ECSS-E-70-32A
24 April 2006

EUROPEAN COOPERATION

FOR SPACE STANDARDIZATION

Space engineering

Test and operations procedure
language

ECSS Secretariat

ESA-ESTEC

Requirements & Standards Division
Noordwijk, The Netherlands

ECSS-E-70-32A /E m/
24 April 2006

Published by: ESA Publications Division
ESTEC, P.O. Box 299,

2200 AG Noordwijk,
The Netherlands
ISSN: 1028-396X
Price: €30
Printed in: The Netherlands.
Copyright: ©2006 by European Space Agency for the members of ECSS

I CSS CSSE-T0 24

Foreword

This Standard is one of the series of ECSS Standards intended to be applied
together for the management, engineering and product assurance in space
projects and applications. ECSS is a cooperative effort of the European Space
Agency, national space agencies and European industry associations for the
purpose of developing and maintaining common standards.

Requirements in this Standard are defined in terms of what shall be
accomplished, rather than in terms of how to organize and perform the
necessary work. This allows existing organizational structures and methods to
be applied where they are effective, and for the structures and methods to
evolve as necessary without rewriting the standards.

The formulation of this Standard takes into account the existing ISO 9000
family of documents.

This Standard has been prepared by the ECSS-E-70-32 Working Group,
reviewed by the ECSS Engineering Panel and approved by the ECSS Steering
Board.

ECSS-E-70-32A /E m/
24 April 2006

(This page is intentionally left blank)

I CSS CSSE-T0 24

Contents
FOTEWOIT .. 3
TN 0 o LU Tox o o USRI 7
ST o] o o 1 ORI 9
2 NOIMALIVE TEIRIENCES ... e et e e e e e e e e e aeannnnas 11
3 Terms, definitions and abbreviated terms.........ccooooiiiiiiiiiiii s 13
3.1 Terms and definitioNS.........cooiiiiiiiiii e 13
3.2 ADDreviated terMIS.......cuviiiiiiiiiiiiiiiiieie et 15
4 Context of the procedure laNQUAGEccooeeeeeeee e 17
A1 INTFOAUCTION L.ttt 17
4.2 EGSE and mission control system (EMCS)cooouuiiiiiiniiiiiiiiiiiiiiee e 19
5 Requirements to be satisfied by proCedUrescccuuuvuiuiiiiiimiiiiiiiiiiiiiirieieeeeena. 23
5.1 ProCeaUIE STIUCTUIEuiiieeieeieiiiiiie ettt e et e e e e e e e ee b e e e e 23
5.2 LanQUAagE CONSIIUCTESieuuiiiiiieiii et e et et e s e e e et e e e e et e et eeeen e eenns 24
5.3 Language SPECIfICALIONccouuuuuiiiiie ittt 26
=TT o1 oo =T o] 0 Y/ SUREPPPRPRPR 135
Figures
Figure 1: Example of space system elementscooiiiiiiiiiiiiiiiiiie e 18
Figure 2: Example of a space system mModel............cooiiiiiiiiiiiiiiiiiie e ee e 20
Figure A-1: Example of a procedure and itS elements..............ueeiiiieiiiiiiiiiiiiiee s 28
Figure A-2: Execution states and transitions for a procedurecccvvvvvviiciieeeeeeenne, 34
Figure A-3: Execution states and transitions for a Stepccccovvvviiiiiiieee 36
Figure A-4: Execution states and transitions for an activitycccccevveviviiiiieeeeeeeennns 37
Figure A-5: Confirmation status and continuation action combinations for main body
“initiate and confirm” StAtEMENTS........ccooveeie i 39
Figure A-6: Confirmation status and continuation action combinations for watchdog
“initiate and confirm” StAtEMENTS........ccooveeieiee e 39
Figure A-7: Example railroad diagramooooiiiiiiiiiiin et eeeeeeees 41

ECSSB70:520 |E [

Tables

Table A-1: Predefined tYPEScoo e 46
Table A-2: Activity and step operation reqUESESceiveeeeiiiiiiiiiie e 80
Table A-3: Reporting data, variable and argument operation requests 81
Table A-4: Predefined OPEratOrS..........oouvuiiiiiii e 97
Table A-5: Activity and Step property reqUESTESoooeviiiiiiiiiiii e, 101
Table A-6: Reporting data, variable and argument property requestscccceue.... 102
Table A-7: EVent Property reQUESEScoooiiiiiiiieeeieee e 102
Table A-8: EBNF symbols and Meaningscccovvviiiiiiiiiiie e 104
Table B-9: Simple engineering UNItScoooeieiiiiiieeeeeeeeeeeee e 118
Table B-10: Acceptable multiples and submultiples of engineering units 120
Table B-11: Acceptable multiples of binary engineering unitscccoooeeeeenn. 120
Table B-12: Standard compound engineering UNItS...........ccceeevviiviiiiiiiieeeeeeeeeeniiiieenn 120
Table C-1: Mathematical fUNCHIONSuueiiiii e 129
Table C-2: TiMe fUNCLONS.........ooo i, 131
Table C-3: String fUNCLIONS ..o 132

I CSS CSSE-T0 24

Introduction

The procedure is the principal mechanism employed by the end-user to control
the space system during pre-launch functional testing and post-launch in-orbit
operations.

This Standard identifies the requirements to be satisfied by any language used
for the development of automated test and operation procedures.

It also defines a reference language that fulfils these requirements. This
language is called the “procedure language for users in test and operations
(PLUTO)”.

ECSS-E-70-32A /E m/
24 April 2006

(This page is intentionally left blank)

I CSS CSSE-T0 24

Scope

This Standard specifies:

. The capabilities of the language used for the definition of procedures for
space system testing and operations.

. The PLUTO language.

Clause 4 defines the context in which procedures operate.
Clause 5 contains the requirements for the procedure language.
Annex A specifies the PLUTO language. This includes:

. The “building blocks” that constitute procedures and the role that each of
these building blocks plays in achieving the overall objectives of the
procedure.

. The dynamic aspects of procedures i.e. the execution logic of each
building block and execution relationships between these blocks.

. The syntax and semantics of the language itself.

Annex B specifies the engineering units to be supported by the procedure
language.

Annex C specifies the mathematical, time and string functions to be supported
by the procedure language.

ECSS-E-70-32A /E m/
24 April 2006

(This page is intentionally left blank)

10

I CSS CSSE-T0 24

2
Normative references

The following normative documents contain provisions which, through
reference in this text, constitute provisions of this ECSS Standard. For dated
references, subsequent amendments to, or revisions of, any of these
publications do not apply. However, parties to agreements based on this ECSS
Standard are encouraged to investigate the possibility of applying the most
recent editions of the normative documents indicated below. For undated
references, the latest edition of the publication referred to applies.

ECSS-P-001B ECSS - Glossary of terms

11

ECSS-E-70-32A /E m/
24 April 2006

(This page is intentionally left blank)

12

I CSS CSSE-T0 24

3
Terms, definitions and abbreviated terms

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in
ECSS-P-001 and the following apply:

3.11
activity

space system monitoring and control function

3.1.2
compound parameter

record comprised of any sequence of reporting data, arrays of reporting
data and sub-records that are interpreted together

EXAMPLE An anomaly report generated by the space segment
comprising an anomaly report ID and a set of
associated parameters.

3.1.3
confirmation body

part of a procedure (or step) whose purpose is to assess whether or not the
objective of the procedure (or step) has been achieved

3.14
continuation test

language construct used to define how the execution of a procedure (or step)
proceeds after a constituent step (or activity) has been executed

3.15
event

occurrence of a condition or set of conditions that can arise during the course of
a test session or a mission phase

3.16
initiation

act of requesting the execution of a step or an activity

13

ECSS-E-70-32A
24 April 2006

|[ESY

14

3.1.7
main body

part of a procedure (or step) dedicated to achieving the objectives of the
procedure (or step)

3.1.8
parameter

lowest level of elementary information that has a meaning for monitoring the
space system

3.1.9
preconditions body

part of a procedure dedicated to ensuring that the procedure only executes if
or when pre-defined initial conditions are satisfied

3.1.10
procedure

means for interacting with the space system in order to achieve a given
objective or sequence of objectives

3.1.11
reporting data

data used for assessing the functioning of the space system

NOTE Reporting data can consist of a parameter (a simple
type) or a compound parameter (a complex type).

3.1.12
space system model

representation of the space system in terms of its decomposition into system
elements, the activities that can be performed on these system elements,
the reporting data that reflects the state of these system elements and the
events that can be raised and handled for the control of these system
elements, activities or reporting data

3.1.13
statement

element of the procedure language which, together with other elements,

implements the goal of a procedure (or step)

3.1.14
step

component of a procedure that achieves a well-defined sub-goal
3.1.15
system element

representation within the space system model of a functional element of the
space system

I CSS CSSE-T0 24

3.1.16
watchdog body

part of a procedure (or step) which manages contingency situations that can
arise during the execution of the procedure (or step)

3.1.17
watchdog step

component of the watchdog body dedicated to detecting the occurrence of a
particular contingency condition and executing corrective actions

3.2 Abbreviated terms

The following abbreviated terms are defined and used within this Standard:

Abbreviation Meaning

ATV assembly, integration and verification

EBNF extended Backus-Naur form

EGSE electrical ground support equipment

EMCS EGSE and mission control system

FCP flight control procedure

FOP flight operations plan

MMI man-machine interface

PLUTO procedure language for users in test and operations
SCOE special check-out equipment

SSM space system model

15

ECSS-E-70-32A /E m/
24 April 2006

(This page is intentionally left blank)

16

I CSS CSSE-T0 24

4
Context of the procedure language

4.1 Introduction

4.1.1 The space system

ECSS-E-00 defines the overall space system as comprising a space segment, a
ground segment and a launch service segment.

An example of the elements of a space system is shown in Figure 1. The space
system elements shown in this figure are operational at different times:

. the electrical ground support equipment (EGSE) during the development

phase;
. the launch service segment during the pre-launch and launch phases;
. the mission control and ground station systems during the mission

operations phase.

17

ECSS-E-70-32A
24 April 2006

|[ESY

omms Link

Launch Facility

Pre-Launch
Service Link

Launch Service Segment

S

Launch Vehicle C

Launch Vehicle B

Launch Vehicle A

=

/ Ground Segment \

Fi o N Comsn)

Mission Control Ground Station

System System
ssc | T
' Cog
GSE /

¥

Key:

OCS: Operation control system

PCS: Payload control system

MES: Mission exploitation system

AIV: Assembly, integration and verification

\

/ Space Segment \

Spacecraft B

Spacecraft A

Space
Subnet

Platform

Onboard
Subnet

AIV
Subnet

SSC: Space segment control station
ME: Mission exploitation station
GCS: Ground communications subnet

Figure 1: Example of space system elements

4.1.2 Satellite testing

ECSS-E-10, ECSS-E-10-02 and ECSS-E-10-03 define the requirements for

space system engineering, veri

This Standard does not presc
procedures are used. This is

fication and testing.

ribe the levels of integration and test at which
considered to be a decision taken when the

verification approach for a specific mission is defined. However, automated
procedures are generally employed from the subsystem level upwards.

The re-use of test procedures at different levels of integration implies

standardization of the functio

nality of the EGSE. Furthermore, the re-use of

these procedures in the mission operations domain implies the harmonisation
of the requirements for EGSE and mission control systems.

4.1.3 Mission operation

S

ECSS-E-70 identifies procedures as the primary mechanism for conducting
mission operations and defines two types of flight control procedures (FCP):

. Nominal procedures

These define the set of in-orbit operations of the space system to be used
under nominal conditions. They constitute the building blocks from
which the mission timelines and schedules of the flight operations plan

(FOP) are constructed.

18

[EY

ECSS-E-70-32A
24 April 2006

. Contingency procedures

These define the recovery actions used to reconfigure the space system if
pre-identified anomalies or failures occur.

Although FCPs have traditionally been executed under manual control,
pressure to reduce manpower during routine mission operations implies more
automation of routine tasks such as the execution of procedures.

4.2 EGSE and mission control system (EMCS)

421 General

In this Standard, the elements of the ground segment responsible for the
monitoring and control of the overall space system, namely the EGSE and the
mission control system are referred to jointly as the EMCS.

The procedure language and the procedure development and execution
environments are an integral part of any EMCS. As such, they have direct

access to other monitoring and control functions implemented within the
overall EMCS.

4.2.2 Space system model

ECSS-E-70-31 introduces the concept of a space system model (SSM) as a
means for capturing mission knowledge used during AIV and operations. This
knowledge is used by the different EMCS applications in order to interact with
the space system and to process the dynamic data that is exchanged with it (i.e.
space segment telemetry and telecommands, ranging data, ground segment
commands and measurements).

The SSM consists of different types of object and the relationships between
these objects. The objects of relevance for the procedure language are system
elements, reporting data, activities and events.

System elements correspond to:

. the elements of the space segment resulting from the functional
decomposition defined in ECSS-E-00;

. the elements of the ground segment resulting from the functional
decomposition defined in ECSS-E-70.

Reporting data and activities are associated with system elements:

. Reporting data comprises parameters and compound parameters. A
parameter is the lowest level of elementary information that has a
meaning for monitoring the space system. A compound parameter is a
record comprised of any sequence of parameters, arrays of parameters
and sub-records (see also ECSS-E-70-41). For example, a complete
telemetry packet, or part thereof, may be represented as a compound
parameter. The parameters within a compound parameter are normally
interpreted together (e.g. when interpreting the contents of an anomaly
report). Reporting data can have different representations depending on
its life cycle within the space system (e.g. an on-board measurement has
an encoded value in telemetry and a raw or engineering value when
presented on a ground segment display).

° An activity is a space system monitoring and control function. The term
activity is introduced to refer generically to procedures, telecommands
(either to the space segment or to the ground segment) and any function
provided by the underlying EMCS (e.g. a printer request, sending an e-

19

ECSS-E-70-32A
24 April 2006

|[ESY

20

mail, transferring a file using ftp). A given mission can implement
additional mission-specific activity types (e.g. conforming to a non-
standard protocol).

Events are associated with system elements, reporting data and activities. An
event is an occurrence of a condition or set of conditions that can arise during
the course of a test session or a mission phase. It is used to trigger a monitoring
and control function implemented within the space system.

An example of a space system model is shown in Figure 2.

Space system

[

1

Space segment

Ground segment

%-QGO NoGo Status

Power subsystem

—1 EGSE

L@ Undervoltage
AOCS

%

— MCS

— Star tracker

—— Ground Station

=>Switch On H

Switch On Failure ! |
@ Background Count Report i 1

Baseband equipment

Key:

Optical head . [T

elemetry decoder

b Temperature i Q@ Switch On
@Souree Count @ Telemetry

Lock Status
é Event @'29 Activity -’@ Reporting data

Figure 2: Example of a space system model

During the course of spacecraft testing and mission operations, the space
system is configured in different ways, for example:

. to test elements of the space segment in a stand-alone manner;

. to test the space segment during integration when some elements are
missing;

. to validate the ground segment with a simulated space segment.

The concepts of system elements, activities, reporting data and events provide
a complete definition of the SSM independent of any specific space system
configuration. However, for a given space system configuration, only a subset of
the overall SSM is used.

In order to understand the scope of the procedure language, it is important to
understand what is provided by the SSM. The SSM (as specified in
ECSS-E-70-31) provides the definition of space system configurations, system
elements, activities, reporting data and events.

The procedure language provides the means to:

[EY

ECSS-E-70-32A
24 April 2006

refer to system elements, activities, reporting data and events but not to
define them;

define the procedural script.

For activities, the common set of data definitions in the SSM includes:

name;
description;

type (procedure, telecommand or operating system call);

associated system element;

version number and configuration history;

validation status (i.e. information on the testing status of the activity);

validity period, i.e. the earliest and the latest date on which the activity
can be executed,;

expected (i.e. mean) duration;
maximum and minimum durations;

list of arguments, including for each argument:

o} name,

o description,

o] engineering units,
o] data type, and

o default value;

allowed combinations of argument values;

other attributes used for mission planning purposes such as the profile of
resources that the activity utilizes (e.g. onboard power and downlink
bandwidth).

In addition, the different types of activity have type-specific definitions; for
procedures, this includes:

default execution mode (manual or automatic);

activation mode (i.e. whether the procedure is permanently active or is
explicitly initiated);

the procedural script.

21

ECSS-E-70-32A /E m/
24 April 2006

(This page is intentionally left blank)

22

I CSS CSSE-T0 24

5
Requirements to be satisfied by procedures

5.1 Procedure structure

a. The capability shall be provided to construct a high-level, goal-oriented
activity (namely a procedure) using elementary activities consisting of
telecommands and operating system calls.

b. A procedure may include calls to execute other procedures.

c. The capability shall be provided to define self-contained sub-goals for a
procedure.

d. A given sub-goal may be achieved by a single activity call or a sequence

of activity calls.

e. An activity may have associated arguments whose values are passed to
the activity at the time of initiation.

f. Where the achievement of a sub-goal involves complex logic (such as
waiting for a period of time, waiting for a condition to become true or
conditional branching), a step construct shall be provided to encapsulate
the logic.

g. The capability shall be provided to execute procedure sub-goals in series
or in parallel.

NOTE Parallel execution is used, for example, when two or more
steps can be performed completely independently.

h. Preconditions may be specified for a procedure.

NOTE Preconditions are conditions to be fulfilled before the
procedure can start.

1. Confirmation conditions may be specified for a procedure.

NOTE Confirmation conditions are those conditions that
determine whether the goal of a procedure is met.

J. Preconditions and confirmation conditions may also be defined for steps.
k. In addition to the “nominal flow path” of a procedure (i.e. the flow
designed to achieve its primary goal), contingency actions may also be
defined.
L. A procedure contingency action may be executed upon:
1. detection of space system anomalies;
2. detection of a failure in the execution of the nominal path;
3. other specified events or conditions.

m. In addition to the “nominal flow path” of a step, contingency actions may
also be defined.

23

ECSS-E-70-32A

|[ESY

24 April 2006

n. A step contingency action may be executed upon:

1. detection of a failure in the execution of the nominal path;
2. other specified events or conditions.

o. A contingency action should be taken at the level at which a failure
occurs, i.e. if a failure occurs in the execution of a step, a contingency
action should be taken at the level of the step.

p. A contingency action should rectify the detected anomaly or report it to
the user and return control to the nominal flow path of the procedure (or
step).

q. If an anomaly cannot be rectified, one of the following actions shall be
performed:

1. generate an event to flag the problem at a higher level for
resolution;

2. use other means to achieve the goal of the procedure (or sub-goal of
a step) and then terminate the procedure (or step);

3. abort the procedure (or step).

r. If a contingency action is invoked, the body of the procedure (or step)
shall be suspended until the contingency action is completed.

5.2 Language constructs

24

a.

The capability shall be provided to request the execution of any space
system activity.

The capability shall be provided to request the execution of an activity
and proceed immediately with the execution of the next statement of the
procedure.

The capability shall be provided to request the execution of an activity
and wait for the confirmation of execution before continuing.

When a procedure waits for the confirmation of execution of an activity,
the result of the execution of the activity shall be tested in order to
determine the subsequent course of action.

The capability shall be provided to acquire the following data:
1. the execution status or confirmation status of an initiated activity;

2. the initiation time, start time, termination time or completion time
of the last execution of an activity;

3. the value of reporting data;
4. the validity status of a parameter;
5. the overall monitoring status or detailed monitoring status (limit-

check, delta-check, expected status check or status consistency
check) of a parameter;

6. the sampling time of reporting data;
7. the time of the last occurrence of an event.

When a given space system function is unavailable (e.g. during an early
test phase), the capability shall be provided to replace the missing
function. This includes setting:

[EY

ECSS-E-70-32A
24 April 2006

the confirmation status of an activity;
the value of a parameter;

the validity status of a parameter;

L

the overall monitoring status or detailed monitoring status (limit-
check, delta-check, expected status check or status consistency
check) of a parameter;

5. the sampling time of reporting data.

To avoid the problem that can arise with asynchronous systems where a
new instance of reporting data arrives between two successive procedure
statements that use different properties of this object, the capability
shall be provided to create a local copy of reporting data.

NOTE This ensures that the procedure uses properties of
reporting data that have been sampled at the same
instant in time.

To ensure that any service provided by the EMCS is accessible within a
procedure, the following capabilities shall be provided:

1. to request any operation defined for any space system object;
2. to acquire the value of any property of any space system object.

The capability shall be provided to perform the following execution flow
controls within a procedure:

1. simple conditional branching (i.e. if ... then ... else ...);

2. multiple conditional branching where the path taken is dependent
on the value of a specified parameter (or local variable, see j
below);

3. repeated execution of a statement (or a group of statements) with

the possibility of repeating the execution a specified number of
times, repeating the execution indefinitely whilst a given condition
holds true or repeating the execution until a given condition
becomes true;

4 wait until a given absolute time;

5 wait for a given interval of time to elapse;
6. wait until a given condition becomes true;
7 wait until a given event occurs.

Local variables used within a procedure shall be declared and their type
explicitly stated.

The capability shall be provided to assign a value to a local variable
within a procedure.

The capability shall be provided to raise a local event within a procedure
(e.g. to trigger a contingency action).

Local events shall be defined as part of the procedure (or step)
declarations.

Mathematical, time and string functions shall be supported.

The capability shall be provided to construct expressions that operate on
constants, space system parameters acquired from the EMCS, activity
arguments (whose values are supplied at runtime) and local variables.

Engineering units shall be supported.

25

ECSS-E-70-32A
24 April 2006

|[ESY

5.3

26

The capability to assign engineering units to constants shall be
supported.

The capability to mix compatible units freely within an expression shall
be supported

The automatic conversion between different, but compatible, units shall
be supported.

Comments may be included within a procedure.

The capability shall be provided to generate a message for
acknowledgement by the user.

The capability shall be provided to generate a message for entry in the
procedure execution log.

The capability shall be provided to acquire inputs from the user.

The conditions specified for a procedure (or step) precondition or
confirmation may be any combination of the following:

wait until a given absolute time;
wait for a given interval of time to elapse;
wait until a given condition becomes true;

1.

2

3

4, wait until a given event occurs;

5 test whether a given condition is true;
6

request the user to specify the outcome.

Language specification

a.

Any language that complies with this Standard shall be formally
specified using the ISO extended Backus-Naur form (EBNF), see
ISO/TEC 14977.

The PLUTO procedure language, engineering units and functions, as
specified in annexes A, B and C should be used for the automation of
procedures in the development and exploitation phases of space systems.

NOTE Use of the PLUTO language ensures conformance with all
requirements of this Standard. It also facilitates the
transfer of procedure knowledge, acquired in the
development phase during functional testing, to the
mission operations phase (for a given mission) and
encourages the use of a common procedure language
across missions.

[EY

ECSS-E-70-32A
24 April 2006

Annex A (informative)
The PLUTO language

A.1 The structure of a procedure

All

Procedure definition

A procedure comprises the following elements:

a.

An optional declaration body, which declares the local events that can be
raised within the procedure.

An optional preconditions body, which ensures that the procedure is only
executed if (or when) pre-defined initial conditions are satisfied.

A mandatory main body, which fulfils the goal of the procedure. The
main body can be composed of self-contained sub-goals fulfilled by
activities or steps.

An optional watchdog body, which manages contingency situations that
can arise during the execution of the procedure. The watchdog body is
composed of one or more special steps, called watchdog steps, which are
all initiated in parallel.

An optional confirmation body, which assesses whether the objectives of
the procedure have been achieved or not.

An example of a procedure and its elements is shown in Figure A-1.

27

ECSS-E-70-32A /E m/
24 April 2006

Declaration Body

Preconditions Body

Main Body - Watchdog Body
Sub-goal

Sequential Watchdog | | Watchdog

sub-goals Sub-goal Step Step

Parallel

sub-goals [Sub-goal] [Sub—goal]

Confirmation Body

Figure A-1: Example of a procedure and its elements

A.l.2 Procedure declaration body

Local events that can be raised within the procedure, but which are accessible
outside of the step in which they are raised (e.g. events that trigger a
procedure-level watchdog, see A.1.5), are declared at procedure level.

Arguments may be passed to a procedure at initiation time by the entity calling
the procedure. These arguments are defined externally (see subclause 4.2.2)
and not as part of the procedure declarations.

Arguments are similar to parameters in their definition and use.

Argument values cannot be changed within a procedure.

A.1.3 Procedure preconditions body

The preconditions body contains the conditions that define whether a procedure
can start. They may be any combination of the following:

. wait until a given absolute time;

) wait for a given time interval to elapse;

. wait until a given condition becomes true;

. if the result of a logical expression (Boolean condition) is true;
. request a decision from the user.

28

[EY

ECSS-E-70-32A
24 April 2006

Al4 Procedure main body

The main body of a procedure consists of a sequence of statements of the
following type:

o set procedure context statement;
. Initiate in parallel;

. initiate and confirm step;

° initiate and confirm activity;

. initiate activity;

. inform user statement;

. log statement.

The “initiate in paralle]” statement enables a combination of steps and
activities to be executed in parallel with the subsequent behaviour being one of
the following:

1. the set of parallel steps or activities ends when any one of the steps or
activities has ended,;

2. the set ends when all of the steps or activities have ended.

A.15 Procedure watchdog body

The watchdog body is composed of watchdog steps. Each watchdog step
monitors for the occurrence of a particular contingency condition and executes
corrective actions if the condition occurs.

The purpose of the procedure watchdog body is the following:

. Detection of, and reaction to, system-level events, for example space
system anomalies. The procedure watchdog body need not rectify all
anomalies internally; it can suspend or abort the procedure whilst
another procedure handles the anomaly.

. Ensuring that procedure-level invariant conditions are sustained for the
duration of the procedure.

. Management of errors (e.g. failures) in procedure execution that cannot
be handled by the watchdog of the relevant procedure main body step
(see A.1.7.5).

NOTE Error handling following execution of a procedure is
managed by the calling entity.

Contingency situations monitored for by concurrently active watchdog steps are
independent of each other. The reason for this is that when a watchdog step is
triggered, it suspends the main body of the corresponding procedure whilst it
takes the appropriate recovery action, but any other watchdog steps that are
active continue their monitoring. Consequently, if there is any potential
interaction between two or more contingency actions, the design of the
procedure ensures that they are handled within the same watchdog step.

A.1.6 Procedure confirmation body

Within the confirmation body, a procedure can be confirmed by any
combination of the following conditions:

. wait until a given absolute time;

. wait for a given time interval to elapse;

29

ECSS-E-70-32A
24 April 2006

|[ESY

30

. wait until a given condition becomes true;
. if the result of a logical expression (Boolean condition) is true;
. request a decision from the user.

Al7 Structure of a step

Al71 Step definition

The structure of a step is identical to the structure of a procedure: a step is
composed of an optional declaration body, a preconditions body (optional for a
main body step, mandatory for a watchdog step), a mandatory main body, an
optional watchdog body and an optional confirmation body.

The declarations at step-level (see A.1.7.2) are different from those at
procedure-level and the set of statements that can be used in a step main body
(see A.1.7.4) is different from that which can be used in a procedure main body.

A step has a name, which is unique within a procedure. This name may be used
to refer to the step.

Whilst steps within a procedure main body may have a watchdog body,
watchdog steps do not have a watchdog body.

The preconditions body is mandatory for a watchdog step (since the
preconditions body defines the contingency condition for which the watchdog
step is monitoring).

Al.7.2 Step declaration body

The following are declared at step level:

. Local variables: the objects defined for internal use within a step.

Local variables are similar to parameters in their definition and use.
They have an engineering value and a validity status, which is "invalid"
until the variable is first assigned a value.

Local variables can be used by steps contained within a step and also by
watchdog steps within the step watchdog body.

. Local events: the events that can be raised within the step and which are
only accessible from within that step.
Al1.7.3 Step preconditions body

Within the preconditions body of a main body step, the conditions that define
whether a step can start may be any combination of the following:

. wait until a given absolute time;

. wait for a given time interval to elapse;

. wait until a given condition becomes true;

. if the result of a logical expression (Boolean condition) is true;
. request a decision from the user.

However, the preconditions body of a watchdog step consists of a single “wait”
condition.

[EY

ECSS-E-70-32A
24 April 2006

Al74 Step main body

The main body of a step consists of a sequence of statements of the following

type:

set step context statement;
assignment statement;

flow control statements:

o if statement;

(o] case statement;

o] loop statements:
> while statement;
> for statement;
> repeat statement;

wait statement;

object operation request statement;

save context statement;

Initiate in parallel (steps or activities or both);
Initiate and confirm step;

initiate and confirm activity;

Initiate activity;

inform user statement;

log statement.

A.1.75 Step watchdog body

A step watchdog body manages the following:

detection of, and reaction to, any failures that occur within the main body
of the corresponding step;

ensuring that step-level invariant conditions are sustained for the
duration of the step.

NOTE Error handling following execution of a step is managed
by the calling entity.

A.1.7.6 Step confirmation body

Within the confirmation body, a step can be confirmed by any combination of
the following conditions:

wait until a given absolute time;

wait for a given time interval to elapse;

wait until a given condition becomes true;

if the result of a logical expression (Boolean condition) is true;

request a decision from the user.

31

ECSS-E-70-32A
24 April 2006

|[ESY

A2

32

The behaviour of a procedure

A21

Procedure execution flow

Procedures can be initiated by different mechanisms within the EMCS, e.g. by
a user via an MMI or automatically as a call from another procedure.

During the execution of a procedure, its “execution status” changes to reflect
the path that it follows ("preconditions", "executing", "confirmation" or
"completed").

On completion, the “confirmation status” of a procedure changes to reflect its
success or failure ("confirmed", "not confirmed" or "aborted"). Prior to
completion, the confirmation status of the procedure is "not available".

The execution and confirmation statuses can be used by the calling entity to
monitor and control the execution of the procedure.

a.

When the procedure is initiated, the procedure preconditions body is
executed (execution status: "preconditions", confirmation status: "not
available"). The outcome is one of the following:

o] the preconditions are satisfied, resulting in the initiation of the
watchdog body (i.e. the 1initiation of all watchdog step
preconditions bodies) and then the initiation of the main body;

o] the preconditions are not satisfied, resulting in the aborting of the
procedure (execution status: "completed", confirmation status:
"aborted").

If the procedure has no user-defined preconditions, the watchdog body
and main body are started immediately.

The procedure main body consists of a sequence of statements, which are
of the type “initiate” (initiate activity, initiate and confirm step, initiate
and confirm activity or initiate steps or activities in parallel), or are
informative in nature (inform user or log), or define the context in which
statements are executed.

When the main body is started, the first statement in the sequence is
executed. Subsequent statements are executed according to the sequence
logic (execution status: '"executing", confirmation status: "not
available").

The initiate and confirm statements (step or activity) include a
continuation test, which determines how the main body continues based
on the final value of the confirmation status. The outcome is one of the
following:

o] continue the execution of the main body;

o] restart the current step or activity, 1.e. restart from the
preconditions body (if defined);

0] raise a local event that is caught by a watchdog step;

o] abort the procedure (execution status: "completed", confirmation
status: "aborted").

The watchdog body comprises a number of (watchdog) initiate and
confirm step statements. When the watchdog body is started, all of its
step statements are initiated in parallel. Each watchdog step is designed
to detect a particular contingency situation.

I CSS CSSE-T0 24

o] If none of these contingency situations arises during the procedure
execution, the watchdog body is automatically terminated when
the procedure main body ends execution;

o] If a contingency arises, the main body of the procedure is
suspended whilst the contingency is handled by the relevant
watchdog step (execution status: "executing", confirmation status:
"not available").

Suspension of the main body means that the currently executing
atomic statement 1.2 is completed, but the subsequent action @Gf
any) indicated as a result of that statement is not taken.

The subsequent flow depends on the success or otherwise of the
recovery and the “continuation action” arising within the watchdog
step. The following cases can arise:

> The contingency is rectified and control is returned to the
procedure main body (continuation action: "resume",
execution status: "executing", confirmation status: "not
available"). The execution of the main body is resumed at
the end of the previously executing atomic statement. The
watchdog step that handled the contingency is re-started.

> The contingency is handled by the watchdog by achieving the
procedure goal through an alternative path. The procedure
main body and the procedure watchdog body are then
terminated and the procedure confirmation body is started
(continuation action: "terminate", execution status:
"confirmation", confirmation status: "not available").

> The contingency cannot be handled by this watchdog step, in
which case either a local event is raised, which triggers
another watchdog step (continuation action: "raise event"),
or the procedure is aborted (continuation action: "abort",
execution status: "completed", confirmation status:
"aborted").

o] If a second watchdog step is triggered whilst the first is still
executing, the two watchdog steps are executed in parallel. Control
is only returned to the procedure main body when both watchdog
steps have completed execution. The watchdog steps are restarted
as soon as they complete execution. If either watchdog step yields
an "abort" continuation action, the procedure is aborted
immediately.

d. When the main body has completed execution (i.e. when all initiated
steps and activities have completed execution 3), the watchdog body is
terminated and the confirmation body is executed (execution status:
"confirmation", confirmation status: "not available").

e. When the confirmation body has completed execution, the procedure
execution is completed. The outcome is one of the following:

o] the confirmation conditions are fulfilled (execution status:
"completed", confirmation status: "confirmed");

An atomic statement is the lowest level of statement within the procedure language. All statements except “initiate and
confirm step”, “initiate activity”, “initiate and confirm activity” and “initiate in parallel” are atomic in nature.

In the case that the main body is executing an “initiate in parallel” statement, all executing statements are suspended when all
currently executing atomic statements are completed.

This includes any parallel steps and activities that were initiated as part of an “initiate in parallel” statement with an "until one

completes" termination condition.

33

ECSS-E-70-32A /E m/
24 April 2006

34

0 the confirmation conditions are not fulfilled (execution status:
"completed", confirmation status: "not confirmed").

If the procedure has no user-defined confirmation conditions, an implicit
condition is used instead that depends on whether or not the
confirmation body has been initiated by a watchdog step terminate
action:

o If the confirmation body has been initiated by a “terminate” action
of a watchdog step, the procedure confirmation status is set to the
confirmation status of the watchdog step.

o Otherwise, the confirmation status is set to:

> "confirmed" if all the activities and steps that have been
initiated in the main body have been confirmed.

> "not confirmed" in all other cases.

Figure A-2 shows the different execution states through which a procedure can
pass when it is executed and the allowed transitions between these states.

execute abort
(preconditions (preconditions
OK) not OK)

Watchdog

confirm confirm
(execution (execution
completed) terminated)

abort

complete
(confirmation
completed)

Figure A-2: Execution states and transitions for a procedure

A.2.2 Step execution flow
Steps are initiated by the execution of one of the following statements:

. within a procedure (or step) main body: “initiate and confirm step” or
“Initiate in parallel”;

. within a procedure (or step) watchdog body: “initiate and confirm step”.

[EY

ECSS-E-70-32A
24 April 2006

The initiate statement implies both the execution of the step bodies and the
“continuation action” derived from the execution result which determines the
subsequent course of action.

a.

The execution of the step preconditions body and main body proceeds in
the same manner as described in A.2.1 for the procedure preconditions
and main bodies.

The step watchdog body comprises a number of watchdog steps, each
designed to detect a particular contingency:

o] If none of these contingency situations arises during the step
execution, the step watchdog body is automatically terminated
when the step main body ends execution.

o] If a contingency arises, the main body of the step is suspended
whilst the contingency is handled by the relevant watchdog step
(execution status: '"executing", confirmation status: "not
available").

The subsequent flow depends on the success or otherwise of the
recovery and the continuation action arising within the watchdog
step. The following cases can arise:

> The contingency is rectified and control is returned to the
step main body (continuation action: "resume", execution
status: "executing", confirmation status: "not available").
The watchdog step that handled the contingency is re-
started.

> The contingency is handled by the watchdog by achieving the
step goal through an alternative path. The step main body
and the step watchdog body are then terminated and the
step confirmation body is started (continuation action:
"terminate", execution status: "confirmation",
confirmation status: "not available").

> The contingency cannot be handled by this watchdog step, in
which case either a local event is raised, which triggers
another watchdog step (continuation action: "raise event")
or the step 1s aborted (continuation action: "abort",

execution status: "completed", confirmation status:
"aborted").
o] If two watchdog steps are triggered at the same time, their

subsequent behaviour is the same as described for a procedure.

When the step main body has completed execution, the step watchdog
body is terminated and the execution of the step confirmation body is
initiated (execution status: "confirmation", confirmation status: "not
available").

When the confirmation body has completed execution, the step execution
is completed (confirmation status: "confirmed" or "not confirmed").

For a step, the decision on how to proceed following execution is defined
within the continuation test, depending on the value of the step
confirmation status ("confirmed", "not confirmed" or "aborted"). A
continuation action 1s defined for each confirmation status, either
explicitly within the initiate step statement, or by default. This is unlike
for a procedure, where the decision on how to proceed following execution
remains with the calling entity.

35

ECSS-E-70-32A
24 April 2006

|[EY

If the outcome of the continuation test is "restart", the step restarts
(execution status: "preconditions"). Otherwise, the step completes
execution (execution status: "completed").

If there are no user-defined preconditions or confirmation conditions for a
given step, default conditions are used. These default conditions are the
same as defined in A.2.1 for a procedure.

Figure A-3 shows the different execution states through which a step can pass
when it 1s executed and the allowed transitions between these states.

initiate

Preconditions

Watchdog

abort
(preconditions
not OK)

execute
(preconditions OK)

confirm
(execution
completed)

&

Continuation ~\
Test
v
complete
Completed

(execution
completed)

Figure A-3: Execution states and transitions for a step

36

A.2.3 Activity execution flow

Activities are initiated directly within a procedure or within a step by the
execution of either an “initiate activity” or an “initiate and confirm activity”
statement. The control of the execution of an activity is managed by the EMCS.

Figure A-4 shows the different executions states through which an activity can
pass when it is executed and the allowed transitions between these states.
Depending on how the activity is implemented, e.g. as a telecommand or a
procedure, different notifications are reported by the EMCS for the monitoring
of the progress of execution by the initiating entity. These notifications
correspond to the state transitions of Figure A-4, but also to sub-state
transitions which are specific to different activity types (e.g. for telecommand,
routing stages such as “released from EMCS”, “reception by ground station”
and “reception on-board”).

/E m/ ECSS-E-70-32A
24 April 2006

a. In the case of an “initiate activity” statement, the calling entity
(procedure or step) proceeds with the execution of the next statement
without waiting for notification of completion of the activity.

b. In the case of an “initiate and confirm activity”, the decision on how to
proceed following execution is defined within the continuation test,
depending on the value of the confirmation status ("confirmed", "not
confirmed" or "aborted"). As for a step, the continuation action is
defined for each confirmation status, either explicitly within the initiate
statement, or by default.

If the outcome of the continuation test is "restart", the activity restarts
(execution status: "preconditions"). Otherwise, the activity completes
execution (execution status: "completed").

initiate

route abort (Preconditions
(Preconditions OK) not OK)
execute
confirm
(execution
completed)

L
A\
Confirmation Continuation
Test

complete
(confirmation
completed)

Figure A-4: Execution states and transitions for an activity

A.2.4 Execution in parallel

When an “initiate in parallel” statement is executed, all constituent steps and
activities are initiated in parallel.

a. Where the termination condition of the “initiate in parallel” statement is
defined as "until one completes", the first step or activity to complete
Initiates the execution of the next statement in the main body of the

37

ECSSB70:520 |E [

calling entity (procedure or step). All other parallel steps and activities
continue to execute after the first one has completed. When these other
parallel steps and activities complete, the continuation actions indicated
in their respective continuation tests are taken, except if the specified
action is "continue" when no further action is taken.

b. Where the termination condition of the “initiate in parallel” statement is
defined as "until all complete", the continuation actions evaluated
within the individual steps and activities (or input by the user, if "ask
user" is the continuation action) can be different.

o] When the action returned by a given step or activity is "abort", the
procedure (or step) is immediately aborted (including aborting any
other parallel steps and activities that are still executing).

o] When the action returned by a given step or activity is "restart",
the action is taken immediately and the initiated step or activity is
restarted. Its execution status is reset to "preconditions" and its
confirmation status is reset to "mot available". The “initiate in
parallel” statement cannot complete until the restarted step or
activity has completed.

o] When the action returned by a given step or activity is "raise
event", the event is raised immediately, the event is then caught
by a watchdog step which suspends its corresponding main body.

A.25 Continuation following an “initiate and confirm”
statement

An “initiate and confirm” statement can have an explicit “continuation test” as
part of its definition. This continuation test consists of up to three couplets of
confirmation status and corresponding continuation action (one couplet for
each confirmation status). In the event that no continuation test is specified (or
less than three couplets are specified), default continuation actions are defined.

Figure A-5 presents the default, allowed and forbidden combinations 4 of
confirmation status and continuation action for “initiate and confirm”
statements that are part of a main body.

Figure A-6 presents the default, allowed and forbidden combinations of
confirmation status and continuation action for “initiate and confirm”
statements that are part of a watchdog.

38

The allowed combinations of confirmation status and continuation action can be extended for special testing scenarios. For
example, a test can be designed to validate the rejection of a critical command, such as “deploy solar array”, where the
successful outcome of the test is that the corresponding activity is "aborted". In this case, the continuation action "continue"
can be defined for the confirmation status "aborted".

I CSS CSSE-T0 24

Confirmation status < Continuation action >
l "resume" "abort" "restart" "ask user" | "raise event" "continue" "terminate"
"confirmed" v
"not confirmed" v
"aborted" 4
Key: 4 Default Allowed Forbidden

Figure A-5: Confirmation status and continuation action combinations for
main body “initiate and confirm” statements

Confirmation status < Continuation action >
"resume" "abort" "restart" "ask user" | "raise event" "continue" "terminate"
"confirmed" v
"not confirmed" v
"aborted" 4
Key: 4 Default Allowed Forbidden

Figure A-6: Confirmation status and continuation action combinations for
watchdog “initiate and confirm” statements

The meaning of the different continuation actions is as follows:
. "resume"

Only used within the continuation test of a watchdog “initiate and
confirm” statement. It resumes the execution of the main body of the
procedure (or step) at the place at which it was suspended when the
contingency was detected.

. "abort"
Aborts the procedure (or step).
. "restart"

Only used within the continuation test of a main body “initiate and
confirm” statement and it restarts the corresponding “initiate and
confirm” statement. To avoid a potentially indefinite loop, a timeout or a
maximum number of iterations can be specified. The timeout is
expressed as a relative time from the start of execution time of the
statement. If the timeout or the maximum number of iterations is
exceeded then either:

39

ECSS-E-70-32A
24 April 2006

|[ESY

o an event is raised which terminates the statement and is then
handled by a corresponding watchdog step, or

o] the parent procedure (or step) is aborted.
o "ask user"
Asks the user to specify how to proceed.

For a main body “initiate and confirm” statement, the user may select
any continuation action except "resume", "ask user" and "terminate".
For a watchdog “initiate and confirm” statement, the user may select any

continuation action except "continue" and "ask user".
. "raise event"

Raises a local event, which is caught by a watchdog step of the procedure
(or step). When the watchdog step has performed its function, the
execution of the main body of the procedure (or step) resumes at the
place at which it was suspended when the watchdog was triggered.

. "continue"

Only used within a continuation test of a main body “initiate and
confirm” statement. It implies that the procedure (or step) continues to
be executed according to the content of the main body.

. "terminate"

Only used within the continuation test of a watchdog “initiate and
confirm” statement. It prematurely ends the execution of the procedure
(or step) main body and starts the execution of the confirmation body.

In the case of a watchdog “initiate and confirm step” statement, the step itself
is re-initiated unless the continuation action is "abort".

A.3 PLUTO language definition

40

A.3.1 Conventions

The terminology used in defining the syntax of the procedure language is
compatible with ISO/TEC 14977.

The syntax of the procedure language is a set of rules, collectively known as a
grammar.

Each rule defines a construct of the language, known as a “non-terminal
symbol”. A non-terminal symbol is a combination of zero or more non-terminal
symbols and “terminal symbols”. A terminal symbol is a sequence of one or
more characters forming an irreducible element of the language.

A terminal symbol may consist of one or more words separated by one or more
separators. The space, tab and end-of-line characters are separators.

The definition of the language constructs uses a graphical convention known as
a “railroad” diagram, an example of which is shown in Figure A-7. The
elements of this graphical convention are listed below:

. the name at the top of the diagram is that of the non-terminal symbol
being defined,

. the main line corresponds to mandatory elements of the construct;

o branch lines correspond to optional elements;

. “return” lines correspond to optional repetitions of one or more elements;

I CSS CSSE-T0 24

. non-terminal symbols are enclosed in rectangles;
. terminal symbols are enclosed in round-cornered boxes (in the limit, a
circle).

Repeat Statement =

<
S S o il

Figure A-7: Example railroad diagram

Figure A-7 defines that a repeat statement starts with the keyword “repeat”
followed by one or more step statements, each separated by a “;”, followed by
the keyword “until” and an expression (whose result, when true, terminates the
repeat loop), followed by an optional timeout.

A.3.2 Language case sensitivity

Only engineering units (as defined in Annex B) are case sensitive. All other
words used in the language are not case-sensitive.

A.3.3 Comments

Comments may be inserted within a procedure. Comments have no effect on
the execution of a procedure.

Comments begin and end with the character pair symbols "/*" and "*/"
respectively.

A.3.4 Keywords

A number of words have a special meaning in the procedure language. If any of
these words are used in the naming of space system objects (e.g. in the name of
a parameter), it is important to ensure that there is no potential ambiguity for
end-users when interpreting a procedure. For the system implementing the
procedure language, the ambiguity is resolved by the application of precedence
rules that are either specified implicitly by the grammar or defined explicitly in
this Standard.

These words are called “keywords” and are shown in bold face and between
straight quotes.

EXAMPLE "procedure", "not confirmed", ">=" "XOR",
"execution status", "acos", "is contained in"

NOTE 1 Spaces (such as white space, tab and carriage return)
within keywords are treated as single blanks.

NOTE 2 Keywords are not case-sensitive.

A.35 Identifiers

An identifier denotes a name and consists of one or more words separated by
spaces, where each word is a sequence of letters and digits.

41

ECSSB70:520 |E [

An identifier is unique within its own context. For example, step identifiers are
unique within a procedure, but the same step identifier may be used in several
procedures.

Reference to an object outside its context is achieved by use of an “object
reference path” (see A.3.9.8 for the “Object Reference” language construct).

An identifier has the general form:

Identifier =

<

(fb{ Identifier Subsequent Word h ‘
’b{ Identifier First Word > >

Identifier First Word =
(]
(Digit

Identifier Subsequent Word =

(=1

where:
. Letter is an upper-case or lower-case letter of the alphabet;
. Digit is one of the decimal characters from 0 to 9.

A.3.6 Constants

A constant can be one of the following:

Constant =

l

Boolean Constant

/—{ Enumerated Constant }—\

Real Constant

i

String Constant

\—{ Absolute Time Constant }—/
\—{ Relative Time Constant }—/

a. A Boolean constant is represented as:

Boolean Constant =

ns

42

I CSS CSSE-T0 24

b. An enumerated constant is represented by:

Enumerated Constant =

(] G)

where Characters is any sequence of letters or digits or one of the
following characters:

space! "# $ % &' () *F+,- ./ <=>?2@ [\N]*_"{I|}~

To enter a double quote, it is preceded by a reverse solidus character
(i.e."\").

To enter a reverse solidus character, it is preceded by a reverse solidus
character.

EXAMPLE "red", "yellow", "green", "not confirmed"

c. An integer constant is represented as:

Integer Constant =

. ?Engineering Units? l

Hexadecimal Constant ‘

where Sign is as follows:

Sign =

>

Digit is one of the decimal characters from 0 to 9.
?Engineering Units? is one of the engineering units defined in Annex B.

NOTE The “?” is a special-sequence-symbol which indicates the
start and end of a special sequence (see ISO/IEC 14977);
in this case a standalone syntax for Engineering Units.

Hexadecimal Constant is defined as follows:

Hexadecimal Constant =

—ﬁ Hexadecimal Symbol }lﬁ Hexadecimal Digit }—j—v

o] The Hexadecimal Symbol is the character pair symbol "0x".

o] The Hexadecimal Digit is a decimal character from 0 to 9 or a
letter from A to F;

EXAMPLE 23 A, 2056, 0x2056, OXFFFF

43

ECSS-E-70-32A
24 April 2006

|[ESY

d. A real constant is represented as:

Real Constant =

A o=)
Digit > I >

EXAMPLES 123.56e12, 0.1, 23E6, 5.3 [kg/m”3]

e. A string constant is represented as:

String Constant =

EXAMPLE

G | 0)

"The double-quote character is : \". "

f. An absolute time constant is represented as:

Absolute Time Constant =

Year }—»@—b{ Month }—»@—b{ Day Of Month Minute }—b@b{ Second }—b@—b{ Fraction Of Second

Year M Day }—b@—b{ Hour w Minute m Second m Fraction Of Second } - -

1. Month/day of month calendar variation
Year-Month-Day Of MonthTHour:Minute:Second.Fraction Of
Second(Z)
where:

Year = four digits with a value in the range 0001-9999;
Month = two digits with a value in the range 01-12;

Day Of Month = two digits with a value in the range 01-28,
01-29, 01-30, or 01-31;

"T" = calendar-time separator;
Hour = two digits with a value in the range 00-23,;
Minute = two digits with a value in the range 00-59;

Second = two digits with a value in the range 00-59 (00-58
or 00-60 during leap seconds);

Fraction Of Second = one to n digits. To obtain a given
precision, the appropriate number of digits to the right of the
period is used;

"Z" = optional terminator.

EXAMPLE 2001-08-18T21:07:43.137468Z

2. Year/day of year calendar variation
Year-DayTHour:Minute:Second.Fraction Of Second(Z)
where:

44

/ E CSS / ECSS-E-70-32A

24 April 2006

Year, "T", Hour, Minute, Second, Fraction Of Second, "Z": are
as defined in 1. above;

Day = three digits with a value in the range 001-365
or 001-366.

EXAMPLE 2001-033T13:21:32.226

NOTE1 Leading zeros are included to make up the specified
number of digits.

NOTE 2 Elements shown in brackets are optional.

g. A relative time (duration) constant is represented as:

Relative Time Constant =

»> Seconds > s

O

where:

Days, Hours, Minutes and Seconds are unsigned integers;

Hour, Minute, Second and Fraction Of Second are as defined in f.
above.

EXAMPLES 30 h 10 min, 200 s, - 0:00:10:00

A.3.7 Types

A type defines the set of values that variables and expressions possessing that
type may assume.

The type of a variable determines its use in various contexts. For example, in

an assignment, it is mandatory that the left and right-hand sides of the
assignment are type-compatible.

The procedure language supports the predefined types shown in Table A-1.

45

ECSS-E-70-32A
24 April 2006

|[ESY

46

Table A-1: Predefined types

Data type Definition

Boolean Defines the set of truth values denoted by the predefined
constants true and false

Enumerated set | Defines a reference to a set of enumerated values®
reference

Signed integer | Defines an implementation subset of signed integer values

Unsigned integer | Defines an implementation subset of unsigned integer

values
Real Defines an implementation subset of real values
String Defines a set of values that are character strings

Absolute time Defines a set of values that represent an absolute date such
as 2003-02-15

Relative time Defines a set of values that represent an interval of time
suchas 2 s

Property value set | Defines an enumerated set comprising all values of a
property of a system element, reporting data, activity or
event

Example 1 “application process identifier of system
element” returns the enumerated set consisting of all
defined APIDs.

Example 2: “name of parameter of power subsystem”
returns the enumerated set consisting of all names of
parameters belonging to the power subsystem.

Property data type | Defines a data type inherited from a property of a given
system element, reporting data, activity or event

This can result in one of the following:

e A simple value type, e.g. “value of Voltage of
Battery1” returns the type “real with engineering units
V7

e A list of value type, e.g. “value of status of my network

nn

printer” returns the enumerated set {"ready", "paused",

"nn

"printing", "unable to connect"}.

* Enumerated sets can be defined on a system-wide basis or locally within a
procedure and are referenced by name, e.g. the enumerated set named Event
Type comprises the set of values {"Normal", "Low Severity", "Medium
Severity", "High Severity"}.

A.3.8 System interfaces

The SSM objects relevant to the procedure language are introduced in
subclause 4.2.2. Each type and subtype of SSM object has a number of
properties and operations that are accessible using services provided by the
EMCS.

“Initiate” and “Initiate and Confirm” are two important EMCS services for
activities which can be invoked using dedicated statements of the procedure
language. In addition, the language provides two generic mechanisms to invoke
other services of the EMCS:

[EY

ECSS-E-70-32A
24 April 2006

. The Object Property Request which is used to return a property of an
object (e.g. get the initiation time of an activity, get the status of a
printer). The minimum sets of “standard” property requests for activities,
reporting data and events are specified in A.3.9.36.

. The Object Operation Request Statement which is used to perform an
operation on an object (e.g. clear printer queue, open/close operating
system file). The minimum sets of “standard” operation requests for
activities and reporting data are specified in A.3.9.24.

“Standard” means that these services are supported by all EMCS
implementations. A given implementation of the procedure language may also
support non-standard services.

47

ECSS-E-70-32A
24 April 2006

|[ESY

48

A.3.9 Language constructs

A.3.9.1 Procedure Definition

Meaning

Syntax

Procedure Definition =

Defines the elements of a procedure.

ﬁ Procedure Declaration Body}—L ﬁ Preconditions Body }—L
—>»{ procedure > >{ Procedure Main Body }T

<
<

ﬂ Watchdog Body h ﬁ Confirmation Body h
>— » end procedure —>»

Definition

Procedure Declaration Body

Declares the local events that can be raised within the procedure.
Preconditions Body

Defines the preconditions of the procedure.

Whilst the procedure is waiting for the initial conditions to be
satisfied, its execution status is "preconditions".

Procedure Main Body
Contains the statements that achieve the goal of the procedure.

Whilst the main body is executing, the execution status is
"executing".

Watchdog Body
Handles contingency situations defined for the procedure.

Whilst the watchdog body is handling a contingency situation, the
execution status is "executing".

Confirmation Body
Defines the conditions under which the procedure is confirmed.

Whilst the procedure is waiting to be confirmed, its execution
status is "confirmation".

[EY

ECSS-E-70-32A
24 April 2006

A.3.9.2 Procedure Declaration Body

Meaning

Syntax

Definition

Example

Declares the local events that can be raised within a procedure.

Procedure Declaration Body =

—\declaremend declare>—>

Event Declaration =

po{posipin
—»{ event }—b{ Event Name

Event Name =

Description =

%@escribed bM String Constant }—»

Event Declaration

Declares a local event that can be raised within the procedure.
Event Name

The name of the local event.

Local events that are declared at procedure level are associated with
the procedure and are only used by the procedure watchdog body
(e.g. they are not used within steps of the procedure main body).

Description

The (optional) description of the local event.

Procedure Name

Slew Manoeuvre

PLUTO script

procedure
declare
event Manoeuvre Damping Failed

described by "Cross-track error not reducing to less than 5
arcmin within 100 s of manoeuvre completion”

end declare

end procedure

49

ECSS-E-70-32A
24 April 2006

|[ESY

50

A.3.9.3 Preconditions Body

Meaning Defines the conditions under which the execution of a procedure (or
step) can proceed once it is initiated.
Syntax
Preconditions Body =

then

s
Wait Statement

preconditions

end preconditions

Definition Expression
Yields a result which, if true, allows the associated procedure (or
step) to be executed.
Wait Statement
Defines one of the following:
o the absolute time when the execution of the procedure (or step)
can start;
e an interval of time after which execution can start;
e a condition to be true or an event to occur before execution can
start.
The "then" loop is used to specify a combination of different
conditions.
If the expression is not satisfied following evaluation or the optional
timeout in the wait condition is reached, then the procedure (or step) is
skipped completely and the procedure (or step) confirmation status is
set to "aborted".
The preconditions body of a watchdog step is always present and
consists of a single “wait statement”.
Example
Procedure Name | Switch on Gyro5 in Fine Mode
PLUTO script procedure

preconditions
wait until Gyro Temperature > 60 degC

end preconditions

main

initiate and confirm Switch on Gyro Converter;
initiate and confirm Switch on Gyro5;
initiate and confirm Gyro5 Fine Mode;

end main

end procedure

I CSS CSSE-T0 24

A.3.9.4 Wait Statement

Meaning Defines a delay.

Syntax

Wait Statement =

Save Context Timeout
s

Event Reference

Event Reference =

Object Reference

Definition Expression

Yields an absolute time or a Boolean result (wait until) or a relative
time (wait for).

An absolute time causes the calling entity (procedure or step) to be
delayed until the given time.

A Boolean condition causes the calling entity to be delayed until the
condition is satisfied.

A relative time delays the calling entity by the given time interval.
Event Reference

The reference to a local event or a system-level event associated
with a system element, activity or reporting data (an object
reference of type event).

Save Context

Creates a local copy (a snapshot) of one or more SSM reporting
data.

This language construct is included within a wait statement to
ensure that the snapshot of SSM reporting data pertains to the
instant at which the condition is satisfied or the event occurs.

Timeout

Defines a relative time to be applied as a timeout for the wait
statement.

The timeout is not available where the wait condition is either “for a
relative time” or “until an absolute time”.

When the wait statement appears in a preconditions body, the raise
event option (following a timeout) is not available, since the
corresponding watchdog body has not yet been started. Therefore, the
procedure (or step) is aborted if the specified timeout interval is
exceeded.

51

ECSSB70:520 |E [

A.3.9.5 Save Context

Meaning Creates a copy of reporting data for local use.
Syntax

Save Context =

—»Csave context>—><refer to)LD{ Reporting Data Reference Reporting Data Name }—lv

Reporting Data Reference =

Object Reference

Reporting Data Name =

Definition Reporting Data Reference

The reporting data reference (an object reference of type reporting
data) from which the local reporting data is copied.

Reporting Data Name

The name of the local reporting data.

Reporting data has a life cycle that is independent of the procedure
execution environment. Reporting data can therefore be updated during
the execution of a set of procedure statements.

The purpose of this language construct is to create a snapshot copy of
one or more reporting data. The construct is only intended for use
where more than one property of a given reporting data is used at
different times within a procedure and the contemporaneity of those
properties is important.

Local reporting data is associated with the procedure or step in which it
is defined. Prior to creation (i.e. saving the context), its validity status
is "not available". During creation, local reporting data acquires the
properties of the reporting data from which it is copied.

The life cycle and “visibility” of local reporting data is limited to the
current instance of the procedure within which it is created, i.e. it is not
persistent between successive executions of the procedure.

52

[E

ECSS-E-70-32A
24 April 2006

Example

Procedure Name

Eclipse Operations

PLUTO script

procedure
main
wait for event Eclipse Entry
save context refer
to Temperature of Batteryl by TempBatt1,
to Voltage of Batteryl by VoltBatt1;

end main
end procedure

53

|E [

A.3.9.6 Timeout

Meaning Defines a timeout interval for the current statement.
Syntax

Timeout =

{timeout)—b{ Expression } >
Definition Expression

Yields a relative time from the statement start of execution time and
gives the timeout interval after which, if the statement has not
completed execution, either:

e an event is raised which terminates the statement and is then
handled by a corresponding watchdog step, or

e the parent procedure (or step) is aborted.
Raise Event

Raises a local event.

54

[E

ECSS-E-70-32A
24 April 2006

A.3.9.7 Raise Event

Meaning

Syntax

Definition

Example

Raises a local event.

Raise Event =

%Gaise evenD—b{ Event Name }—»

Event Name

The name of the local event.

Procedure Name

Slew Manoeuvre

PLUTO script

procedure
declare
event Manoeuvre Damping Failed,
end declare
main
wait for Crosstrack Error < 5 arcmin
timeout Manoeuvre End Time + 100 s
raise event Manoeuvre Damping Failed;

end main
watchdog
initiate and confirm step Recover Damping Failure
preconditions
wait for event Manoeuvre Damping Failed
end preconditions

end step;
end watchdog
end procedure

55

ECSSB70:520 |E [

A.3.9.8 Object Reference
Meaning Refers to an object by means of a reference path.

Syntax
Object Reference =

Object Type Object Reference @

» Object Name

Object Type =

variable
predefined value set
activity statement
step

argument
system element
reporting data
parameter

record

array

activity

event

il

Object Name =

Definition Object Reference
The reference path for the object.
Object Type
The explicit type of the object.
Object Name

The name of the object, which may be an activity, an object within
an activity (e.g. a step, a variable, a procedure argument), a given
initiation instance of an activity (i.e. an activity statement),
reporting data (i.e. a parameter, a compound parameter or a
component of a compound parameter), an event or a system
element.

A component of a compound parameter can be a simple component
(i.e. a parameter), an array or a record.

Where the object type is not given explicitly and the result of the object
reference is not unique within the overall SSM, the reference is
resolved according to the following precedence rules (1 = highest
precedence, 14 = lowest precedence):

1. variable

2. local reporting data

56

/E m/ ECSS-E-70-32A
24 April 2006

local event

activity statement
step

argument

system element
reporting data

e T A ot

parameter
10. record
11. array
12. activity
13. predefined value set
14. system event
Example

PLUTO script Temperature of Catalyst Bed of Thruster X of Thruster Main Branch

57

ECSS-E-70-32A
24 April 2006

|[ESY

A.3.9.9 Procedure Main Body

Meaning Contains the statements that achieve the goal of the procedure.

Syntax

Procedure Main Body =
Procedure Statement ‘
Procedure Statement ‘

Procedure Statement =

({ Set Procedure Context Statement }—\
/{ Initiate In Parallel Statement }7

/{ Initiate And Confirm Step Statement }—\

—»—{ Initiate And Confirm Activity Statement }74,

\{ Initiate Activity Statement }—J
\{ Inform User Statement }7
% Log Statement

Definition Procedure Statement

A statement allowed within a procedure main body, which is one of
the following:

a.

58

Set Procedure Context Statement

Defines the context in which a set of procedure statements
executes (overriding the current default context).

Initiate In Parallel Statement

Provides the capability to execute steps or activities (or both)
concurrently. Each step or activity within the parallel statement
has an execution path of its own. The parallel step finishes
when one step or activity completes execution or they all
complete execution.

Initiate And Confirm Step Statement

Initiates and confirms the execution of a step.
Initiate And Confirm Activity Statement

Initiates and confirms the execution of an activity.
Initiate Activity Statement

Initiates the execution of an activity. The initiated activity
proceeds in parallel with the initiating procedure.

Inform User Statement

Provides the capability to output a message for
acknowledgement by the user.

[E

ECSS-E-70-32A
24 April 2006

Example

g. Log Statement

Provides the capability to log a message to the procedure
execution log.

Procedure Name

Switch on Gyro5 in Fine Mode

PLUTO script

procedure
initiate and confirm step Switch on Gyro5 Converter
main
initiate and confirm Switch on Gyro Converter;
end main
end step;
initiate and confirm step Power on Gyro5
main
initiate and confirm Switch on Gyro5;
initiate and confirm Gyro5 Fine Mode;
end main
end step;
end procedure

59

ECSS-E-70-32A /E m/
24 April 2006

A.3.9.10 Set Procedure Context Statement

Meaning Defines the context in which a set of procedure statements executes.
Syntax

Set Procedure Context Statement =

<

—»Gn the context of Object Reference @ Procedure Statement ‘

Definition This statement explicitly defines the context in which a set of procedure
statements executes. This overrides the current default context which is
the one in which the procedure is currently executing.

Object Reference
This is either a system element or reporting data (either a
compound parameter or a record-type component of a compound
parameter).

Procedure Statement
A statement allowed within a procedure main body.

Example

Procedure Name | Test telescopes

PLUTO script procedure
in the context of Telescopel do
initiate and confirm Power on;
initiate and confirm Take image;
initiate and confirm Process and display image;
initiate and confirm Power off;
end context;
in the context of Telescope2 do
initiate and confirm Power on;
initiate and confirm Take image;
initiate and confirm Process and display image;
initiate and confirm Power off;
end context;

end procedure

60

I CSS CSSE-T0 24

A.3.9.11 Initiate In Parallel Statement

Meaning Defines a set of steps or activities (or both) that are executed in parallel.
Syntax

Initiate In Parallel Statement =

until one completes Initiate And Confirm Step Statement

in parallel

»

until all complete

Initiate And Confirm Activity Statement

A

Initiate And Confirm Step Statement

end parallel

Initiate And Confirm Activity Statement

Definition Initiate And Confirm Step Statement
Initiates and confirms the execution of a step.
Initiate And Confirm Activity Statement
Initiates and confirms the execution of an activity.
When the parallel statement is executed, each of its constituent steps or

activities is initiated in parallel. The termination of the execution
depends on the selected termination condition, as defined below:

e "until all complete" (default)

Terminates execution if all of the constituent steps or activities
are ended.

e "until one completes"

Terminates execution if any of its constituent steps or activities
is ended.

If neither of these conditions is explicitly specified, the default
behaviour is "until all complete".

Example

Procedure Name | Switch on Gyro3 and GyroS5 in Fine Mode

PLUTO script procedure
preconditions
wait until Gyro3 and Gyro5 Converter = "ON"
end preconditions
main
in parallel until all complete
initiate and confirm step Switch on Gyro3 in Fine Mode
preconditions
wait until Temperature of Gyro3 > 60 degC
end preconditions
main
initiate and confirm Switch on Gyro3;

61

ECSS-E-70-32A
24 April 2006

|[EY

62

initiate and confirm Gyro3 Fine Mode;
end main
end step;

initiate and confirm step Switch on Gyro5 in Fine Mode
preconditions
wait until Temperature of Gyro5 > 60 degC
end preconditions
main
initiate and confirm Switch on Gyro3;
initiate and confirm Gyro5 Fine Mode;
end main
end step;
end parallel;
end main
end procedure

I CSS CSSE-T0 24

A.3.9.12 Initiate And Confirm Step Statement

Meaning Initiates a designated step and waits for confirmation of its execution.
Syntax

Initiate and Confirm Step Statement =

Continuation Test F
%Cinitiate and confirm stepH Step Name H Step Definition }—»@nd step\ >

Step Name =

Definition Step Name

The name of the step.

The identifier is unique within the procedure.
Step Definition

Defines the step.
Continuation Test

Defines how the execution of the initiating procedure (or step)
proceeds after the step has been executed. Default actions exist in
the case that no continuation test is specified (see A.3.9.33 on
Continuation Test for more details on the default actions).

The initiated step finishes completely before the initiating procedure (or
step) may proceed.

63

ECSS-E-70-32A
24 April 2006

|[ESY

64

A.3.9.13 Step Definition
Meaning Defines the elements of a step.

Syntax
Step Definition =

Watchdog Body

Confirmation Body

ﬂ Step Declaration Body }—L /4 Preconditions Bodyh
> N Step Main Body

Definition Step Declaration Body

Declares the local objects of the step.

Preconditions Body

Defines the preconditions of the step.

Whilst the step is waiting for the initial conditions to be satisfied,
its execution status is "preconditions".

Step Main Body

Contains the statements that achieve the sub-goal of the step.

Whilst the main body is executing, the execution status of the step

is "executing".
Watchdog Body

Handles contingency situations defined for the step.

Whilst the watchdog body is handling a contingency situation, the
execution status of the step is "executing".

Confirmation Body

Defines the conditions under which the step is confirmed.

Whilst the step is waiting to be confirmed, its execution status is

"confirmation".

E ECSS-E-70-32A

24 April 2006

A.3.9.14 Step Declaration Body

Meaning Declares the local variables used by a step and the local events that can
be raised within it.

Syntax

Step Declaration Body =

N

Enumerated Set Declaration

' Variable Declaration -

Event Declaration

Enumerated Set Declaration =

[l
Enumerated Constant

—»Gnumcratc@—b{ Set Name

Set Name =

Variable Declaration =

({with units}—»(’?Engineering Units?}L
—»(variable)—»{ Variable Name }—»(of type H Predefined Type } > »

>

Variable Name =

Predefined Type =

Boolean

i

Enumerated Set Reference

1
T

signed integer

unsigned integer

real

string
absolute time
relative time

Property Value Set

Property Data Type

il

Enumerated Set Reference =

@ Object Reference
—b{ Set Name >

65

ECSS-E-70-32A

24 April 2006

66

Property Value Set =

Object Property

event reference

Definition

- current l

system element reference
' reporting data reference .

.’_“.
' activity reference -

Object Reference

system element
. reporting data ‘

parameter
Object Property H Constant

Property Data Type =

Object Reference

Object Property H Constant

»@ame as Object Property

current

Object Property =

Standard Object Property Name h @ Object Property

Nonstandard Object Property Name }—J

»
»

Standard Object Property Name =

Nonstandard Object Property Name =

Enumerated Set Declaration

Declares a set of enumerated values that is used locally within the
step.

Set Name

The name of the enumerated set.
Description

The (optional) description of the enumerated set.
Variable Declaration

Declares a local variable that is used within the step.

A local variable has a validity status, sampling time and value. It is
associated with the step in which it is declared and its scope is
limited to the step and its lower level steps. Prior to its first
assignment, its validity status is "not available".

[EY

ECSS-E-70-32A
24 April 2006

Variable Name

The name of the local variable.
Predefined Type

The data type of the local variable.
Enumerated Set Reference

The reference to the enumerated set (and the SSM object to which
it is attached).

Property Value Set

An enumerated set comprising all values of a property of a system
element, reporting data, activity or event.

Property Data Type

A data type of a property of a given system element, reporting data,
activity or event.

Object Property

This can be either a standard property of an activity, step, reporting
data, variable, procedure argument or event, or a non-standard
object property.

Standard Object Property Name
The name of the standard object property.
Nonstandard Object Property Name
The name of the non-standard object property.
Description
The (optional) description of the local variable.
Event Declaration
Declares a local event that can be raised within the step.

Local events that are declared at step level are associated with the
step and can only be used by the step watchdog body (e.g. they
cannot be used within the parent procedure or step or lower-level
steps).

67

ECSS-E-70-32A
24 April 2006

|[ESY

A.3.9.15 Step Main Body

Meaning Contains the statements that achieve the sub-goal of the step.

Syntax

Step Main Body =

Step Statement
Step Statement

Step Statement =

/—{ Set Step Context Statement }—\
/—{ Assignment Statement }—\
/—{ Flow Control Statement }—\
/—i Wait Statement ~
/—{ Object Operation Request Statement }—\
/—{ Save Context Statement }7
\—{ Initiate In Parallel Statement }7
\—{ Initiate And Confirm Step Statement }—/
\—{ Initiate And Confirm Activity Statement }—/
\—{ Initiate Activity Statement }—/
\—{ Inform User Statement }7

;‘ Log Statement

Definition Step Statement

A statement allowed within a step main body, which is one of the
following:

a.

68

Set Step Context Statement

Defines the context in which a set of step statements executes
(overriding the current default context).

Assignment Statement

Replaces the current value of a variable with another computed
value.

Flow Control Statement

This group of statements controls the execution flow through
the step. There are of two types of statement: conditional or
repetitive statements.

Wait Statement

Causes the delay of a step by a time interval, until a given
absolute time, until the condition is true or until an event
occurs.

Object Operation Request Statement

Requests a specified operation to be performed on an SSM
object, namely a system element, activity, reporting data, event

[EY

ECSS-E-70-32A
24 April 2006

or step.
Save Context Statement

Makes a copy of one or more SSM reporting data for local use
within the step to ensure that all properties used are
simultaneously sampled.

. Initiate In Parallel Statement

Provides the capability to execute steps or activities
concurrently. Each step or activity within the parallel statement
has an execution path of its own. The parallel step finishes
when one step or activity completes execution or they all
complete execution.

. Initiate And Confirm Step Statement

Initiates and confirms the execution of a step.
Initiate And Confirm Activity Statement

Initiates and confirms the execution of an activity.
Initiate Activity Statement

Initiates the execution of an activity. The initiated activity
proceeds in parallel with the initiating step.

. Inform User Statement

Provides the capability to output a message for
acknowledgement by the user.

Log Statement

Provides the capability to log a message to the procedure
execution log.

69

ECSS-E-70-32A / E CSS /

24 April 2006

A.3.9.16 Set Step Context Statement
Meaning Defines the context in which a set of step statements executes.

Syntax

Set Step Context Statement =

-

—»Qn the context of Object Reference @ Step Statement ‘

Definition This statement explicitly defines the context in which a set of step
statements executes. This overrides the current default context which is
the one in which the step is currently executing.

Object Reference
This is either a system element or reporting data (either a
compound parameter or a record-type component of a compound
parameter).

Step Statement
A statement allowed within a step main body.

Example

Procedure Name | Payload switch on

PLUTO script procedure

initiate and confirm step Switch on Telescopes
in the context of Telescopel do
initiate and confirm Power on;
wait for 5°s;
initiate and confirm Switch on HT;
wait for 5°s;
initiate and confirm Set HT with Voltage := 2000 V
end with;
end context;
in the context of Telescope2 do
initiate and confirm Power on;
wait for 5 s;
initiate and confirm Switch on HT;
wait for 5°s;
initiate and confirm Set HT with Voltage := 2000 VV
end with;
end context;
end step;

end procedure

70

I CSS CSSE-T0 24

A.3.9.17 Assighment Statement

Meaning Assigns a value to a local variable.

Syntax
Assignment Statement =
Variable Reference a

Variable Reference =

Object Reference

Definition Variable Reference

The reference to the local variable that receives the value of the
expression (an object reference of type variable).

A step only uses a variable which has been declared in the list of
local variables of the step.

The visibility of a variable is limited to the step and its lower-level
steps. Where a variable name is reused within a lower-level step,
the variable of the parent step is no longer accessible.

Expression
A combination of mathematical and language eclements that is
processed at run-time to compute the value of the variable.

Example

PLUTO script Voltage := Value of T001 * 10

71

ECSSB70:520 |E [

A.3.9.18 Flow Control Statement

Meaning Conditionally or iteratively executes a set of statements.

Syntax

Flow Control Statement =
ey
Case Statement
| o]
l_ll'

For Statement

Definition If Statement

Executes one list of statements or another depending on the result of
a logical condition.

Case Statement

Executes one of several lists of statements depending on a logical
condition.

Repeat Statement

A conditional iteration statement, where the condition is evaluated
at the end.

While Statement

A conditional iteration statement, where the condition is evaluated
at the beginning.

For Statement

An iteration statement, where the number of iterations is fixed (but
evaluated at run-time).

72

I CSS CSSE-T0 24

A.3.9.19 If Statement

Meaning Executes one statement (or set of statements) or another depending on
the result of a logical condition.
Syntax
If Statement = <

N W Step Statement ’
@ T e

Definition Expression

The expression returns a logical result which, if true, results in the
execution of the first statement (or set of statements) and, if false,
results in the execution of the second statement (or set of
statements).

Step Statement

A statement allowed within a step main body.

Example

Procedure Name | Slew Manoeuvre

PLUTO script procedure
if Target Offset < 0.05 deg then
initiate and confirm Go to Fine Pointing;
else
initiate and confirm Centre Target;
initiate and confirm Go to Fine Pointing;
end if;

end procedure

73

ECSSB70:520 |E [

A.3.9.20 Case Statement

Meaning Multiple conditional branching depending on the value of an
expression.
Syntax
Case Statement =
Coris)

oris e

otherwise

Step Statement

—»(in caseM Expression @ Case Tag

»{ end case)——»

Step Statement

Case Tag = <
ﬁ Boolean Operator H Comparative Expression
—% Comparative Expression } > > »>
Definition Expression

A combination of mathematical and language elements which
returns a value.

Case Tag

A comparative expression which, when combined with the "in
case" expression, determines whether the corresponding step
statement (or set of statements) is executed.

The type of the case tags all correspond to the type of the "in case"
expression.

Step Statement
A statement allowed within a step main body.
Boolean Operator

One of the following operators: "AND", "OR" or "XOR" (see also
Expression).

Relational Operator

One of the following operators: "=", "I=", "<" ">" "<=" or ">="
(see also Expression).

The case statement works in the following way:

1. If the value of the "in case" expression corresponds to the value of
one of the case tags, then the corresponding statement (or set of
statements) is executed.

2. Ifthe value of the "in case" expression does not correspond to any
of the values of the case tags, and if there is an "otherwise" case
tag, then the corresponding statement (or set of statements), and
only that one, is executed.

3. Otherwise, no statement (or set of statements) is executed.

If two or more case tags have the same value, only the first one is
processed.

If the "in case" expression corresponds to the value of two or more case
tags, only the first one is processed.

Example

74

[E

ECSS-E-70-32A
24 April 2006

PLUTO script

in case Temperature of Biolab Experiment
is < 5 degC : Switch On Heaterl; Switch On Heater2;
or is< 10 degC : Switch On Heaterl;
otherwise:
inform user "The temperature of Biolab is \"Nominal\",
no action taken";

end case

75

ECSS-E-70-32A
24 April 2006

|[ESY

A.3.9.21

Meaning

Syntax

Definition

76

Repeat Statement

Conditional iteration of a statement (or set of statements) with control
at the end, optionally terminated by a timeout.

Repeat Statement =

<

Step Statement

Step Statement

Timeout

Expression

A statement allowed within a step main body.
Expression

Yields a logical result which, when true, terminates the iteration.
Timeout

Defines an (optional) timeout interval after which, if the preceding
expression is not true, either:

e an event is raised which terminates the statement and is then
handled by a corresponding watchdog step,

or
e the parent step is aborted.
The repeat statement differs from the while statement in that the

condition is evaluated after each execution of the statement (or set of
statements).

As a result, the statement (or set of statements) is executed at least
once.

I CSS CSSE-T0 24

A.3.9.22 While Statement

Meaning Conditional iteration of a statement (or set of statements) with control
at the beginning, optionally terminated by a timeout.
Syntax
While Statement =
=
° o
Definition Expression

Yields a logical result which, if false, terminates the iteration.
Timeout

Defines an (optional) timeout interval after which, if the preceding
expression is still true, either:

e an event is raised which terminates the statement and is then
handled by a corresponding watchdog step,

or
o the parent step is aborted.

Step Statement
A statement allowed within a step main body.

The while statement differs from the repeat statement in that the
condition is evaluated before each execution of the statement (or set of
statements). As a result, the statement (or set of statements) may never
be executed at all.

If the expression is true and there is more than one step statement in the
loop, then the complete set of statements is executed, i.e. it is not
interrupted if the timeout occurs during its execution; the timeout is
invoked at the end.

77

ECSSB70:520 |E [

A.3.9.23 For Statement

Meaning Iterates the execution of a statement (or set of statements) a fixed
number of times.

Syntax

For Statement =

gt P e——
Variable Reference |—»(:=) (%) ©

Definition Variable Reference

The reference to a variable that is used as a counter (object
reference of type variable).

":=" Expression

An integer expression, which is computed at run-time to determine
the first value that is assigned to the counter.

"to" Expression

An integer expression, which is computed at run-time to determine
the last value of the counter before leaving the statement.

"by" Expression

An integer expression, which is computed at run-time to determine
by what value the counter is increased or decreased, after each
iteration of the execution of the list of statements.

When the "by" expression is not present, the default behaviour is
“increase by 17

Step Statement
A statement allowed within a step main body.
The value of the counter may be referred to within the list of

statements, but not changed. As a result, the counter is not used as the
left-hand side of an assignment statement.

All the expressions are only evaluated once at the beginning of the
"for" loop.

78

[E

ECSS-E-70-32A
24 April 2006

Example

Procedure name

Enable Payload Thermal Control Lines

Arguments

Number of Heater Lines: unsigned integer

PLUTO script

procedure
preconditions
wait until All Payloads = "OFF"
end preconditions

main
initiate and confirm step Enabling
declare
unsigned integer Counter
end declare
main
for Counter := 1 to Number of Heater Lines
do
initiate and confirm Enable Thermal Control Line
with Line Number := Counter end with;
end for;
end main
end step;
end main

end procedure

79

ECSS-E-70-32A
24 April 2006

|[ESY

80

A.3.9.24

Meaning

Syntax

Object Operation Request Statement

Invokes an operation of an object.

Object Operation Request Statement =

RG)
Object Reference @

Argument Name

=} Expression

end with}\

—b{ Object Operation

Definition

»
»

Object Operation =

Object Property

Nonstandard Object Operation Name

Nonstandard Object Operation Name =

Object Operation

The object operation that is requested, which can either be an
operation to set a property of an object or any other operation
defined for an object within the EMCS.

Nonstandard Object Operation Name

The name of the non-standard object operation.

Argument Name

The name of the argument.

Expression

Yields a result that defines the value of the argument.

The standard operations that can be requested for an activity or step are
listed in Table A-2 and for reporting data, variable or procedure
argument in Table A-3 (there are no standard operations for an event).

The availability of individual operations depends on the type of the

object.

Table A-2: Activity and step operation requests

Operation request

Meaning

Argument

Result

"set confirmation status"

Sets the confirmation status of
the activity or step

"not available"

or "confirmed"

or "not confirmed"
or "aborted"

None

[EY

ECSS-E-70-32A
24 April 2006

Table A-3: Reporting data, variable and argument operation requests

Operation request Meaning Argument Result
"set validity status" Sets the validity status of a "not available" None
parameter, a variable or a or "valid"
procedure argument . .
or "invalid"
"set value" Sets the engineering value of a | any pre-defined type | None
parameter, a variable or a
procedure argument
"set monitoring status" Sets the overall monitoring "not available" None
status of a parameter or "nominal”
or "failed"
"set status consistency Sets the status consistency "not available" None
"
check status check status of a parameter or "nominal”
or "failed"
"set limit check status" Sets the limit check status of a | "not available" None
parameter or "danger high"
or "warning high"
or "within limits"
or "warning low"
or "danger low"
"set delta check status" Sets the delta check status of a | "not available" None
parameter or "nominal”
or "failed"
"set expected check status"| Sets the expected state check | "not available" None
status of a parameter or "nominal”
or "failed"

NOTE

The procedure language includes operations to set the value, or another property, of reporting data,
variables and procedure arguments. These operations are normally performed by other functions of
the space system (e.g. the spacecraft, the EMCS health monitoring function) and can only be
invoked by the procedure language in configurations where these functions are not present.

Example

PLUTO script

set value of T002 with 1.0 end with;

81

ECSS-E-70-32A /E m/
24 April 2006

A.3.9.25 Save Context Statement

Meaning Creates a copy of one or more reporting data for local use.
Syntax

Save Context Statement =

Save Context

Definition Save Context

Performs the local reporting data copy.

82

I CSS CSSE-T0 24

A.3.9.26 Initiate And Confirm Activity Statement

Meaning Initiates a designated activity and waits for confirmation of completion.

Syntax

Initiate and Confirm Activity Statement =

f(refer byH Activity Statement U Continuation Test }—L
—b@nitiate and conﬁrmH Activity Call } >

»

Activity Statement =

Definition Activity Call
The call to the activity that is initiated.
Activity Statement

The initiation instance of the activity. The “visibility” of this
activity statement is limited to the calling entity. If the initiating
statement occurs within a loop, it is always the last instance of the
initiating statement that is referred to.

The activity statement is a dynamic object of the EMCS of type
activity. It is attached to the procedure or step in which it is defined.
It inherits all operations and properties defined for activities (see
A.3.9.24 and A.3.9.36) and can be included in an object reference
(see A.3.9.8).

Continuation Test

Specifies how the execution of the calling entity proceeds after the
associated activity has been executed.

The initiated activity finishes completely before the initiating entity
(procedure or step) proceeds.

83

|E [

A.3.9.27 Initiate Activity Statement

Meaning Asynchronously initiates a designated activity.

Syntax

Initiate Activity Statement =

f»Qefer byH Activity Statement }\L‘
—»(initiate)| Activity Call | >

Definition Activity Call
The call to the activity that is initiated.
Activity Statement

The initiation instance of the activity.

The initiated activity proceeds in parallel with the initiating entity.

84

[EY

ECSS-E-70-32A
24 April 2006

A.3.9.28 Activity Call
Meaning Calls an activity.
Syntax

Activity Call =

with arguments

Arguments %nd with

with value seD—b{ Predefined Value Set Reference %nd witl

}D]\L j><With directives Directives }—»(end witlD—\L

—b{ Activity Reference ‘

Simple Argument =

Argument Name e

»

Activity Reference =
Object Reference

Arguments =

l Simple Argument .
l Record Argument '
Array Argument

Predefined Value Set Reference =

Object Reference

Directives =

" D
N

bieiveNane |+

» Expression

Directive Name =

/—‘ Expression

Activity Call

parameter

Reporting Data Reference }—

reporting data
%ystem element

System Element Reference P

Event Reference

Record Argument =

>@ Arguments }—»Cend recor@—»

85

ECSSB70:520 |E [

Array Argument =

>

. Simple Argument .

Record Argument

Argument Name =

System Element Reference =

Object Reference

Definition Activity Reference
The reference to the activity (an object reference of type activity).
Arguments

The arguments of the activity. The type of the argument can be a
simple argument (single value or object), an array (multiple
occurrences) or a record. A record is a recursive construct of
arguments of type simple or array (see also ECSS-E-70-41).

Predefined Value Set Reference

The reference to a predefined set of argument values for the
activity, i.e. predefined in the operations database (an object
reference of type predefined value set).

Directives

The directives used by the EMCS when initiating the activity. For
example, for an activity of type telecommand, this can include:

e the MAP ID to be used;
e whether the telecommand is to be sent in AD or BD mode;

e specification of the telecommand verification packets to be
generated in response to this telecommand.

Whereas arguments are specific to a given activity, directives are
specific to a given type of activity (e.g. telecommands).

Directive Name
The name of the directive.
Simple Argument

An argument of simple type, i.e. a value, a parameter, an activity, a
system element or an event.

Record Argument

An argument of record (of arguments) type.
Array Argument

An argument of array (of arguments) type.
Argument Name

The name of the argument.
Expression

Yields the value of the argument.

86

[EY

ECSS-E-70-32A
24 April 2006

Examples

Activity Call
A call to an activity.
System Element Reference

A reference to a system element (an object reference of type system
element).

Argument names are optional. If argument names are not provided,
they are known implicitly from the order in which the argument values
are given. Either no argument names are provided or they are all
provided.

Typical examples of the use of the different types of simple argument
for activities of type telecommand are:

e Reporting Data Reference: Parameter# in PUS service 12 requests;
e System Element Reference: APID in PUS service 14 requests;

e Activity Call: Inserting telecommand packets in the on-board
schedule; PUS service 11,4 request.

PLUTO script

initiate Insert into Schedule with array
record Telecommand := activity Switch On Telescope,
Release Time := 2004-117T12:15:00.0Z,
Subschedule :=1,
Interlock Set =1
end record

record Telecommand := activity Switch On Telescope HT,
Release Time :=2004-117T12:17:00.0Z,
Subschedule =1,
Interlock Set :=2,
Interlock Assessed =1
end record
record Telecommand := activity Set Telescope HT
with Level := 1000 V
end with,
Release Time :=2004-117T12:19:00.0Z,
Subschedule =1,
Interlock Assessed =2
end record
end array

end with;

87

ECSS-E-70-32A
24 April 2006

|[EY

88

A.3.9.29

Meaning

Syntax

Definition

Inform User Statement

Outputs a message for acknowledgement by the user.

Inform User Statement =

—b@nform user Expression

Expression

Yields the message that is output to the user.

The procedure execution proceeds (up to
completion) without waiting for the
acknowledgement of the user.

/E m/ ECSS-E-70-32A
24 April 2006

A.3.9.30 Log Statement

Meaning Outputs a message to the procedure execution log.

Syntax

Log Statement =

’

Definition Expression

Yields the message that is output to the procedure execution log.

89

ECSS-E-70-32A
24 April 2006

|[ESY

90

A.3.9.31 Watchdog Body

Meaning

Syntax

Definition

Example

Handles contingency situations defined for a procedure (or step).

Watchdog Body =

’b@atchdog—g Initiate And Confirm Step Statement Q end watchdog

Initiate And Confirm Step Statement

An initiate and confirm statement for the steps that compose the
watchdog body (called watchdog steps). When the watchdog body
is executed, all of its steps are initiated in parallel. The
preconditions body of a watchdog step defines the contingency
situation that it is monitoring. The preconditions body of a
watchdog step is always present and consists of a single “wait
statement”.

When more than one watchdog step is triggered, the following rules

apply:

a. If any watchdog step returns the action to abort, the parent
procedure (or step) aborts immediately.

b. The main body remains suspended until all watchdog steps are
completed.

1. If all actions returned are the same, the procedure (or step)
proceeds as indicated.

2. If the actions returned are different, user intervention is
requested (i.e. "ask user™).

Procedure name

Data Bus Reconfiguration

PLUTO script

procedure
main
initiate and confirm step Enter Ground Intervention Mode
initiate and confirm Activate GIM;
end step;
initiate and confirm step Reconfigure Data Bus
preconditions
wait until AOCS Mode = "GIM"
end preconditions
initiate and confirm Switch Bus From B To A;
initiate and confirm Activate Bus Acquisition;
end step;
initiate and confirm step Exit Ground Intervention Mode
initiate and confirm Deactivate GIM,;
end step;
end main

/ E m ECSS-E-70-32A

24 April 2006

watchdog
initiate and confirm step Check Depointing
preconditions
wait until Pitch > 10 deg OR Roll > 10 deg OR
Yaw > 10 deg
end preconditions
initiate and confirm Activate Bus Acquisition;
initiate and confirm Exit Ground Intervention Mode;
initiate and confirm Activate Coarse Mode;
end step;
end watchdog
end procedure

91

ECSSB70:520 |E [

A.3.9.32 Confirmation Body

Meaning Defines the conditions under which a procedure (or step) is confirmed.

Syntax

Confirmation Body =

confirmation end confirmation

@
Sl
Definition "if" Expression

Yields a Boolean value which, if true, sets the confirmation status
of the procedure (or step) to "confirmed".

Wait Statement

A logical condition which, when true confirms the procedure (or
step).

If the Boolean condition is not satisfied after evaluation or the
(optional) timeout is reached in the wait statement, the procedure
(or step) confirmation status is set to "not confirmed".

The "then" loop is used to specify a combination of different
conditions.

When there is no confirmation body defined for a procedure (or step)
the confirmation status is evaluated as follows:

e Ifall procedure-initiated (or step-initiated) steps and activities of
the main body of the procedure (or step) are "confirmed", then the
confirmation status changes from "not available" to "confirmed".

e Ifany of the initiated steps or activities are "not confirmed", then
the confirmation status of the initiating procedure (or step) also
becomes "not confirmed".

o Ifan initiated step or activity raises an event within its continuation
test (see A.3.9.33), the confirmation status of the initiating
procedure (or step) is determined by the watchdog step which
caught the event.

Example

Procedure name | Switch on Gyro5

PLUTO script procedure

confirmation
wait until Output of Gyro5 < 0.2 deg/h
end confirmation
end procedure

92

/ E CSS / ECSS-E-70-32A

24 April 2006

A.3.9.33 Continuation Test

Meaning Defines how to proceed after the associated “initiate and confirm”
statement is executed.

Syntax

Continuation Test =

<
<

—»Gn case Confirmation Status % Continuation Action 0

Confirmation Status =

H.'
aborted

Continuation Action =

resume

max time% Expression } >

>

Timeout

 restart)

restart

v

v

—> ask user

\—‘ Raise Event

terminate

Definition The continuation test comprises a set of couplets of confirmation status
and associated action. If a given confirmation status is not specified, a
default action applies (see A.2.5).

Confirmation Status

A final state of the associated “initiate and confirm” statement,
which may be one of the following:

e "confirmed"

The “initiate and confirm” statement is confirmed.
e "not confirmed"

The “initiate and confirm” statement is not confirmed.
e "aborted"

The “initiate and confirm” statement is aborted.

93

ECSS-E-70-32A
24 April 2006

|[ESY

94

Continuation Action

Defines the action to be taken when the associated “initiate and
confirm” statement ends execution. It may be one of the following:

"resume"

Resumes the execution of the main body of the procedure (or
step).
"abort"

Aborts the procedure (or step).
"restart"

Restarts the corresponding “initiate and confirm” statement. To
avoid this loop continuing indefinitely, it may be terminated
either by a timeout or by a specified maximum number of
restarts ("max times").

"ask user"
Asks the user to specify how to proceed.
Raise Event

Raises a local event, which is caught by a watchdog step of the
procedure (or step).

"continue"

The procedure (or step) continues execution according to the
content of the main body.

"terminate"

Prematurely ends the execution of the procedure (or step) main
body and starts the execution of the confirmation body.

Example
Procedure name | Switch on Gyro5
PLUTO script procedure
main
initiate and confirm step Switch on Gyro5 Converter
main
initiate and confirm Switch on Gyro Converter
in case
not confirmed: restart;
aborted: ask user;
end case;
end main
end step;
initiate and confirm Power on Gyro5
<>
end step;
end main
end procedure

I CSS CSSE-T0 24

A.3.9.34 Expression

Meaning Yields a value by evaluating a grouping of constants, references and
operators.
Syntax
Expression =

ﬂ Boolean Operator }—»{ Expression d

Relational Expression =

J,b{ Comparative Expression }—k

—% Relational Expression}

Boolean Operator =

Term =

fb{ Addition Operator }—P{ Term }—L
—P{ Product >

Product =

ﬁ Multiplication Operator H Product }—L

>
>

—ﬁ Factor

Comparative Expression =

/—{ Relational Operator H Term }
(ant)frem N

' ?Engineering Units? '
within Constant
Term 'Ill Term l)

in (

95

ECSSB70:520 |E [

Relational Operator =

09999

Factor =

oS

Simple Factor

Multiplication Operator =

&

Addition Operator =

&

Simple Factor =

/—i Constant

(—{ Argument Reference }

/—‘ Variable Reference

f_{ Object Property Request }

— J><default>—>{ Expression }\L r(expect)—»{ Predefined Type }\L L
(OB 0 .

©)
\—‘ Function
\—{ Sign }—b{ Simple Factor }

\—{ Negation Boolean Operator H Simple Factor } /

Argument Reference =

Object Reference

Negation Boolean Operator =

(o)

96

[EY

ECSS-E-70-32A
24 April 2006

Definition Relational Expression
Constants and references combined with relational operators.
Comparative Expression
Constants and references combined with comparative operators.
Object Property Request
A call to return a defined property of any object of the SSM (see
A.3.9.36).
Function
A predefined (i.e. built-in) function of type mathematical, string or
time that operates on zero or more input arguments and returns a
result.
It can readily be seen that the syntax for Simple Factor contains several
alternatives that can each reduce to an Identifier and hence lead to
ambiguity about what is intended. The following precedence rule
applies in such cases to define the order in which the possibilities are
resolved (1 = highest precedence, 4 = lowest precedence):
1. local variable (searched upwards through the step hierarchy).
2. procedure argument.
3. function name.
4. object name.
The syntax of the expression expresses the precedence rules of the
operators.
For each operator, Table A-4 defines the types that can be used for the
operands. The operators are listed in descending order of precedence.
Table A-4: Predefined operators
Operator Meaning Left operand Right operand Result
" Unary minus integer, real N/A integer, real
i Unary plus integer, real N/A integer, real
"NOT" Boolean NOT Boolean N/A Boolean
ekl Exponentiation integer integer integer
integer real real
real integer real
real real real
e Multiplication integer integer integer
integer real real
real integer real
real real real
relative time integer, real relative time
integer, real relative time relative time
" Division integer integer real
integer real real
real integer real

97

ECSS-E-70-32A
24 April 2006

|[ESY

98

Operator Meaning Left operand Right operand Result
real real real
relative time integer, real relative time
"+ Addition integer integer integer
integer real real
real integer real
real real real
absolute time relative time absolute time
relative time relative time relative time
Concatenation string any string
any string string
" Subtraction integer integer integer
integer real real
real integer real
real real real
absolute time absolute time relative time
absolute time relative time absolute time
relative time relative time relative time
== integer, real integer, real Boolean
<> string® string Boolean
<= > relative time relative time Boolean
absolute time absolute time Boolean
"AND" Boolean AND" Boolean Boolean Boolean
"OR" Boolean OR " Boolean Boolean Boolean
"XOR" Boolean Boolean Boolean Boolean

Exclusive OR"

* Any comparisons performed on strings are done so in a case-insensitive manner.

® Boolean expressions are evaluated in their entirety, even where the result is yielded
part way through. For example, in the expression “A AND B”, where A is "FALSE",
the expression is "FALSE" without the need to evaluate B, nevertheless the full
expression is evaluated. Therefore, it is important to avoid an expression such as:
“X>0AND Y/X = Z” since a “division by 0” exception occurs where X = 0.

I CSS CSSE-T0 24

A.3.9.35 Function

Meaning Obtains the return value of a predefined (built-in) function operating on

a list of arguments.
Syntax

Function = ‘
Standard Function Name ll ||l
Nonstandard Function Name
Standard Function Name =
Nonstandard Function Name =

Definition Standard Function Name

A standard predefined function which is one of those given in Table
C-1 (mathematical functions including functions that return the
value of a mathematical or physical constant), Table C-2 (time
functions) or Table C-3 (string functions).

Nonstandard Function Name
A non-standard predefined function.
Expression(s)

Yields the set of zero or more values to be used as arguments for the
function.

99

ECSSB70:520 |E [

A.3.9.36 Object Property Request

Meaning Obtains the requested property of the referenced object.

Syntax

Object Property Request =

Argument Name e

with ﬁ‘ Expression end with
» >
» O

bject Reference >

Object Property

Definition Object Property

The property that is requested, which can be either a standard
property for an activity, step, reporting data, variable, procedure
argument or event or a non-standard property for any object.

Object Reference
The name of the object whose property is requested.

The object may be an activity, a step, reporting data or an event.
However, it may also be any system element defined within the
SSM.

The standard properties that can be requested for an activity or step are
listed in Table A-5, for reporting data, a variable or a procedure
argument in Table A-6 and for an event in Table A-7. The availability
of individual property requests, or their result types, depends on the
type of the object (for example, a telecommand does not have the same
result types for “execution status” as a procedure).

This language construct also provides access to any other property
defined within the EMCS for these objects, or properties defined for
any system element. The properties that are available depend on the
particular implementation of the EMCS.

To simplify the procedure language, the following conventions apply:

e Reference to a property of an object alone implies the "get"
request (e.g. “if value of Batteryl Voltage > 15.5 V then...”
implies that the value of the parameter Batteryl Voltage is “got™).

e Reference to a parameter alone (i.e. no request and no property)
implies the "get" value request (e.g. “wait until Elevation of Redu
Prime Antenna < 5 deg ...” implies that the value of the parameter
Elevation of Redu Prime Antenna is “got”).

100

[EY

ECSS-E-70-32A
24 April 2006

Table A-5: Activity and step property requests

activity or step was completed,
i.e. confirmation completed in
the case of a procedure or step;
end-to-end verification
completed in the case of a
telecommand

Property request Meaning Argument Result
"get execution status" Gets the execution status of the | None "not initiated"
act1V1ty or Step or npreconditionsn
or "routing"*
or "executing"
or "confirmation"
or "completed"
"get initiation time" Gets the time at which the None absolute time
activity or step was initiated,
i.e. the time at which the
preconditions check was
initiated
"get start time" Gets the time at which the None absolute time
execution was started, i.e.
execution started by destination
application process in the case
of a telecommand; starting of
the main body in the case of a
procedure or step
"get termination time" Gets the time at which the None absolute time
execution was terminated in the
case of a procedure or step
"get confirmation status" | Gets the confirmation status of | None "not available"
the activity or step or "confirmed"
or "not confirmed"
or "aborted"
"get restart number" Gets the number of times the None unsigned integer
activity or step has been
restarted
"get completion time" Gets the time at which the None absolute time

NOTE 1
NOTE 2

NOTE 3

NOTE 4

NOTE 5

When requesting properties of an activity or a step, the last initiate statement is implied by default.

For an activity, if a previous initiate statement is referred to, an “activity statement” is explicitly
provided in the initiate statement and used in the request.

When an initiate statement (activity or step) occurs within a loop, the request automatically applies
to the latest iteration within the loop, i.e. previous iterations are not available.

When an initiate statement (activity or step) is restarted as a result of a continuation action, a
counter is available giving the number of restarts.

Execution statuses indicated with a “*” are only applicable for activities of type telecommand.

101

ECSSB70:520 |E [

Table A-6: Reporting data, variable and argument property requests

Property request Meaning Argument Result
"get validity status" Gets the validity status of a None "not available"
parameter, a variable or a or "valid"
procedure argument . .
or "invalid"
"get sampling time" Gets the sampling time of a None absolute time
parameter or a compound
parameter or the time at which
a variable or a procedure
argument last received a value
"get value" Gets the value of a parameter, a| None any pre-defined type
compound parameter, a
variable or a procedure
argument. Only engineering
values are accessible to the
language.
"get monitoring status" Gets the overall monitoring None "not available"
status of a parameter or "nominal”
or "failed"
"get status consistency Gets the status consistency None "not available"
check status" check status of a parameter or "nominal”
or "failed"
"get limit check status" Gets the limit check status of a | None "not available"
parameter or ndanger hlghu
or "warning high"
or "within limits"
or "warning low"
or "danger low"
"get delta check status" Gets the delta check status of a | None "not available"
parameter or "nominal"
or "failed"
"get expected check Gets the expected state check | None "not available"
status" status of a parameter or "nominal"
or "failed"
Table A-7: Event property requests
Property request Meaning Argument Result
"get last raise time" Gets the time at which the None absolute time
event was last raised

102

[E

ECSS-E-70-32A
24 April 2006

Example
Procedure name | Activate Freon Loop
PLUTO script procedure
main
initiate and confirm step Heating Up
declare
Boolean Status,
real AvgeTemp units degC
end declare
main
Status := get validity status of Pump of Freon Loopl;
AvgeTemp:= get average value of FreonTemp
with
StartTime := current time () — 10 min,
EndTime:= current time ()
end with;
<ol
end main
end step;
<>
end procedure

NOTE “average value” is a parameter property implemented within the EMCS that
corresponds to the average value over a specified time interval.

103

ECSSB70:520 |E [

A.4 Extended Backus-Naur form (EBNF) representation of PLUTO
language constructs

A4l Conventions

In this annex, the ISO extended Backus-Naur form (EBNF) is used as an
alternative convention to specify the syntax of the procedure language. The
complete specification of ISO EBNF is given in ISO/TIEC 14977, but the salient
features of the convention are summarised below.

Each syntax rule consists of a non-terminal symbol and an EBNF expression
separated by an equal sign “=” and terminated with a semicolon “;”, e.g.

Integer Constant = Sign, { Digit }- ;
The right-hand side of the rule is the definition of the non-terminal symbol on
the left-hand side.

The EBNF expression consists of terminal symbols, non-terminal symbols and

{2

connective symbols as defined in Table A-8, separated by a comma “,”.

A terminal symbol is a sequence of one or more characters forming an
irreducible element of the language.

Non-printing characters such as a space or a new-line have no formal effect on
the syntax as long as they appear outside of a terminal symbol.

Table A-8: EBNF symbols and meanings

Symbol Meaning
X|Y One of X or Y (exclusive or)
[X] Zero or one occurrence of X
{X} Zero or more occurrences of X
{X}- One or more occurrences of X
n*X A repetition of X exactly n times
(XY) Grouping construct
"Text" Terminal symbol (text between double quotes representing a
keyword of the procedure language). If a double quote is used
inside the text, the text is enclosed instead by single quotes.

EXAMPLE 1 Confirmation Status = "confirmed" | "not confirmed" |
"aborted";

means that Confirmation Status is defined as being either
"confirmed" or "not confirmed" or "aborted".

EXAMPLE 2 If Statement = "if", Expression, "then", {Step Statement,
"s"}-, ["else", {Step Statement, ";"}-], "end if";
means that a set of one or more step statements, each followed
by a ";" appears after the "then" part of the definition. The part
of the definition within the square brackets (the "else" part) is

optional, but if present occurs once only in the “if statement”.

104

[EY

ECSS-E-70-32A
24 April 2006

EXAMPLE 3 Integer Constant = Sign, { Digit }- ;

means that an integer constant is defined as a sign (a plus or a
minus) followed by a sequence of one or more digits.

A.4.2 PLUTO language constructs

The EBNF representations of the language constructs defined in this Standard
are listed below:

Absolute Time Constant =
(Year, "-", Month, "-", Day Of Month,
"T", Hour, ":", Minute, ":", Second,
".", Fraction Of Second, ["Z"])
| (Year, "-", Day,
"T", Hour, ":", Minute, ":", Second, ".",
Fraction Of Second, ["Z"]);

Activity Call =
Activity Reference,
[("with arguments", Arguments, "end with")
| ("with value set", Predefined Value Set Reference , "end with")],
["with directives", Directives, "end with"];

Activity Reference =
Object Reference;

Activity Statement =
Identifier;

Addition Operator =

"+N | n_mn,
>

Argument Name =
Identifier;

Argument Reference =
Object Reference;

Arguments =
(Simple Argument | Record Argument | Array Argument),
{",", (Simple Argument | Record Argument | Array Argument)};

Array Argument =
[Argument Name], "array",
((Simple Argument, {",", Simple Argument })
| (Record Argument, {",", Record Argument })),
"end array";

Assignment Statement =
Variable Reference, ":=", Expression;

Boolean Constant =
"TRUE" | "FALSE";

Boolean Operator =
"AND" | "OR" ‘ "XOR";

105

ECSS-E-70-32A /E m/
24 April 2006

Case Statement =
"in case", Expression, "is", Case Tag, ":", {Step Statement, ";"}-
{"or is", Case Tag, ":", {Step Statement, ";"}-},
["otherwise", ":", {Step Statement, ";"}-],
"end case";

Case Tag =
Comparative Expression ,
{Boolean Operator, Comparative Expression };

Characters =
{ Digit ‘ Letter| nn ‘ H!" | l\"l ‘ "#" ‘ "$" | "%" | "&H | nmm | H(H
| ")" | nxkn | H+" | "," | H_" | ".H | H/" | ":" | H;H | "<" | H:"| H>"

| N?N | H@N| H[" ‘ "\\" | H]" | naAn | H_H | nn ‘ "{N | Nl" | N}" | n_n }_;

Comparative Expression =
(Relational Operator, Term)
| ("between", Term, "and", Term)
| ("within", Constant , [? Engineering Units ? | "%"], "of", Term)
| ("in ("’ Term’{","’ Term}_’ H)");

Confirmation Body =
"confirmation", (("if", Expression) | Wait Statement),
{"then", (("if", Expression) | Wait Statement) },
"end confirmation";

Confirmation Status =
"confirmed" | "not confirmed" | "aborted";

Constant =
Boolean Constant
| Enumerated Constant
| Integer Constant
| Real Constant
| String Constant
| Absolute Time Constant
| Relative Time Constant;

Continuation Action =
"resume"
| "abort"
| "restart",
[Timeout | ("max times", Expression, [Raise Event])]
| "ask user"
| Raise Event
| "continue"
| "terminate";

Continuation Test =
"in case",
{Confirmation Status, ":", Continuation Action, ";"}-,

"end case";

Day =
3 * Digit;

Day Of Month =

106

[EY

ECSS-E-70-32A
24 April 2006

2 * Digit;
Days =

{Digit}-;
Description =

"described by", String Constant;
Digit =

"O" | "1" | "2" ‘ HSH | "4" | "5" ‘ H6" | "7" | "8" ‘ "9";

Directive Name =

Identifier;
Directives =
[Directive Name, ":="], Expression,
".", [Directive Name, ":="], Expression };

Enumerated Constant =

""" Characters, ""';

Enumerated Set Declaration =
"enumerated", Set Name,
"(", Enumerated Constant,
{",", Enumerated Constant}, ")", [Description];

Enumerated Set Reference =
Set Name, ["0of", Object Reference];

Event Declaration =
"event", Event Name, [Description];

Event Name =
Identifier;

Event Reference =
Object Reference;

Expression =
Relational Expression, [Boolean Operator, Expression];

Factor =
Simple Factor, ["**", Factor];

Flow Control Statement =
If Statement
| Case Statement
| Repeat Statement
| While Statement
| For Statement;

For Statement =

"for", Variable Reference, ":=", Expression, "t0", Expression,
["by", Expression],
"do", {Step Statement, ";"}-, "end for";

Fraction Of Second =

107

ECSS-E-70-32A
24 April 2006

|[ESY

108

{Digit}-;

Function =
(Standard Function Name | Nonstandard Function Name),
"(", [Expression, {",", Expression}], ")";

Hexadecimal Constant =
Hexadecimal Symbol, {Hexadecimal Digit}-;

Hexadecimal Digit =
Digit | HA" ‘ "B" | "C" | "D" | HE" | "F";

Hexadecimal Symbol =
"OX";

Hour =
2 * Digit;

Hours =
{Digit}-;

Identifier =
Identifier First Word, {Identifier Subsequent Word };

Identifier First Word =
Letter, {Letter | Digit };

Identifier Subsequent Word =
{Letter | Digit }-;

If Statement =
"if", Expression,
"then", {Step Statement, ";"}-,
["else", {Step Statement, ";"}-],
"end if";

Inform User Statement =
"inform user", Expression, {",", Expression};

Initiate Activity Statement =
"initiate", Activity Call, ["refer by", Activity Statement];

Initiate And Confirm Activity Statement =
"initiate and confirm", Activity Call,
["refer by", Activity Statement],
[Continuation Test];

Initiate And Confirm Step Statement =
"initiate and confirm step", Step Name,
Step Definition, "end step",
[Continuation Test];

Initiate In Parallel Statement =
"in parallel", (["until all complete"] | "until one completes"),
(Initiate And Confirm Step Statement
| Initiate And Confirm Activity Statement), ";",
{ (Initiate And Confirm Step Statement

/E m/ ECSS-E-70-32A
24 April 2006

| Initiate And Confirm Activity Statement), ";"}-,
"end parallel”;

Integer Constant =
([Sign], {Digit}-, [? Engineering Units 7])
| Hexadecimal Constant;

Letter =
HaH | llb" | NCH ‘ Hd" | He" | Hf" ‘ Hg" | llh" | Ni" | llj"| Hk" | HI" | Hmll | Hnll
| NON | Hp" | Hq" | Hr" | "S"| Utll | llu" | NV" | "WN | NXN | "yll | "ZH | "AN
| NB"| UC" | "DN | "EN | "F" | NGH | HHN | "IH ‘ "J" | HK"| HLH | HMN
I ::g:'l | HON | HP" | HQN | HRH ‘ HSH | HTH| "UH | HV" | NW" | "X" | "YH

Log Statement =
"log", Expression, {",

, Expression};

Minute =
2 * Digit;

Minutes =
{Digit}-;

Month =
2 * Digit;

Multiplication Operator =

nkn | "/N;

Negation Boolean Operator =
"NOT";

Nonstandard Function Name = Identifier;
Nonstandard Object Operation Name = Identifier;
Nonstandard Object Property Name = Identifier;

Object Name =
Identifier;

Object Operation =
("set", Object Property)
|[Nonstandard Object Operation Name;

Object Operation Request Statement =
Object Operation, [["0f"], Object Reference],
["with", [Argument Name, ":="], Expression,

,", [Argument Name, ":="], Expression},
"end with"];

Object Property =
(Standard Object Property Name
| Nonstandard Object Property Name), ["of", Object Property];

Object Property Request =
[["get"], Object Property, "of"], Object Reference,

109

ECSS-E-70-32A
24 April 2006

|[EY

110

["with", [Argument Name, ":="], Expression,
".", [Argument Name, ":="], Expression},
"end with"];

Object Reference =
[Object Type], Object Name, {"of", Object Reference};

Object Type =
"variable" | "predefined value set" | "activity statement"
| "step" | "argument" | "system element" | "reporting data"

| "parameter" | "record" | "array" | "activity" | "event";

Preconditions Body =
"preconditions",
(("if", Expression) | Wait Statement),
{"then",
(("if", Expression) | Wait Statement)},
"end preconditions";

Predefined Type =
"Boolean"
| Enumerated Set Reference
| "signed integer"
| "unsigned integer"
| "real"
| "string"
| "absolute time"
| "relative time"
| Property Value Set
| Property Data Type;

Predefined Value Set Reference =
Object Reference;

Procedure Declaration Body =
"declare",
Event Declaration, {",
"end declare";

"

, Event Declaration},

Procedure Definition =
"procedure",
[Procedure Declaration Body],
[Preconditions Body],
Procedure Main Body,
[Watchdog Body],
[Confirmation Body],
"end procedure";

Procedure Main Body =
("main", {Procedure Statement, ";"}-, "end main")

n-.n .
>

| {Procedure Statement, ";

Procedure Statement =
Set Procedure Context Statement
| Initiate In Parallel Statement
| Initiate And Confirm Step Statement
| Initiate And Confirm Activity Statement

/E m/ ECSS-E-70-32A
24 April 2006

| Initiate Activity Statement
| Inform User Statement
| Log Statement;

Product =
Factor, [Multiplication Operator, Product];

Property Data Type =
"same as", Object Property, "of",
(Object Reference | ("current”, ("system element" |
"reporting data" | "parameter" | "activity" | "event")));

Property Value Set =
(Object Property, "of",
(Object Reference | (["current"], ("system element" |
"reporting data" | "parameter" | "activity" | "event"), ["of",
((Object Property, Constant)
| Object Reference)])))
[(("system element reference" |
"reporting data reference" | "parameter reference" |
"activity reference" | "event reference"),
"of", Object Property, Constant);

Raise Event =
"raise event", Event Name;

Real Constant =
[Sign], {Digit}-, [".", {Digit}-],
["e", [Sign], {Digit}-],
[? Engineering Units ?];

Record Argument =
[Argument Name], "record", Arguments, "end record";

Relational Expression =
Term, [Comparative Expression |;

Relational Operator =
H:" | Hl:" | H<" | ">" | "<:" | ">:".
- b

Relative Time Constant =
([Sign], (Days, "d")
| ([Days, "d"],
((Hours, "h")
| ([Hours, "h"],
((Minutes, "min")
| ([Minutes, "min"], Seconds,
[".", Fraction Of Second], "s"))))))
| ([Sign], Days, ":", Hour, ":", Minute, ":", Second,
":" Fraction Of Second);

Repeat Statement =
"repeat",
{Step Statement, ";"}-,

"until", Expression, [Timeout];

Reporting Data Name =

111

ECSS-E-70-32A /E m/
24 April 2006

Identifier;

Reporting Data Reference =
Object Reference;

Save Context =
""'save context",
"refer to", Reporting Data Reference,
"by", Reporting Data Name,
{",", "to", Reporting Data Reference,
"by", Reporting Data Name};

Save Context Statement =
Save Context;

Second =
2 * Digit;

Seconds =
{Digit}-;

Set Name =
Identifier;

Set Procedure Context Statement =
"in the context of", Object Reference, "do",

{Procedure Statement, ";
"end context";

Set Step Context Statement =
"in the context of", Object Reference, "do",

{Step Statement, ";"}-,
"end context";

Sign =

H+N | n_mn.
>

Simple Argument =
[Argument Name, ":="],
Expression
| ("activity", Activity Call)
| (("parameter" | "reporting data"), Reporting Data Reference)
| ("system element", System Element Reference)
| ("event", Event Reference);

Simple Factor =
Constant
| Argument Reference
| Variable Reference
| Object Property Request
| ("ask user", "(", Expression, ["default", Expression], ")",
["expect”, Predefined Type])
| ("(", Expression, ")")
| Function
| (Sign, Simple Factor)
| (Negation Boolean Operator, Simple Factor);

112

[EY

ECSS-E-70-32A
24 April 2006

Standard Function Name = Identifier;
Standard Object Property Name = Identifier;

Step Declaration Body =
"declare",
(Enumerated Set Declaration
| Variable Declaration | Event Declaration),
{",", (Enumerated Set Declaration
| Variable Declaration | Event Declaration)},
"end declare";

Step Definition =
[Step Declaration Body],
[Preconditions Body],
Step Main Body,
[Watchdog Body],
[Confirmation Body];

Step Main Body =
("main", {Step Statement, ";"}-, "end main")

| {Step Statement, ";"}-;

Step Name =
Identifier;

Step Statement =
Set Step Context Statement
| Assignment Statement
| Flow Control Statement
| Wait Statement
| Object Operation Request Statement
| Save Context Statement
| Initiate In Parallel Statement
| Initiate And Confirm Step Statement
| Initiate And Confirm Activity Statement
| Initiate Activity Statement
| Inform User Statement
| Log Statement;

String Constant =
""" Characters, """;

System Element Reference =
Object Reference;

Term =
Product, [Addition Operator, Term];

Timeout =
"timeout", Expression, [Raise Event];

Variable Declaration =
"variable", Variable Name, "of type", Predefined Type,
["with units", ? Engineering Units ?], [Description];

Variable Name =

113

ECSS-E-70-32A
24 April 2006

JCSS

114

Identifier;

Variable Reference =
Object Reference;

Wait Statement =
(("wait until", Expression)
| ("wait for", (("event", Event Reference) | Expression))),
[Save Context],
[Timeout J;

Watchdog Body =
"watchdog", Initiate And Confirm Step Statement, ";",
{ ["watchdog"], Initiate And Confirm Step Statement, ";"},
"end watchdog";

While Statement =
"while", Expression, [Timeout],
"do", {Step Statement, ";"}-,
"end while";

Year =
4 * Digit;

I CSS CSSE-T0 24

A.5 Index of PLUTO language constructs

AbSOIULE TIME CONSTANTeeuvieeieeiieiieiieteeie et ste st ettt te e seese e e essessaessaesseesseenseensennns 44
ACHIVIEY Call oottt ettt ettt e st e st e s e b e eseese e st eneensensaneas 85
ACHIVIEY RETETEICE ... ittt sttt e 85
ACHIVILY StALEIMENL ..eeutieiieiiieiieet ettt ettt ettt e st et e e e eseesseeeseesbeeneenneeneeenes 83
AdItION OPETALOTveeeviivieitieitieteeie et et et e steeteebeeaeetae s e e s e e beesseesseessesssasseesseesseesseesnesaes 95
ATZUMENT NAIMIC ...ttt b e b ettt st st e st e bt et e en e en e sbeenbeenbeas 85
Argument REfETEINCEco.uiiiiiiiiii e 95
ATGUITIETIES ...eeuiieeiiieeiieeiieeite ettt esite e bteetteebteeaeeesbaeesaeeaabaeensaeensaeenseeensseenssesnsseensaesnseeenseesnns 85
ATTAY ATGUINEIL. ... tieiiieiiieeeie ettt ettt et et e e stte e taeesiteebaeesee e baeeseesnbaeenseesnseesseesaseesnseesnns 85
ASSIZNMENE SEALEIMENTe.vieeiieeiieeieeiierieeie e eteete st eseebeeaesseesreesseesseesseessesssessaessaesseessessnas 71
B001€an CONSLANT........ccctiiieiieiieriieie ettt ete e ee st e seesseeneeeseesseesseenseenseessessnenseas 42
L 70Te) (7 1 0 1S (o) PR UTSUS 95
€S STALEIMENLeviiiiieiiiieite ettt ettt e e s e e bt e sbeeebeesabeeebeesabeesbeeenne 74
(TS I TSRS SRS 74
CRATACTETSvveeevieeieeetee ettt et e et e et e et ee st eeetbeesebeesaaeessbeassseessseessseesssaassseessaansseeasseenseeanes 43
CompParative EXPreSSION.........ueiiiiieiieiieieeieet ettt ettt ee e 95
Confirmation BOYcooieiiieieieee ettt ettt 92
CONFITMALION STATUSevvivieieieitiecte ettt ettt eaeeeesteesteesteesbeesbeessesss e seesseesseesseesnenseas 93
COMSLANE....cuetieeieeiiieeete et eete et e e ste et eestte e bt e eaeeestaeesseesssaeesseesntaeenseesnseeanseesnseesnseesnsessnseeenes 42
CONtINUALION ACHION ..veevviieieiiieitierteeieeteeteettesteeteeseessesaesseesseesseesseessesssesssenseessaessesssenssessees 93
CONtINUALION TESE ...evviiieiiesiieiiete ettt et ettt et et e e e te e beesbeesaesseesseesseesseesseessenssensaesens 93
DAY ettt b ettt e at e bt e e ht e e bt e e ateeabeeenateee 45
DAY S ettt e et e bt e bt e e bt e s bt e sbeesabaeenaaeee 45
DIESCIIPLION ...uvieetieiieieete ettt et ettt et et este et e esaessaesse e seensesnsesneesseenseenseenseensensaensaeseas 49
DL .ttt ettt ettt st ettt et et e be ettt e e st entent et e te st et e ententent et enbeeneeseeneentenseneensenens 42
DIrECtIVE NAMC......eeieiiieiieetieceeeteeetee e tee et e et e e te e e bt e ebeeebeessbeessseessseassseessseessseesssaensseenes 85
DATECEIVES . ..utteetieeieeette ettt et e et e et e et e s beesabeesabeesabeessbeaesseessseeasseesssaassseesssaensseeassaenseeenes 85
ENumerated CONSTANT.........eecuiiiiieeiiieiieecieeesiee et e eee et e eteeeteesbeeebeessaeesseessseeesseessseensseenns 43
Enumerated Set DeClarationcc.ecveiuieciieieiieiieseeie ettt re e eseeeneseeas 65
Enumerated Set RefErencCe........cceevviiiiieiiieiece ettt 65
EVENt DECIArationcccviieiiiieiiieitieie ettt ettt eae s e e te e e esaesaaesseesseesseesseessesssensaenseas 49
EVENE NAIME ...ttt et et ettt e st e et esabeeebeesnbeeensaesbeeeseeenns 49
EVENt RETEICNCE.iiiieiiiiiiicieieete ettt s sbe e esbeessesssensaensees 51
2403 (11 () TP 95
FaACTOT ettt e st e st s bt e st e st e st esteesaee e e 95
FIow Control StAt@MENL...........ecieriieiieiieieeieetesit et et st e sttt aeene e s e se e e enseennesnnes 72
FOT STAtEMENT......cctiieiiieiieciec ettt et e st e e e ae e s b e e sabeesebeessseessseessaeessseensneenes 78
FUNCHION ...ttt et e e s e e s e e st e e aae e s sbeessseessseessaeessseensseensseensneenes 99
Hexadecimal CONSTANT........cc.eeiiieeieeiiieeie et eete et ereeetteetee e tee et e etaeeteeesbaeeseeereeeseeenns 43
HeXadecTmal DIZIt......co.eieieieeieieieee ettt ettt see bt ne et e e e naeenens 43
Hexadecimal SYMDOL........oouiiiiiiieieeee ettt a e 43
HOUTS ettt ettt ettt ettt et e et e ettt e ate e bteensbeesbeensneenseeenseeenns 45
TACIEITIET ...ttt ettt ettt st et te e beesbesseessaesseessaesseessasssensaeseas 41
Tdentifier FIrSt WOTdcocviiiiiieiieiteeeieetet ettt e essessaessaensees 41
Identifier SUbSEqUENt WOTd.........ccoeviiriieiieieee e 41
] 1731113 SRR 73
INfOrm USEr STAtEIMENL........eccuieiereieiietieie ettt see st et et e e s e enaeeseesseenseenseenseennesnnas 88
Initiate ACtVILY STAtEIMENT......eeiuiiiieieitieitiete ettt ettt 84
Initiate And Confirm Activity Statement...........cceeuirierierieieee e 83
Initiate And Confirm Step Statement...........cceeveiieiiiiiee e e 63
Initiate In Parallel Statementcoovvieviieiiiieiicreeiece ettt eb e 61
INEEEET COMSLANLeeuieiieiieitietee ettt sb ettt st sae e st et et eateebeesbeebeenbeas 43
17 USROS 42
LOE SEAtCIMENL.....cuiiiiiieiiieie ettt ettt ettt et esateesabeesabeesabeessbeensneennseenaneean 89
IMHITIULES ..ottt ettt et este e bt et esaeeseeese et e esseesseessessaesseesseesseessesssessseseenseessaassanssensaensens 45
MUItIPIICAtION OPETALOTvevveeietieieeteeteetterteeteeseeaeseaesteesseesseessesseesssesseesseesseassesssessaensees 95
Negation Boolean OpPerator...........cceecveiierierieeriieieeiesiteste et eae e seeseessesssesaessaesseenseenseenns 95

115

ECSS-E-70-32A
24 April 2006

116

Nonstandard FUnction Name...........cccoiviririririiiiicieeseseeee e 99
Nonstandard Object Operation NaME...........ccceevvieeieeierieriieieeee et seeseesreeeeseeseee e seeeneeees 80
Nonstandard Object Property Name...........c.eccverierieriieieeiesieeeesieee et 65
ODBJECE NAIMEC......c.eeetietieie ettt ettt ettt e e et esh e e bt et e et e eseeeseenteenteenseeneeeseeseennas 56
(0] 1S1e1 A @5 T<3 215 o) o USSR 80
Object Operation Request Statement..........oeveeeerieriieieee e 80
ODJECE PIOPEILYcueeeiieie ettt ettt ettt ettt ettt s bttt est e st e e e s e besbeesesneeneeneenean 65
Object Property REQUESE......cc.eoiiiiiiiiie e 100
ODbJECt RETETEICE ...ttt et 56
ODJECE TYPC civiiiiiiieiteeie ettt sttt ettt e te et e e b e esaessaesbeesbeenseassesssansaenseensenssenssesseensaenses 56
Preconditions BOAYc.ccviiiiiiiiiiiie ettt ne e naenes 50
PredefiNed TYPE ..oocieieiieie ettt ettt e b e st e sreesta e b e enbeenbeesaessaensaenns 65
Predefined Value Set REfErence..........ccoeveeiiiiiiinininiiecieccceecs et 85
Procedure Declaration BOdY.........cccvevuiiieiienieiieiecieeee et 49
Procedure DEefINitioncoeeieieiiiriniinereeeetet ettt st sttt 48
Procedure Main Bodycoooiiiiiiiieeeeeee e e 58
Procedure StateMENT.cccuieieieieieieit ettt ettt ettt et e ene 58
PLOAUCT -ttt ettt ettt be et e st et e st et e teebe b eneenean 95
Property Data TYPE ..c.eecuieiieieeieee ettt sttt et st 65
Property ValUe Set.......ccooi ittt ettt st eae s neas 65
RISE EVENL..c..etiiiiiiiiieiee ettt ettt sttt sbe b 55
REAL CONSLANE ..ottt sttt ettt et be b b 44
RECOTA ATGUIMEILoviiiieiieieeie ettt ettt et e e et este e b e esseesbesssessaessaesseesseensesssenssesssenns 85
Relational EXPIrESSION.......ccuievieieiieeieieeie et eteete sttt et eesaessaessaeseesseensessnesneesseenseenseenns 95
REIatioNal OPEIatorc.eecveiuieiiieriieie ettt et ettt te e st e se e st esteeseesseesseenseensesnsessnesseennas 95
Relative Time CONSTANTccuirtirerieiiteierie ettt sttt neennes 45
ReEPEat StAtEIMENL.......ccuiiitiiiiee ettt sttt ettt et e et enteeneesneenas 76
Reporting Data NAMEcc.oeuieieiieieeee ettt st s 52
Reporting Data REfEreNCeoovieiiiiieieeeeee et 52
SAVE CONEEXL ...ttt ettt e bttt et ea e s bt e bt e bt et e s atesaeesbeenbeeteenteeaeesanens 52
Save ContexXt STAtEIMENT.cc.eeviiiiiiiriietiee ettt sttt sttt ettt e s esbe et enaeas 82
SECOMNM ...ttt ettt et b e a e bt et e et et e e bt eae bt ent et et e nbebesaeeneens 44
SECOMAS. ...ttt ettt s b e bbbttt na et be b reene 45
SEEINGITIE ...ttt ettt sttt et ettt s bt e bt e b e et e e et sbtesbeesbe et e bt eateeanens 65
Set Procedure Context StAtEIMENtcoueruerieriireriniieceiieeeee ettt 60
Set Step ConteXt STALEMENTeevuiiiiiieiiieiiie ettt ettt e eesbeeesaee e 70
N3P USSP 43
SIMPIE ATGUIMENL ...eieiiieiiieiie ettt ettt e st e st e st e et e ee et e e st e sseenteenseeneeenneas 85
N 300010 (S0 SF: To10) oSSR 95
Standard FUnction NaMEeeoiiiiiiiieieeeeee ettt 99
Standard Object Property NAME..........ccueoiiiiiiiiiiieieee ettt s 65
Step Declaration BOAY.........cc.ooeriiiiiiieeee e e 65
SEEP DETINITION ...oevviviiiieiieie ettt ettt et b et teesteesbeesbeesaesaeesaeesseenseenseenseas 64
SEEP MAIN BOAY ... eviiiiiiieiieiecie ettt ettt st teebeesbeesaesaeesseeseenseensens 68
SEEP INNAITIE ...eevieiiieeiee ettt ettt e sttt e s abe e sttt e s et e e st e essbeensbeensseensseensseensseensseennse 63
SEEP STALEIMENL........eeeiiiiiieeiie ettt ettt e st e ebee st eeesbeesabeesnseesabeesnseesnseesnseennne 68
SHANG CONSTANEvetieiieiieieeieetestest e ettt e et e st e st e e esteessesssesseenseeseensesnsesseesseenseenseensennsens 44
System Element REfErence.........cccveviviiiiirieieieieee et 85
TOITIL ..ttt et ettt et et et sttt b ettt e 95
5030170 PSP 54
Variable DeClaration.cceeruieiieieiieieeie ettt ettt sttt e nee e 65
Variable NAMIE.eiiuiiiiei ettt ettt ettt ettt e e s e s et e s beeseeneeeneeeneenne 65
Variable REfEreNCEcouiiuiiuiiieiieieee ettt sttt 71
WAL SEALEIMEGIE ...t ettt ettt et sb e b et et et st saeesbe e eeenee 51
WatChAOZ BOYceeeiieee ettt ebe s 90
WHILE STALEIMENT ..ottt ettt sttt ebe et 77

[EY

ECSS-E-70-32A
24 April 2006

Annex B (informative)
Engineering units

B.1 Introduction

This annex defines the standard engineering units and their corresponding
symbols. These standard engineering units and their syntax representation
given in B.3 are based on Voluntocracy 2003 (see Bibliography).

B.2 Engineering units and symbols

a.

An engineering unit symbol shall be an unambiguous string of case-
sensitive characters with no “spaces”.

The standard set of “simple engineering units” shall be as specified in
Table B-9.

Multiples and submultiples of an engineering unit shall be formed using
the simple engineering unit symbol combined with a decimal prefix, as
specified in Table B-10.

Binary multiples of the bit and B (i.e. byte) units shall use the binary
prefixes specified in Table B-11.

“Compound engineering units” shall be formed by multiplying and
dividing “simple engineering units”.

The standard set of “compound engineering units” shall be as specified in
Table B-12.

The language used to express the engineering units symbols defined
within this Standard shall be as specified in B.3. The major
characteristics of this language are:

1. Prefix symbols are not used with:

> dB (decibel), AU (astronomical unit), pc (parsec), u (atomic
mass unit),

> the time-related unit symbols min (minute), h (hour) and d
(day).

2. The unit symbols L (liter), Np (neper), deg (degree), arcmin (1/60
degree), arcsec (1/3600 degree), degC (degree Celsius), rad
(radian) and sr (steradian) can only use submultiple prefix
symbols.

3. The unit symbols t (tonne), B (byte), r (revolution), and Bd (baud)
cannot be used with submultiple prefix symbols.

4, Unit symbols formed from other unit symbols by multiplication are

nn

indicated by means of a dot i.e. "." placed between them.

5. Unit symbols formed from other unit symbols by division are
indicated by means of a solidus i.e. "/" or negative exponents.

117

ECSS-E-70-32A
24 April 2006

|[ESY

6. The solidus cannot be repeated in the same compound unit unless
contained within a parenthesized subexpression.

7. The grouping formed by a prefix symbol attached to a unit symbol
constitutes a new inseparable symbol (forming a multiple or
submultiple of the unit concerned) which can be raised to a positive
or negative power and which can be combined with other unit
symbols to form a compound unit symbol.

8. The grouping formed by surrounding compound unit symbols with
parentheses ("(" and ")") constitutes a new inseparable symbol
which can be raised to a positive or negative power and wich can be
combined with other unit symbols to form compound unit symbols.

9. Compound prefix symbols cannot be used, i.e. prefix symbols
formed by the juxtaposition of two or more prefix symbols.

10. A unit exponent follows the unit, separated by a circumflex, i.e. "*".

11. Exponents are positive or negative.

12. Fractional exponents are parenthesized.

h. If a mission uses engineering units additional to those defined in this
annex, the corresponding engineering units symbols shall comply with

the language defined in B.3.

Table B-9: Simple engineering units
Quantity Name Symbol Definition Correspondence to
other units
length metre m SI base unit
astronomical unit AU 1 AU~ 1,495978 70 x 10" m
parsec pc 1 pc =206 265 AU
volume litre L 1L=10"m’
mass gram g 1g =107 kg (SI base unit)
unified atomic mass unit |u 1u=1,660538 73 x 10*" kg
ton t 1 t= 10 kg (SI base unit)
time second S SI base unit
minute min 1 min=60s
hour h 1 h=60min=3 600s
day d 1d=24h=86400s
electric current ampere A SI base unit
temperature kelvin K SI base unit
degree Celsius degC 1°C=1K+273,15
amount of substance |mole mol SI base unit
luminous intensity |candela cd SI base unit
plane angle radian rad mem'=1
revolution r 1r=28 xatan(l) x 1 rad
degree deg 1°= (n/180) rad

118

[E

ECSS-E-70-32A
24 April 2006

Quantity Name Symbol Definition Correspondence to
other units
arcminute arcmin 1'=(1/60)° = (n/10 800) rad
arcsecond arcsec 1"=(1/3 600)° = (/648 000) rad
solid angle steradian sr m’em?’=1 1sr=1rad"2
frequency hertz Hz s
force newton N mekges?
pressure pascal Pa m'ekges? 1 Pa=1N/m”"2
bar bar 1 bar=10°Pa
energy, work, joule J m’ e kg +s? 1J=1Nm
quantity of heat
energy electron volt eV 1eV=~1,602176462 x107"]
power, radiant flux |watt W m’ e kg s’ IW=1J/s
electric charge coulomb C s*A
electric potential volt \Y m’ekges?e A’ 1V=1WIA
difference,
electromotive force
capacitance farad F m?ekg'es’e A’ I1F=1C/V
electrical resistance |ohm (Q) Ohm m’ekges® e A 1 Ohm=1V/A
electrical siemens S m?ekg'es’ e A? 1S=1ANV
conductance
magnetic flux weber Wb m’ekges?e A’ I1Wb=1Vs
magnetic flux tesla T kges?eA! 1 T=1Wb/m"2
density
inductance henry H m’ekges?eA”? 1 H=1Wb/A
luminous flux lumen Im m’em?ecd=cd 1Im=1cd.sr
illuminance lux Ix m>em*ecd=m?ecd 1Ix=1Im/m~2
logarithm of power |decibel dB 1dB=1/20 x In (10) x I Np
ratio neper Np INp=1
radionuclide activity |becquerel Bqg s
absorbed dose, gray Gy m’es? 1 Gy=1Jkg
specific energy
(imparted), kerma
dose equivalent sievert Sv m*es? 1Sv=1J/kg
information capacity | bit bit
byte B 1 B=8bit
transmission rate baud Bd 1 Bd =1 bit/s

119

ECSS-E-70-32A

24 April 2006

|[ESY

Table B-10: Acceptable multiples and submultiples of engineering units

120

Factor Name Symbol Factor Name Symbol
10* yotta Y 10" deci d
10 zetta A 10 centi c
10" exa E 107 milli m
10" peta P 10° micro u
10" tera T 107 nano n
10° giga G 1072 pico p
10° mega M 10" femto f
10° kilo k 10" atto a
10? hecto h 10% zepto z
10' deca da 107 yocto y

Table B-11: Acceptable multiples of binary engineering units

Factor Name Symbol
2% exbi Ei
2% pebi Pi
2% tebi Ti
2% gibi Gi
2% mebi Mi
210 kibi Ki

Table B-12: Standard compound engineering units

Quantity Name Symbol
area square metre m”2
volume cubic metre m~3
rotational frequency reciprocal second sN-1
velocity, speed metre per second m/s
angular velocity radian per second rad/s
degree per second deg/s
acceleration metre per square second m/s"2
wavenumber reciprocal metre m~-1
density, mass density kilogram per cubic metre kg/m~3
linear mass density kilogram per metre kg/m
momentum kilogram metre per second kg.m/s
angular momentum kilogram square metre per second kg.m”2/s
moment of inertia kilogram square metre kg.m”"2
dynamic viscosity pascal second Pa.s
torque, moment of force newton metre N.m

[E

ECSS-E-70-32A
24 April 2006

Quantity Name Symbol
specific acoustic impedance pascal second per metre Pa.s/m
acoustic impedance pascal second per cubic metre Pa.s/m”3
kinematic viscosity square metre per second m~2/s
volume flow rate cubic metre per second m”3/s
surface tension newton per metre N/m
linear expansion coefficient reciprocal kelvin KN-1
thermal conductivity watt per metre kelvin W/(m.K)
coefficient of heat transfer watt per square metre kelvin W/(m”"2.K)
heat capacity, entropy joule per kelvin JIK
specific heat capacity, specific |joule per kilogram kelvin J/(kg.K)
entropy

specific energy joule per kilogram J/kg
electrical charge density coulomb per cubic metre C/m~3
electrical flux density coulomb per square metre C/m~n2
electric field strength volt per metre Vim
permittivity farad per metre F/m
electric dipole moment coulomb metre C.m
current density ampere per square metre Al/m”~2
magnetic field strength ampere per metre A/m
electrical charge ampere hour A.h
magnetic vector potential weber per metre Whb/m
permeability henry per metre H/m
electromagnetic moment ampere square metre A.m~2
magnetization ampere per metre A/m
magnetic dipole moment weber metre Wb.m
resistivity ohm metre Ohm.m
conductivity siemens per metre S/m
reluctance reciprocal hertz HM-1
radiant intensity watt per steradian W/sr
radiance watt per square metre steradian W/(m”2.sr)
irradiance, heat flux density watt per square metre W/imn2
quantity of light lumen second Im.s
luminance candela per square metre cd/m”2
luminous exitance lumen per square metre Im/m~2
light exposure lux second Ix.s
luminous efficacy lumen per watt Im/W
mechanical impedance newton second per metre N.s/m
molar mass kilogram per mole kg/mol
molar volume cubic metre per mole m”3/mol
molar energy joule per mole J/mol

121

ECSS-E-70-32A
24 April 2006

|[ESY

B.3

122

Quantity Name Symbol
molar entropy, molar heat joule per mole kelvin J/(mol.K)
capacity

concentration (of amount of mole per cubic metre mol/m”3
substance)

transmission rate bit per second bit/s

Engineering units railroad diagrams

The railroad diagrams defining the syntax of engineering units are shown

below.

?Engineering Units? =

() [t (1)
it

nit Reference

Unit Reference =

Unit Product

) T

\ 4

Unit Product =

i |+

VJ Unit Factor b—>

Unit Factor =

‘ Unit Exponent

Unit Simple Factor

Unit Reference

OF T N

E [y

ECSS-E-70-32A

24 April 2006

Unit Simple Factor =

ﬂ Decimal Multiple Prefix }—1
gy - -
> Multiple Only Simple Unit

fb{ Decimal Submultiple Prefix h‘
‘ Submultiple Only Simple Unit }—\

"l
Decimal Prefix
Multiple And Submultiple Simple Unit }7

Binary Prefix

bit

min

o 6b0dde]

Unit Exponent =

Unsigned Integer

Unsigned Integer

Unsigned Integer

123

|E [

Multiple And Submultiple Simple Unit =

o
(=N

ani

R

w2

o
=

i

Multiple Only Simple Unit =

085;

124

I CSS RCSS B0

Submultiple Only Simple Unit =

b5

[
o
a.

[=%
(5]
aQ

arcmin

arcsec

@
4

il

o

Decimal Multiple Prefix =

000909994

Decimal Submultiple Prefix =

20PTP90%9

Unsigned Integer =

(o

125

ECSS-E-70-32A /E m/
94 April 2006

Binary Prefix =

E

P

glelelelele

B.4 EBNF representation of the engineering units

The EBNF representations of the PLUTO engineering units syntax are listed
below.

? Engineering Units ? =
("[",Unit Reference, "]")
| Unit Reference;

Unit Reference =
Unit Product, ["/", Unit Factor];

Unit Product =
[Unit Product, "."], Unit Factor;

Unit Factor =
Unit Simple Factor (Unit Simple Factor , ["", Unit Exponent])
| ("(",Unit Reference, ")", ["", Unit Exponent]);

Unit Simple Factor =
([Decimal Multiple Prefix], Multiple Only Simple Unit)
| ([Decimal Submultiple Prefix], Submultiple Only Simple Unit)
| ([Decimal Prefix], Multiple And Submultiple Simple Unit)
| ([Binary Prefix], ("B" | "bit"))
| "AUVI ‘ "pC" ‘ "u" | ’lminﬂ | Hh" | ’ld” | HdB";

Unit Exponent =
(["-"], Unsigned Integer)
| ("(", ["-"], Unsigned Integer, "/", Unsigned Integer, ")");

Multiple And Submultiple Simple Unit =
"m” | "g" ‘ HSH | HAH | "KH | HmOIH | HCdH | HHZ" | HNH
| HPaH | Hbar" ‘ "J’l ‘ VleVH | HWH | HCH ‘ HVH | HFH | "Ohm" | "Sl’
| HWbH | "TH | "HH | HImH | HIXH | HBqH | HGyH ‘ HSVH | Hbit’l;

Multiple Only Simple Unit =
"t" ‘ Ver "BH | HBdH;

Submultiple Only Simple Unit =
"LH | "degCH | HradH | Hdegﬂ | ’larcminl’ | "arCSeC" | "Sr" | HNpH;

Decimal Prefix =
Decimal Multiple Prefix

126

/E m/ ECSS-E-70-32A
24 April 2006

| Decimal Submultiple Prefix;

Decimal Multiple Prefix =
"Y" | "ZH | "E" | "P" | HT" | HG" | "M" | "k" | "h" | "da";

Decimal Submultiple Prefix =
"d" | "C" | "m" | Hu" | "n" | "p" | "f" | "a" ‘ "ZH | "y";

Binary Prefix =
"Ei" | "Pi" | "Ti" | "Gi" | "Mi" | "Ki";

Unsigned Integer =
{Digit }-;

127

ECSS-E-70-32A /E m/
94 April 2006

(This page is intentionally left blank)

128

ECSS-E-70-32A
24 April 2006

[EY

Annex C (informative)
Functions

C.1 Introduction
This annex defines the standard mathematical, time and string functions.
C.2 Mathematical functions
The standard set of mathematical functions shall be as specified in Table C-1.
Table C-1: Mathematical functions
Name Arguments Result Description Examples
"abs" integer or real integer or | Returns the absolute value of the abs (-9)=9
real argument.
"acos" real real Returns the angle whose cosine is acos (0.5) =1.05 rad
equal to the argument.
"acosec" integer or real real Returns the angle whose cosecant is | acosec (2) = 0.524 rad
equal to the argument.
"acosec2" (list of 2 arguments)| real Returns the angle, in the correct acosec2 (-2, 1) =-0.524
argl: integer or real quadrant, whose cos'e(':ant isequalto |rad
. the first argument divided by the
arg2: integer or real second argument.
"acotan" integer or real real Returns the angle whose cotangent is | acotan (2) = 0.464 rad
equal to the argument.
"acotan2" (list of 2 arguments)| real Returns the angle, in the correct acotan2 (-2, 1) =-0.464
argl: integer or real quadrant, whose cot.ar.lgent isequalto |rad
i the first argument divided by the
arg2: integer or real second argument.
"asec" integer, real real Returns the angle whose secant is asec (2) = 1.047 rad
equal to the argument.
"asec2" (list of 2 arguments)| real Returns the angle, in the correct asec2 (-2, 1) =2.094 rad
argl: integer or real quadrant, whosg sgcant is equal to the
. first argument divided by the second
arg2: integer or real argument.
"asin” real real Returns the angle whose sine is equal |asin (0.5)=0.52 rad
to the argument.

129

ECSS-E-70-32A

24 April 2006

|[ESY

Name Arguments Result Description Examples
"atan" integer or real real Returns the angle whose tangent is atan (1) =0.785 rad
equal to the argument.
"atan2" (list of 2 arguments)| real Returns the angle, in the correct atan2 (-1, 1) =-0.785 rad
argl: integer or real quadrant, whose tangent is equal to the
. first argument divided by the second
arg2: integer or real argument.
"average" (list of 2 or more integer or | Returns the arithmetic average value of| average (1, 2, 3) =2
arguments) real a list of two or more arguments.
arguments: integer
or real
"ceiling" integer or real integer Returns the smallest integer value ceiling (5.3)=6
greater than or equal to the argument. ceiling (-5.3) =-5
ceiling (5)=5
"cos" integer or real real Returns the cosine of the argument. cos (1 rad) =0.54
cos (45 deg) =0.7071
"cosec" integer or real real Returns the cosecant of the argument. | cosec (1 rad)=1.19
"cosh" integer or real real Returns the hyperbolic cosine of the | cosh (1 rad) = 1.54
argument.
"cotan" integer or real real Returns the cotangent of the argument. | cotan (1 rad) = 0.64
"floor" integer or real integer Returns the largest integer that is less | floor (5.3) =5
than or equal to the argument. floor (-5.3) = -6
"In" integer or real real Returns the natural logarithm (base €) |In (1.5)=0.405
of the argument.
"log" integer or real real Returns the base 10 logarithm of the |log (1.5) =0.176
argument.
"max" (list of 2 or more integer or | Returns the maximum value in a list of | max (1 V, 100 mV) =1V
arguments) real two or more arguments. It returns no
arguments: integer value for just one argument.
or real
"min" (list of 2 or more integer or [Returns the minimum value in a list of | min (1, 3,7,4) =1
arguments) real two or more arguments. It returns no
arguments: integer value for just one argument.
or real
"quotient” (list of 2 arguments)| integer Returns the result of dividing the first | quotient (5,2)=2
argl: integer or real argument by the second argument, quotient (5, -2.1) = -2
) truncated. .
arg2: integer or real quotient (-5, 2.1) = -2
"remainder" | (list of 2 arguments)| integer or | Returns the remainder that results from| remainder (5.3, 2) = 1.3
argl: integer or real real dividing the first argument by the
) second argument.
arg2: integer or real
"round" (1 or 2 arguments) |integer or |Returns the first argument rounded to | round (2.4) =2
argl: integer or real real the .number.ofpllaces to the right of the | .. 1ng (2.4)=2
. decimal point given by the second B
arg2: integer or real argument. If the second argument is round (2.5) =3
omitted, the argument is rounded to 0 | round (2.57, 1) =2.6
places.
"sec" integer or real real Returns the secant of the argument. sec (1 rad)=1.85

130

[EY

ECSS-E-70-32A
24 April 2006

Name Arguments Result Description Examples
"sin" integer or real real Returns the sine of the argument. sin (1 rad) =0.84
sin (45 deg) =0.7071
"sinh" integer or real real Returns the hyperbolic sine of the sinh (1 rad) =1.18
argument.
"sgrt" integer or real integer or | Returns the square root of the sqrt (5)=2.236
real argument. It returns no value if the
argument has a negative value.
"tan" integer or real real Returns the tangent of the argument. | tan (1 rad)=1.56
"tanh" integer or real real Returns the hyperbolic tangent of the |tanh (1 rad) =0.76
argument.
"truncate" real integer Returns the truncated value of the truncate (6.6) =6
argument. truncate (-5.6) = -5
"pi" none real Returns the value of Pythagoras’ pi () =3.1415926536
constant, 7
"e" none real Returns the value of Napier’s constant,| e () = 2.7182818285
e (base of natural logarithm)
"G" none real Returns the value of the gravitational |G () =6.6742e—11
constant m~3.kg"N-1.s"-2
C.3 Time functions
The standard set of time functions shall be as specified in Table C-2.
Table C-2: Time functions
Name Arguments Result Description Examples
"current none absolute | Returns the absolute time current time () =2004-
time" time corresponding to the current time. 24-21T12:00:00.0Z
"year" absolute time integer Returns the year of the absolute time as| year (current time ()) =
a four-digit integer. 2003
"month" absolute time integer Returns the month of the absolute time | month (current time ())
as an integer in the range 1 - 12 =4
inclusive.
"day of absolute time integer Returns the day of the month of the day of month (current
month" absolute time as an integer in the range | time ()) =1
1 - 31 inclusive.
"day of week"| absolute time string Returns the day of the week of the day of week (current
absolute time as one of these strings: | time ()) = "Tuesday"
Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday, Sunday.
"day of year" | absolute time integer Returns the day of the year of the day of year (current time|
absolute time as an integer in the range | ()) =91
1 - 366 inclusive.
"hour" absolute time integer Returns the hour of the absolute time as| hour (current time ()) =

131

ECSS-E-70-32A

24 April 2006

|[ESY

an integer in the range 0 - 23 inclusive.

11

"minute" absolute time integer Returns the minute of the absolute time| minute (current time ())
as an integer in the range 0 - 59 =11
inclusive.

"second" absolute time integer Returns the second of the absolute time| second (current time ())
as an integer in the range 0 - 59 =11
inclusive.

"days" relative time real Returns the number of days in the days (30 h)=1.25d
relative time as a real with associated
engineering units.

"hours" relative time real Returns the number of hours in the hours (2 d 5 h 30 min) =
relative time as a real with associated |53.5h
engineering units.

"minutes" relative time real Returns the number of minutes in the | minutes (2 d 5 h 30 min)
relative time as a real with associated |=3210 min
engineering units.

"seconds" relative time real Returns the number of seconds in the | seconds (37 min 4.5 s) =
relative time as a real with associated |2224.5s
engineering units.

C.4 String functions

The standard set of string functions shall be as specified in Table C-3.

Table C-3: String functions

argl: string arg2:
integer arg3: integer

characters, extracted from the first
argument, beginning at the character

Name Arguments Result Description Examples
"to string" (1 or 2 arguments) | string Returns the first argument as a string. If a| to string(SV)="5V"
arg1: Boolean or second argument is given the ﬁr'st ‘ to string (5 V, mV) =
integer or real or argument is converted to the units given | ng000 my/"
absolute time or by the second argument.
relative time arg2:
engineering units

"to Boolean" | string Boolean | Returns a Boolean converted from the to Boolean ("TRUE") =
argument. TRUE

"to hex" integer string | Returns a string, which is the to hex (45) = "0x2D"
hexadecimal equivalent of the argument.

"to integer" |string integer | Returns an integer converted from the to integer ("32")=32 or
argument. to integer ("0x20") = 32

"to real" string real Returns a real converted from the toreal ("3.2")=3.2
argument.

"capitalize" | string string | Returns a string, which is the argument | capitalize ("hello world")
with the first letter of each word = "Hello World"
capitalized.

"get from" (list of 3 arguments)| string Returns a string, which is the string of | get from ("one two three",

5,7) = "two"

132

[EY

ECSS-E-70-32A
24 April 2006

Name Arguments Result Description Examples
given by the second argument and ending
at the character given by the third
argument . Spaces between words are
included in the count from left to right.

"insert in" (list of 3 arguments)| string | Returns a string, which consists of the insertin ("not", "do
argl: string arg2: first argument inserted into the second enter", 4) = "do not enter"
string arg3: integer argument, starting at the position

specified by the third argument.

"is contained [(list of 2 arguments)| Boolean | Returns “TRUE” if the second argument | is contained in ("Your",

in" argl: string arg2: contains the ﬁrst argument, and "Your flight") = TRUE
string “FALSE” if it does not.

"length of" string integer | Returns an integer whose value gives the | length of ("message") =7

number of characters in the argument. length of ("") =0

"lower case" | string string Returns a string, which is the same as the | lower case ("123AbcDef")

argument but with all alphabetic = "123abcdef"
characters appearing in lower-case.

"omit from" | (list of 3 arguments)| string | Returns a string, which is the same as the | omit from ("do not enter",
argl: string arg2: first argument but with the range of 4,7)="do enter"
integer arg3: integer characters, beginning at the character

given by the second argument and ending
at the character given by the third
argument, removed.

"position of" | (list of 2 arguments)| integer | Returns an integer value giving the position of ("fli", "Your
argl: string arg2: starting pqsition of the first ;tring in the |flight")=6
string second string. If the first string occurs

more than once in the second string, the
first occurrence is returned. If the first
string is not in the second string, the
function returns “0”.

"upper case" |string string | Returns a string, which is the same as the [upper case ("123Abc
argument but with all alphabetic Def"="123ABCDEF"
characters in upper- case.

133

ECSS-E-70-32A /E m/
94 April 2006

(This page is intentionally left blank)

134

[EY

ECSS-E-70-32A
24 April 2006

Bibliography

ECSS-E-00
ECSS-E-10A
ECSS-E-10-02
ECSS-E-10-03
ECSS-E-50
ECSS-E-70
ECSS-E-70-31 5

ECSS-E-70-41

ISO/MEC 14977

Voluntocracy 2003:

® To be published.

Space Engineering
Space engineering
Space engineering
Space engineering
Space engineering
Space engineering

Space engineering

- Policy and principles

- System engineering

- Verification

- Testing

- Communication

- Ground systems and operations

- Ground systems and operations

— Monitoring and control data definition

Space engineering

- Ground systems and operations

— Telemetry and telecommand packet utilization

Information technology - Syntactic metalanguage —

Extended BNF

Representation of
character

numerical values and SI units in

strings for information interchange

(http://swiss.csail.mit.edu/~jaffer/MIXF)

135

ECSS-E-70-32A /E m/
94 April 2006

(This page is intentionally left blank)

136

[EY

ECSS-E-70-32A
24 April 2006

ECSS Change Request / Document Improvement Proposal

A Change Request / Document Improvement Proposal for an ECSS Standard may be submitted to the ECSS
Secretariat at any time after the standard’s publication using the form presented below.

This form can be downloaded in MS Word format from the ECSS Website

(www.ecss.nl, in the menus: Standards - ECSS forms).

EY

ECSS Change Request / Document Improvement Proposal

1. Originator’s name:

2. ECSS Document number:

14)

Organization: 3. Date:
e-mail:
5. Location
4. Number. of deficiency 6. Changes 7. Justification 8. Disposition
clause
page
(e.g. 3.1

Filling instructions:

1. Originator’s name - Insert the originator’s name and address

AR

identified

o

Number - Insert originator’s numbering of CR/DIP (optional)

Changes - Identify any improvement proposed, giving as much detail as possible

7. Justification - Describe the purpose, reasons and benefits of the proposed change
8. Disposition - not to be filled in (entered by relevant ECSS Panel)

Once completed, please send the CR/DIP by e-mail to: ecss-secretariat@esa.int

ECSS document number - Insert the complete ECSS reference number (e.g. ECSS-M-00B)

Date - Insert current date

Location - Insert clause, table or figure number and page number where deficiency has been

137

ECSS-E-70-32A /E m/
94 April 2006

(This page is intentionally left blank)

138

	Foreword
	Introduction
	Scope
	Normative references
	Terms, definitions and abbreviated terms
	Terms and definitions
	Abbreviated terms

	Context of the procedure language
	Introduction
	The space system
	Satellite testing
	Mission operations

	EGSE and mission control system (EMCS)
	General
	Space system model

	Requirements to be satisfied by procedures
	Procedure structure
	Language constructs
	Language specification

	Bibliography

