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Foreword

This Handbook is one document of the series of ECSS Documents intended to be used as supporting
material for ECSS Standards in space projects and applications. ECSS is a cooperative effort of the
European Space Agency, national space agencies and European industry associations for the purpose
of developing and maintaining common standards.

The material in this Handbook is a collection of data gathered from many projects and technical
journals which provides the reader with description and recommendation on subjects to be
considered when performing the work of Thermal design.

The material for the subjects has been collated from research spanning many years, therefore a subject
may have been revisited or updated by science and industry.

The material is provided as good background on the subjects of thermal design, the reader is
recommended to research whether a subject has been updated further, since the publication of the
material contained herein.

This handbook has been prepared by ESA TEC-MT/QR division, reviewed by the ECSS Executive
Secretariat and approved by the ECSS Technical Authority.

Disclaimer

ECSS does not provide any warranty whatsoever, whether expressed, implied, or statutory, including,
but not limited to, any warranty of merchantability or fitness for a particular purpose or any warranty
that the contents of the item are error-free. In no respect shall ECSS incur any liability for any
damages, including, but not limited to, direct, indirect, special, or consequential damages arising out
of, resulting from, or in any way connected to the use of this document, whether or not based upon
warranty, business agreement, tort, or otherwise; whether or not injury was sustained by persons or
property or otherwise; and whether or not loss was sustained from, or arose out of, the results of, the
item, or any services that may be provided by ECSS.

Published by: ESA Requirements and Standards Division
ESTEC, P.O. Box 299,
2200 AG Noordwijk
The Netherlands
Copyright: 2011 © by the European Space Agency for the members of ECSS
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1
Scope

Factors affecting the equilibrium temperature of a spacecraft surface are described in this Part 3 using
simple geometrical configurations and basic assumptions.

Methods for conducting calculations on the affect of Solar, planetary and albedo radiation are given
taking into consideration the internal and immediate environmental factors and incorporating the
various configurations and dimensions of the constituent parts.

The Thermal design handbook is published in 16 Parts

ECSS-E-HB-31-01 Part 1
ECSS-E-HB-31-01 Part 2
ECSS-E-HB-31-01 Part 3
ECSS-E-HB-31-01 Part 4
ECSS-E-HB-31-01 Part 5

ECSS-E-HB-31-01 Part 6
ECSS-E-HB-31-01 Part 7
ECSS-E-HB-31-01 Part 8
ECSS-E-HB-31-01 Part 9
ECSS-E-HB-31-01 Part 10
ECSS-E-HB-31-01 Part 11
ECSS-E-HB-31-01 Part 12
ECSS-E-HB-31-01 Part 13
ECSS-E-HB-31-01 Part 14
ECSS-E-HB-31-01 Part 15
ECSS-E-HB-31-01 Part 16

Thermal design handbook — Part 1: View factors

Thermal design handbook — Part 2: Holes, Grooves and Cavities
Thermal design handbook — Part 3: Spacecraft Surface Temperature
Thermal design handbook — Part 4: Conductive Heat Transfer

Thermal design handbook — Part 5: Structural Materials: Metallic and
Composite

Thermal design handbook — Part 6: Thermal Control Surfaces
Thermal design handbook — Part 7: Insulations

Thermal design handbook — Part 8: Heat Pipes

Thermal design handbook — Part 9: Radiators

Thermal design handbook — Part 10: Phase — Change Capacitors
Thermal design handbook — Part 11: Electrical Heating

Thermal design handbook — Part 12: Louvers

Thermal design handbook — Part 13: Fluid Loops

Thermal design handbook — Part 14: Cryogenic Cooling
Thermal design handbook — Part 15: Existing Satellites

Thermal design handbook — Part 16: Thermal Protection System

11



ECSS-E-HB-31-01 Part 3A
/ E CSS 5 Decembe?rZOH

2
References

ECSS-S-ST-00-01 ECSS System - Glossary of terms

All other references made to publications in this Part are listed, alphabetically, in the Bibliography.

12



|[EY

ECSS-E-HB-31-01 Part 3A
5 December 2011

3
Terms, definitions and symbols

3.1 Terms and definitions

For the purpose of this Standard, the terms and definitions given in ECSS-S-ST-00-01 apply.

3.2 Symbols
Ax

A1l

Bi

Tr
Tra
Tre

Tr

Ts

emitting area of the spacecraft, [m?]

area of the spacecraft projected from the sun, [m?]

parameters of the truncated power series development

of Fsp, see clause 6.1

Albedo view factor from spacecraft to planet
view factor from spacecraft to planet

mean radius of the planet, [m]

solar flux, [W.m™] S = S0.d2

solar constant, So = 1353 W.m™

temperature, [K]

Albedo temperature, [K] Ta = [aSo/ ou?]'4

radiation equilibrium temperature of the infinitely
conductive spacecraft, [K]

radiation equilibrium temperature of the infinitely
conductive spacecraft under Albedo radiation, [K]

radiation equilibrium temperature of the infinitely

conductive spacecraft under planetary radiation, [K]

equivalent planet temperature, [K] Tr = (¢/0)*
equivalent surrounding temperature, [K]

mean Albedo of the planet
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b wall thickness, [m]
C specific heat, [J.kg . K™]
d Clause 5: distance from the sun center to the

spacecraft, [AU]

e mean emissive power of the planet per unit area,
[W.m™]

h distance from the spacecraft to the planet surface, [m]

k thermal conductivity, [W.m .K™]

Y dimensionless specific heat in the spinning thin-

walled spacecraft, y= (pbcw)/(soTr?)

a hemispherical absorptance

s solar absorptance

€ hemispherical total emittance

n dimensionless thermal conductance in the thin-walled

spacecraft, = (kb)/(eoTr*R?), where R is the
characteristic length of the spacecraft surface

p density, [kg.m™]

c Stefan-Boltzmann constant, o=5,6697x108 W.m 2.K™
T dimensionless temperature, 7= T/Tr

® angular velocity of the spinning spacecraft

Other symbols, mainly used to define the geometry of the configuration, are introduced when
required
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4
Solar radiation

4.1 General

Data on the equilibrium temperature of a satellite, heated by the Sun, and cooled by radiation to the
outer space, are presented in this Clause. Fairly simple geometrical configurations are considered. The
temperature field within the satellite corresponds to either of the following two simplifying
assumptions.

1. Infinitely conductive satellite. The satellite is constituted by a homogeneous solid body,
exhibiting large thermal conductivity. The temperature of the satellite is uniform. This
temperature is usually named Spacecraft Radiation Equilibrium Temperature, and is
represented by Tr. The following additional assumptions have been used for the
calculations:

(@)  The heat addition is by parallel radiation from the Sun.
(b)  The Equivalent Surrounding temperature, Ts, is assumed to be zero.

(c)  Emittance and solar absorptance of the satellite surface are independent of both
temperature and wavelength.

(d)  Absorptance is independent of the angle between the surface normal and the
direction of the incoming radiation.

The Spacecraft Radiation Equilibrium Temperatures, Tk, is given by

1/4
a, A S
To=| s 20 478 41
R {S 2 sj [ ]

where T's is assumed to be zero as it has been indicated > above.

1. Satellites of finite thermal conductivity. A limited amount of the data presented in this
Clause concerns bodies of finite thermal conductivity. Some knowledge of the internal
structure of the satellite is required to evaluate the temperature field. Here it is assumed
that the satellite is a thin-walled body with no internal conductive structure, furthermore,
in most cases the gas contained within the body is assumed to be opaque and non
conducting.

The data presented are based on the following assumptions:
(@)  The heat addition is by parallel radiation from the Sun.

(b)  The Equivalent Surrounding Temperature, Ts, is assumed to be zero.

15
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(c)  The configuration has an axis of symmetry, solar radiation being parallel to this

axis.

(d) Emittance and solar absorptance of the satellite surface are independent of both
temperature and wavelength.

()  Thermal conductivity is temperature independent.
(f)  Lambert's law is assumed to govern reflection and emission.
(g) Thebody is filled with an opaque non-conducting gas.

The results are presented in terms of the local temperature, T, made dimensionless with the Spacecraft
Radiation Equilibrium Temperature, Tx.
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Mote: non-si units are used in this figure

Figure 4-1: The function Tr(A/A1)"* vs. the distance to the Sun. Calculated by the
compiler.
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Mote: non-si units are used in this figure

Figure 4-2: The function Tr(A:/A1)"* vs. the optical characteristics of the surface.

Shaded zone of a is enlarged in b. Calculated by the compiler.
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Figure 4-3: Temperature Tk as a function of s / £and Ai/At for d =1 AU. Shaded
zone of a is enlarged in b. Calculated by the compiler.

18



ECSS-E-HB-31-01 Part 3A
/ E CSS 5 Decembe?rZOH

4.2 Infinitely conductive planar surfaces

4.2.1 Flat plate emitting on one or both sides
1.- FLAT PLATE EMITTING ON ONE SIDE.

Sketch:
f—
if—
¥ SOLAR
* RADIATION
- —
i—
Formula:
(Ai/AE) = cos y
II.- FLAT PLATE EMITTING ON BOTH SIDES.
Sketch:
i—
]
Y SOLAR
RADIATION
lf—
l—
Formula:

(A/AE) = (cos /2
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Mate: non-zi unitz are used inthis figure

Figure 4-4: Ration (Ai//Ar)" as a function of y, in the case of a flat plate. Calculated
by the compiler.
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4.3 Infinitely conductive spherical surfaces

4.3.1 Sphere
Sketch:

- SOLAR

——
t—

\ / — RADIATION
-—

.'

Area Projected from the Sun, Ar:

Formula:
(A/AE)=1/4

(AilAe)14 = 0,707
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4.4 Infinitely conductive cylindrical surfaces

4.4.1 Two-dimensional circular cylinder

Sketch:
(> i
pff—
: SOLAR
RADIATION
——
\H—ﬂ@ __
iR
Area Projected from the Sun, Ar:
™
S
ZR
1

Formula:
(AAe)=1/7

(Al/Ae)1 = 0,751

Comments: This expression can be also applied to the finite circular cylinder with isolated bases.
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4.4.2 Three-dimensional circular cylinder
Sketch:

f—
—
SOLAR
RADIATION
_
a—
Area Projected from the Sun, Ar:
Heas 'y
N RsinY
iR 1'
Formula:
nsiny+2icos;/
H -
Ae 27| 1+ —
R
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Mate: non-zi unitz are used inthis figure

Figure 4-5: Ratio (Ai/Ar)"* as a function of yand H/R, in the case of a finite height
circular cylinder. Calculated by the compiler.
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4.5 Infinitely conductive conical surfaces

45.1 Semi-infinite circular cone
Sketch:

—
e
" SOLAR
RADIATION
—
—

Area Projected from the Sun, Ar:

Formula:

AilAe = (cos )/ m

Comments: This expression can be also applied to the finite circular cone with isolated base provided
that the incoming radiation is normal to the cone axis.
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Mate: non-zi unitz are used inthis figure

Figure 4-6: Ratio (Ai/Ar)"* as a function of §, in the case of a semi-infinite circular
cone. Calculated by the compiler.
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45.2 Finite circular cone with insulated base. (axial
configuration)

Sketch:

SOLAR
RADIATION

-—
aiff—
e ]
l—
aifre—

Area Projected from the Sun, Ar:

Formula:
AilAE=sin &
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50 &
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Mote: non-si units are used in this figure

Figure 4-7: Ratio (Ai/Ar)"* as a function of §, in the case of a finite circular cone
with insulated base (axial configuration). Calculated by the compiler.
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4.5.3 Finite height circular cone
Sketch:

SOLAR
RADIATION

IRRRA

Area Projected from the Sun, Ar:

Hcos'Y

2R
when ¥-=<90°-8

Formula:

a. when 0 < »<90° -6,

J1-tan?ytan? 5
tan y tan & [4-3]

—sin™y/1-tan? ytan? &

A _sinysing
A z(l+sino)

when y= 0 the above expression becomes

A _ coso »

A.  z(l+sins) 4-4]
b. when y>90° - ¢,

A, sinosiny

U [4-5]

A 1l+sind
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Maote: non-zi units are used inthis figure

‘f'ﬂ'

Figure 4-8: Ratio (Ai/Ar)"* as a function of yand §, in the case of a finite height
cone. Calculated by the compiler.
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4.6 Infinitely conductive cylindrical-conical surfaces

4.6.1 Cone-cylinder-cone
Sketch:

SOLAR
RADIATION

&
Pttt

Area Projected from the Sun, Ar:

Recotd cos Y
( ;QF

Heos Y

. /_’ ELEMY

la PR —-.]

Formula:

a. When y<90° -6

sin ysin 5(z—sin‘lw/1—tan2 ytan® 5)+cos;/(:sin5+cosﬁ 1—tan? 7tan25j

|
—= [4-6]
Ae 72'(14- isin 5)
R
b. when y>90° - 6,
sin 5£sin y+ 2Hcos;/j
A
A_': w R [4-7]
E 7z(1+Rsin 5j
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Maote: non-si unitz are used inthis figure

Figure 4-9: Ratio (A//Ar)"* as a function of yand §, in the case of a cone-cylinder-
cone. Calculated by the compiler.
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Figure 4-10: Ratio (Ai/Ae)"* as a function of yand J, in the case of a cone-cylinder-
cone. Calculated by the compiler.

33



ECSS-E-HB-31-01 Part 3A
/ E CSS 5 Decembe?rZOH

B
A
(&)

B

4

3

2 H_p2

R 5= 0e
1 ] 1 | 1 1 1
0 W 20 30 44 5 s 0 80 =W

'TG
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Figure 4-11: Ratio (A1/Ae)"* as a function of yand J, in the case of a cone-cylinder-
cone. Calculated by the compiler.
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Figure 4-12: Ratio (Ai/Ae)"* as a function of yand J, in the case of a cone-cylinder-
cone. Calculated by the compiler.
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Figure 4-13: Ratio (A/Ae)"* as a function of yand J, in the case of a cone-cylinder-

cone. Calculated by the compiler.
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Figure 4-14: Ratio (A/Ag)"* as a function of yand §, in the case of a cone-cylinder-
cone. Calculated by the compiler.
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Figure 4-15: Ratio (A/Ag)"* as a function of yand §, in the case of a cone-cylinder-
cone. Calculated by the compiler.
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Figure 4-16: Ratio (Ai/Ar)"* as a function of yand &, in the case of a cone-cylinder-
cone. Calculated by the compiler.
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Figure 4-17: Ratio (Ai/Ar)"* as a function of yand J, in the case of a cone-cylinder-
cone. Calculated by the compiler.
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Figure 4-18: Ratio (Ai/Ar)"* as a function of yand §, in the case of a cone-cylinder-
cone. Calculated by the compiler.
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Figure 4-19: Ratio (Ai/Ar)"* as a function of yand &, in the case of a cone-cylinder-

cone. Calculated by the compiler.
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Figure 4-20: Ratio (Ai/Ae)"* as a function of yand J, in the case of a cone-cylinder-
cone. Calculated by the compiler.
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Figure 4-21: Ratio (Ai/Ar)"* as a function of yfor any value of A/R, in the case of a

cone-cylinder-cone. Calculated by the compiler.
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Figure 4-22: Ratio (A//Ar)"* as a function of yand H/R, in the case of a cone-
cylinder-cone. Calculated by the compiler.
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Figure 4-23: Ratio (Ai/Ar)" as a function of yand H/R, in the case of a cone-
cylinder-cone. Calculated by the compiler.
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Figure 4-24: Ratio (A/Ar)" as a function of yand H/R, in the case of a cone-
cylinder-cone. Calculated by the compiler.
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Figure 4-25: Ratio (Ai/Ar)" as a function of yand H/R, in the case of a cone-
cylinder-cone. Calculated by the compiler.
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4.7 Infinitely conductive prismatic surfaces

4.7.1 Prism with an n-sided regular polygonal section

. #+—— SOLAR
— 1 ¥ RADIATION
L i
Bl
|
| |  —
H I l X max
N -~
| AT i
- - "
5
&
}'mﬂk
Area Projected from the Sun, Ar:
E
H
X/R =2cosy, for n even,
X/R =2cos(n/2n)cosy, for n odd.
Formula:
RX
A _ R R s
A .27 H .« [4-8]
nisin—+2-—sin—
n R n
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Figure 4-26: Ratio (Ai//Ar)" as a function of A/R, in the case of a prism. The curves
plotted are those corresponding to the largest and smallest areas projected from
the Sun. Circular cylinder, n = co. Calculated by the compiler.
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Figure 4-27: Ratio (Ai/Ar)"* as a function of H/R, in the case of a prism. The curves
plotted are those corresponding to the largest and smallest areas projected from
the Sun. The values corresponding to A/R <1 are also plotted in the previous
figure. Circular cylinder, n = . Calculated by the compiler.
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Figure 4-28: Ratio (Ai/Ar)"* as a function of H/R, in the case of a prism. The curves
plotted are those corresponding to the largest and smallest areas projected from
the Sun. Circular cylinder, n = co. Calculated by the compiler.
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Figure 4-29: Ratio (Ai/Ar)"* as a function of H/R, in the case of a prism. The curves
plotted are those corresponding to the largest and smallest areas projected from
the Sun. The values corresponding to A/R <1 are also plotted in the previous
figure. Circular cylinder, n = . Calculated by the compiler.
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Figure 4-30: Ratio (Ai//Ar)" as a function of A/R, in the case of a prism. The curves
plotted are those corresponding to the largest and smallest areas projected from
the Sun. Circular cylinder, n = co. Calculated by the compiler.
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Figure 4-31: Ratio (Ai/Ar)"* as a function of H/R, in the case of a prism. The curves
plotted are those corresponding to the largest and smallest areas projected from
the Sun. The values corresponding to A/R <1 are also plotted in the previous
figure. Circular cylinder, n = c. Calculated by the compiler.
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Figure 4-32: Ratio (A//Ar)"* as a function of H/R, in the case of a prism. The curves
plotted are those corresponding to the largest and smallest areas projected from
the Sun. Circular cylinder, n = . Calculated by the compiler.
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Figure 4-33: Ratio (Ai/Ar)"* as a function of H/R, in the case of a prism. The curves
plotted are those corresponding to the largest and smallest areas projected from
the Sun. The values corresponding to A/R <1 are also plotted in the previous
figure. Circular cylinder, n = c. Calculated by the compiler.
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Figure 4-34: Ratio (A//Ar)"* as a function of H/R, in the case of a prism. The curves
plotted are those corresponding to the largest and smallest areas projected from
the Sun. Circular cylinder, n = . Calculated by the compiler.
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Figure 4-35: Ratio (A//Ar)"* as a function of H/R, in the case of a prism. The curves
plotted are those corresponding to the largest and smallest areas projected from
the Sun. The values corresponding to A/R <1 are also plotted in the previous
figure. Circular cylinder, n = c. Calculated by the compiler.
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4.8 Infinitely conductive pyramidal surfaces

4.8.1 Pyramid with an n-sided regular polygonal section

d— ) AR
RADIATION

1t
%

)
glY
i
};ﬂ‘ﬂ‘x"]
Area Projected from the Sun, Ar:
H
— W ——
X/R = 2cosy, for n even,
X/R = 2cos(7/2n)cosy, for n odd.
Formula:
HX
A _ R R
2 -
e op HI/R [4-9]
nsin— |1+ 1+ ———
n cos(z/n)
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Figure 4-36: Ratio (A/Ar)"* as a function of AR, in the case of a pyramid. The
curves plotted are those corresponding to the largest and smallest areas projected
from the Sun. Circular cone, n = . Calculated by the compiler.
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Figure 4-37: Ratio (Ai/Ar)"* as a function of H/R, in the case of a pyramid. The
curves plotted are those corresponding to the largest and smallest areas projected
from the Sun. The values corresponding to A/R <1 are also plotted in the previous

figure. Circular cone, n = . Calculated by the compiler.
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Figure 4-38: Ratio (Ai/Ar)" as a function of H/R, in the case of a pyramid. The
curves plotted are those corresponding to the largest and smallest areas projected
from the Sun. Circular cone, n = c. Calculated by the compiler.
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Figure 4-39: Ratio (Ai/Ar)" as a function of H/R, in the case of a pyramid. The
curves plotted are those corresponding to the largest and smallest areas projected
from the Sun. The values corresponding to A/R <1 are also plotted in the previous

figure. Circular cone, n = . Calculated by the compiler.
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Figure 4-40: Ratio (Ai/Ar)"* as a function of H/R, in the case of a pyramid. The

curves plotted are those corresponding to the largest and smallest areas projected
from the Sun. Circular cone, n = . Calculated by the compiler.
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Figure 4-41: Ratio (Ai/Ar)"* as a function of H/R, in the case of a pyramid. The
curves plotted are those corresponding to the largest and smallest areas projected
from the Sun. The values corresponding to A/R <1 are also plotted in the previous

figure. Circular cone, n = . Calculated by the compiler.
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Figure 4-42: Ratio (A/Ar)" as a function of H/R, in the case of a pyramid. The

curves plotted are those corresponding to the largest and smallest areas projected
from the Sun. Circular cone, n = «. Calculated by the compiler.
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Figure 4-43: Ratio (A/Ar)"* as a function of AR, in the case of a pyramid. The
curves plotted are those corresponding to the largest and smallest areas projected
from the Sun. The values corresponding to A/R <1 are also plotted in the previous

figure. Circular cone, n = . Calculated by the compiler.
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Figure 4-44: Ratio (A/Ar)"* as a function of AR, in the case of a pyramid. The
curves plotted are those corresponding to the largest and smallest areas projected
from the Sun. Circular cone, n = 0. Calculated by the compiler.
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Figure 4-45: Ratio (Ai/Ar)"* as a function of A/R, in the case of a pyramid. The
curves plotted are those corresponding to the largest and smallest areas projected
from the Sun. The values corresponding to A/R <1 are also plotted in the previous

figure. Circular cone, n = . Calculated by the compiler.

4.9 Infinitely conductive prismatic-pyramidal surfaces

49.1.1 Pyramid-prism-pyramid with an n-sided regular polygonal
section

-+— SDOLAR
RADIATION
.‘_
h- %
— Vi
- 4
oy
Yy

Area Projected from the Sun, Ar:
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X/R =2cosy, for n even,
X/R = 2cos(7/2n)cosy, for n odd.

Formula:

A 2 [4-10]
j nsin”[l+\/1+(cos(ﬂ/n)j }
n H/R

\_'&r=0u

Y = 300

AN

Mate: non-zi unitz are used inthis figure

Figure 4-46: Ratio (A//Ar)"* as a function of A/R, in the case of a pyramid - prism -
pyramid. The curves plotted are those corresponding to the largest and smallest
areas projected from the Sun. Cone - cylinder - cone, n = . Calculated by the
compiler.
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Figure 4-47: Ratio (Ai/Ar)"* as a function of H/R, in the case of a pyramid - prism -
pyramid. The curves plotted are those corresponding to the largest and smallest
areas projected from the Sun. The values corresponding to A/R <1 are also plotted
in the previous figure. Cone - cylinder - cone, n = . Calculated by the compiler.
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Figure 4-48: Ratio (A//Ar)"* as a function of A/R, in the case of a pyramid - prism -
pyramid. The curves plotted are those corresponding to the largest and smallest
areas projected from the Sun. Cone - cylinder - cone, n = . Calculated by the
compiler.
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Figure 4-49: Ratio (A/Ar)"* as a function of H/R, in the case of a pyramid - prism -
pyramid. The curves plotted are those corresponding to the largest and smallest
areas projected from the Sun. The values corresponding to A/R <1 are also plotted
in the previous figure. Cone - cylinder - cone, n = . Calculated by the compiler.
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Figure 4-50: Ratio (Ai/Ar)"* as a function of A/R, in the case of a pyramid - prism -
pyramid. The curves plotted are those corresponding to the largest and smallest
areas projected from the Sun. Cone - cylinder - cone, n = . Calculated by the
compiler.
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Figure 4-51: Ratio (A//Ap)"* as a function of A/R, in the case of a pyramid - prism -
pyramid. The curves plotted are those corresponding to the largest and smallest
areas projected from the Sun. The values corresponding to A/R <1 are also plotted
in the previous figure. Cone - cylinder - cone, n = . Calculated by the compiler.
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Figure 4-52: Ratio (A//Ar)"* as a function of A/R, in the case of a pyramid - prism -
pyramid. The curves plotted are those corresponding to the largest and smallest
areas projected from the Sun. Cone - cylinder - cone, n = 0. Calculated by the
compiler.
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Figure 4-53: Ratio (A//Ar)"* as a function of A/R, in the case of a pyramid - prism -
pyramid. The curves plotted are those corresponding to the largest and smallest
areas projected from the Sun. The values corresponding to A/R <1 are also plotted
in the previous figure. Cone - cylinder - cone, n = . Calculated by the compiler.
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Figure 4-54: Ratio (Ai/Ar)"* as a function of H/R, in the case of a pyramid - prism -
pyramid. The curves plotted are those corresponding to the largest and smallest
areas projected from the Sun. Cone - cylinder - cone, n = 0. Calculated by the
compiler.
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Figure 4-55: Ratio (Ai/Ar)"* as a function of A/R, in the case of a pyramid - prism -
pyramid. The curves plotted are those corresponding to the largest and smallest
areas projected from the Sun. Cone - cylinder - cone, n = . Calculated by the
compiler.

4.10 Thin-walled spherical bodies. Finite conductivity

4.10.1 Non-spinning sphere
Sketch:

SOLAR
RADIATION

AN

Dimensionless Parameters:
o6) = T(O)/Tr, y1=kb/eoTr3R?
Differential Equations:

u d ( drj {74—40030 , When0<@d<r/2
sinfd— |= [4-11]

sind do do) |4 | whenz/2<0<r
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Boundary Conditions:

dr
do

_dr

=—1 =0, 1 andﬂ continuous [4-12]
s d0

- O=r12
O=r d O=r12

Comments: The results obtained by numerically solving this problem are given in the following.

Reference: Nichols (1961) [11].
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Mote: non-si units are used in this figure

Figure 4-56: Temperature distribution on sphere. No spin. No internal radiation.
Calculated by the compiler.
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4.10.2 Non-spinning sphere. Including internal radiation
Sketch:

SOLAR
RADIATION

B=x-

[T

H(6), Radiation Flux Density Leaving Inside the Sphere.

1(6), Radiation Flux Density Impinging on Inside the Sphere.

Dimensionless Parameters:

o(0) = T(0)/Tr, = kb/ecTrR3R?

Differential Equations:
Li[ _ 9£)={214—4cose—1 , when0<0<7/2
sing do do 274 -1 whenz/2<6<r

Mote: non-si unitz are uzed inthis figure

Boundary Conditions:

dr
do

_dr
T,

Mate: non-zi unitz are uzed in thiz figure

dr .
=0 , 1| — continuous

O=n

O=rxl2 and

d O=m12

[4-13]

[4-14]

Comments: The results obtained by numerically solving this problem are given in the following.

Reference: Nichols (1961) [11].
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Figure 4-57: Temperature distribution on sphere including internal radiation. No
spin. Calculated by the compiler.

4.11 Thin-walled cylindrical bodies. Finite conductivity.

4.11.1 Non-spinning two-dimensional circular cylinder
Sketch:

B=x/2

SOLAR

8am RADIATION

NERR!

Dimensionless Parameters:
o 6) = T(6)/Tr, u=kb/eoTr3R?

Differential Equations:
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de?

d’z t*—rcos® , when0<O<rx/2
a AN whenz/2<0<r [4-15]

Mate: non-zi unitz are uzed in this figure

Boundary Conditions:

dr

dzj _dz7} .1 and 97| continuous
do

0=0 do o= - oeniz dol,_./, [4-16]

Mote: non-si unitz are uzed inthis figure

Comments: Assumption concerning axial-symmetry is, obviously, not applicable in this case.
The results presented in the following involve a linearization of the radiative transfer term.

Reference: Charners & Raynor (1960) [4].
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Figure 4-58: Temperature distribution on a two-dimensional cylinder. No spin. No
internal radiation. Calculated by the compiler.

4.11.2 Spinning two-dimensional circular cylinder

Sketch:
-]
8= {(1=-aq;i% ——
b /’ *
—5 —
SOLAR
8=1t/2- 8=3m/2 — RADIATION
e
—
Bz

Dimensionless Parameters:
o 0) = T(O)/Tr, u=kb/eoTrR3R?, y= pbcal ecTr3

where:
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, Angular Velocity. [sec].
¢, Specific Heat of the Material. [J.kg.K™].
p, Density of the Material. [kg.m™]
Differential Equations:
d’z dr |7° when0< @< 7
ll'l 2 + 7/_ = 4 .
do do |t*+zsind , whenr<d<2r [4-17]
Mate: non-zi units are used in this figure
Boundary Conditions:
dr dr dr .
— == , 7],__and —| continuous
dol,, db|,,, B do,_, [4-18]

Mate: non-zi unitz are uzed in this figure

Comments: The results presented have been obtained linearizing the equations, either assuming
' y<<2m, Figure 4-59 or | =1 | <<1, Figure 4-60. In the last case terms of order (1) have been neglected,
so that ¢ = 1+4(#1). This approximation is valid when z/y~1.
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Figure 4-59: Temperature distribution on a two - dimensional spinning cylinder
for several x an yvalues. No internal radiation. Calculated by the compiler.
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Figure 4-60: Temperature distribution on a two - dimensional spinning cylinder
for several an yvalues. No internal radiation. Calculated by the compiler.
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4.11.3 Circular cylinder. solar radiation parallel to axis of
symmetry

Sketch:

AF

SOLAR
RADIATION

Ll
§

¥
B
¢
Ir
T

T

Dimensionless Parameters:

x=7/R,for0<x<1;x=1+s/H, for 1 <x <2, x=3-1t/R, for 2<x <3; t=T/Tr; A= H/R; u= kb/e6Tr3R2.
Differential Equations:

ﬁi(x%j =7, -2(1+1) , when0<x<1

X dx dx
2
#d Lot whenl<x<2
A dx? [4-19]
Li[(g_x)%}zrs“ . when2<x<3
3—x dx dx

Mate: non-zi unitz are uzed in this figure

Boundary Conditions:

%Lﬂ'ﬂ_ﬂ'“ s ™2y - 2la=%la

el 2l 2l

% :% =0, z-l| 4~ z'2| 1 ! 2-2| 2 z'3| =2 [4-20]
dx |, dX|,, = = x= x=

dr,| dr, dr, _/1dz'3

dX x=1 dX x=1 ’ dX x=2 dX x=2

Mate: non-zi units are used in this figure

Comments: To obtain the results presented in the following, the 4 power temperature terms, which
appear in the above equations, have been linearized according to the expression 7 = 47-3. Note that
this linearization will give results with increased accuracy as the parameter u gets larger.

Reference: Nichols (1961) [11].
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Mote: non-si units are used in this figure

Figure 4-61: Temperature distribution on cylinder. No spin. No internal radiation.
From Nichols (1961) [11].

4.11.4 Cylindrical surface of rectangular cross section. Solar
radiation normal to face

Sketch:

SOLAR
RADIATION

Pttt

Dimensionless Parameters:

x =2X/La, for 0 <x< 1; x = 142Y/Ls, for 1 < x < 1424; x = 1424 + 27Z/La, for 1424 <x< 2(1+4); 7= T/Tr; A =
Lo/Ly; = 4kb/ecTr3L12

Differential Equations:
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d’r
; L=7'-4 , when0<x<1
X
d*z 4-21
27 whenl<x<2(1+2) 4211
dx
Mote: non-si units are used in this figure
Boundary Conditions:
d Tl d T2 O - | r | d Tl d 7-2
— = — = s [ = a2l , R —— =
dX |, AX [, ppn A dx |, OX|. 422

Mote: non-zi units are used in this figure

Comments: The results obtained by numerically solving this problem are given in the following.

Reference: Compiler.
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Figure 4-62: Temperature distribution on a cylindrical surface whose cross section
is a rectangle of aspect - ratio 4 =0,5. No internal radiation. Calculated by the
compiler.
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Mate: non-zi unitz are used inthis figure

Figure 4-63: Temperature distribution on a cylindrical surface whose cross section
is a rectangle on aspect - ration 4 = 1. No internal radiation. Calculated by the
compiler.
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Figure 4-64: Temperature distribution on a cylindrical surface whose cross section
is a rectangle on aspect - ration 4= 2. No internal radiation. Calculated by the
compiler.
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4.12 Thin-walled conical bodies. Conductivity

4.12.1 Non-spinning cone

Sketch:
f—
i —
r SOLAR
RADIATION
1] iff—
_4_. f—
H
Dimensionless Parameters:
S
X= when0<x<1
R“+H (4-23]
r
X=2—-—— whenl<x<2
R
ox) = T(x)/Tr; p=kb/ecTrR3R2.
Differential Equations:
22
sin“6 d ( dr .
A0 2 Ix=h | =zt —(1+sins) , when0<x<1
X dx\ dx
d dr 4-24
L 2-x)=2 =1 when1<x <2 [4-24]
2—p dx dx
Mate: non-zi units are used in this figure
Boundary conditions:
dr dr . dr dr
— =—2 =0 , T1|x—l = 72|x—1 , sing—% =—2
dx [, dx |, i i dx | dx|  [4-25]

Mote: non-si unitz are used inthis figure

Comments: The results obtained by numerically solving this problem are given in the following.

Reference: Nichols (1961) [11].
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Mote: non-si units are used in this figure

Figure 4-65: Temperature distribution on cone. No spin. No internal radiation.
From Nichols (1961) [11].
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Figure 4-66: Temperature distribution on cone. No spin. No internal radiation.
From Nichols (1961) [11].
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Figure 4-67: Temperature distribution on cone. No spin. No internal radiation.
From Nichols (1961) [11].
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5
Planetary radiation

51 General

Data on the equilibrium temperature of a satellite, heated by radiation from a planet, and cooled by
radiation to the outer space, are presented in this Clause. Only satellites of very simple geometrical
configurations are considered.

The data presented have been calculated on the basis of the following assumptions:

(@)  The satellite is constituted by a homogeneous solid body, exhibiting infinitely large
thermal conductivity.

(b)  The characteristic length of the satellite is small compared with the mean radius of
the planet.

(c)  The emission from the planet is assumed to follow Lambert's law.
(d)  The Equivalent Surrounding Temperature, Ts, is assumed to be zero.

(¢)  Emittance and infrared absorptance of the satellite surface are independent of both
temperature and wavelength.

The Spacecraft Planetary Radiation Equilibrium Temperature, Tre, is given by:
Trp = [(ad &)FspTr* + Ts4]14

Once Ts has been assumed to be zero, the above expression gives the ratio Trr/Tr as a function of the
optical characteristics of the satellite surface (through o/¢) for arbitrary values of the view factor from
spacecraft to planet, Fsr. The results are given in Figure 5-1.

These results can be also used to estimate the radiation from a satellite to a sub satellite or appendage
provided that the above assumption hold.

Values of Tre as a function of Tre/Tr for radiation from several planets are given in Figure 5-2.
Radiation from the Earth is considered in Figure 5-3.

The remaining data are values of Fsr for simple geometries. From cylindrical and conical
configurations Fsp is calculated by expansion in powers of sin 4 and (or) cos 4, 4 being the angle
defining the orientation of the spacecraft. The coefficients of these power expansions depends on the
parameter Bi. The five first parameter B: are given below, as calculated by Clark & Anderson (1965) [5].

0=77r

2 | 577
105

4 3 2 5 4 7
———7cosa, +§cos o, —gcos o, +7cos o, [5-1]

B, = %sin2 a, [5-2]

99



ECSS-E-HB-31-01 Part 3A
/ E CSS 5 Decembe?rZOH

B, = %[cos a, —2cos’ a, +4cos’ a, —3cos’ aL] [5-3]
B, = 4 —Cosa, +4—Ocos3 a, —%cos5 o, +18cos’ aL} [5-4]
r 3 3
B, = %[5005 o, —35¢c0s° o, +63cos’ a, —33cos’ aL] [5-5]
where:
. R
a, =sint—= -
L h+R, 15-6]
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Mote: non-si units are used in this figure

Figure 5-1: The ratio 7kp/Tr vs. the optical characteristics of the surface for
different values of Fsr. Shaded zone of a is enlarged in b. Calculated by the
compiler.
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Maote: non-zi units are used inthis figure

Figure 5-2: Radiation equilibrium temperature 7kr vs. ratio 7kp/Tr . Incoming
radiation from different planets. After NASA - SP - 3051 (1965).
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Figure 5-3: Different estimates of radiation equilibrium temperature 7krvs. Tkr/Tp,
for radiation from the Earth. Plotted from data by Johnson (1965) [9].
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Table 5-1: Relevant data on the Planets and the Moon.

Distance | Distance || Radius of Planet to Solar Equivalent
to the sun || to the sun || the planet || earth radius| constant ||temperature
x107° [m] in AU x107% [m] ratio [W.m™] of the
planet
K1
MERCURY 57,9 0,387 2330 0,3659 9034 440
VENUS 108,1 0,723 6100 0,9580 2588 229
EARTH 149,5 1,0 6367,5 1,0 1353 250
MARS 2274 1,521 3415 0,5363 585 216
JUPITER 773,3 5,173 71375 11,2093 51 88
SATURN 1425,7 9,536 60500 9,5014 15 63
URANUS 2880,7 19,269 24850 3,9026 3,6 33
NEPTUNE 4490,1 30,034 25000 3,9262 1,5 32
PLUTO 5841,9 39,076 2930 0,4600 0,89 43
MOON 149,5 1,0 1738 0,2729 1353 273
NOTE 1 References: Kreith (1962) [10], Wolverton (1963) [13], Anderson (1969) [1].
5.2 Infinitely conductive planar surfaces
5.2.1 Flat plate absorbing and emitting on one side
Sketch:
NORMAL TO
FLAT PLATE
TO PLANET
CENTER

MEITHER

ABSOREING NOR

EMITTING FACE
Formula:

Esp= Bo+ BicosA + B2 cos2A+ B3 cos*A + Bs cos®A

Where the parameters Bi (i=0,1,...,4) are defined in clause 5.1.
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Reference: Clark & Anderson (1965) [5].
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Mote: non-si units are used in this figure

Figure 5-4: Fsras a function of 4 and & / Rrin the case of a flat plate absorbing and
emitting on one side. Calculated by the compiler.

5.3 Infinitely conductive spherical surfaces

5.3.1 Sphere
Sketch:

Formula:

[5-7]
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Reference: Clark & Anderson (1965) [5], Watts (1965) [12].
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Mote: non-si units are used in this figure

Figure 5-5: Fsras a function of i / Rr in the case of a sphere. Calculated by the
compiler.

5.3.2 Hemispherical surface absorbing and emitting on outer
face

Sketch:

TO PLANET
CENTER

Formula:

[5-8]
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Reference: Watts (1965) [12].
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Maote: non-zi units are used inthis figure

Figure 5-6: Fspas a function of 4 and h / Rr in the case of a hemispherical surface
absorbing and emitting on outer face. Calculated by the compiler.
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5.4 Infinitely conductive cylindrical surfaces

54.1 Circular cylinder with insulated bases
Sketch:

TO PLANET
CEMTER

Formula:

Fer IBO+§Sinzﬂ+&Sin4ﬂ+SB4 sin® 4 [5-9]
2 8 16

where the parameters Bi (i =0,1,...,4) are defined in clause 5.1.

Reference: Clark & Anderson (1965) [5], Watts (1965) [12].
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Mate: non-zi unitz are used inthis figure

Figure 5-7: Fspas a function of 4 and & / Rr in the case of a circular cylinder with
insulated bases. Calculated by the compiler.

54.2 Finite height circular cylinder
Sketch:

TO PLANET
CENTER

Formula:

B, + B, cos’ 1+ B,cos* 1+ B, cos® 1+

Fop =—— 1
sP H +ﬂ Bo+isinzﬂ+3&sin4i+&sinsft [>-10]
R 2 8 16
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where the parameters Bi (i =0,1,...,4) are defined in clause 5.1.

Reference: Clark & Anderson (1965) [5].
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Mate: non-zi unitz are used inthis figure

Figure 5-8: Fspas a function of 4 and h / Rr in the case of a finite height circular
cylinder. Calculated by the compiler.
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Figure 5-9: Fspas a function of 4 and h / Rr in the case of a finite height circular

cylinder. Calculated by the compiler.
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Figure 5-10: Fspas a function of A and & / Rrin the case of a finite height circular
cylinder. Calculated by the compiler.
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Figure 5-11: Fspas a function of A and & / Rr in the case of a finite height circular
cylinder. Calculated by the compiler.
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Figure 5-12: Fspas a function of A and & / Rr in the case of a finite height circular
cylinder. Calculated by the compiler.
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Figure 5-13: Fspas a function of A and & / Rr in the case of a finite height circular
cylinder. Calculated by the compiler.
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Figure 5-14: Fspas a function of A and h / Rr in the case of a finite height circular
cylinder. Calculated by the compiler.
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Figure 5-15: Fspas a function of A and h / Rr in the case of a finite height circular
cylinder. Calculated by the compiler.
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Figure 5-16: Fspas a function of A and h / Rr in the case of a finite height circular
cylinder. Calculated by the compiler.
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5.5 Infinitely conductive conical surfaces

551 Circular cone with insulated base
Sketch:

I
'}{‘\l TO PLANET
CENTER

Formula:
2 DZ 4 212 3 4
Fip = By +BC+B,| C7 4 —— |+By C'+3C"D*+ 1D |+
15 45 5 >-11]
+B, C6+C4D2+C2D4+D6J
2 8 16

where the parameters Bi (i =0,1,...,4) are defined in clause 5.1.
In addition:

C =sindcosAd

D = cosdsind

Reference: Clark & Anderson (1965) [5].
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Figure 5-17: Fspas a function of A and & / Rr in the case of a circular cone with
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insulated base. Calculated by the compiler.
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Figure 5-18: Fspas a function of A and & / Rr in the case of a circular cone with
insulated base. Calculated by the compiler.
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5.5.2 Finite height circular cone
Sketch:
TO PLANET
CEMTER
Formula:
|

_ 1
1+sind

FSP

sin 5(80 - B, cos A+ B, cos® 1+ B, cos* 1 + B, cos® /1)+
2 D2 4 22 3 4
+B,+BC+B,|C +7 +B,/C"+3C°D +§D +

5

+ B{C6 Beipr  Beope +D6j
I 2 8 16

where the parameters Bi (i =0,1,...,4) are defined in clause 5.1.

In addition:
C =sinécosA
D = cosésind

Reference: Clark & Anderson (1965) [5].

[5-12]
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Figure 5-19: Fspas a function of 4 in the case of a finite height circular cone.
Calculated by the compiler.
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Figure 5-20: Fspas a function of 4 in the case of a finite height circular cone.
Calculated by the compiler.
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6
Albedo radiation

6.1 General

Albedo radiation is that part of the solar radiation incident upon the planet which is reflected or
scattered by the planet surface and atmosphere (if existent).

Data on the equilibrium temperature of a satellite, heated by the albedo radiation from a planet, and
cooled by radiation to the outer space, are presented in this Clause. These data are based on the
assumptions a,b,d and e listed in clause 5.1. In addition, the planet is supposed to be a diffusely
reflecting sphere.

The Spacecraft Albedo Radiation Equilibrium Temperature, Trs, as given by
Tra = [(c/&)FTa* + Ts*]14

Where Ts is assumed to be zero as it has been indicated repeatedly. Values of Tra/Ta vs. a/s for
arbitrary values of the albedo view factor, F, from spacecraft to planet are given in Figure 6-1. These
values can be also used to estimate the effect on a sub satellite of the solar radiation reflected or
scattered by a large satellite, provided that the above assumption hold.

Tra as function of Tra/Ta for albedo radiation from several planets is given in Figure 6-2. Albedo
radiation from the Earth is considered in Figure 6-3. Finally, values of F in three simple cases are
presented.
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Mate: non-zi unitz are used inthis figure

Figure 6-1: The ratio 7ka/ Tavs. the optical characteristics of the surface for
different values of F. Shaded zone of a is enlarged in b. Calculated by the
compiler.
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Figure 6-2: Albedo equilibrium temperature, 7k, vs. dimensionless ratio 7ka/ Ta.
Incoming albedo from different planets. After Anderson (1969) [11].
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Figure 6-3: Different estimates of albedo equilibrium temperature 7ka ,vs. Tka/ Ta
in case of the Earth. Calculated by the compiler.
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Table 6-1: Relevant data on the Planets and the Moon.

Distance || Distance to || Radius of the || Planet to Solar Mean

to the sun the sun planet earth constant || albedo

x107° [m] in AU x1073 [m] radius ratio || [W.m™]
MERCURY 57,9 0,387 2330 0,3659 9034 0,053
VENUS 108,1 0,723 6100 0,9580 2588 0,76
EARTH 149,5 1,0 6367,5 1,0 1353 0,35
MARS 2274 1,521 3415 0,5363 585 0,16
JUPITER 773,3 5,173 71375 11,2093 51 0,73
SATURN 1425,7 9,536 60500 9,5014 15 0,76
URANUS 2880,7 19,269 24850 3,9026 3,6 0,93
NEPTUNE 4490,1 30,034 25000 3,9262 1,5 0,84
PLUTO 5841,9 39,076 2930 0,4600 0,89 0,14
MOON 149,5 1,0 1738 0,2729 1353 0,067
NOTE 1 References: Kreith (1962) [10], Wolverton (1963) [13], Anderson (1969) [1].
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6.2 Infinitely conductive planar surfaces

6.2.1 Flat plate absorbing and emitting on one side
Sketch:

HORMAL TO
FLAY PLATE
—_—

SEOLAR
RADIATION

Formula: All results in the literature are obtained numerically.

Reference: Bannister (1965) [2].
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Figure 6-4: Albedo view factor F vs. h / Rr for different values of &in the case of a
flat plate (1 =0° ¢.=180°). From Bannister (1965) [2].
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Figure 6-5: Albedo view factor F vs. h / Rr for different values of &in the case of a
flat plate (1=30° ¢= 0°). From Bannister (1965) [2].
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Figure 6-6: Albedo view factor F vs. h / Rrfor different values of &in the case of a
flat plate (1 =30° ¢.=90°). From Bannister (1965) [2].
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Figure 6-7: Albedo view factor F vs. h / Rrfor different values of &in the case of a

flat plate (1=30° ¢.=180°). From Bannister (1965) [2].
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6.3 Infinitely conductive spherical surfaces

6.3.1 Sphere
Sketch:

SOLAR
RADIATION

Formula: All results in the literature are obtained numerically.

Reference: Cunningham (1961) [6].
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Figure 6-8: Albedo view factor F vs. h / Rrfor different values of &in the case of a
sphere. From Cunningham (1961) [6].
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Figure 6-9: Albedo view factor F vs. h / Rrfor different values of &in the case of a
sphere. From Cunningham (1961) [6].
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Figure 6-10: Albedo view factor F vs. h / Rr for different values of &in the case of a
sphere. Calculated by the compiler.
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6.4 Infinitely conductive cylindrical surfaces

6.4.1 Circular cylinder with insulated bases
Sketch:

{/
SOLAR
RADIATION
/"
T /
‘/

Formula: All results in the literature are obtained numerically.

Reference: Bannister (1965) [2].
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Figure 6-11: Albedo view factor F vs. h / Rrfor different values of éin the case of a
cylinder (1=0°, ¢ .= 0°,180°). From Bannister (1965) [2].
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Figure 6-12: Albedo view factor F vs. h / Rrfor different values of éin the case of a
cylinder (1= 60°, ¢.=0°). From Bannister (1965) [2].
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Figure 6-13: Albedo view factor F vs. h / Rrfor different values of éin the case of a
cylinder (1= 60°, ¢.=90°). From Bannister (1965) [2].
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Figure 6-14: Albedo view factor F vs. h / Rr for different values of &in the case of a
cylinder (4= 60°, ¢ .=180°). From Bannister (1965) [2].
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