhat close range of each other. However, in case that
they are not, the system could then use the fact that all incoming data is
compared to the distribution of the previous seen dataset by the ML-
model. This can give an understanding of how reliable the ML-based
system is at any given moment, and rules can be made whether the overall
booster control application should favour the estimation of the classical
algorithm with limited granularity, or the ML-model, with its stochastic
nature.
Of course, it should be mentioned that in any such system, the reaction
time needed to respond to failures have to be a driving factor of the design
of the safety cage architecture.

c. Lastly, an evaluation can be done for the feasibility of the system. Is it
possible to have additional hardware on the mission? Would it be possible
to have the additional software running on the on-board computer,
performing calculations before and after the ML model? In case the visual
video feed also should be used, can a ML-model be trained on this also, or
if yes, is there enough data for training a good model, or is it time and
money-wise too expense to create good data in the case there is not
enough?

Except the HW considerations, the architecture coming out of the example above
could end up looking something like shown in Figure 6-20 below. This is a fairly
generic example of a safety cage architecture with parts running in parallel, but
it could be imagined that the box called “safety cage algorithm” would contain
the comparison function, of comparing incoming data with the past seen data,
and while also comparing the output of the ML algorithm with the non-ML
model, which would also be running there in parallel to the ML-Model. Based on
the conclusion, a gate is implemented which decides which system to trust,
which can be seen as the boxes to the right side of Figure 6-20.

It should though be mentioned, that depending on system where the AI-based
SW and the safety cage SW is running, it is recommended to design base on the
possible limitations of the available HW (e.g. CPU and memory budget for a
spacecraft).

ECSS-E-HB-40-02A
15 November 2024

80

Figure 6-20: Generic example of a safety cage architecture, with processes running
in parallel

Although the example above is limited in scope, as there could likely be other
types of failure modes which also would be needed to be addressed as part of the
architecture, which was not discussed here for simplicity’s sake. However, the
above example could still provide a broad idea of the process which goes into
finding a safety cage architecture, and that there are potentially multiple ways of
creating such an architecture.

It should also be mentioned that, although safety cage architectures are currently
needed, this of course also limits the capabilities of the ML application and
additional software has to be placed together with the ML applications.

However, new ML methods focusing on explainability, robustness, verifiability,
etc. are under development and will allow to remove AI functions from the safety
cage, enabling self-standing safety critical AI functions that can fully rely on
formal verification methods.

Practical architecture recommendations
Following considerations are advised by the handbook for building an
appropriate safety cage:

• Criticality of software components within the architecture needs to be
defined following the guidelines described in ECSS-Q-HB-80-03 and in
compliance with ECSS-Q-ST-30, ECSS-Q-ST-40 and ECSS-Q-ST-80. They
are particularly relevant for the requirements about avoiding failure
propagation of criticality components of different category, and the ones
relative to the criticality of the software when acting as a compensating
provision.

• Consider that tools can be used both before, after and parallel to the ML-
model/application.

• Generally, you can avoid adding stochastic models, or models with high
uncertainty to the safety cage architecture as this could introduce
additional failure models. Likewise, it is recommended that the tools
which are added also are qualified, which can be done the easiest if they

ECSS-E-HB-40-02A
15 November 2024

81

represent classical SW and HW.
Hence, we also recommend: “Do not mitigate ML with more ML”.

• Once an architecture is created, remember to consider if any new failure
modes are introduced.

• The safety cage can run synchronously or asynchronously with the ML
algorithm, depending on the time constraints. For ML-applications that
perform live evaluation, such as anomaly detection and command &
control applications, synchronous architecture is recommended as the
default.

• Consider whether the application is an open loop or a closed loop system,
and if the safety cage architecture is still adequate.

• Consider taking the possible update of the ML-model into account, and
the impact it could have on the Safety cage architecture.

• For criticality category B applications, the ML algorithm and the safety
cage algorithms can run on hardware platforms limiting shared resources
and minimizing the risk of common failure (e.g., power supply, memory,
data interfaces), and no failure propagation from the ML algorithm to the
safety cage algorithms should generally be the aim.

• Whenever a safety cage is enabled and detects an invalid ML algorithm
output, the values of the ML algorithm inputs and outputs, as well as the
safety cage inputs and outputs can be logged in a text file for offline
investigation. In case the safety cage state is recorded on a rolling window,
the parameters just before the invalidation could be logged as well.

• In the case of an ML-based application which is set up to run and retrain
itself continuously, it is recommended to consider what is the need from a
safety cage architecture, to allow the continuous training to take place, but
still control it enough to assure that the model performance is within a
safe state.

• Consider whether some form of running evaluation of the model
performance can be part of the safety cage architecture, as a way to avoid
performance drift.

• As a best practice for the ML training, as soon as the rules driving the safety
cage are defined, they can direct the learning of the ML algorithm: quite
naturally, giving the direction of forbidden outputs to the model, not only
will reduce the likelihood to abide the safety cage rules, but also will
increase the overall convergence towards better performance of the model.
For instance, the distance to the safety cage limits can be added as a penalty
to the loss function (with a weight as a hyper-parameter to choose).

• Transition from the unsafe state detected by the safety cage into the safe
state driven by the back-up algorithm can drive the system across
intermediate unsafe states. These transitions can be carefully considered
as part of the mitigation strategy.

Lastly, it is recommended to validate the behaviour of the input parameters, to
assure that the safety cage is reliable compared to the intended functionality.
Validation of data is discussed in section 6.4.1. Part of this validation is also to
understand the device/system which produces the input to the safety cage. This

ECSS-E-HB-40-02A
15 November 2024

82

can be understood as trying to classify the system as stable vs. unstable, where
an unstable system could over time create a divergence between the intended
function of the ML model and the actual performance, which in turn could affect
the efficiency of the safety cage architecture. It is therefore recommended when
building the safe cage architecture to consider the impact of performance
slippage of the ML model, and unstable input parameters to the safety cage. For
unstable system periodic offset readjustment, also linked to the performance
monitoring mentioned in a previous bullet above.

Safety cage building blocks and tools
In the previous sections a safety cage architecture was presented. In this section
a breakdown of some of the tooling which can be used are provided, generally
consisting of non-ML methods, but otherwise can be built from traditional
software, algorithmic models, Symbolic AI, hardware and combinations. Hence,
the safety cage takes the ML-based application and creates what is known as
“hybrid AI” applications.

It should also be noted here that despite that the tools are split up, multiple tools
are often used together as building blocks for the creation of the final safety cage
architecture.

• Symbolic AI/ Implementation of rules/logic gates
− Description: Rule-based system, mainly consisting of limited

amount of hard coded rules to avoid complexity. Normally placed
before or after the ML model(s).

− Examples of usage:
o Blocking of forbidden output value by create a binary

condition which completely blocks the output of the model
to propagate if triggered (based on predefined relationships
with other components).

o Implemented logic gate for when to use a reference model
instead of the ML-model and reverse.

o Setting up rules for when to use the ML based model, and
when to use the redundancy scheme. Can e.g. be linked to
distribution check, or valid space scenarios.

− Application example:
o For an AI system controlling the pressure of propulsion

pipes, it should never be allowed to suggest that the
pressure goes above the defined limit of the pipes. In case it
does, full stop.

o During satellite docking, the safety cage is only needed in
close proximity to the target. Logic is integrated to only
apply the safety cage at specific times, as indicated by a
distance measuring function.

• Voting schemes
− Description: Selection policy between the output of several

algorithms/models

ECSS-E-HB-40-02A
15 November 2024

83

− Examples of usage:
o Implementation of voting schemes for the choice of correct

output values to be used further.
− General code implementation: often implemented right after the

output of the ML-model and other non-ML software or models.
− For a voting scheme to be effective, it is recommended to consider

in what circumstances the different voters can have higher or lower
priority. This can be done by adding a referee function which will
prioritise one of the two solutions depending on predefined rules.
Application example:
o Having a classical physics-based algorithm, or hardcoded

rules, which is compared with the output of an ML-model,
but depending on the confidence of the ML model for the
specific data input, a voting scheme is set up between the
classical algorithm and the model. An example of the issue
with confidence could e.g. be a scenario with severe
consequences in case of a wrong decision output of the ML
model. This could be during the landing on the Moon,
where the ML model is used to control the decent speed by
measuring the distance to the surface. For this purpose,
there might be both a ML and a non-ML system (voting
scheme), with a referee that prioritizes the more robust non-
ML model (having higher voting right) as the lander gets
closer to the surface.

• Monitoring schemes
− Description: General code implementation, setup to monitor the

drift in performance. Or sudden large changes in output values, etc.
for the ML-Model.

− Examples of usage:
o Often tied together with a rule-based system about

retraining or confidence assessment of the ML-model.
− Application example:

o Implementation of monitoring schemes for a model in
environment with limited prior knowledge of the data space
to be expected.

• Reference software
− Description: Classical algorithms (non-ML) or physics-based

software/simulator providing the relationship between parameters.
Can be placed before, after or parallel to the ML models.

− Examples of usage:
o Representing the physics equation-based relationship

between parameters, used as part of the application, for
reference of comparison to ML-model output

− Application example:
o A physics-based algorithm for estimating the size of the

burn needed for orbit keeping is compared with the ML-
model for calculating same burn, but the ML model is

ECSS-E-HB-40-02A
15 November 2024

84

taught based on feedback from burn-size and reaction from
in-orbit data

• Redundant Software system
− Description: Software or algorithm to be used instead of the ML-

model/application in case of ML-model/application found not
suitable for certain events/situations. Normally used
parallel/instead of the ML-model. Can be used together with/as part
of a reference software system.

− Examples of usage:
o In case of high-risk areas in the solution space, or areas of

low confidence in the ML-model, a software can be made to
take over for these areas.

− Application example:
o Together with out of distribution check, a ML-model is

found to not be adequate for prediction of upcoming orbit
events, and the application decides to use a software tool
instead, which has less precision but is much more
stable/reliable

• Reference Hardware
− Description: Usage of hardware as reference for the ML-application.

Function Placed normally as input to or part of evaluation after
running the ML model.

− Examples of usage:
o Physical reference points for application (for example based

on sensors measurements).
− Application example:

o The model suggests the angle of the solar panels for optimal
energy generation, but thanks to some temperature sensors
located on the spacecraft, it is possible to infer which side of
the spacecraft is exposed to the sun, and thus coarsely verify
the ML-model chose the correct orientation.

• Physical gate/filter
− Description: Usage of hardware for blocking, limiting the ML-

application. Function placed normally before or after the ML
models.

− Examples of usage:
o Physical gate for triggering a boundary condition for the

output of the ML-model.
o A physical filter to limit output.

− Application example:
o Electrical Safety switch placed to physically trigger if certain

event takes place (for example too high current in circuit
suggested by the AI-model)

ECSS-E-HB-40-02A
15 November 2024

85

• Distribution check
− Description: Check if the incoming data is within the data

distribution of data which the ML-model has seen before, allowing
the gauging of confidence. Function normally placed before the ML
models.

− Examples of usage:
o Confidence evaluation, often linked with a voting scheme or

a reference/backup scheme.
− Application example:

o For a ML-model which is expected to function initially
poorly due to having limited knowledge about the data
solution space. Although expected retraining over time.

• Backup System “Man-in-the-Loop
− Description: Allowing a human person fully or partially, for

example with the use of veto rights, to have the final decision
making.

− Examples of usage:
o In case of high risk without code other option for safety cage

tooling, or simple due to limited trust, human-in-the-loop
can be introduced.

− Application example:
o Mission plan is calculated for a rocket launch, but a person

performs the check to ensure the model is not wrong on any
major things.

Real world examples of safety cages
See also [SCAGE]

The previous section introduced different tools that can be used to create safety
cages. In this section a few real-life safety cage are presented.

Example from the space industry: Safety cage for distance estimation during
in-orbit rendezvous.

For a mission that will include an in-orbit rendezvous with a target that is already
flying, ML component for close proximity operations will be used. The ML
component is based on an image recognition algorithm and will be used to
determine the distance between the spacecraft and the target.

There is a risk of collision between the spacecraft and the target, which is
considered a catastrophic event. To avoid this hazardous situation, it is decided
to put a safety cage in place. A Kalman filter will be implemented in the
application SW of the spacecraft to calculate the bounds for the estimated
distance. The measurements of the distance provided by the ML algorithm will
be compared to the range provided by the Kalman filter to check if the values are
within expected bounds. An alarm can be raised when it is detected that the ML
component starts showing unexpected behaviour, which can be used as input for
FDIR to handle the malfunctioning of the ML component and either fall-back to
sensor inputs only or perform collision avoidance manoeuvres. Corrective

ECSS-E-HB-40-02A
15 November 2024

86

actions on the ML component can be performed once the spacecraft is again in a
nominal mode.

Examples of safety cage found outside of the space industry.

There are different applications of the safety cage principle in the literature. Some
of the references use different names, such as “safety bag” or “safety monitor”
but all they have common elements.

One of the first references quoting the use of a safety bag is [ELEKTRA]. This
paper describes the implementation of a rule-based expert system (safety
channel) to be used as a mean to check the suitability of the commands issued by
a different logic (logic channel). In this case the use of the safety bag is not linked
to autonomous systems, but simply seen as a mechanism to implement diversity
(logic and safety channels are implemented using different programming
paradigms).

Reference [SPAAS] presents the results of a study in which different alternatives
are explored to protect from potential faults from AI—based system. The
approach is based on the underlying assumption that these AI-based systems
might be less dependable and safe than systems based on “classic” algorithms.
The use of a safety bag is described, in order to monitor on-line a set of safety
properties so as to authorise or not the execution of commands to the spacecraft
elaborated by the autonomous software applications.

Paper [SMOF] describes a framework for the design and implementation of a
safety monitor (or safety bag) as a device responsible for safety. The principle
here is that there is safety channel (safety bag), being implemented following
higher integrity requirements, and a control channel that is responsible to
implement all the functionalities of the system. The reference describes in detail
the process for the formalisation of a safety invariant, the synthesis and analysis
of a safety strategy (set of rules that ensure the safety invariant), and the
deployment in a real time safety monitor. An example of application is presented
using a mobile manipulator robot.

Paper [AVEHIC] describes an application of the safety bag principle in the
automotive domain. The purpose, as in other references, is to design a safety bag
that monitors the state of the system, and moves it into a safe state in case of a
hazardous situation. One of the main goals of the reference is to compare the use
of different techniques: HazOp-UML and FMEA in order to derive safety
requirements.

6.4.4.4 Keeping ML system validation in operations
Once the system has formally been verified and validated for operation on a
space system, it can be deployed in production or used for real application. Yet,
it is good practice to monitor its performance during its operational life.

Several reasons can explain why a verified and validated system could have a
degraded performance during the system lifetime, compared to the performance
obtained during the development and verification and validation cycle:

• Behaviour drift: the relationship between the observed inputs and the
desired response from the system is no longer correct (e.g., in a degraded

ECSS-E-HB-40-02A
15 November 2024

87

case, if a propulsion engine is out of order, the attitude control system
based on a full set of engines will fail to steer the vehicle properly)

• Data drift: the inputs observed by the system gradually or suddenly shift
from the distribution of the test set (e.g., by wear-out of an image sensor,
the recorded images become extremely dark or lose contrast below the
range of illumination/contrast of the training data, therefore the computer
vision algorithm fails to locate/identify target system to dock on). However
even if the risk is considered and mitigated at training, monitoring remains
mandatory.

To facilitate the investigation of suspicious output, it is always highly
recommended to keep both the original ML algorithm resulting from the
development and/or stable checkpointed versions of the algorithm, in addition
to the final version used for serving where all the post-training optimization have
been implemented. Therefore, it is essential to prepare the monitoring capacity
of the system in operations in the very early stage of the design of a ML system,
with proper logging of the inference results. The information to be recorded and
the quantity of logs is tailored to the storage capacity granted to the ML system,
and to the transfer capacity of the data to the monitoring team. In the case of
space systems, storage capacity on board is costly and ground transfer of large
amount of data is extremely expensive and often a challenge: selection of key
indicators albeit sufficiently detailed to allow investigation of faulty behaviour
can be integral part of the verification and validation of the ML system.

The metrics can cover:

• Inference metrics: memory load, CPU/GPU load, throughput, server load,
exceptions like overflow or division by zero.

• Input metrics: histogram or repartition in the inputs space, malformed or
missing values, synthetic data associated to the metrics of the training/test
set.

• Output metrics: number of invalid outputs, proximity to safety cage,
proximity to limits of validity.

Besides, to allow recovery actions against the issues listed above, it is strongly
advised that the ML system features secure upload of ML parameters, while in
operations, or even upload of the entire set algorithm + parameters.

This ML upgrade feature shouldn’t come as a total and immediate replacement
of the current ML algorithm, lest the new algorithm operates worse than the
original one, or even locks the system. The ML system upgrade in operations can
follow the same usual schemes as classical software among which:

• Shadow deployment: the new algorithm is run in parallel with the
previous one; the system only uses the previous algorithm output; the
results of both are compared by the development team before further
deployment.

• Canary deployment: the new algorithm is applied on a small fraction of
the cases; the performance is monitored, and the fraction of the inputs
directed to the new algorithm is progressively increased.

ECSS-E-HB-40-02A
15 November 2024

88

• Blue green deployment: a router directs the inputs either to the previous
or the new algorithm depending on which algorithm best behaves on sub-
classes of inputs.

Since the exact environment of space systems is sometimes hard to simulate in
the process of ML model development, it is also possible to automatically
complement the training of an ML model during its operational life. Except for
rather simple models, this approach isn’t suitable for space systems in general,
because of:

• the specific computing environment required for the training,

• the necessity to convey large quantity of data from the system to the
development team to execute or even just assess the result of non-
regression tests,

• the risk of self-loop, when the system favours actions that will provide data
improving its local ML performance rather than the overall efficiency of
the system.

It is rather recommended to transfer additional data to the development team
(even down-sampled for faster transmission) so that the retraining is performed
on ground with the best computing and diagnosis means.

ECSS-E-HB-40-02A
15 November 2024

89

7
Conclusion

This handbook has aimed at providing an overview of applicable resources and
initial framework towards verification and validation of ML/AI systems in the
space domain. Given the dynamic nature of this discipline, it is likely that
updates will be required to reflect changes related to advances in AI research
(such as generative AI with its unprecedented growth over the time it took to
write this handbook), available of hardware that facilitates novel use-cases (as
was the case with most of the deep learning achievements over the past years)
and availability of data (which is of particular interest to space agencies given the
dramatic increase in data volume collected from various domains).

	Machine learning handbook
	1 Scope
	1.1 Purpose
	1.2 Executive Summary
	1.2.1 AI & ML application in space domain
	1.2.2 AI @ ESA

	1.3 Justification and Scope of the Handbook
	1.3.1 Intended programs and target users

	2 References
	3 Terms, definitions and abbreviated terms
	3.1 Terms from other documents
	3.2 Terms specific to the present document
	3.3 Abbreviated terms

	4 Overview
	4.1 Perimeter and objectives
	4.2 Perimeter
	4.3 Objectives and Challenges

	5 Intelligence Environment on ML Verification and Validation
	5.1 Objective
	5.2 Activities / Initiatives in the space domain
	5.2.1 European Space Agency (ESA)
	5.2.2 National Agencies
	5.2.2.1 German Aerospace Center (DLR)
	5.2.2.2 CNES
	5.2.2.3 UKSA

	5.2.3 European Space Industry – Large System Integrators

	5.3 Activities / Initiatives outside the space domain
	5.3.1 Dependable and Explainable Learning (DEEL) Project
	5.3.2 EUROCAE / SAE
	5.3.3 German Standardisation Roadmap on Artificial Intelligence

	6 Guidelines
	6.1 Introduction
	6.2 Business value consideration
	6.3 Data driven approach vs non-data driven approach
	6.4 Guidelines
	6.4.1 Data Quality
	6.4.1.1 High level properties
	6.4.1.2 Data lifecycle
	6.4.1.2.1 Overview
	6.4.1.2.2 Operational scenarios and operational design domain

	6.4.1.3 Data sources
	6.4.1.3.1 Overview
	6.4.1.3.2 Real data
	6.4.1.3.3 Simulation and Synthetic data
	6.4.1.3.4 Augmentation data
	6.4.1.3.5 Surrogate data
	6.4.1.3.6 Lab data

	6.4.1.4 Specific applications
	6.4.1.4.1 Supervised learning
	6.4.1.4.2 Unsupervised Learning
	6.4.1.4.3 Reinforcement learning
	6.4.1.4.4 On Board training

	6.4.2 Model development process
	6.4.2.1 Overview
	6.4.2.2 Framework
	6.4.2.3 Model quality characteristics
	6.4.2.4 Model selection
	6.4.2.4.1 Overview
	6.4.2.4.2 Machine Learning Interpretability and Explainability
	6.4.2.4.2.1. Taxonomy

	6.4.2.5 Common issues with Machine Learning model training
	6.4.2.5.1 Overview
	6.4.2.5.2 Lack of normalization
	6.4.2.5.3 Data leakage
	6.4.2.5.4 Lack of familiarity with data
	6.4.2.5.5 Data mismatch
	6.4.2.5.6 Data drift
	6.4.2.5.7 Incorrect application of model metrics
	6.4.2.5.8 Time traveling data
	6.4.2.5.9 Data bias

	6.4.3 Machine Learning Model Testing
	6.4.3.1 Model Testing
	6.4.3.1.1 Overview
	6.4.3.1.2 Testing context
	6.4.3.1.3 Testing methods
	6.4.3.1.3.1. Specific examples testing
	6.4.3.1.3.2. Neural Network coverage testing
	6.4.3.1.3.3. Out of distribution testing
	6.4.3.1.3.4. Augmented data set - Noise
	6.4.3.1.3.5. Adversarial testing
	6.4.3.1.3.6. Formal Methods and Mathematical Verification
	6.4.3.1.3.7. Statistical Testing
	6.4.3.1.3.8. Detection of unintended behaviour
	6.4.3.1.3.9. SEU testing

	6.4.3.1.4 Post-Training Optimization Testing

	6.4.4 System Testing
	6.4.4.1 Overview
	6.4.4.2 Overview of ML on system level
	6.4.4.2.1 Overview
	6.4.4.2.2 AI-based System definition
	6.4.4.2.3 Classification of autonomy for AI applications

	6.4.4.3 Verification and validation process of AI-based systems
	6.4.4.3.1 Overview
	6.4.4.3.2 Safety criticality assessment
	6.4.4.3.3 FMEA/FMECA
	6.4.4.3.3.1. Overview
	6.4.4.3.3.2. Failure Mode Taxonomy
	6.4.4.3.3.3. FMEA
	Creating a FMEA
	Implementing (functional) FMEA

	6.4.4.3.4 Risk mitigation
	6.4.4.3.4.1. Overview
	6.4.4.3.4.2. Safety cage architecture
	Safety cage definition
	Safety cage principles
	Practical architecture recommendations
	Safety cage building blocks and tools
	Real world examples of safety cages

	6.4.4.4 Keeping ML system validation in operations

	7 Conclusion

