

ECSS-E-70-32A

24 April 2006

Space engineering
Test and operations procedure
language

ECSS Secretariat
ESA-ESTEC

Requirements & Standards Division
Noordwijk, The Netherlands

ECSS-E-70-32A
24 April 2006

Published by: ESA Publications Division
 ESTEC, P.O. Box 299,
 2200 AG Noordwijk,
 The Netherlands
ISSN: 1028-396X
Price: € 30
Printed in: The Netherlands.
Copyright: ©2006 by European Space Agency for the members of ECSS

2

ECSS-E-70-32A
24 April 2006

Foreword

This Standard is one of the series of ECSS Standards intended to be applied
together for the management, engineering and product assurance in space
projects and applications. ECSS is a cooperative effort of the European Space
Agency, national space agencies and European industry associations for the
purpose of developing and maintaining common standards.

Requirements in this Standard are defined in terms of what shall be
accomplished, rather than in terms of how to organize and perform the
necessary work. This allows existing organizational structures and methods to
be applied where they are effective, and for the structures and methods to
evolve as necessary without rewriting the standards.

The formulation of this Standard takes into account the existing ISO 9000
family of documents.

This Standard has been prepared by the ECSS-E-70-32 Working Group,
reviewed by the ECSS Engineering Panel and approved by the ECSS Steering
Board.

 3

ECSS-E-70-32A
24 April 2006

(This page is intentionally left blank)

4

ECSS-E-70-32A
24 April 2006

Contents

Foreword ...3

Introduction...7

1 Scope..9

2 Normative references..11

3 Terms, definitions and abbreviated terms...13
3.1 Terms and definitions..13
3.2 Abbreviated terms...15

4 Context of the procedure language ...17
4.1 Introduction ...17
4.2 EGSE and mission control system (EMCS) ..19

5 Requirements to be satisfied by procedures ..23
5.1 Procedure structure ..23
5.2 Language constructs ..24
5.3 Language specification ...26

Bibliography..135

Figures

Figure 1: Example of space system elements ...18
Figure 2: Example of a space system model ...20
Figure A-1: Example of a procedure and its elements...28
Figure A-2: Execution states and transitions for a procedure ..34
Figure A-3: Execution states and transitions for a step ...36
Figure A-4: Execution states and transitions for an activity ...37
Figure A-5: Confirmation status and continuation action combinations for main body

“initiate and confirm” statements...39
Figure A-6: Confirmation status and continuation action combinations for watchdog

“initiate and confirm” statements...39
Figure A-7: Example railroad diagram ...41

 5

ECSS-E-70-32A
24 April 2006

Tables

Table A-1: Predefined types ..46
Table A-2: Activity and step operation requests ..80
Table A-3: Reporting data, variable and argument operation requests81
Table A-4: Predefined operators..97
Table A-5: Activity and step property requests ..101
Table A-6: Reporting data, variable and argument property requests102
Table A-7: Event property requests ...102
Table A-8: EBNF symbols and meanings ..104
Table B-9: Simple engineering units ..118
Table B-10: Acceptable multiples and submultiples of engineering units120
Table B-11: Acceptable multiples of binary engineering units120
Table B-12: Standard compound engineering units...120
Table C-1: Mathematical functions ..129
Table C-2: Time functions..131
Table C-3: String functions ..132

6

ECSS-E-70-32A
24 April 2006

Introduction

The procedure is the principal mechanism employed by the end-user to control
the space system during pre-launch functional testing and post-launch in-orbit
operations.

This Standard identifies the requirements to be satisfied by any language used
for the development of automated test and operation procedures.

It also defines a reference language that fulfils these requirements. This
language is called the “procedure language for users in test and operations
(PLUTO)”.

 7

ECSS-E-70-32A
24 April 2006

(This page is intentionally left blank)

8

ECSS-E-70-32A
24 April 2006

1
Scope

This Standard specifies:

• The capabilities of the language used for the definition of procedures for
space system testing and operations.

• The PLUTO language.

Clause 4 defines the context in which procedures operate.

Clause 5 contains the requirements for the procedure language.

Annex A specifies the PLUTO language. This includes:

• The “building blocks” that constitute procedures and the role that each of
these building blocks plays in achieving the overall objectives of the
procedure.

• The dynamic aspects of procedures i.e. the execution logic of each
building block and execution relationships between these blocks.

• The syntax and semantics of the language itself.

Annex B specifies the engineering units to be supported by the procedure
language.

Annex C specifies the mathematical, time and string functions to be supported
by the procedure language.

 9

ECSS-E-70-32A
24 April 2006

(This page is intentionally left blank)

10

ECSS-E-70-32A
24 April 2006

2
Normative references

The following normative documents contain provisions which, through
reference in this text, constitute provisions of this ECSS Standard. For dated
references, subsequent amendments to, or revisions of, any of these
publications do not apply. However, parties to agreements based on this ECSS
Standard are encouraged to investigate the possibility of applying the most
recent editions of the normative documents indicated below. For undated
references, the latest edition of the publication referred to applies.

ECSS-P-001B ECSS - Glossary of terms

 11

ECSS-E-70-32A
24 April 2006

(This page is intentionally left blank)

12

ECSS-E-70-32A
24 April 2006

3
Terms, definitions and abbreviated terms

3.1 Terms and definitions
For the purposes of this document, the terms and definitions given in
ECSS-P-001 and the following apply:

3.1.1
activity
space system monitoring and control function

3.1.2
compound parameter
record comprised of any sequence of reporting data, arrays of reporting
data and sub-records that are interpreted together

EXAMPLE An anomaly report generated by the space segment
comprising an anomaly report ID and a set of
associated parameters.

3.1.3
confirmation body
part of a procedure (or step) whose purpose is to assess whether or not the
objective of the procedure (or step) has been achieved

3.1.4
continuation test
language construct used to define how the execution of a procedure (or step)
proceeds after a constituent step (or activity) has been executed

3.1.5
event
occurrence of a condition or set of conditions that can arise during the course of
a test session or a mission phase

3.1.6
initiation
act of requesting the execution of a step or an activity

 13

ECSS-E-70-32A
24 April 2006

3.1.7
main body
part of a procedure (or step) dedicated to achieving the objectives of the
procedure (or step)

3.1.8
parameter
lowest level of elementary information that has a meaning for monitoring the
space system

3.1.9
preconditions body
part of a procedure dedicated to ensuring that the procedure only executes if
or when pre-defined initial conditions are satisfied

3.1.10
procedure
means for interacting with the space system in order to achieve a given
objective or sequence of objectives

3.1.11
reporting data
data used for assessing the functioning of the space system

NOTE Reporting data can consist of a parameter (a simple
type) or a compound parameter (a complex type).

3.1.12
space system model
representation of the space system in terms of its decomposition into system
elements, the activities that can be performed on these system elements,
the reporting data that reflects the state of these system elements and the
events that can be raised and handled for the control of these system
elements, activities or reporting data

3.1.13
statement
element of the procedure language which, together with other elements,
implements the goal of a procedure (or step)

3.1.14
step
component of a procedure that achieves a well-defined sub-goal

3.1.15
system element
representation within the space system model of a functional element of the
space system

14

ECSS-E-70-32A
24 April 2006

3.1.16
watchdog body
part of a procedure (or step) which manages contingency situations that can
arise during the execution of the procedure (or step)

3.1.17
watchdog step
component of the watchdog body dedicated to detecting the occurrence of a
particular contingency condition and executing corrective actions

3.2 Abbreviated terms
The following abbreviated terms are defined and used within this Standard:

Abbreviation Meaning

AIV assembly, integration and verification

EBNF extended Backus-Naur form

EGSE electrical ground support equipment

EMCS EGSE and mission control system

FCP flight control procedure

FOP flight operations plan

MMI man-machine interface

PLUTO procedure language for users in test and operations

SCOE special check-out equipment

SSM space system model

 15

ECSS-E-70-32A
24 April 2006

(This page is intentionally left blank)

16

ECSS-E-70-32A
24 April 2006

4
Context of the procedure language

4.1 Introduction

4.1.1 The space system
ECSS-E-00 defines the overall space system as comprising a space segment, a
ground segment and a launch service segment.

An example of the elements of a space system is shown in Figure 1. The space
system elements shown in this figure are operational at different times:

• the electrical ground support equipment (EGSE) during the development
phase;

• the launch service segment during the pre-launch and launch phases;

• the mission control and ground station systems during the mission
operations phase.

 17

ECSS-E-70-32A
24 April 2006

Ground Segment

Ground Station
System

Mission Control
System
OCS

PCS

MES

EGSE

SSCS SSCSSSC

ME ME ME

GCS

Key: OCS: Operation control system SSC: Space segment control station
 PCS: Payload control system ME: Mission exploitation station
 MES: Mission exploitation system GCS: Ground communications subnet
 AIV: Assembly, integration and verification

Space Segment

Spacecraft B

Platform

Payload
Onboard subnet

Spacecraft A

Platform

Payload

Onboard
Subnet

Space
Subnet

AIV
Subnet

Launch Vehicle A

Launch Service Segment

Launch Vehicle B

Launch Vehicle C

Launch Facility

Pre-Launch
Service Link

Comms Link

Figure 1: Example of space system elements

4.1.2 Satellite testing
ECSS-E-10, ECSS-E-10-02 and ECSS-E-10-03 define the requirements for
space system engineering, verification and testing.

This Standard does not prescribe the levels of integration and test at which
procedures are used. This is considered to be a decision taken when the
verification approach for a specific mission is defined. However, automated
procedures are generally employed from the subsystem level upwards.

The re-use of test procedures at different levels of integration implies
standardization of the functionality of the EGSE. Furthermore, the re-use of
these procedures in the mission operations domain implies the harmonisation
of the requirements for EGSE and mission control systems.

4.1.3 Mission operations
ECSS-E-70 identifies procedures as the primary mechanism for conducting
mission operations and defines two types of flight control procedures (FCP):

• Nominal procedures

These define the set of in-orbit operations of the space system to be used
under nominal conditions. They constitute the building blocks from
which the mission timelines and schedules of the flight operations plan
(FOP) are constructed.

18

ECSS-E-70-32A
24 April 2006

• Contingency procedures

These define the recovery actions used to reconfigure the space system if
pre-identified anomalies or failures occur.

Although FCPs have traditionally been executed under manual control,
pressure to reduce manpower during routine mission operations implies more
automation of routine tasks such as the execution of procedures.

4.2 EGSE and mission control system (EMCS)

4.2.1 General
In this Standard, the elements of the ground segment responsible for the
monitoring and control of the overall space system, namely the EGSE and the
mission control system are referred to jointly as the EMCS.

The procedure language and the procedure development and execution
environments are an integral part of any EMCS. As such, they have direct
access to other monitoring and control functions implemented within the
overall EMCS.

4.2.2 Space system model
ECSS-E-70-31 introduces the concept of a space system model (SSM) as a
means for capturing mission knowledge used during AIV and operations. This
knowledge is used by the different EMCS applications in order to interact with
the space system and to process the dynamic data that is exchanged with it (i.e.
space segment telemetry and telecommands, ranging data, ground segment
commands and measurements).

The SSM consists of different types of object and the relationships between
these objects. The objects of relevance for the procedure language are system
elements, reporting data, activities and events.

System elements correspond to:

• the elements of the space segment resulting from the functional
decomposition defined in ECSS-E-00;

• the elements of the ground segment resulting from the functional
decomposition defined in ECSS-E-70.

Reporting data and activities are associated with system elements:

• Reporting data comprises parameters and compound parameters. A
parameter is the lowest level of elementary information that has a
meaning for monitoring the space system. A compound parameter is a
record comprised of any sequence of parameters, arrays of parameters
and sub-records (see also ECSS-E-70-41). For example, a complete
telemetry packet, or part thereof, may be represented as a compound
parameter. The parameters within a compound parameter are normally
interpreted together (e.g. when interpreting the contents of an anomaly
report). Reporting data can have different representations depending on
its life cycle within the space system (e.g. an on-board measurement has
an encoded value in telemetry and a raw or engineering value when
presented on a ground segment display).

• An activity is a space system monitoring and control function. The term
activity is introduced to refer generically to procedures, telecommands
(either to the space segment or to the ground segment) and any function
provided by the underlying EMCS (e.g. a printer request, sending an e-

 19

ECSS-E-70-32A
24 April 2006

mail, transferring a file using ftp). A given mission can implement
additional mission-specific activity types (e.g. conforming to a non-
standard protocol).

Events are associated with system elements, reporting data and activities. An
event is an occurrence of a condition or set of conditions that can arise during
the course of a test session or a mission phase. It is used to trigger a monitoring
and control function implemented within the space system.

An example of a space system model is shown in Figure 2.

Space segment

Temperature Switch On

Space system

Ground segment

AOCS

Power subsystem

Star tracker

Optical head

EGSE

MCS

Ground Station

Baseband equipment

Telemetry decoder

Switch On

Background Count Report

Telemetry
Lock Status

Go NoGo Status

Source Count

Switch On Failure

Undervoltage

EventKey: Reporting dataActivity

Figure 2: Example of a space system model

During the course of spacecraft testing and mission operations, the space
system is configured in different ways, for example:

• to test elements of the space segment in a stand-alone manner;

• to test the space segment during integration when some elements are
missing;

• to validate the ground segment with a simulated space segment.

The concepts of system elements, activities, reporting data and events provide
a complete definition of the SSM independent of any specific space system
configuration. However, for a given space system configuration, only a subset of
the overall SSM is used.

In order to understand the scope of the procedure language, it is important to
understand what is provided by the SSM. The SSM (as specified in
ECSS-E-70-31) provides the definition of space system configurations, system
elements, activities, reporting data and events.

The procedure language provides the means to:

20

ECSS-E-70-32A
24 April 2006

• refer to system elements, activities, reporting data and events but not to
define them;

• define the procedural script.

For activities, the common set of data definitions in the SSM includes:

• name;

• description;

• type (procedure, telecommand or operating system call);

• associated system element;

• version number and configuration history;

• validation status (i.e. information on the testing status of the activity);

• validity period, i.e. the earliest and the latest date on which the activity
can be executed;

• expected (i.e. mean) duration;

• maximum and minimum durations;

• list of arguments, including for each argument:

o name,

o description,

o engineering units,

o data type, and

o default value;

• allowed combinations of argument values;

• other attributes used for mission planning purposes such as the profile of
resources that the activity utilizes (e.g. onboard power and downlink
bandwidth).

In addition, the different types of activity have type-specific definitions; for
procedures, this includes:

• default execution mode (manual or automatic);

• activation mode (i.e. whether the procedure is permanently active or is
explicitly initiated);

• the procedural script.

 21

ECSS-E-70-32A
24 April 2006

(This page is intentionally left blank)

22

ECSS-E-70-32A
24 April 2006

5
Requirements to be satisfied by procedures

5.1 Procedure structure
a. The capability shall be provided to construct a high-level, goal-oriented

activity (namely a procedure) using elementary activities consisting of
telecommands and operating system calls.

b. A procedure may include calls to execute other procedures.

c. The capability shall be provided to define self-contained sub-goals for a
procedure.

d. A given sub-goal may be achieved by a single activity call or a sequence
of activity calls.

e. An activity may have associated arguments whose values are passed to
the activity at the time of initiation.

f. Where the achievement of a sub-goal involves complex logic (such as
waiting for a period of time, waiting for a condition to become true or
conditional branching), a step construct shall be provided to encapsulate
the logic.

g. The capability shall be provided to execute procedure sub-goals in series
or in parallel.

NOTE Parallel execution is used, for example, when two or more
steps can be performed completely independently.

h. Preconditions may be specified for a procedure.

NOTE Preconditions are conditions to be fulfilled before the
procedure can start.

i. Confirmation conditions may be specified for a procedure.

NOTE Confirmation conditions are those conditions that
determine whether the goal of a procedure is met.

j. Preconditions and confirmation conditions may also be defined for steps.

k. In addition to the “nominal flow path” of a procedure (i.e. the flow
designed to achieve its primary goal), contingency actions may also be
defined.

l. A procedure contingency action may be executed upon:

1. detection of space system anomalies;

2. detection of a failure in the execution of the nominal path;

3. other specified events or conditions.

m. In addition to the “nominal flow path” of a step, contingency actions may
also be defined.

 23

ECSS-E-70-32A
24 April 2006

n. A step contingency action may be executed upon:

1. detection of a failure in the execution of the nominal path;

2. other specified events or conditions.

o. A contingency action should be taken at the level at which a failure
occurs, i.e. if a failure occurs in the execution of a step, a contingency
action should be taken at the level of the step.

p. A contingency action should rectify the detected anomaly or report it to
the user and return control to the nominal flow path of the procedure (or
step).

q. If an anomaly cannot be rectified, one of the following actions shall be
performed:

1. generate an event to flag the problem at a higher level for
resolution;

2. use other means to achieve the goal of the procedure (or sub-goal of
a step) and then terminate the procedure (or step);

3. abort the procedure (or step).

r. If a contingency action is invoked, the body of the procedure (or step)
shall be suspended until the contingency action is completed.

5.2 Language constructs
a. The capability shall be provided to request the execution of any space

system activity.

b. The capability shall be provided to request the execution of an activity
and proceed immediately with the execution of the next statement of the
procedure.

c. The capability shall be provided to request the execution of an activity
and wait for the confirmation of execution before continuing.

d. When a procedure waits for the confirmation of execution of an activity,
the result of the execution of the activity shall be tested in order to
determine the subsequent course of action.

e. The capability shall be provided to acquire the following data:

1. the execution status or confirmation status of an initiated activity;

2. the initiation time, start time, termination time or completion time
of the last execution of an activity;

3. the value of reporting data;

4. the validity status of a parameter;

5. the overall monitoring status or detailed monitoring status (limit-
check, delta-check, expected status check or status consistency
check) of a parameter;

6. the sampling time of reporting data;

7. the time of the last occurrence of an event.

f. When a given space system function is unavailable (e.g. during an early
test phase), the capability shall be provided to replace the missing
function. This includes setting:

24

ECSS-E-70-32A
24 April 2006

1. the confirmation status of an activity;

2. the value of a parameter;

3. the validity status of a parameter;

4. the overall monitoring status or detailed monitoring status (limit-
check, delta-check, expected status check or status consistency
check) of a parameter;

5. the sampling time of reporting data.

g. To avoid the problem that can arise with asynchronous systems where a
new instance of reporting data arrives between two successive procedure
statements that use different properties of this object, the capability
shall be provided to create a local copy of reporting data.

NOTE This ensures that the procedure uses properties of
reporting data that have been sampled at the same
instant in time.

h. To ensure that any service provided by the EMCS is accessible within a
procedure, the following capabilities shall be provided:

1. to request any operation defined for any space system object;

2. to acquire the value of any property of any space system object.

i. The capability shall be provided to perform the following execution flow
controls within a procedure:

1. simple conditional branching (i.e. if … then … else …);

2. multiple conditional branching where the path taken is dependent
on the value of a specified parameter (or local variable, see j
below);

3. repeated execution of a statement (or a group of statements) with
the possibility of repeating the execution a specified number of
times, repeating the execution indefinitely whilst a given condition
holds true or repeating the execution until a given condition
becomes true;

4. wait until a given absolute time;

5. wait for a given interval of time to elapse;

6. wait until a given condition becomes true;

7. wait until a given event occurs.

j. Local variables used within a procedure shall be declared and their type
explicitly stated.

k. The capability shall be provided to assign a value to a local variable
within a procedure.

l. The capability shall be provided to raise a local event within a procedure
(e.g. to trigger a contingency action).

m. Local events shall be defined as part of the procedure (or step)
declarations.

n. Mathematical, time and string functions shall be supported.

o. The capability shall be provided to construct expressions that operate on
constants, space system parameters acquired from the EMCS, activity
arguments (whose values are supplied at runtime) and local variables.

p. Engineering units shall be supported.

 25

ECSS-E-70-32A
24 April 2006

q. The capability to assign engineering units to constants shall be
supported.

r. The capability to mix compatible units freely within an expression shall
be supported

s. The automatic conversion between different, but compatible, units shall
be supported.

t. Comments may be included within a procedure.

u. The capability shall be provided to generate a message for
acknowledgement by the user.

v. The capability shall be provided to generate a message for entry in the
procedure execution log.

w. The capability shall be provided to acquire inputs from the user.

x. The conditions specified for a procedure (or step) precondition or
confirmation may be any combination of the following:

1. wait until a given absolute time;

2. wait for a given interval of time to elapse;

3. wait until a given condition becomes true;

4. wait until a given event occurs;

5. test whether a given condition is true;

6. request the user to specify the outcome.

5.3 Language specification
a. Any language that complies with this Standard shall be formally

specified using the ISO extended Backus-Naur form (EBNF), see
ISO/IEC 14977.

b. The PLUTO procedure language, engineering units and functions, as
specified in annexes A, B and C should be used for the automation of
procedures in the development and exploitation phases of space systems.

NOTE Use of the PLUTO language ensures conformance with all
requirements of this Standard. It also facilitates the
transfer of procedure knowledge, acquired in the
development phase during functional testing, to the
mission operations phase (for a given mission) and
encourages the use of a common procedure language
across missions.

26

ECSS-E-70-32A
24 April 2006

Annex A (informative)
The PLUTO language

A.1 The structure of a procedure

A.1.1 Procedure definition
A procedure comprises the following elements:

a. An optional declaration body, which declares the local events that can be
raised within the procedure.

b. An optional preconditions body, which ensures that the procedure is only
executed if (or when) pre-defined initial conditions are satisfied.

c. A mandatory main body, which fulfils the goal of the procedure. The
main body can be composed of self-contained sub-goals fulfilled by
activities or steps.

d. An optional watchdog body, which manages contingency situations that
can arise during the execution of the procedure. The watchdog body is
composed of one or more special steps, called watchdog steps, which are
all initiated in parallel.

e. An optional confirmation body, which assesses whether the objectives of
the procedure have been achieved or not.

An example of a procedure and its elements is shown in Figure A-1.

 27

ECSS-E-70-32A
24 April 2006

Preconditions Body

Main Body

Sequential
sub-goals

Parallel
sub-goals

Watchdog Body

Confirmation Body

Watchdog
Step

Watchdog
Step

Declaration Body

Sub-goal

Sub-goal

Sub-goal

Sub-goal

Sub-goal

Figure A-1: Example of a procedure and its elements

A.1.2 Procedure declaration body
Local events that can be raised within the procedure, but which are accessible
outside of the step in which they are raised (e.g. events that trigger a
procedure-level watchdog, see A.1.5), are declared at procedure level.

Arguments may be passed to a procedure at initiation time by the entity calling
the procedure. These arguments are defined externally (see subclause 4.2.2)
and not as part of the procedure declarations.

Arguments are similar to parameters in their definition and use.

Argument values cannot be changed within a procedure.

A.1.3 Procedure preconditions body
The preconditions body contains the conditions that define whether a procedure
can start. They may be any combination of the following:

• wait until a given absolute time;

• wait for a given time interval to elapse;

• wait until a given condition becomes true;

• if the result of a logical expression (Boolean condition) is true;

• request a decision from the user.

28

ECSS-E-70-32A
24 April 2006

A.1.4 Procedure main body
The main body of a procedure consists of a sequence of statements of the
following type:

• set procedure context statement;

• initiate in parallel;

• initiate and confirm step;

• initiate and confirm activity;

• initiate activity;

• inform user statement;

• log statement.

The “initiate in parallel” statement enables a combination of steps and
activities to be executed in parallel with the subsequent behaviour being one of
the following:

1. the set of parallel steps or activities ends when any one of the steps or
activities has ended;

2. the set ends when all of the steps or activities have ended.

A.1.5 Procedure watchdog body
The watchdog body is composed of watchdog steps. Each watchdog step
monitors for the occurrence of a particular contingency condition and executes
corrective actions if the condition occurs.

The purpose of the procedure watchdog body is the following:

• Detection of, and reaction to, system-level events, for example space
system anomalies. The procedure watchdog body need not rectify all
anomalies internally; it can suspend or abort the procedure whilst
another procedure handles the anomaly.

• Ensuring that procedure-level invariant conditions are sustained for the
duration of the procedure.

• Management of errors (e.g. failures) in procedure execution that cannot
be handled by the watchdog of the relevant procedure main body step
(see A.1.7.5).

NOTE Error handling following execution of a procedure is
managed by the calling entity.

Contingency situations monitored for by concurrently active watchdog steps are
independent of each other. The reason for this is that when a watchdog step is
triggered, it suspends the main body of the corresponding procedure whilst it
takes the appropriate recovery action, but any other watchdog steps that are
active continue their monitoring. Consequently, if there is any potential
interaction between two or more contingency actions, the design of the
procedure ensures that they are handled within the same watchdog step.

A.1.6 Procedure confirmation body
Within the confirmation body, a procedure can be confirmed by any
combination of the following conditions:

• wait until a given absolute time;

• wait for a given time interval to elapse;

 29

ECSS-E-70-32A
24 April 2006

• wait until a given condition becomes true;

• if the result of a logical expression (Boolean condition) is true;

• request a decision from the user.

A.1.7 Structure of a step

A.1.7.1 Step definition

The structure of a step is identical to the structure of a procedure: a step is
composed of an optional declaration body, a preconditions body (optional for a
main body step, mandatory for a watchdog step), a mandatory main body, an
optional watchdog body and an optional confirmation body.

The declarations at step-level (see A.1.7.2) are different from those at
procedure-level and the set of statements that can be used in a step main body
(see A.1.7.4) is different from that which can be used in a procedure main body.

A step has a name, which is unique within a procedure. This name may be used
to refer to the step.

Whilst steps within a procedure main body may have a watchdog body,
watchdog steps do not have a watchdog body.

The preconditions body is mandatory for a watchdog step (since the
preconditions body defines the contingency condition for which the watchdog
step is monitoring).

A.1.7.2 Step declaration body

The following are declared at step level:

• Local variables: the objects defined for internal use within a step.

Local variables are similar to parameters in their definition and use.
They have an engineering value and a validity status, which is "invalid"
until the variable is first assigned a value.

Local variables can be used by steps contained within a step and also by
watchdog steps within the step watchdog body.

• Local events: the events that can be raised within the step and which are
only accessible from within that step.

A.1.7.3 Step preconditions body

Within the preconditions body of a main body step, the conditions that define
whether a step can start may be any combination of the following:

• wait until a given absolute time;

• wait for a given time interval to elapse;

• wait until a given condition becomes true;

• if the result of a logical expression (Boolean condition) is true;

• request a decision from the user.

However, the preconditions body of a watchdog step consists of a single “wait”
condition.

30

ECSS-E-70-32A
24 April 2006

A.1.7.4 Step main body

The main body of a step consists of a sequence of statements of the following
type:

• set step context statement;

• assignment statement;

• flow control statements:

o if statement;

o case statement;

o loop statements:

 while statement;

 for statement;

 repeat statement;

• wait statement;

• object operation request statement;

• save context statement;

• initiate in parallel (steps or activities or both);

• initiate and confirm step;

• initiate and confirm activity;

• initiate activity;

• inform user statement;

• log statement.

A.1.7.5 Step watchdog body

A step watchdog body manages the following:

• detection of, and reaction to, any failures that occur within the main body
of the corresponding step;

• ensuring that step-level invariant conditions are sustained for the
duration of the step.

NOTE Error handling following execution of a step is managed
by the calling entity.

A.1.7.6 Step confirmation body

Within the confirmation body, a step can be confirmed by any combination of
the following conditions:

• wait until a given absolute time;

• wait for a given time interval to elapse;

• wait until a given condition becomes true;

• if the result of a logical expression (Boolean condition) is true;

• request a decision from the user.

 31

ECSS-E-70-32A
24 April 2006

A.2 The behaviour of a procedure

A.2.1 Procedure execution flow
Procedures can be initiated by different mechanisms within the EMCS, e.g. by
a user via an MMI or automatically as a call from another procedure.

During the execution of a procedure, its “execution status” changes to reflect
the path that it follows ("preconditions", "executing", "confirmation" or
"completed").

On completion, the “confirmation status” of a procedure changes to reflect its
success or failure ("confirmed", "not confirmed" or "aborted"). Prior to
completion, the confirmation status of the procedure is "not available".

The execution and confirmation statuses can be used by the calling entity to
monitor and control the execution of the procedure.

a. When the procedure is initiated, the procedure preconditions body is
executed (execution status: "preconditions", confirmation status: "not
available"). The outcome is one of the following:

o the preconditions are satisfied, resulting in the initiation of the
watchdog body (i.e. the initiation of all watchdog step
preconditions bodies) and then the initiation of the main body;

o the preconditions are not satisfied, resulting in the aborting of the
procedure (execution status: "completed", confirmation status:
"aborted").

If the procedure has no user-defined preconditions, the watchdog body
and main body are started immediately.

b. The procedure main body consists of a sequence of statements, which are
of the type “initiate” (initiate activity, initiate and confirm step, initiate
and confirm activity or initiate steps or activities in parallel), or are
informative in nature (inform user or log), or define the context in which
statements are executed.

When the main body is started, the first statement in the sequence is
executed. Subsequent statements are executed according to the sequence
logic (execution status: "executing", confirmation status: "not
available").

The initiate and confirm statements (step or activity) include a
continuation test, which determines how the main body continues based
on the final value of the confirmation status. The outcome is one of the
following:

o continue the execution of the main body;

o restart the current step or activity, i.e. restart from the
preconditions body (if defined);

o raise a local event that is caught by a watchdog step;

o abort the procedure (execution status: "completed", confirmation
status: "aborted").

c. The watchdog body comprises a number of (watchdog) initiate and
confirm step statements. When the watchdog body is started, all of its
step statements are initiated in parallel. Each watchdog step is designed
to detect a particular contingency situation.

32

ECSS-E-70-32A
24 April 2006

o If none of these contingency situations arises during the procedure
execution, the watchdog body is automatically terminated when
the procedure main body ends execution;

o If a contingency arises, the main body of the procedure is
suspended whilst the contingency is handled by the relevant
watchdog step (execution status: "executing", confirmation status:
"not available").

Suspension of the main body means that the currently executing
atomic statement 1,2 is completed, but the subsequent action (if
any) indicated as a result of that statement is not taken.
The subsequent flow depends on the success or otherwise of the
recovery and the “continuation action” arising within the watchdog
step. The following cases can arise:

 The contingency is rectified and control is returned to the
procedure main body (continuation action: "resume",
execution status: "executing", confirmation status: "not
available"). The execution of the main body is resumed at
the end of the previously executing atomic statement. The
watchdog step that handled the contingency is re-started.

 The contingency is handled by the watchdog by achieving the
procedure goal through an alternative path. The procedure
main body and the procedure watchdog body are then
terminated and the procedure confirmation body is started
(continuation action: "terminate", execution status:
"confirmation", confirmation status: "not available").

 The contingency cannot be handled by this watchdog step, in
which case either a local event is raised, which triggers
another watchdog step (continuation action: "raise event"),
or the procedure is aborted (continuation action: "abort",
execution status: "completed", confirmation status:
"aborted").

o If a second watchdog step is triggered whilst the first is still
executing, the two watchdog steps are executed in parallel. Control
is only returned to the procedure main body when both watchdog
steps have completed execution. The watchdog steps are restarted
as soon as they complete execution. If either watchdog step yields
an "abort" continuation action, the procedure is aborted
immediately.

d. When the main body has completed execution (i.e. when all initiated
steps and activities have completed execution 3), the watchdog body is
terminated and the confirmation body is executed (execution status:
"confirmation", confirmation status: "not available").

e. When the confirmation body has completed execution, the procedure
execution is completed. The outcome is one of the following:

o the confirmation conditions are fulfilled (execution status:
"completed", confirmation status: "confirmed");

1 An atomic statement is the lowest level of statement within the procedure language. All statements except “initiate and

confirm step”, “initiate activity”, “initiate and confirm activity” and “initiate in parallel” are atomic in nature.
2 In the case that the main body is executing an “initiate in parallel” statement, all executing statements are suspended when all

currently executing atomic statements are completed.
3 This includes any parallel steps and activities that were initiated as part of an “initiate in parallel” statement with an "until one

completes" termination condition.

 33

ECSS-E-70-32A
24 April 2006

o the confirmation conditions are not fulfilled (execution status:
"completed", confirmation status: "not confirmed").

If the procedure has no user-defined confirmation conditions, an implicit
condition is used instead that depends on whether or not the
confirmation body has been initiated by a watchdog step terminate
action:

o If the confirmation body has been initiated by a “terminate” action
of a watchdog step, the procedure confirmation status is set to the
confirmation status of the watchdog step.

o Otherwise, the confirmation status is set to:

 "confirmed" if all the activities and steps that have been
initiated in the main body have been confirmed.

 "not confirmed" in all other cases.

Figure A-2 shows the different execution states through which a procedure can
pass when it is executed and the allowed transitions between these states.

Confirmation

Preconditions

Completed

WatchdogMain

Executing

complete
(confirmation
completed)

abort
confirm
(execution
completed)

abort
(preconditions
not OK)

execute
(preconditions
OK)

confirm
(execution
terminated)

abort

Figure A-2: Execution states and transitions for a procedure

A.2.2 Step execution flow
Steps are initiated by the execution of one of the following statements:

• within a procedure (or step) main body: “initiate and confirm step” or
“initiate in parallel”;

• within a procedure (or step) watchdog body: “initiate and confirm step”.

34

ECSS-E-70-32A
24 April 2006

The initiate statement implies both the execution of the step bodies and the
“continuation action” derived from the execution result which determines the
subsequent course of action.

a. The execution of the step preconditions body and main body proceeds in
the same manner as described in A.2.1 for the procedure preconditions
and main bodies.

b. The step watchdog body comprises a number of watchdog steps, each
designed to detect a particular contingency:

o If none of these contingency situations arises during the step
execution, the step watchdog body is automatically terminated
when the step main body ends execution.

o If a contingency arises, the main body of the step is suspended
whilst the contingency is handled by the relevant watchdog step
(execution status: "executing", confirmation status: "not
available").

The subsequent flow depends on the success or otherwise of the
recovery and the continuation action arising within the watchdog
step. The following cases can arise:

 The contingency is rectified and control is returned to the
step main body (continuation action: "resume", execution
status: "executing", confirmation status: "not available").
The watchdog step that handled the contingency is re-
started.

 The contingency is handled by the watchdog by achieving the
step goal through an alternative path. The step main body
and the step watchdog body are then terminated and the
step confirmation body is started (continuation action:
"terminate", execution status: "confirmation",
confirmation status: "not available").

 The contingency cannot be handled by this watchdog step, in
which case either a local event is raised, which triggers
another watchdog step (continuation action: "raise event")
or the step is aborted (continuation action: "abort",
execution status: "completed", confirmation status:
"aborted").

o If two watchdog steps are triggered at the same time, their
subsequent behaviour is the same as described for a procedure.

c. When the step main body has completed execution, the step watchdog
body is terminated and the execution of the step confirmation body is
initiated (execution status: "confirmation", confirmation status: "not
available").

d. When the confirmation body has completed execution, the step execution
is completed (confirmation status: "confirmed" or "not confirmed").

e. For a step, the decision on how to proceed following execution is defined
within the continuation test, depending on the value of the step
confirmation status ("confirmed", "not confirmed" or "aborted"). A
continuation action is defined for each confirmation status, either
explicitly within the initiate step statement, or by default. This is unlike
for a procedure, where the decision on how to proceed following execution
remains with the calling entity.

 35

ECSS-E-70-32A
24 April 2006

If the outcome of the continuation test is "restart", the step restarts
(execution status: "preconditions"). Otherwise, the step completes
execution (execution status: "completed").

If there are no user-defined preconditions or confirmation conditions for a
given step, default conditions are used. These default conditions are the
same as defined in A.2.1 for a procedure.

Figure A-3 shows the different execution states through which a step can pass
when it is executed and the allowed transitions between these states.

Not initiated

Preconditions

Completed

WatchdogMain

Executing

Continuation
Test

Confirmation

Confirmation

complete
(execution
completed)

abort
confirm
(execution
completed)

restart
abort
(preconditions
not OK)

initiate

execute
(preconditions OK)

confirm
(execution
terminated)

abort

Figure A-3: Execution states and transitions for a step

A.2.3 Activity execution flow
Activities are initiated directly within a procedure or within a step by the
execution of either an “initiate activity” or an “initiate and confirm activity”
statement. The control of the execution of an activity is managed by the EMCS.

Figure A-4 shows the different executions states through which an activity can
pass when it is executed and the allowed transitions between these states.
Depending on how the activity is implemented, e.g. as a telecommand or a
procedure, different notifications are reported by the EMCS for the monitoring
of the progress of execution by the initiating entity. These notifications
correspond to the state transitions of Figure A-4, but also to sub-state
transitions which are specific to different activity types (e.g. for telecommand,
routing stages such as “released from EMCS”, “reception by ground station”
and “reception on-board”).

36

ECSS-E-70-32A
24 April 2006

a. In the case of an “initiate activity” statement, the calling entity
(procedure or step) proceeds with the execution of the next statement
without waiting for notification of completion of the activity.

b. In the case of an “initiate and confirm activity”, the decision on how to
proceed following execution is defined within the continuation test,
depending on the value of the confirmation status ("confirmed", "not
confirmed" or "aborted"). As for a step, the continuation action is
defined for each confirmation status, either explicitly within the initiate
statement, or by default.

If the outcome of the continuation test is "restart", the activity restarts
(execution status: "preconditions"). Otherwise, the activity completes
execution (execution status: "completed").

Not initiated

Preconditions

Completed

Executing

Continuation
Test

Confirmation

Confirmation

complete
(confirmation
completed)

abort

confirm
(execution
completed)

restart abort (Preconditions
not OK)

initiate

route
(Preconditions OK)

Routing

Executing

execute

abort

Figure A-4: Execution states and transitions for an activity

A.2.4 Execution in parallel
When an “initiate in parallel” statement is executed, all constituent steps and
activities are initiated in parallel.

a. Where the termination condition of the “initiate in parallel” statement is
defined as "until one completes", the first step or activity to complete
initiates the execution of the next statement in the main body of the

 37

ECSS-E-70-32A
24 April 2006

calling entity (procedure or step). All other parallel steps and activities
continue to execute after the first one has completed. When these other
parallel steps and activities complete, the continuation actions indicated
in their respective continuation tests are taken, except if the specified
action is "continue" when no further action is taken.

b. Where the termination condition of the “initiate in parallel” statement is
defined as "until all complete", the continuation actions evaluated
within the individual steps and activities (or input by the user, if "ask
user" is the continuation action) can be different.

o When the action returned by a given step or activity is "abort", the
procedure (or step) is immediately aborted (including aborting any
other parallel steps and activities that are still executing).

o When the action returned by a given step or activity is "restart",
the action is taken immediately and the initiated step or activity is
restarted. Its execution status is reset to "preconditions" and its
confirmation status is reset to "not available". The “initiate in
parallel” statement cannot complete until the restarted step or
activity has completed.

o When the action returned by a given step or activity is "raise
event", the event is raised immediately, the event is then caught
by a watchdog step which suspends its corresponding main body.

A.2.5 Continuation following an “initiate and confirm”
statement

An “initiate and confirm” statement can have an explicit “continuation test” as
part of its definition. This continuation test consists of up to three couplets of
confirmation status and corresponding continuation action (one couplet for
each confirmation status). In the event that no continuation test is specified (or
less than three couplets are specified), default continuation actions are defined.

Figure A-5 presents the default, allowed and forbidden combinations 4 of
confirmation status and continuation action for “initiate and confirm”
statements that are part of a main body.

Figure A-6 presents the default, allowed and forbidden combinations of
confirmation status and continuation action for “initiate and confirm”
statements that are part of a watchdog.

4 The allowed combinations of confirmation status and continuation action can be extended for special testing scenarios. For

example, a test can be designed to validate the rejection of a critical command, such as “deploy solar array”, where the
successful outcome of the test is that the corresponding activity is "aborted". In this case, the continuation action "continue"
can be defined for the confirmation status "aborted".

38

ECSS-E-70-32A
24 April 2006

Confirmation status

Continuation action

 "resume" "abort" "restart" "ask user" "raise event" "continue" "terminate"

"confirmed"

"not confirmed"

"aborted"

Key: Default Allowed Forbidden

Figure A-5: Confirmation status and continuation action combinations for
main body “initiate and confirm” statements

Confirmation status

Continuation action

 "resume" "abort" "restart" "ask user" "raise event" "continue" "terminate"

"confirmed"

"not confirmed"

"aborted"

Key: Default Allowed Forbidden

Figure A-6: Confirmation status and continuation action combinations for
watchdog “initiate and confirm” statements

The meaning of the different continuation actions is as follows:

• "resume"

Only used within the continuation test of a watchdog “initiate and
confirm” statement. It resumes the execution of the main body of the
procedure (or step) at the place at which it was suspended when the
contingency was detected.

• "abort"

Aborts the procedure (or step).

• "restart"

Only used within the continuation test of a main body “initiate and
confirm” statement and it restarts the corresponding “initiate and
confirm” statement. To avoid a potentially indefinite loop, a timeout or a
maximum number of iterations can be specified. The timeout is
expressed as a relative time from the start of execution time of the
statement. If the timeout or the maximum number of iterations is
exceeded then either:

 39

ECSS-E-70-32A
24 April 2006

o an event is raised which terminates the statement and is then
handled by a corresponding watchdog step, or

o the parent procedure (or step) is aborted.

• "ask user"

Asks the user to specify how to proceed.

For a main body “initiate and confirm” statement, the user may select
any continuation action except "resume", "ask user" and "terminate".
For a watchdog “initiate and confirm” statement, the user may select any
continuation action except "continue" and "ask user".

• "raise event"

Raises a local event, which is caught by a watchdog step of the procedure
(or step). When the watchdog step has performed its function, the
execution of the main body of the procedure (or step) resumes at the
place at which it was suspended when the watchdog was triggered.

• "continue"

Only used within a continuation test of a main body “initiate and
confirm” statement. It implies that the procedure (or step) continues to
be executed according to the content of the main body.

• "terminate"

Only used within the continuation test of a watchdog “initiate and
confirm” statement. It prematurely ends the execution of the procedure
(or step) main body and starts the execution of the confirmation body.

In the case of a watchdog “initiate and confirm step” statement, the step itself
is re-initiated unless the continuation action is "abort".

A.3 PLUTO language definition

A.3.1 Conventions
The terminology used in defining the syntax of the procedure language is
compatible with ISO/IEC 14977.

The syntax of the procedure language is a set of rules, collectively known as a
grammar.

Each rule defines a construct of the language, known as a “non-terminal
symbol”. A non-terminal symbol is a combination of zero or more non-terminal
symbols and “terminal symbols”. A terminal symbol is a sequence of one or
more characters forming an irreducible element of the language.

A terminal symbol may consist of one or more words separated by one or more
separators. The space, tab and end-of-line characters are separators.

The definition of the language constructs uses a graphical convention known as
a “railroad” diagram, an example of which is shown in Figure A-7. The
elements of this graphical convention are listed below:

• the name at the top of the diagram is that of the non-terminal symbol
being defined;

• the main line corresponds to mandatory elements of the construct;

• branch lines correspond to optional elements;

• “return” lines correspond to optional repetitions of one or more elements;

40

ECSS-E-70-32A
24 April 2006

• non-terminal symbols are enclosed in rectangles;

• terminal symbols are enclosed in round-cornered boxes (in the limit, a
circle).

repeat Step Statement until Expression;

Repeat Statement =

Timeout

Figure A-7: Example railroad diagram

Figure defines that a repeat statement
followe one or more step statements, ea

A-7 starts with the keyword “repeat”
d by ch separated by a “;”, followed by

ase sensitivity

e not case-sensitive.

ents within a procedure. Comments have no effect on

ge, the ambiguity is resolved by the application of precedence
rules tly in
this Standard.

These ween
straig

ed", ">=", "XOR",
"execution status", "acos", "is contained in"

E as white space, tab and carriage return)

 denotes a name and consists of one or more words separated by

the keyword “until” and an expression (whose result, when true, terminates the
repeat loop), followed by an optional timeout.

A.3.2 Language c
Only engineering units (as defined in Annex B) are case sensitive. All other
words used in the language ar

A.3.3 Comments
Comm may be inserted
the execution of a procedure.

Comments begin and end with the character pair symbols "/*" and "*/"
respectively.

A.3.4 Keywords
A number of words have a special meaning in the procedure language. If any of
these words are used in the naming of space system objects (e.g. in the name of
a parameter), it is important to ensure that there is no potential ambiguity for
end-users when interpreting a procedure. For the system implementing the
procedure langua

that are either specified implicitly by the grammar or defined explici

 words are called “keywords” and are shown in bold face and bet
ht quotes.

EXAMPLE "procedure", "not confirm

NOT 1 Spaces (such
within keywords are treated as single blanks.

NOTE 2 Keywords are not case-sensitive.

A.3.5 Identifiers
An identifier
spaces, where each word is a sequence of letters and digits.

 41

ECSS-E-70-32A
24 April 2006

An identifier is unique within its own context. For example, step identifiers are
unique within a procedure, but the same step identifier may be used in several
procedures.

Reference to an object outside its context is achieved by use of an “object
reference path” (see A.3.9.8 for the “Object Reference” language construct).

An identifier has the general form:

Identifier First Word

Identifier =

Identifier Subsequent Word

Letter

Letter

Digit

Identifier First Word =

Letter

Digit

Identifier Subsequent Word =

ere

• Letter is an upper-case or lower-case letter of the alphabet;

• Digit is one of the decimal characters from 0 to 9.

A.3.6 Constants
A constant can be one of the following:

wh :

Constant =

Boolean Constant

Integer Constant

Real Constant

String Constant

Absolute Time Constant

Relative Time Constant

Enumerated Constant

a. A Boolean constant is represented as:

FALSE

Boolean Constant =

TRUE

42

ECSS-E-70-32A
24 April 2006

b. s represented by: An enumerated constant i

" Characters "

Enumerated Constant =

where haracters is any sequence of letters or digits or one of
followi characters:

 # $ % & ' () * + , - . / : ; < = > ? @ [\] ^ _

C the
ng

space ! " ` { | } ~

verse solidus character
(i.e. "\").

To enter a reverse solidus character, it is preceded by a reverse solidus
character.

EXAMPLE "red", "yellow", "green", "not confirmed"

. An int

To enter a double quote, it is preceded by a re

c eger constant is represented as:

Digit

In er Constant =teg

Sign ?Engineering Units?

Hexadecimal Constant
where Sign is as follows:

Sign =

+

-

Digit is one of the decimal characters from 0 to 9.

?Engineering Units? is one of the engineering units defined in Annex B.

NOTE The “?” is a special- quence-symbol which indicates the
start and end of a s ial sequence (see ISO/IEC 14977);

Engineering Units.

Hexadecimal Constant is defined as follows:

se
pec

in this case a standalone syntax for

Hexadecimal Symbol Hexadecimal Digit

Hexadecimal Constant =

o adecimal Symbol is the character pair symbol "0x".

o The H or a
letter

EXAMPLE

The Hex

exadecimal Digit is a decimal character from 0 to 9
 from A to F;

23 A, 2056, 0x2056, 0xFFFF

 43

ECSS-E-70-32A
24 April 2006

d. A real constant is represented as:

Real Constant =

Sign . Digit e

Digit

Sign

Digit ?Engineering Units?

3.56e12, 0.1, 23E6, 5.3 [kg/m^3] EXAM

e. A string con

PLES 12

stant is represented as:

" Characters "

String Constant =

EXAMPLE "The double-quote character is : \". "

f. An absolute time constant is represented as:

Absolute Time Constant =

Day Of Month Hour Minute Fraction Of SecondSecondYear - - :Month T

Z

: .

DayYear - Hour Minute Fraction Of SecondSecond:T : .

Z

1. Month/day of month calendar variation

-Day Of MonthTHour:Minute:Second.Fraction Of
econd(Z)

onth = two digits with a value in the range 01-12;
h a value in the range 01-28,

-29, 01-30, or 01-31;
" = calendar-time separator;

ven
e

period is used;
"Z" = optional terminator.

EXAMPLE 2001-08-18T21:07:43.137468Z

2. Year/day of year calendar variation

Year-DayTHour:Minute:Second.Fraction Of Second(Z)
where:

Year-Month
S
where:

Year = four digits with a value in the range 0001-9999;
M
Day Of Month = two digits wit
01
"T
Hour = two digits with a value in the range 00-23;
Minute = two digits with a value in the range 00-59;
Second = two digits with a value in the range 00-59 (00-58
or 00-60 during leap seconds);
Fraction Of Second = one to n digits. To obtain a gi
precision, the appropriate number of digits to the right of th

44

ECSS-E-70-32A
24 April 2006

Year, "T", Hour, Minute, Secon
as defined in 1. above;

d, Fraction Of Second, "Z": are

Day = three digits wi n the range 001-365
or 0

EXAMPLE 200

di ecified
digits.

g.

th a value i
01-366.
1-033T13:21:32.226

NOTE 1 Lea
number of

ng zeros are included to make up the sp

NOTE 2 Elements shown in brackets are optional.
A relative time (duration) constant is represented as:

Relative Time Constant =

Days Hours Minutes Fraction Of Secondmin

Seconds

.hd

s

Days Hour Minute

Fraction Of Second

Second::

.

:

Sign

Sign

 where:

Days, Hou d Seconds are unsigned integers;
Hour, Mi fined in f.
above.

EXAMPLES 30 h

A.3.7 Types
A type defines the set ssions possessing that
type may assume.

The type of a variable de le, in
an assignment, it is ma ory that the left and right-hand sides of the
assignment are type-c p

The procedure language s

rs, Minutes an
nute, Second and Fraction Of Second are as de

 10 min, 200 s, - 0:00:10:00

 of values that variables and expre

termines its use in various contexts. For examp
ndat

om atible.

upports the predefined types shown in Table A-1.

 45

ECSS-E-70-32A
24 April 2006

Table A-1: Predefined types

Data type Definition

Boolean Defines the set of truth values denoted by the predefined
constants true and false

Enumerated set
reference

Defines a reference to a set of enumerated valuesa

Signed integer Defines an implementation subset of signed integer values

Unsigned integer Defines an implementation subset of unsigned integer
values

Real Defines an implementation subset of real values

String Defines a set of values that are character strings

Absolute time Defines a set of values that represent an absolute date such
as 2003-02-15

Relative time Defines a set of values that represent an interval of time
such as 2 s

Property value set Defines an enumerated set comprising all values of a
property of a system element, reporting data, activity or
event
Example 1 “application process identifier of system
element” returns the enumerated set consisting of all
defined APIDs.
Example 2: “name of parameter of power subsystem”
returns the enumerated set consisting of all names of
parameters belonging to the power subsystem.

Property data type Defines a data type inherited from a property of a given
system element, reporting data, activity or event
This can result in one of the following:
• A simple value type, e.g. “value of Voltage of

Battery1” returns the type “real with engineering units
V”;

• A list of value type, e.g. “value of status of my network
printer” returns the enumerated set {"ready", "paused",
"printing", "unable to connect"}.

a Enumerated sets can be defined on a system-wide basis or locally within a
procedure and are referenced by name, e.g. the enumerated set named Event
Type comprises the set of values {"Normal", "Low Severity", "Medium
Severity", "High Severity"}.

A.3.8 System interfaces
The SSM objects relevant to the procedure language are introduced in
subclause 4.2.2. Each type and subtype of SSM object has a number of
properties and operations that are accessible using services provided by the
EMCS.

 “Initiate” and “Initiate and Confirm” are two important EMCS services for
activities which can be invoked using dedicated statements of the procedure
language. In addition, the language provides two generic mechanisms to invoke
other services of the EMCS:

46

ECSS-E-70-32A
24 April 2006

• T ect Property Request whic
object (e.g. get the initiation ti

he Obj h is used to return a property of an
me of an activity, get the status of a

printer). The minimum sets of “standard” property requests for activities,
port e specified in A.3.9.36.

Object which is used to perform an
ion on an object (e.g. clear printer queue, open/close operating

stem file The minimum sets of “standard” operation requests for
activities and reporting data are specified in A.3.9.24.

“Standard” means that these services are supported by all EMCS
tions. of the procedure language may also

support non-standar

re ing data and events ar

• The
operat

 Operation Request Statement

sy).

implementa A given implementation
d services.

 47

ECSS-E-70-32A
24 April 2006

A.3.9 Language constructs

A.3.9.1 Proc

g efines the elements of a procedure.

Syntax

edure Definition

Meanin D

Procedure Definition =

Preconditions Body

Procedure Main Body

Watchdog Body Confirmation Body

Procedure Declaration Body

procedure

end procedure

ion Body

e.
 Body

he procedure.

Pro
 the statements that achieve the goal of the procedure.

execution status is
"executing".

gency situations defined for the procedure.
e watchdog body is handling a contingency situation, the

n status is "executing".
Conf

Defi
 its execution

rmation".

Definition Procedure Declarat
Declares the local events that can be raised within the procedur

Preconditions
Defines the preconditions of t
Whilst the procedure is waiting for the initial conditions to be
satisfied, its execution status is "preconditions".
cedure Main Body
Contains
Whilst the main body is executing, the

Watchdog Body
Handles contin
Whilst th
executio
irmation Body

nes the conditions under which the procedure is confirmed.
rocedure is waiting to be confirmed,Whilst the p

status is "confi

48

ECSS-E-70-32A
24 April 2006

A.3.9.2 Procedure Declaration Body

Syntax

Meaning Declares the local events that can be raised within a procedure.

Procedure Declaration Body =

declare Event Declaration end declare

,

Event Declaration =

event

Description

Event Name

Event Name =

Identifier

rDesc iption =

described by String Constant

Definition Eve

Declares a local event that can be raised within the procedure.

cal event.

nt Declaration

Event Name
The name of the local event.
Local events that are declared at procedure level are associated with
the procedure and are only used by the procedure watchdog body
(e.g. they are not used within steps of the procedure main body).

Description
The (optional) description of the lo

Example

Procedure Name Slew Manoeuvre

PLUTO script procedure
 declare

event Manoeuvre Damping Failed
described by "Cross-track error not reducing to less than 5

in within 100 s of manoeuvre completion" arcm
 end declare
 <……>
end procedure

 49

ECSS-E-70-32A
24 April 2006

A.3.9.3 Preconditions Body

itions under which the execution of a procedure (or
tep) can proceed once it is initiated.

Syntax

Meaning Defines the cond
s

preconditions
if

Wait Statement

Expression
end preconditions

Preconditions Body =
then

Expressi

Wa

te time when the execution of the procedure (or step)

or an event to occur before execution can

Definition

Th
con s.
If t
tim
ski tus is

orted".
Th
con

Example

Procedure Name Sw

on
Yields a result which, if true, allows the associated procedure (or
step) to be executed.
it Statement
Defines one of the following:
• the absolu

can start;
• an interval of time after which execution can start;
• a condition to be true

start.

e "then" loop is used to specify a combination of different
dition
he expression is not satisfied following evaluation or the optional
eout in the wait condition is reached, then the procedure (or step) is
pped completely and the procedure (or step) confirmation sta

set to "ab
e preconditions body of a watchdog step is always present and
sists of a single “wait statement”.

itch on Gyro5 in Fine Mode

PLUTO script

conditions
 main
 initiate and confirm Switch on Gyro Converter;
 initiate and confirm Switch on Gyro5;
 initiate and confirm Gyro5 Fine Mode;
 end main
end procedure

procedure
 preconditions
 wait until Gyro Temperature > 60 degC
 end pre

50

ECSS-E-70-32A
24 April 2006

A.3.9.4 Wait Statement

Meaning Defines a delay.

Syntax

wait until

wait for

Expression

Event Reference

Wait Statement =

Save Context Timeout

event

Event Reference =

Object Reference

Definition

lt (wait until) or a relative

tatement to
ensure that the snapshot of SSM reporting data pertains to the
instant at which the condition is satisfied or the event occurs.

Timeout
Defines a relative time to be applied as a timeout for the wait
statement.
The timeout is not available where the wait condition is either “for a
relative time” or “until an absolute time”.

 When the wait statement appears in a preconditions body, the raise
event option (following a timeout) is not available, since the
corresponding watchdog body has not yet been started. Therefore, the
procedure (or step) is aborted if the specified timeout interval is
exceeded.

Expression
Yields an absolute time or a Boolean resu
time (wait for).
An absolute time causes the calling entity (procedure or step) to be
delayed until the given time.
A Boolean condition causes the calling entity to be delayed until the
condition is satisfied.
A relative time delays the calling entity by the given time interval.

Event Reference
The reference to a local event or a system-level event associated
with a system element, activity or reporting data (an object
reference of type event).

Save Context
Creates a local copy (a snapshot) of one or more SSM reporting
data.
This language construct is included within a wait s

 51

ECSS-E-70-32A
24 April 2006

A.3.9.5 Save Context

porting data for local use. Meaning Creates a copy of re

Syntax

Save Context =

save context re Reporting Data Referencefer to Reporting Data Name

to

by

,

Object Reference

R porting Date a Reference =

Reporting Data Name =

Identifier

Definition Reporting Data Reference

The reporting data reference (an object reference of type reporting
data) from which the local reporting data is copied.

Reporting Data Name
The name of the local reporting data.

 Reporting data has a life cycle that is independent of the procedure
execution environment. Reporting data can therefore be updated during
the execution of a set of procedure statements.
The purpose of this language construct is to create a snapshot copy of
one or more reporting data. The construct is only intended for use
where more than one property of a given reporting data is used at
different times within a procedure and the contemporaneity of those
properties is important.
Local reporting data is associated with the procedure or step in which it
is defined. Prior to creation (i.e. saving the context), its validity status
is "not available". During creation, local reporting data acquires the
properties of the reporting data from which it is copied.
The life cycle and “visibility” of local reporting data is limited to the
current instance of the procedure within which it is created, i.e. it is not
persistent between successive executions of the procedure.

52

ECSS-E-70-32A
24 April 2006

Exampl e

Procedure Name Eclipse Operations

PLUTO script
main

 <……>
 wait for event Eclipse Entry

 save context refer
to Temperature of Battery1 by Temp att1,

 Voltage of Battery1 by VoltBatt1;

end

procedure

B
 to

 <……>
end main
 procedure

 53

ECSS-E-70-32A
24 April 2006

A.3.9.6 Timeout

Meaning Defines a timeout interval for the current statement.

Syntax

Timeout =

timeout Expression

Raise Event

pression
e time from the statement start of execution time and

eout interval after which, if the statement has not
d execution, either:

• tes the statement and is then
 a corresponding watchdog step, or

edure (or step) is aborted.

 event.

Definition Ex
Yields a relativ
gives the tim
complete

an event is raised which termina
handled by

• the parent proc
Raise Event

Raises a local

54

ECSS-E-70-32A
24 April 2006

A.3.9.7 Raise Event

Meaning Raises a local event.

Syntax

Raise Event =

raise event Event Name

Definition Event Name

The name of the local event.

Example

Procedure Name Slew Manoeuvre

PLUTO script procedure
 declare

re Damping Failed,

e

 amping Failure

event Manoeuv
 <……>

 end declar
main

 <……>
 wait for Crosstrack Error < 5 arcmin
 timeout Manoeuvre End Time + 100 s
 raise event Manoeuvre Damping Failed;

 <……>
end main
watchdog
 initiate and confirm step Recover D

 preconditions
 wait for event Manoeuvre Damping Failed
 end preconditions
 <……>
 end step;
 end watchdog
end procedure

 55

ECSS-E-70-32A
24 April 2006

A.

Meaning Refers to an object by means of a reference path.

Syntax

3.9.8 Object Reference

Object Name

Object Reference of

Object Reference =

Object Type

Object Type =

variable

predefined value set

activity statement

step

argument

system element

reporting data

parameter

record

array

activity

event

Object Name =

Identifier

Definition Object Reference
The reference path for the object.

Object Type
The explicit type of the object.

Object Name
The name of the object, which may be an activity, an object within
an activity (e.g. a step, a variable, a procedure argument), a given
initiation instance of an activity (i.e. an activity statement),
reporting data (i.e. a parameter, a compound parameter or a
component of a compound parameter), an event or a system
element.
A component of a compound parameter can be a simple component
(i.e. a parameter), an array or a record.

 Where the object type is not given explicitly and the result of the object
reference is not unique within the overall SSM, the reference is
resolved according to the following precedence rules (1 = highest
precedence, 14 = lowest precedence):
1. variable
2. local reporting data

56

ECSS-E-70-32A
24 April 2006

3. local event
4. activity statement
5. step
6. argument
7 system element
8. reporting data
9. parameter
10. record
11. array
12. activity
13. predefined value set
14. system event

Example

PLUTO script Temperature of Catalyst Bed of Thruster X of Thruster Main Branch

.

 57

ECSS-E-70-32A
24 April 2006

A. Procedure Main Body

statements that achieve the goal of the procedure.

Syntax

3.9.9

Meaning Contains the

Procedure Main Body =

main Procedure Statement ; end main

Procedure Statement ;

Initiate In Parallel Statement

Initiate And Confirm Step Statement

Initiate Activity Statement

Procedure Statement =

Inform User Statement

Log Statement

Initiate And Confirm Activity Statement

Set Procedure Context Statement

Definition Procedure Statement
A statement allowed within a procedure main body, which is one of
the following:
a. Set Procedure Context Statement

Defines the context in which a set of procedure statements
executes (overriding the current default context).

b. Initiate In Parallel Statement
Provides the capability to execute steps or activities (or both)
concurrently. Each step or activity within the parallel statement
has an execution path of its own. The parallel step finishes
when one step or activity completes execution or they all
complete execution.

c. Initiate And Confirm Step Statement
Initiates and confirms the execution of a step.

d. Initiate And Confirm Activity Statement
Initiates and confirms the execution of an activity.

e. Initiate Activity Statement
Initiates the execution of an activity. The initiated activity
proceeds in parallel with the initiating procedure.

f. Inform User Statement
Provides the capability to output a message for
acknowledgement by the user.

58

ECSS-E-70-32A
24 April 2006

g. Log Statement

Provides the capability to log a message to the procedure

Procedure Name Switch on Gyro5 in Fine Mode

execution log.

Example

PLUTO script

 e

m step Power on Gyro5

 initiate and confirm Switch on Gyro5;
 initiate and confirm Gyro5 Fine Mode;

e

procedure
 initiate and confirm step Switch on Gyro5 Converter
 main
 initiate and confirm Switch on Gyro Converter;

end main
nd step;

 initiate and confir
main

 end main
 end step;
end procedur

 59

ECSS-E-70-32A
24 April 2006

A.3.9.10 Set Procedure Context Statement

Meaning Defines the context in which a set of procedure statements executes.

Syntax

Set Procedure Context Statement =

in the context of Procedure Statement ; end contextObject Reference do

Definition This statement explicitly defines the context in which a set of procedure
statements executes. This overrides the current default context which is
the one in which the procedure is currently executing.
Object Reference

This is either a system element or reporting data (either a
compound parameter or a record-type component of a compound
parameter).

Procedure Statement
A statement allowed within a procedure main body.

Procedure Name Tes

Example

t telescopes

PLUTO script
 <

 i d display image;
 i
 end
 h 2 do
 i
 i confirm Take image;

ff;
end context;

procedure
……>

 in the context of Telescope1 do
 initiate and confirm Power on;
 initiate and confirm Take image;

 nitiate and confirm Process an
nitiate and confirm Power off;
 context;

in t e context of Telescope
nitiate and confirm Power on;
nitiate and

 initiate and confirm Process and display image;
 initiate and confirm Power o

 <……>
end procedure

60

ECSS-E-70-32A
24 April 2006

A.3.9.11 Initia

Meaning s or activities (or both) that are executed in parallel.

Syntax

te In Parallel Statement

Defines a set of step

in parallel
until one completes

until all complete

Initiate And Confirm Step Statement

; end parallel

;

Initiate In Parallel Statement =

Initiate And Confirm Activity Statement

Initiate And Confirm Step Statement

Initiate And Confirm Activity Statement

Definition Initiate And Confirm Step Statement

Initiates and confirms the execution of a step.
Initiate And Confirm Activity Statement

Initiates and confirms the execution of an activity.

 When the parallel statement is executed, each of its constituent steps or
activities is initiated in parallel. The termination of the execution
depends on the selected termination condition, as defined below:

• "until all complete" (default)
Terminates execution if all of the constituent steps or activities
are ended.

• "until one completes"
Terminates execution if any of its constituent steps or activities
is ended.

 If neither of these conditions is explicitly specified, the default
behaviour is "until all complete".

Example

Procedure Name Switch on Gyro3 and Gyro5 in Fine Mode

PLUTO script procedure
 preconditions
 wait until Gyro3 and Gyro5 Converter = "ON"
 end preconditions
 main
 in parallel until all complete
 initiate and confirm step Switch on Gyro3 in Fine Mode
 preconditions
 wait until Temperature of Gyro3 > 60 degC
 end preconditions
 main
 initiate and confirm Switch on Gyro3;

 61

ECSS-E-70-32A
24 April 2006

 initiate and confirm G
 end main

yro3 Fine Mode;

 initiate and confirm step Switch on Gyro5 in Fine Mode
 preconditions
 wait until Temperature of Gyro5 > 60 degC
 end preconditions
 main

initiate and confirm Switch on Gyro5;
 confirm Gyro5 Fine Mode;

;

 end step;

 initiate and
 end main

 end step
 end parallel;
 end main
end procedure

62

ECSS-E-70-32A
24 April 2006

A.3.9.12 Initiate And Confirm Step Statement

aits for confirmation of its execution. Meaning Initiates a designated step and w

Syntax

end step

Continuation Test

Step Name Stepinitiate and confirm step Definition

Initiate and Confirm Step Statement =

Step Name =

Identifier

Definition

Con

lt actions exist in
ontinuation test is specified (see A.3.9.33 on

 The r
step

Step Name
The name of the step.
The identifier is unique within the procedure.

p Definition Ste
Defines the step.
tinuation Test
Defines how the execution of the initiating procedure (or step)

e step has been executed. Defauproceeds after th
the case that no c
Continuation Test for more details on the default actions).

 initiated step finishes completely before the initiating procedure (o
) may proceed.

 63

ECSS-E-70-32A
24 April 2006

A.3.9.13 Step Definition

Meaning Defines the elements of a step.
 Syntax

Preconditions Body

Step Main Body

Watchdog Body Confirmation Body

Step Definition =

Step Declaration Body

Definition Step Declaration Body
Declares the local objects of the step.

Preconditions Body
Defines the preconditions f the step.
Whilst the step is waiting for the initial conditions to be satisfied,
its execution status is "preconditions".

Step Main Body
Contains the statements that ac eve the sub-goal of the step.
Whilst the main body is executing, the execution status of the step
is "executing".

Watchdog Body
Handles contingency situations defined for the step.
Whilst the watchdog body is handling a contingency situation, the
execution status of the step is "executing".

Confirmation Body
Defines the conditions under which the step is confirmed.
Whilst t e step is waiting to be confirmed, its execution status is
"confirmation".

o

hi

h

64

ECSS-E-70-32A
24 April 2006

A.3.9.14 Step D

Meaning ables used by a step and the local events that can
be r

Syntax

eclaration Body

Declares the local vari
aised within it.

Step Declaration Body =

declare

Event Declaration

Variable Declaration end declare

,

Enumerated Set Declaration

Enumerated Set Declaration =

enumerated Enumerated Constant(Set Name

,
Description

)

Set Name =

Identifier

Variable Declaration =

Predefined TypeVariable Name

Descriptionwith units ?Engineering Units?

variable of type

Variable Name =

Identifier

Predefined Type =

Boolean

signed integer

real

string

absolute time

relative time

Enumerated Set Reference

Property Value Set

Property Data Type

unsigned integer

Set Name

Enumerated Set Reference =

Object Referenceof

 65

ECSS-E-70-32A
24 April 2006

Property Value Set =

Object Property of

system element

reporting data

activity

eventsystem element reference

reporting data reference

activity reference

event reference

current

parameter reference

parameter

Object Property
of

Constant

Object Reference

Object Propertyof Constant

Object Reference

Property Data Type =

Object Property of

system element

reporting data

activity

event

current parameter

Object Reference

same as

Standard Object Property Name

Object Property =

Nonstandard Object Property Name

Object Propertyof

Standard Object Property Name =

Identifier

Nonstandard Object Property Name =

Identifier

Definition Enumer
Dec ithin the
step

Set Nam
The

Descript
The

Variable
D e step.
A lo and value. It is
asso and its scope is
li ior to its first
assi

ated Set Declaration
lares a set of enumerated values that is used locally w
.
e
name of the enumerated set.
ion

 (optional) description of the enumerated set.
 Declaration

eclares a local variable that is used within th
cal variable has a validity status, sampling time
ciated with the step in which it is declared

mited to the step and its lower level steps. Pr
gnment, its validity status is "not available".

66

ECSS-E-70-32A
24 April 2006

Vari e

The
Predefin

The
Enumer

The (and the SSM object to which
i

Property
An enum prising all values of a property of a system
element, reporting data, activity or event.

Property Data Type
A data type of a property of a given system element, reporting data,
activity or event.

Object Property
This can be either a standard property of an activity, step, reporting
data, variable, procedure argument or event, or a non-standard
object property.

Standard Object Property Name
The name of the standard object property.

Nonstandard Object Property Name
The name of the non-standard object property.

Description
The (optional) description of the local variable.

Event Declaration
Declares a local event that can be raised within the step.
Local events that are declared at step level are associated with the
step and can only be used by the step watchdog body (e.g. they
cannot be used within the parent procedure or step or lower-level
steps).

abl Name
name of the local variable.
ed Type
data type of the local variable.
ated Set Reference

 enumerated set reference to the
t is attached).

 Value Set
erated set com

 67

ECSS-E-70-32A
24 April 2006

A.3.9.15 Step Main Body

Meaning Contains the statements that achieve the sub-goal of the step.

Syntax

Step Main Body =

main Step Statement ; end main

Step Statement ;

Assignment Statement

Flow Control Statement

Wait Statement

Save Context Statement

Initiate In Parallel Statement

Initiate And Confirm Step Statement

Initiate And Confirm Activity Statement

Initiate Activity Statement

Log Statement

Step Statement =

Inform User Statement

Object Operation Request Statement

Set Step Context Statement

Definition
 the

Statement
of step statements executes

t).
ment

ith another computed

ements controls the execution flow through
e of two types of statement: conditional or

tive statements.
tatement

he delay of a step by a time interval, until a given
absolute time, until the condition is true or until an event
occurs.

e. Object Operation Request Statement
Requests a specified operation to be performed on an SSM
object, namely a system element, activity, reporting data, event

Step Statement
A statement allowed within a step main body, which is one of
following:
a. Set Step Context

Defines the context in which a set
(overriding the current default contex

b. Assignment State
Replaces the current value of a variable w
value.

c. Flow Control Statement
This group of stat
the step. There ar
repeti

d. Wait S
Causes t

68

ECSS-E-70-32A
24 April 2006

or step.

f. Save Context Statement
 reporting data for local use

within the step to ensure that all properties used are
simultaneously sampled.

g. Initiate In Parallel Statement
Provides the capability to execute steps or activities
concurrently. Each step or activity within the parallel statement
has an execution path of its own. The parallel step finishes
when one step or activity completes execution or they all
complete execution.

onfirm Step Statement

ent

ides the capability to output a message for

Provides the capability to log a message to the procedure

Makes a copy of one or more SSM

h. Initiate And C
Initiates and confirms the execution of a step.

i. Initiate And Confirm Activity Statement
Initiates and confirms the execution of an activity.

j. Initiate Activity Statem
Initiates the execution of an activity. The initiated activity
proceeds in parallel with the initiating step.

k. Inform User Statement
Prov
acknowledgement by the user.

l. Log Statement

execution log.

 69

ECSS-E-70-32A
24 April 2006

A.3.9.16 Set Step Context Statement

utes. Meaning Defines the context in which a set of step statements exec

Syntax

Set Step Context Statement =

in the context of Step Statement ; end contextObject Reference do

Definition plicitly defines the context in which a set of step
sta
the h the step is currently executing.

Example

Procedure Name Pay

This statement ex
tements executes. This overrides the current default context which is
 one in whic

Object Reference
This is either a system element or reporting data (either a
compound parameter or a record-type component of a compound
parameter).

Step Statement
A statement allowed within a step main body.

load switch on

PLUTO script pro
 <……>
 initiate and confirm step Switch on Telescopes
 in the context of Telescope1 do
 initiate and confirm Power on;
 wait for 5 s;
 initiate and confirm Switch on HT;
 wait for 5 s;
 initiate and confirm Set HT with Voltage := 2000 V
 end with;
 end context;
 in the context of Telescope2 do
 initiate and confirm Power on;
 wait for 5 s;
 initiate and confirm Switch on HT;
 wait for 5 s;
 initiate and confirm Set HT with Voltage := 2000 V
 end with;
 end context;
 end step;
 <……>
end procedure

cedure

70

ECSS-E-70-32A
24 April 2006

A.3.9.17 Assignment Statement

Meaning Assigns a value to a local variable.

Syntax

Variable Reference := Expression

Assignment Statement =

Object Reference

Variable Reference =

riable Reference

Definition Va
e to the local variable that receives the value of the
n object reference of type variable).

eclared in the list of
local variables of the step.

f a variable is limited to the step and its lower-level
variable name is reused within a lower-level step,

le of the parent step is no longer accessible.

 language elements that is
ariable.

Example

PLUTO script

The referenc
expression (a
A step only uses a variable which has been d

The visibility o
steps. Where a
the variab

Expression
A combination of mathematical and
processed at run-time to compute the value of the v

Voltage := Value of T001 * 10

 71

ECSS-E-70-32A
24 April 2006

A.3.9.18 Flow Control Statement

Meaning Conditionally or iteratively executes a set of statements.

Syntax

If Statement

Case Statement

Repeat Statement

Flow Control Statement =

While Statement

For Statement

Definition If Statement

ment

Re

ondition is evaluated
.

Fo
tatement, where the number of iterations is fixed (but

ime).

Executes one list of statements or another depending on the result of
a logical condition.

Case State
Executes one of several lists of statements depending on a logical
condition.

peat Statement
A conditional iteration statement, where the condition is evaluated
at the end.

While Statement
A conditional iteration statement, where the c
at the beginning

r Statement
An iteration s
evaluated at run-t

72

ECSS-E-70-32A
24 April 2006

A.3.9.19 If Sta m

Meaning ng on

Syntax

te ent

Executes one statement (or set of statements) or another dependi
e s gth re ult of a lo ical condition.

if Expression then Step Statement

else

end if;

Step Statement ;

If Statement =

Definition Expression

The expression returns a logical result which, if true, results in the
execution of the first statement (or set of statements) and, if false,
results in the execution of the second statement (or set of
statements).

Step Statement
A statement allowed within a step main body.

Example

Procedure Name Slew Manoeuvre

PLUTO script procedure
 <……>

 if Target Offset < 0.05 deg then
 initiate and confirm Go to Fine Pointing;

else
 initiate and confirm Centre Target;

 initiate and confirm Go to Fine Pointing;
 end if;
 <……>
end procedure

 73

ECSS-E-70-32A
24 April 2006

A.3.9.20 Case Statement

Meaning Multiple conditional branching depending on the value of an
expression.

Syntax

in case Expression is ;

otherwise :

end caseCase Tag : Step Statement

Step Statement ;

Case Statement =
or

 is

Case Tag =

Comparative Expression

Comparative ExpressionBoolean Operator

finition

comparative expression which, when combined with the "in
case" expression, determines whether the corresponding step
statement (or set of statements) is executed.
The type of the case tags all correspond to the type of the "in case"
expression.

Step Statement
A statement allowed within a step main body.

Boolean Operator
One of the following operators: "AND", "OR" or "XOR" (see also
Expression).

Relational Operator
One of the following operators: "=", "!=", "<", ">", "<=" or ">="
(see also Expression).

 The case statement works in the following way:
1. If the value of the "in case" expression corresponds to the value of

one of the case tags, then the corresponding statement (or set of
statements) is executed.

2. If the value of the "in case" expression does not correspond to any
of the values of the case tags, and if there is an "otherwise" case
tag, then the corresponding statement (or set of statements), and
only that one, is executed.

3. Otherwise, no statement (or set of statements) is executed.
If two or more case tags have the same value, only the first one is
processed.
If the "in case" expression corresponds to the value of two or more case
tags, only the first one is processed.

Example

De Expression
A combination of mathematical and language elements which
returns a value.

Case Tag
A

74

ECSS-E-70-32A
24 April 2006

PLUTO sc t in case Temperip rature of Biolab Experiment
 is < 5 degC : Switch On Heater1; Switch On Heater2;

otherwise:
 inform user "The temperature of Biolab is \"Nominal\",
 no action taken";
end case

 or is < 10 degC : Switch On Heater1;

 75

ECSS-E-70-32A
24 April 2006

A.3.9.21 Repeat Statement

trol
lly terminated by a timeout.

Meaning Conditional iteration of a statement (or set of statements) with con
at the end, optiona

Syntax

repeat Step Statement until Expression;

Repeat Statement =

Timeout

Definition Ste

Tim
ptional) timeout interval after which, if the preceding

is aborted.

 Th tatement in that the
condition is evaluated after each execution of the statement (or set of

p Statement
A statement allowed within a step main body.

Expression
Yields a logical result which, when true, terminates the iteration.
eout
Defines an (o
expression is not true, either:
• an event is raised which terminates the statement and is then

handled by a corresponding watchdog step,
or
• the parent step

e repeat statement differs from the while s

statements).
As a result, the statement (or set of statements) is executed at least
once.

76

ECSS-E-70-32A
24 April 2006

A.3.9.22 While Statement

et of statements) with control
 a timeout.

Meaning Conditional iteration of a statement (or s
at the beginning, optionally terminated by

Syntax

while Expression do Step Statement ; end while

While St tement =a

Timeout

Definition
, terminates the iteration.

nal m rval after which, if the preceding

 raised which terminates the statement and is then

orted.

allowed within a step main body.

 ent differs from the repeat statement in that the
uated before each execution of the statement (or set of

statements). As a result, the statement (or set of statements) may never
be executed at all.
If the expression is true and there is more than one step statement in the
loop, then the complete set of statements is executed, i.e. it is not
interrupted if the timeout occurs during its execution; the timeout is
invoked at the end.

Expression
Yields a logical result which, if false

Timeout
Defines an (optio) ti eout inte
expression is still true, either:
• an event is

handled by a corresponding watchdog step,
or
• the parent step is ab

Step Statement
A statement

The while statem
condition is eval

 77

ECSS-E-70-32A
24 April 2006

A.3.9.23 For Statement

Meaning Iterates the execution of a statement (or set of statements) a fixed
umber of times. n

 Syntax

for Variable Reference := to Expression

by

Expression

Expression

do Step Statement end for;

For Statement =

Definition Variable Reference
The refer to a variable that is used as a counter (object
referenc f type variable).

":=" Expression
An integer expression, which is computed at run-time to determine
the first value that is assigned to the counter.

"to" Expression
ression, which is computed at run-time to determine
f the counter before leaving the statement.

"by
 at run-time to determine

d or decreased, after each
 of statements.

efault behaviour is
”

Ste
ent allowed within a step main body.

 Th the list of

ence
e o

An integer exp
the last value o
" Expression
An integer expression, which is computed
by what value the counter is increase
iteration of the execution of the list
When the "by" expression is not present, the d
“increase by 1
p Statement
A statem

e value of the counter may be referred to within
statements, but not changed. As a result, the counter is not used as the
left-hand side of an assignment statement.
All the expressions are only evaluated once at the beginning of the
"for" loop.

78

ECSS-E-70-32A
24 April 2006

Example

ure name Ena Thermal ControProced ble Payload l Lines

Arguments nes: uNumber of Heater Li nsigned integer

PLUTO scr

oads
ditions

nd confirm
 declare

teger

 for Counter := of Heater Lines

 initiate and hermal Control Line
 with nter end with;
 end for;
 end main
 end step;

ipt procedure
 preconditions
 wait until All Payl
 end precon

 = "OFF"

 main
 initiate a step Enabling

 unsigned in
 end declare
 main

 Counter

 1 to Number
 do
 confirm Enable T

Line Number := Cou

 end main
end procedure

 79

ECSS-E-70-32A
24 April 2006

A.3.9.24 Object Operation Request Statement

Meaning Invokes an operation of an object.

Syntax

Object Operation Request Statement =

Object Operation

of

Object Reference with

Argument Name :=

Expression

,

end with

Object Property

Object Operation =

Nonstandard Object Operation Name

set

Nonstandard Object Operation Name =

Identifier

Definition Object Operation
The object operation that is requested, which can either be an
operation to set a property of an object or any other operation
defined for an object within the EMCS.

Nonstandard Object Operation Name
The name of the non-standard object operation.

Argument Name
The name of the argument.

Expression
Yields a result that defines the value of the argument.

 The standard operations that can be requested for an activity or step are
listed in Table A-2 and for reporting data, variable or procedure
argument in Table A-3 (there are no standard operations for an event).
The availability of individual operations depends on the type of the
object.

Table A-2: Activity and step operation requests

Operation request Meaning Argument Result

"set confirmation status" Sets the confirmation status of
the activity or step

"not available"
or "confirmed"
or "not confirmed"
or "aborted"

None

80

ECSS-E-70-32A
24 April 2006

Table A-3: Re d ration requests

Operation r

porting ata, variable and argument ope

equest Meaning Argument Result

"set validity stat Sets th validity status of a
parameter, a variable or a
procedure argument

"not available"
or "valid"
or "invalid"

None us" e

"set value" Sets the engineering value of a
parameter, a variable or a
procedure argument

any pre-defined type None

"set monitoring status" Sets the overall monitoring
status

"not available"
or "nominal"

None
of a parameter

or "failed"

"set status consistency
check status"

Sets th
check stat

"not available" None e status consistency
us of a parameter or "nominal"

or "failed"

"set limit check status" Sets the li
parameter

or "danger low"

mit check status of a "not available" None
or "danger high"
or "warning high"
or "within limits"
or "warning low"

"set delta check status" Sets the d
parameter

elta check status of a "not available"
or "nominal"

None

or "failed"

"set expected check status" Sets th
status of a parameter

t available"
or "nominal"
or "failed"

None e expected state check "no

NOTE The procedure language includes operations to set the value, or another property, of reporting data,
variables and procedure arguments. These operations are normally performed by other functions of
the space system (e.g. the spacecraft, the EMCS health monitoring function) and can only be
invoked by the procedure language in configurations where these functions are not present.

Example

PLUTO script set value of T002 with 1.0 end with;

 81

ECSS-E-70-32A
24 April 2006

A.3.9.25 Save Context Statement

Meaning Creates a copy of one or more reporting data for local use.

Syntax

Save Context Statement =

Save Context

Definition Save Context

he local reporting data copy.

Performs t

82

ECSS-E-70-32A
24 April 2006

A.3.9.26 Initiate And Confirm Activity Statement

ted activity and waits for confirmation of completion. Meaning Initiates a designa

Syntax

initiate and confirm Activity Call
Continuation Testrefer by Activity Statement

Initiate and Confirm Activity Statement =

Activity Statement =

Identifier

Definition Activity Call
The call to the activity that is initiated.

Activity Statement
The initiation instance of the activity. The “visibility” of this
activity statement is limited to the calling entity. If the initiating
statement occurs within a loop e last instance of the
initiating statement that is referred to.
The activity statement is a dynamic object of the EMCS of type
activity. It is attached to the procedure or step in which it is defined.
It inherits all operations and properties defined for activities (see
A.3.9.24 and A.3.9.36) and can be included in an object reference
(see A.3.9.8).

Continuatio
Specifies how the execution of the calling entity proceeds after the
associated activity has been executed.

 The initiated activity finishes co pletely before the initiating entity
(procedure or step) proceeds.

, it is always th

n Test

m

 83

ECSS-E-70-32A
24 April 2006

A.3.9.27 Initiate Acti

Meaning As

Syntax

vity Statement

ynchronously initiates a designated activity.

initiate Activity Call

refer by Activity Statement

Initiate Activity Statement =

Definition Ac
 activity that is initiated.

Ac
stance of the activity.

 Th parallel with the initiating entity.

tivity Call
The call to the

tivity Statement
The initiation in

e initiated activity proceeds in

84

ECSS-E-70-32A
24 April 2006

A.3.9.28 Activ

Meaning

Syntax

ity Call

Calls an activity.

Activity Call =

Activity Reference

end with

Arguments

with directives Directives

end with

Predefined Value Set Reference

with arguments

with lue set va end with

Activity Reference =

Object Reference

Simple Argument

Record Argument

Arguments =

Array Argument

,

Predefined Value Set Reference =

Object Reference

Directives =

Directive Name :=

Expression

,

Directive Name =

Identifier

Activity Call

Simple Argument =

Reporting Data Reference

Argument Name

System Element Reference

Expression

:=
activity

parameter

system element

reporting data

Event Referenceevent

Record Argument =

Argument Name

record Arguments end record

 85

ECSS-E-70-32A
24 April 2006

Simple Argument

Array Argument =

Record Argument

end arrayarray

,

,

Argument Name

Argument Name =

Identifier

Object Reference

System Element Reference =

Definition
The reference to the activity (an object reference of type activity).

Arguments
The arguments of the activity. The type of the argument can be a
simple argument (single value or object), an array (multiple
occurrences) or a record. A record is a recursive construct of
arguments of type simple or array (see also ECSS-E-70-41).

Predefined Value Set Reference
The reference to a predefined set of argument values for the
activity, i.e. predefined in the operations database (an object
reference of type predefined value set).

Directives
The directives used by the EMCS when initiating the activity. For
example, for an activity of type telecommand, this can include:
• the MAP ID to be used;
• whether the telecommand is to be sent in AD or BD mode;
• specification of the telecommand verification packets to be

generated in response to this telecommand.
Whereas arguments are specific to a given activity, directives are
specific to a given type of activity (e.g. telecommands).

Directive Name
The name of the directive.

Simple Argument
An argument of simple type, i.e. a value, a parameter, an activity, a
system element or an event.

Record Argument
An argument of record (of arguments) type.

Array Argument
An argument of array (of arguments) type.

Argument Name
The name of the argument.

Expression
Yields the value of the argument.

Activity Reference

86

ECSS-E-70-32A
24 April 2006

Activity Call

A call to an

 activity.

A reference to a system element (an object reference of type system
element).

Argument names are optional. If argument names are not provided,
wn implicitly from the order in which the argument values

all
pro

Examples Typical examples of the use of the different types of simple argument
for activities of type telecommand are:
• Reporting Data Reference: Parameter# in PUS service 12 requests;
• System Element Reference: APID in PUS service 14 requests;
• Activity Call: Inserting telecommand packets in the on-board

schedule; PUS service 11,4 request.

PLUTO script initiate Insert into Schedule with array
 record Telecommand := activity Switch On Telescope,
 Release Time := 2004-117T12:15:00.0Z,
 Subschedule := 1,
 Interlock Set := 1
 end record
 record Telecommand := activity Switch On Telescope HT,
 Release Time := 2004-117T12:17:00.0Z,
 Subschedule := 1,
 Interlock Set := 2,
 Interlock Assessed := 1
 end record
 record Telecommand := activity Set Telescope HT
 with Level := 1000 V
 end with,
 Release Time := 2004-117T12:19:00.0Z,
 Subschedule := 1,
 Interlock Assessed := 2
 end record
 end array
 end with;

System Element Reference

they are kno
are given. Either no argument names are provided or they are

vided.

 87

ECSS-E-70-32A
24 April 2006

A.3.9.29 Inform User Statement

Meaning Outputs a message for acknowledgement by the user.

Syntax

inform user Expression

,

Inform User Statement =

Definition Expression
 the user.

Th
com
ack

Yields the message that is output to
e procedure execution proceeds (up to

pletion) without waiting for the
nowledgement of the user.

88

ECSS-E-70-32A
24 April 2006

A.3.9.30 Log S

Meaning ocedure execution log.

Syntax

tatement

Outputs a message to the pr

log Expression

,

Log Statement =

Definition
age that is output to the procedure execution log.

Expression
Yields the mess

 89

ECSS-E-70-32A
24 April 2006

A.3.9.31 Watchdog Body

Meaning Handles contingency situations defined for a procedure (or step).

Syntax

Watchdog Body =

watchdog Initiate And Confirm Step Statement end watchdog;

watchdog

Definition Ini

contingency

 step is always present and consists of a single “wait

 , the following rules

a.

e

are the same, the procedure (or step)

 is

guration

tiate And Confirm Step Statement
An initiate and confirm statement for the steps that compose the
watchdog body (called watchdog steps). When the watchdog body
is executed, all of its steps are initiated in parallel. The
preconditions body of a watchdog step defines the
situation that it is monitoring. The preconditions body of a
watchdog
statement”.

When more than one watchdog step is triggered
apply:

If any watchdog step returns the action to abort, the parent
procedure (or step) aborts immediately.

b. The main body remains suspended until all watchdog steps ar
completed.
1. If all actions returned

proceeds as indicated.
2. If the actions returned are different, user intervention

requested (i.e. "ask user").

Example

Procedure name Data Bus Reconfi

PLUTO script procedure
 main
 nd confirm step
 initiate an

 initiate a Enter Ground Intervention Mode
;

m step Reconfigure Data Bus
itions

 wait until AOCS Mode = "GIM"
 end preconditions
 initiate and confirm Switch Bus From B To A;
 initiate and confirm Activate Bus Acquisition;
 end step;
 initiate and confirm step Exit Ground Intervention Mode
 initiate and confirm Deactivate GIM;
 end step;
 end main

 d confirm Activate GIM
 end step;
 initiate and confir
 precond

90

ECSS-E-70-32A
24 April 2006

 watchdog
 initiate and confirm step Check Depointing

itch > 10 deg OR Roll > 10 deg OR
 Yaw > 10 deg

 end preconditions
 initiate and confirm Activate Bus Acquisition;
 initiate and confirm Exit Ground Intervention Mode;
 initiate and confirm Activate Coarse Mode;
 end step;
 end watchdog
end procedure

 preconditions
 wait until P

 91

ECSS-E-70-32A
24 April 2006

A.3.9.32 Confirmation Body

Meaning De nditions under which a procedure (or step) is confirmed.

Syntax

fines the co

confirmation
if

Wait Statement

Expression
end confirmation

Confirmation Body =
then

Definition "if" Exp

ean value which, if true, sets the confirmation status
of th

Wait St
ndition which, when true confirms the procedure (or

step
If t r the
(optional) timeout is reached in the wait statement, the procedure
(or step) confirmation status is set to "not confirmed".

 is used to specify a combination of different

s no confirmation body defined for a procedure (or step)

ure-initiated (or step-initiated) steps and activities of
hen the

nfirmed".
• not confirmed", then

ocedure (or step) also

• ctivity raises an event within its continuation
3), the confirmation status of the initiating

r step) is determined by the watchdog step which

Example

Procedure name

ression
Yields a Bool

e procedure (or step) to "confirmed".
atement

A logical co
).
he Boolean condition is not satisfied after evaluation o

 The "then" loop
conditions.
When there i
the confirmation status is evaluated as follows:
• If all proced

the main body of the procedure (or step) are "confirmed", t
confirmation status changes from "not available" to "co

If any of the initiated steps or activities are "
the confirmation status of the initiating pr
becomes "not confirmed".

If an initiated step or a
test (see A.3.9.3
procedure (o
caught the event.

Switch on Gyro5

PLUTO script
 <……>
 confirmation
 wait until Output of Gyro5 < 0.2 deg/h
 end confirmation
end procedure

procedure

92

ECSS-E-70-32A
24 April 2006

A.3.9.33 Continuation Test

 executed.
Meaning Defines how to proceed after the associated “initiate and confirm”

statement is
Syntax

Continuation Test =

Confirmation Status : Continuation Actionin case end case;

Confirmation Status =

not confirmed

confirmed

aborted

Continuation Action =

resume

abort

restart

continue

ask user

terminate

Raise Event

Timeout

max times Expression
Raise Event

Definition The continuation test comprises a set of couplets of confirmation status
and associated action. If a given confirmation status is not specified, a
default action applies (see A.2.5).
Confirmation Status

A final state of the associated “initiate and confirm” statement,
which may be one of the following:
• "confirmed"

The “initiate and confirm” statement is confirmed.
• "not confirmed

The “initiate and confirm” statement is not confirmed.
• "aborted"

The “initiate and confirm” statement is aborted.

"

 93

ECSS-E-70-32A
24 April 2006

Continuation Action

Defines the action to be taken when the associated “initiate and
confirm” statement ends execution. It may be one of the following:

 (or

re (or step).

ts the corresponding “initiate and confirm” statement. To
oid this loop continuing indefinitely, it may be terminated

r"

"
step) continues execution according to the
n body.

"

Example

Procedure name

"resume"
Resumes the execution of the main body of the procedure
step).

"abort"
Aborts the procedu

"restart"
Restar
av
either by a timeout or by a specified maximum number of
restarts ("max times").

"ask use
Asks the user to specify how to proceed.

Raise Event
Raises a local event, which is caught by a watchdog step of the
procedure (or step).

continue"
The procedure (or

e maicontent of th
terminate"

Prematurely ends the execution of the procedure (or step) main
body and starts the execution of the confirmation body.

Switch on Gyro5

PLUTO script procedure

 initiate and confirm step Switch on Gyro5 Converter
main

init irm Switc yro Conv
 i
 rmed: rest

 ab ask user;
end c

 end mai
 end step;
 initiate and confirm Power on G

...>
 end step;
 end main
end procedure

 main

 iate and conf h on G erter

 n case
 not confi art;

orted:
ase;
n

yro5
 <…

94

ECSS-E-70-32A
24 April 2006

A. Exp

Meaning Yields a value by ating a grou constants, ref es and
operators.

Syntax

3.9.34 ression

evalu ping of erenc

Expression =

Relational Expressio

Boolean Operator

n

Expression

Relational Expression =

Term

Com xpressionparative E

Boolean Operator =

AND

OR

XOR

Term =

Product

Addition Operator Term

Product =

Factor

ProductMultiplication Operator

Comparative Expression =

between

in (

Relational Operator Term

Term Term

Term Term

and

,)

within Constant of

?Engineering Units?

%
Term

 95

ECSS-E-70-32A
24 April 2006

Relat
=

!=

>

<

>=

<=

ional Operator =

Factor =

Simple Factor

** Factor

Multiplication Operator =

*

/

tion Operator =

Addi

+

-

Simple Factor =

Constant

Argument Reference

Object Property Request

Expression)(

Variable Reference

ask user Expression

Function

)(

Sign Simple Factor

Negation Boolean Operator Simple Factor

Expression Predefined Typedefault expect

Object Reference

Argument Reference =

Negation Boolean Operator =

NOT

96

ECSS-E-70-32A
24 April 2006

Definition Relational Expression
Constants and references combined with relational operators.

Constants and references combined with comparative operators.
Object Property Request

n a defined property of any object of the SSM (see

Fu

urns a

 It c ntains several
alte
am
app ch cases to define the order in which the possibilities are

ending order of precedence.

Tab

Operator Mean

Comparative Expression

A call to retur
A.3.9.36).
nction
A predefined (i.e. built-in) function of type mathematical, string or

ates on zero or more input arguments and rettime that oper
result.

an readily be seen that the syntax for Simple Factor co
rnatives that can each reduce to an Identifier and hence lead to
biguity about what is intended. The following precedence rule
lies in su

resolved (1 = highest precedence, 4 = lowest precedence):
1. local variable (searched upwards through the step hierarchy).
2. procedure argument.
3. function name.
4. object name.
The syntax of the expression expresses the precedence rules of the
operators.
For each operator, Table A-4 defines the types that can be used for the
operands. The operators are listed in desc

le A-4: Predefined operators

ing Left operand Right operand Result

"-" Unary minus integer, real N/A integer, real

"+" Unary plus integer, real N/A integer, real

"NOT" Boolean NOT Boolean N/A Boolean

integer integer integer

integer real real

real integer real

"**" Exponentiation

real real real

integer integer integer

integer real real

real integer real

real real real

relative time integer, real relative time

"*" Multiplication

integer, real relative time relative time

integer integer real

integer real real

"/" Division

real integer real

 97

ECSS-E-70-32A
24 April 2006

Operator Meaning Left operand Right operand Result

real real real

relative time integer, real relative time

integer integer integer

integer real

"+ Addition

real

real integer real

real real real

absolute time relative time absolute time

relative tim relative time e e relative tim

string any string

"

any string string

Concatenation

integer integer integer

integer real real

real integer real

real real real

absolute time absolute time relative time

absolute time relative time absolute time

"-"

relative tim relative time e

Subtraction

e relative tim

integer, real integer, real Boolean "=", "

str aing string Boolean

relative tim relative time e Boolean

!=",
"<", ">",

="

absolute time absolute time

"<=", ">

Boolean

"AND" Boolean ANDb Boolean Boolean Boolean

"OR" Boolean OR b Boolean Boolean Boolean

"XOR" n Boolean Boolean
Exclusive ORb

Boolea Boolean

a y com ngs are don in a case-insens
ean ei ety, even where t lded

part way pression “A AND B”, where A is "FALSE",
the exp e need to evaluate B, nevertheless the full
expressi important to avoid an expression such as:
“X > 0 A sion by 0” exception occurs where X = 0.

An parisons performed on stri
 expressions are evaluated in th
 through. For example, in the ex

ression is "FALSE" without th
on is evaluated. Therefore, it is
ND Y/X = Z” since a “divi

e so
r entir

itive manner.
he result is yieb Bool

98

ECSS-E-70-32A
24 April 2006

A.3.9.35 Function

Meaning Obt rn value of a pre t-in) function on

Syntax

ains the retu defined (buil operating
a list of arguments.

Function =

Standard Function Name

Nonstandard Function Name

Expression

,

()

Standard Function Name =

Identifier

Nonstandard Function Name =

Identifier

Definition Standard Function Name

ined n which is one of le
l functions including funct the

value of a mathematical or physical constant), Ta (time
functions) or Table C-3 (string functions).

m
n-standard predefined function.

Expression(s)
Yields the set of zero or more values to be used
function.

A standard predef
C-1 (mathematica

functio those given in Tab
ions that return

ble C-2

Nonstandard Function Na
A no

e

as arguments for the

 99

ECSS-E-70-32A
24 April 2006

A.3.9.36 Object Property Request

property of the referenced object.

Meaning Obtains the requested

Syntax

Object Property Request =

Object Property

Object Reference

of

get

with

Argument Name :=

Expression

,

end with

Definition

ther a standard
able, procedure

erty for any object.

object whose property is requested.
ay be an activity, a step, reporting data or an event.
may also be any system element defined within the

 The standard properties that can be requested for an activity or step are

he availability
of individual property requests, or their result types, depends on the
type of the object (for example, a telecommand does not have the same
result types for “execution status” as a procedure).
This language construct also provides access to any other property
defined within the EMCS for these objects, or properties defined for
any system element. The properties that are available depend on the
particular implementation of the EMCS.
To simplify the procedure language, the following conventions apply:
• Reference to a property of an object alone implies the "get"

request (e.g. “if value of Battery1 Voltage > 15.5 V then…”
implies that the value of the parameter Battery1 Voltage is “got”).

• Reference to a parameter alone (i.e. no request and no property)
implies the "get" value request (e.g. “wait until Elevation of Redu
Prime Antenna < 5 deg …” implies that the value of the parameter
Elevation of Redu Prime Antenna is “got”).

Object Property
The property that is requested, which can be ei

g data, variproperty for an activity, step, reportin
 non-standard propargument or event or a

Object Reference
The name of the
The object m

t However, i
SSM.

listed in Table A-5, for reporting data, a variable or a procedure
argument in Table A-6 and for an event in Table A-7. T

100

ECSS-E-70-32A
24 April 2006

Table A-5: Activity and step property requests

 Property request Meaning Argument Result

"get execution status of the None "not initiated"
or "preconditions"

 execution status" Gets the
activity or step

or "routing"*
or "executing"
or "confirmation"
or "completed"

"get initiation t

i.e. the

ime" Gets the time at which the
activity or step was initiated,

None absolute time

time at which the
preconditions check was
initiated

"get start time" Gets the time at which the
execution was started, i.e.
execution started by destination

None absolute time

application process in the case
of a telecommand; starting of
the main body in the case of a
procedure or step

"get termination time" Gets the time at which the
e
case of a

None absolute time
xecution was terminated in the

procedure or step

"get confirmation status the n status of
activi

None "not available"
or "confirmed"
or "not confirmed"
or "aborted"

" Gets confirmatio
the ty or step

"get restart number" the
ity o

arted

unsigned integer Gets number of times the None
activ
rest

r step has been

"get completion time" the
ity o

i.e. confir
the case o
end-to-end verification

None absolute time Gets time at which the
activ r step was completed,

mation completed in
f a procedure or step;

completed in the case of a
telecommand

NOTE 1 When requesting prop
NOTE 2 For an activity, if a p

provided in the initiate state
NOTE 3 Whe initiate state plies

to the
NOTE 4 When an initiate state

counter is available gi
NOTE 5 Execution statuses ind

erties of an activity or a step, the last initiate statement is implied by default.
revious initiate statement is referred to, an “activity statement” is explicitly

ment and used in the request.
n an ment (activity or step) occurs within a loop, the request automatically ap

latest iteration within the loop, i.e. previous iterations are not available.
ment (activity or step) is restarted as a result of a continuation action, a

ving the number of restarts.
icated with a “*” are only applicable for activities of type telecommand.

 101

ECSS-E-70-32A
24 April 2006

Table A-6: R t property requests

Property request Result

eporting data, variable and argumen

Meaning Argument

"get validity sta "not available"
or "valid"

tus" Gets the validity status of a
parameter, a variable or a

None

procedure argument
or "invalid"

"get sampling time e sampling time of a
compound

None absolute time " Gets th
parameter or a
parameter or the time at which
a variable or a procedure
argument last received a value

"get value" of a parameter, a

argument. Only engineering
ues are accessible to the

None any pre-defined type Gets the value
compound parameter, a
variable or a procedure

val
language.

"get monitoring vailable"
or "nominal"
or "failed"

 status" Gets the overall monitoring None "not a
status of a parameter

"get status cons
check status"

consistency
 a parameter

None "not available"
or "nominal"
or "failed"

is Gets the status
check status of

tency

"get limit check heck status of a
r

None "not available"
or "danger high"
or "warning high"
or "within limits"
or "warning low"
or "danger low"

 status" Gets the limit c
paramete

"get delta check tus of a None "not available"
or "nominal"
or "failed"

 status" Gets the delta check sta
parameter

"get expected ch
status"

ailable"
or "nominal"
or "failed"

eck Gets the expected state check
status of a parameter

None "not av

:

Property r eaning Argument Result

Table A-7 Event property requests

equest M

"get last raise time"

one absolute time Gets the time at which the N
event was last raised

102

ECSS-E-70-32A
24 April 2006

Example

Procedure name Activate Freon Loop

PLUTO script procedure
 main
 initiate and confirm step Heating Up

 real AvgeTemp units degC

 Freon Loop1;
AvgeTemp:= get average value of FreonTemp

 current time () – 10 min,

 <…...>
 end main

end procedure

 declare
 Boolean Status,

 end declare
 main
 Status := get validity status of Pump of

 with

 := StartTime
 EndTime:= current time ()
 end with;

 end step;
 < …...>

NOTE “average value” is a parameter property i
corresponds to the average value over a sp

mplemented within the EMCS that
ecified time interval.

 103

ECSS-E-70-32A
24 April 2006

A.4 Extended Backus-Naur form (EBNF) representation of PLUTO
language constr

onventions
ackus-Naur form (EBNF) is used as an

alternative convention to specify the syntax of the procedure language. The
e specification of ISO EBNF is given in ISO/IEC 14977, but the salient

e consists of a non-terminal symbol and an EBNF expression
n “=” and terminated with a semicolon “;”, e.g.

Integer Constant = Sign, { Digit }- ;
efinition of the non-terminal symbol on

The EBNF expression consists of terminal symbols, non-terminal symbols and
 defined in Table A-8, separated by a comma “,”.

a sequence of one or more characters forming an
nguage.

 a space or a new-line have no formal effect on
r outside of a terminal symbol.

Table A-8: EBNF symbols and meanings

ucts

A.4.1 C
In this annex, the ISO extended B

complet
features of the convention are summarised below.

Each syntax rul
separated by an equal sig

T ht-hand side of the rule is the dhe rig
the left-hand side.

connective symbols as

A terminal symbol is
irreducible element of the la

Non-printing characters such as
the syntax as long as they appea

Symbol Meaning

X | Y One of X or Y (exclusive or)

[X] Zero or one occurrence of X

{ X } Zero or more occurrences of X

{ X }- One or more occurrences of X

n * X A repetition of X exactly n times

(X Y) Grouping construct

"Text" Terminal symbol (text between double quotes representing a
keyword of the procedure language). If a double quote is used

y single quotes. inside the text, the text is enclosed instead b

EXAMPLE 1 Confirmation Status = "confirmed" | "not confirmed" |

"aborted";
hat Confirmation Status is defined as being either

" or "not confirmed" or "aborted".

if", Expression, "then", {Step Statement,
se", {Step Statement, ";"}-], "end if";

means that a set of one or more step statements, each followed
;" appears after the "then" part of the definition. The part

e "else" part) is
t if pres only in the “if statement”.

means t
"confirmed

EXAMPLE 2 If Statement = "

";"}-, ["el

by a "
of the definition within the square brackets (th
optional, bu ent occurs once

104

ECSS-E-70-32A
24 April 2006

EXAMPLE 3 Integer Constant = Sign, { Digit }- ;
means that an integer constant is defined as a sign (a plus or a
minus) followed by a sequence of one or more digits.

ts
tions of the language constructs defined in this Standard

nt =

Of Second, ["Z"])
,

ur, ":", Minute, ":", Second, ".",
 Fraction Of Second, ["Z"]);

ctivity
vity Reference,

", Arguments, "end with")
, Predefined Value Set Reference , "end with")],

ith directives", Directives, "end with"];

ctivity
ce;

ctivity

ddition
";

e =
;

| Record Argument | Array Argument),
ent)};

ment })
 Argument })),

A.4.2 PLUTO language construc
The EBNF representa
are listed below:

Absolute Time Consta
 (Year, "-", Month, "-", Day Of Month,
 "T", Hour, ":", Minute, ":", Second,
 ".", Fraction

", Day | (Year, "-
 "T", Ho

A Call =
Acti

 [("with arguments
 | ("with value set"
 ["w

A Reference =
 Object Referen

A Statement =
 Identifier;

A Operator =
 "+" | "-

Argument Name =
 Identifier;

Argument Referenc
 Object Reference

Arguments =
 (Simple Argument
 {",", (Simple Argument | Record Argument | Array Argum

Array Argument =
 [Argument Name], "array",

 Argu ((Simple Argument, {",", Simple
cord | (Record Argument, {",", Re

 "end array";

Assignment Statement =
ression; Variable Reference, ":=", Exp

Boolean Constant =
 "TRUE" | "FALSE";

B Operator = oolean
 "AND" | "OR" | "XOR";

 105

ECSS-E-70-32A
24 April 2006

Case Statement =
 "in case", Expression, "is", Case Tag, ":", {Step Statement, ";"}-
 {"or is", Case Tag, ":", {Step Statement, ";"}-},

e", ":", {Step Statement, ";"}-],

Case Tag =
parative Expression ,

 "+" | "," | "-" | "." | "/" | ":" | ";" | "<" | "="| ">"
 | "?" | "@"| "[" | "\\" | "]" | "^" | "_" | "`" | "{" | "|" | "}" | "~" }-;

 (Relational Operator, Term)
("between", Term, "and", Term)

 Constant , [? Engineering Units ? | "%"], "of", Term)
 | ("in (", Term,{",", Term}-, ")");

 "confirmation", (("if", Expression) | Wait Statement),
"then", (("if", Expression) | Wait Statement) },

rmation";

d" | "not confirmed" | "aborted";

onstant
 | Enumerated Constant

 | Real Constant

 | Absolute Time Constant

tion =

 | "abort"

s", Expression, [Raise Event])]

 | Raise Event

 {Confirmation Status, ":", Continuation Action, ";"}-,

ay =
 3 * Digit;

 ["otherwis
 "end case";

 Com
 {Boolean Operator, Comparative Expression };

Characters =
 { Digit | Letter | " " | "!" | '\"' | "#" | "$" | "%" | "&" | "'" | "("
 | ")" | "*" |

Comparative Expression =

 |
 | ("within",

Confirmation Body =

 {
 "end confi

Confirmation Status =
 "confirme

Constant =
 Boolean C

 | Integer Constant

 | String Constant

 | Relative Time Constant;

Continuation Ac
 "resume"

 | "restart",
 [Timeout | ("max time
 | "ask user"

 | "continue"
 | "terminate";

Continuation Test =
 "in case",

 "end case";

D

Day Of Month =

106

ECSS-E-70-32A
24 April 2006

 2 * Digit;

Days =
 {Digit}-;

escript
 "described by", String Constant;

Directive Name =

ame, ":="], Expression,

Enumerated Constant =
ers, '"';

numera
 Name,

tant,
erated Constant}, ")", [Description];

bject Reference];

vent D
 "event", Event Name, [Description];

ent N
 Identifier;

Expression =
ession, [Boolean Operator, Expression];

actor =
ctor];

low Co

 | Repeat Statement
t

For Statement =
 Reference, ":=", Expression, "to", Expression,

";

D ion =

Digit =
 "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9";

 Identifier;

Directives =
 [Directive N
 {",", [Directive Name, ":="], Expression };

 '"', Charact

E ted Set Declaration =
 "enumerated", Set
 "(", Enumerated Cons
 {",", Enum

Enumerated Set Reference =
 Set Name, ["of", O

E eclaration =

Ev ame =

Event Reference =
 Object Reference;

 Relational Expr

F
 Simple Factor, ["**", Fa

F ntrol Statement =
 If Statement
 | Case Statement

 | While Statemen
 | For Statement;

 "for", Variable
 ["by", Expression],
 "do", {Step Statement, ";"}-, "end for

Fraction Of Second =

 107

ECSS-E-70-32A
24 April 2006

 {Digit}-;

F = unction
 (Standard Function Name | Nonstandard Function Name),

", [Expression, {",", Expression}], ")";

Hexadecimal Constant =
bol, {Hexadecimal Digit}-;

exadec

 Identifier First Word, {Identifier Subsequent Word };

 Letter, {Letter | Digit };

entifie

If Statement =
ion,

 ["else", {Step Statement, ";"}-],

Inform User Statement =
ssion, {",", Expression};

Initiate Activity Statement =
 Call, ["refer by", Activity Statement];

itiate A ivity Statement =
m", Activity Call,
 Statement],

itiate A

 [Continuation Test];

tatement =
ll complete"] | "until one completes"),

ment
 | Initiate And Confirm Activity Statement), ";",

onfirm Step Statement

 "(

 Hexadecimal Sym

H imal Digit =
 Digit | "A" | "B" | "C" | "D" | "E" | "F";

Hexadecimal Symbol =
 "0x";

Hour =
 2 * Digit;

Hours =
 {Digit}-;

Identifier =

Identifier First Word =

Id r Subsequent Word =
 {Letter | Digit }-;

 "if", Express
 "then", {Step Statement, ";"}-,

 "end if";

 "inform user", Expre

 "initiate", Activity

In nd Confirm Act
 "initiate and confir
 ["refer by", Activity
 [Continuation Test];

In nd Confirm Step Statement =
 "initiate and confirm step", Step Name,
 Step Definition, "end step",

Initiate In Parallel S
 "in parallel", (["until a
 (Initiate And Confirm Step State

 { (Initiate And C

108

ECSS-E-70-32A
24 April 2006

 | Initiate And Confirm Activity Statement), ";"}-,
 "end parallel";

 ([Sign], {Digit}-, [? Engineering Units ?])
ecimal Constant;

g" | "h" | "i" | "j"| "k" | "l" | "m" | "n"
| "w" | "x" | "y" | "z" | "A"

H" | "I" | "J" | "K"| "L" | "M"
 | "N" | "O" | "P" | "Q" | "R" | "S" | "T"| "U" | "V" | "W" | "X" | "Y"

Log Statement =
g", Expression, {",", Expression};

Minute =
 Digit;

Minutes =
it}-;

Month =

ultipli

r =

me = Identifier;

dard Object Operation Name = Identifier;

Nonstandard Object Property Name = Identifier;

bject N

bject O

ame;

 Request Statement =
ration, [["of"], Object Reference],

me, ":="], Expression,
, ":="], Expression},

rty Name
t Property Name), ["of", Object Property];

bject P
 [["get"], Object Property, "of"], Object Reference,

Integer Constant =

 | Hexad

Letter =
 "a" | "b" | "c" | "d" | "e" | "f" | "
 | "o" | "p" | "q" | "r" | "s"| "t" | "u" | "v"
 | "B"| "C" | "D" | "E" | "F" | "G" | "

 | "Z";

 "lo

 2 *

 {Dig

 2 * Digit;

M cation Operator =
 "*" | "/";

Negation Boolean Operato
 "NOT";

Nonstandard Function Na

Nonstan

O ame =
 Identifier;

O peration =
 ("set", Object Property)
 |Nonstandard Object Operation N

Object Operation
 Object Ope
 ["with", [Argument Na
 {",", [Argument Name
 "end with"];

Object Property =
 (Standard Object Prope
 | Nonstandard Objec

O roperty Request =

 109

ECSS-E-70-32A
24 April 2006

 ["with", [Argument Name, ":="], Expression,
 {",", [Argument Name, ":="], Expression},

e], Object Name, {"of", Object Reference};

activity statement"
"reporting data"

"record" | "array" | "activity" | "event";

y =

ait Statement),

) | Wait Statement)},

ce
 | "signed integer"

igned integer"

 | "string"
te time"

redefin

rocedu

t Declaration},

Procedure Definition =
re",

tion Body],
 [Preconditions Body],

,

 [Confirmation Body],
"end procedure";

Procedure Main Body =
", {Procedure Statement, ";"}-, "end main")

 | Initiate And Confirm Step Statement
nd Confirm Activity Statement

 "end with"];

Object Reference =
 [Object Typ

Object Type =
 "variable" | "predefined value set" | "
 | "step" | "argument" | "system element" |
 | "parameter" |

Preconditions Bod
 "preconditions",
 (("if", Expression) | W
 {"then",
 (("if", Expression
 "end preconditions";

Predefined Type =
 "Boolean"
 | Enumerated Set Referen

 | "uns
 | "real"

 | "absolu
 | "relative time"
 | Property Value Set
 | Property Data Type;

P ed Value Set Reference =
 Object Reference;

P re Declaration Body =
 "declare",
 Event Declaration, {",", Even
 "end declare";

 "procedu
 [Procedure Declara

 Procedure Main Body
 [Watchdog Body],

 ("main
 | {Procedure Statement, ";"}-;

Procedure Statement =
 Set Procedure Context Statement
 | Initiate In Parallel Statement

 | Initiate A

110

ECSS-E-70-32A
24 April 2006

 | Initiate Activity Statement
 | Inform User Statement

nt;

Product =
ultiplication Operator, Product];

roperty
 Property, "of",

rence | ("current", ("system element" |
 "reporting data" | "parameter" | "activity" | "event")));

| (["current"], ("system element" |
 "reporting data" | "parameter" | "activity" | "event"), ["of",

roperty, Constant)

" |
ta reference" | "parameter reference" |

 "activity reference" | "event reference"),
"of", Object Property, Constant);

aise Event =
"raise event", Event Name;

eal Constant =
 [Sign], {Digit}-, [".", {Digit}-],
 ["e", [Sign], {Digit}-],
 [? Engineering Units ?];

Record Argument =
 [Argument Name], "record", Arguments, "end record";

Relational Expression =
 Term, [Comparative Expression];

Relational Operator =
 "=" | "!=" | "<" | ">" | "<=" | ">=";

Relative Time Constant =
 ([Sign], (Days, "d")
 | ([Days, "d"],
 ((Hours, "h")
 | ([Hours, "h"],
 ((Minutes, "min")
 | ([Minutes, "min"], Seconds,
 [".", Fraction Of Second], "s"))))))
 | ([Sign], Days, ":", Hour, ":", Minute, ":", Second,
 ":", Fraction Of Second);

Repeat Statement =
 "repeat",
 {Step Statement, ";"}-,
 "until", Expression, [Timeout];

Reporting Data Name =

 | Log Stateme

 Factor, [M

P Data Type =
 "same as", Object
 (Object Refe

Property Value Set =
 (Object Property, "of",
 (Object Reference

 ((Object P
 | Object Reference)])))
 |(("system element reference
 "reporting da

R

R

 111

ECSS-E-70-32A
24 April 2006

 Identifier;

Reporting Data Reference =
 Object Reference;

Save Context =
 "save context",
 "refer to", Reporting Data Reference,
 "by", Reporting Data Name,
 {",", "to", Reporting Data Reference,
 "by", Reporting Data Name};

Save Context Statement =
 Save Context;

Second =
 2 * Digit;

Seconds =
 {Digit}-;

Set Name =
 Identifier;

Set Procedure Context Statement =
 "in the context of", Object Reference, "do",
 {Procedure Statement, ";"}-,
 "end context";

Set Step Context Statement =
 "in the context of", Object Reference, "do",
 {Step Statement, ";"}-,
 "end context";

Sign =
 "+" | "-";

Simple Argument =
 [Argument Name, ":="],
 Expression
 | ("activity", Activity Call)
 | (("parameter" | "reporting data"), Reporting Data Reference)
 | ("system element", System Element Reference)
 | ("event", Event Reference);

Simple Factor =
 Constant
 | Argument Reference
 | Variable Reference
 | Object Property Request
 | ("ask user", "(", Expression, ["default", Expression], ")",
 ["expect", Predefined Type])
 | ("(", Expression, ")")
 | Function
 | (Sign, Simple Factor)
 | (Negation Boolean Operator, Simple Factor);

112

ECSS-E-70-32A
24 April 2006

Standard Function Name = Identifier;

Standard Object Property Name = Identifier;

Step Declaration Body =
 "declare",
 (Enumerated Set Declaration
 | Variable Declaration | Event Declaration),
 {",", (Enumerated Set Declaration
 | Variable Declaration | Event Declaration)},
 "end declare";

Step Definition =
 [Step Declaration Body],
 [Preconditions Body],
 Step Main Body,
 [Watchdog Body],
 [Confirmation Body];

Step Main Body =
, ("main" {Step Statement, ";"}-, "end main")

 | {Step Statement, ";"}-;

Step Name =
 Identifier;

Step Statement =
 Set Step Context Statement
 | Assignment Statement
 | Flow Control Statement
 | Wait Statement
 | Object Operation Request Statement
 | Save Context Statement
 | Initiate In Parallel Statement
 | Initiate And Confirm Step Statement
 | Initiate And Confirm Activity Statement
 | Initiate Activity Statement
 | Inform User Statement
 | Log Statement;

String Constant =
 '"', Characters, '"';

System Element Reference =
 Object Reference;

Term =
 Product, [Addition Operator, Term];

Timeout =
 "timeout", Expression, [Raise Event];

Variable Declaration =
 "variable", Variable Name, "of type", Predefined Type,
 ["with units", ? Engineering Units ?], [Description];

Variable Name =

 113

ECSS-E-70-32A
24 April 2006

 Identifier;

Variable Reference =
 Object Reference;

Wait Statement =
 (("wait until", Expression)
 | ("wait for", (("event", Event Reference) | Expression))),
 [Save Context],
 [Timeout];

og Body =
 "watchdog", Initiate And Confirm Step Statement, ";",

While Statement =
],

 "end while";

Year =

Watchd

 { ["watchdog"], Initiate And Confirm Step Statement, ";"},
 "end watchdog";

 "while", Expression, [Timeout
 "do", {Step Statement, ";"}-,

 4 * Digit;

114

ECSS-E-70-32A
24 April 2006

A.5 Index of PLUTO la
Absolute Time
Activity Call .
Activity Refer
Activity Statem .. 83
Addition Oper
Argum m
Argument Ref
Arguments
Array Argume
Assign
Boolea
Boolean Oper 95
Case St
Case T 74
Charac 43
Comparative E ... 95

Constan
Continu ... 93
Continuatio ... 93
Day ... 45
Days.. 45

ription
............................

Directive Name... 85
ctives.. 85

stant.. 43
Declaration ... 65

erated Set Refere 65
ent Declaration ... 49

t Name .. 49
t Reference.. 51

............... 95
ctor.. 95
ow Control Statemen 72

atement.. 78
ion.. 99
decimal Constant 43

adecimal Digit .. 43
xadecimal Symbol.. 43

Hours .. 45
Identifier ... 41
Identifier First Word... 41

ier Subsequent W d.. 41
ment .. 73

m User Statement 88
ty Statem 84
onfirm A State 83

ate And Confirm Step Statemen 63
 In Parallel State t .. 61

onstant.. 43
r........................... 42

ent... 89
es ... 45
plication Operator 95

Negation Boolean Operator .. 95

nguage constructs
 Constant ... 44

.. 85
ence.. 85

ent ..
ator... 95

ent Na e ... 85
erence... 95
.. 85
nt.. 85

ment Statement .. 71
n Constant.. 42

ator..
atement ... 74
ag
ters

xpression..
Confirmation Body ... 92
Confirmation Status.. 93

t .. 42
ation Action

n Test ..

Desc
Digit

................

................
.....................
.....................

............................. 49

............................. 42

Dire
Enumerated Con

erated Set Enum
Enum nce..
Ev
Even
Even
Expression
Fa
Fl t
For St
Funct
Hexa
Hex
He

Identif
If State

or

Infor
Initiate Activi
Initiate And C

ent......
ctivity

....................................
ment...........................

...

...
Initi t................... ...
Initiate men
Integer C
Lette
Log Statem
Minut
Multi

 115

ECSS-E-70-32A
24 April 2006

Nonstandard Function Name.. 99
Nonstandard Object Operation Name... 80
Nonstandard Object Property Name... 65

ame... 56
peration .. 80

ration Request Statement 80
roperty........... 65

ect Property Reque 100
 Reference .. 56
 Type .. 56

 Body 50
edefined Type ... 65
edefined Value Set R nce ... 85

edure Declaration dy... 49
Procedure Definition .. 48

ain Body... 58
Statement... 58

duct 95
 Data Type .. 65

perty Value Set.. 65
ise Event................. 55

Real Constant ... 44
Record Argument ... 85

tional Expression... 95
al Operator 95
 Time Constant 45

 Statement.. 76
Reporting Data Name... 52

rting Data Referen 52
ontext ... 52

e Context Statemen 2
Second .. 44

nds....................... 45
ame 65
rocedure Context Statement ... 60

t Step Context Statem t 70
.......................... 43

gument ... 85
le Factor ... 95

 Function Nam 99
 Object Property Name... 65

 Declaration Body 65
Step Definition ... 64
Step Main Body.. 68

ame 63
ep Statement.. 68
ring Constant ... 44

tem Element Reference... 85
... 95

eout .. 54
Variable Declaration... 65
Variable Name.. 65
Variable Reference ... 71
Wait Statement ... 51
Watchdog Body.. 90
While Statement ... 77

Object N
Object O
Object Ope
Object P

..
.............................

Obj st.....
Object
Object
Preconditions
Pr
Pr efere
Proc Bo

Procedure M
 Procedure

Pro
Property
Pro
Ra

Rela
Relation
Relative

............
..........

.............................

..................
.............................
...............................

Repeat

Repo ce
Save C
Sav

.....
............................. 8t....

Seco
Set N
Set P

.......

Se en
Sign ..
Simple Ar

........

Simp
Standard

rd
e

Standa
Step ..

Step N
St
St
Sys
Term
Tim

116

ECSS-E-70-32A
24 April 2006

Annex B (informative)
 Engin ering units e

B.1

 annex efines the stan gine its and their corresponding
ols. T e standa eng ring units and their syntax representation
 in B.3 based o Volu racy 20 Bibliography).

B.2 Engineering units and symbols
a. An engineering unit symbol shall be an unambiguous string of case-

sensi racte no “

b. The standard set of “simple ineering units” shall be as specified in
Table B-9.

c. Mult s and submultiples of an engineering unit shall be formed using
the sim le engine g unit symbol combined with a decimal prefix, as
specified in Table B-10.

d. Binary multiples e bit and B (i.e. byte) units shall use the binary
prefi specified ble B-1

e. “Compound engineering units” shall be formed by multiplying and
dividing “simple engineering units”.

e as specified in
Table B-12.

g. The langua express the engin units symbols defined
within t rd shall be as sp d in B.3. The major
character language are:

1. Pre not used with:

 AU (astronomica it), pc (parsec), u (atomic

 it symbols minute), h (hour) and d

2. The (liter), Np (nepe (degree), arcmin (1/60
degr degree), degree Celsius), rad
(rad an) can e submultiple prefix
sym

3. The B (byte) lution), and Bd (baud)
can re s.

4. Uni m other uni multiplication are
indi ot i.e. "." plac een them.

Uni rmed from other division are
ind ns of a solidus i.e. "/ egative exponents.

Introduction
This d dard en ering un
symb hes rd inee
given are n ntoc 03 (see

tive cha rs with spaces”.

eng

iple
p erin

 of th
xes in Ta 1.

f. The standard set of “compound engineering units” shall b

ge used to
his Standa

eerin
ecifie

g

istics of this

fix symbols are

dB (decibel), l un
mass unit),

the time-related un min (
(day).

 unit symbols L r), deg
ee), arcsec (1/3600
ian) and sr (steradi

degC (
only us

bols.

 unit symbols t (tonne), , r (revo
not be used with submultiple p fix symbol

t symbols formed fro t symbols by
etwcated by means of a d ed b

5. t symbols fo
icated by mea

unit symbols by
" or n

 117

ECSS-E-70-32A
24 April 2006

6. The solidus cannot be repeated in the same compound unit unless
conta hesized sub ion.

7. The ix sym hed to a unit symbol
con le sym ing a multiple or
sub ncerned) w n be raised to a positive
or which can bined with other unit
symbols to form a co nd unit symb

The d by surroundin ound unit symbols with
par nd ")") constitut ew inseparable symbol
wh positive or n wer and wich can be
com bols to und unit symbols.

 Com symbols cannot sed, i.e. prefix symbols
rm f two or ix symbols.

10. A unit exponent follows the unit, separated by a circumflex, i.e. "^".

11. Exp e or negative.

. Fra arenthesi

If a miss its addit those defined in this
annex, th ing engineering units symbols shall comply with
the langu B.3.

ble B- ngineering un

Quantit efinition Correspondence to
other units

ined within a parent express

 grouping formed by a pref
stitutes a new inseparab

bol attac
bol (form

multiple of the unit co hich ca
negative power and

mpou
be com

ol.

8. grouping forme
entheses ("(" a

g comp
es a n

ich can be raised to a egative po
bined with other unit sym form compo

9. pound prefix be u
fo ed by the juxtaposition o more pref

onents are positiv

12 ctional exponents are p zed.

h. ion uses engineering un ional to
e correspond
age defined in

Ta 9: Simple e its

y Name Symbol D

metre m SI base unit

astronomical unit ≈ 1,495 978 70 m AU 1 AU × 10-11

length

 206 265 AU parsec pc 1 pc ≈

volume litre L = 10-3 m3 L 1

gram g 1g = 10-3 kg (SI base unit)

unified atomic mass 1 u ≈ 1,660 538 73 × unit u 10-27 kg

mass

 = 103 kg (SI base ton t 1 t unit)

second SI base unit s
minute in = 60 s min 1 m

hour 600 h 1 h = 60 min = 3 s

time

24 h = 86 400 s day d 1 d =

electric c unit urrent ampere A SI base

kelvin SI base unit K temperat

 Celsius 1 oC = 1 K + 273,15

ure

degree degC
amount o it f substance mole mol SI base un

luminou candela base unit s intensity cd SI

radian -1 = 1 rad m • m

revolution 1 r = 8 × atan(1) × 1 r rad

plane an

degree deg 1o = (π/180) rad

gle

118

ECSS-E-70-32A
24 April 2006

Quantit Name bol Definition Correspondence to
other units

y Sym

arcminute arcmin 1' = (1/60)o = (π/10 800) rad

arcsecond arcsec 1" = (1/3 600)o = (π/6 48 000) rad

solid ang steradian sr m2 • m-2 = 1 1 sr = 1 rad^2 le

frequenc s-1 y hertz Hz
force newton N m • kg • s-2

pascal Pa m • kg • s-1 -2 1 Pa = 1 N/m^2 press

bar bar 1 bar = 10

ure

Pa 5

energy, work,
quantity of heat

joule J m2 • kg • s-2 1 J = 1 N.m

energy electron volt eV 1 eV ≈ 1,602 176 462 × 10-19 J

power, radiant flux watt W m2 • kg • s-3 1W = 1 J/s

electric charge coulomb C s • A

electric potential
difference,
electromotive force

volt V m2 • kg • s-3 • A-1 1 V = 1 W/A

capacitance farad F m-2 • kg-1 • s4 • A2 1 F = 1 C/V

electrical resistance ohm (Ω) Ohm m2 • kg • s-3 • A-2 1 Ohm = 1 V/A

electrical
conductance

siemens S m-2 • kg-1 • s3 • A2 1 S = 1 A/V

magnetic flux weber Wb m2 • kg • s-2 A-1 1 Wb = 1 V.s •

magnetic flux
density

tesla T kg • s-2 • A-1 1 T = 1 Wb/m^2

inductance henry H m2 • kg • s-2 • A-2 1 H = 1 Wb/A

luminous flux lumen lm m2 • m-2 • cd = cd 1 lm = 1 cd.sr

illuminance lux lx m2 • m-4 • cd = m-2 • cd 1 lx = 1 lm/m^2

decibel dB 1 dB = 1/20 × ln (10) × 1 Np logarithm of power
ratio neper Np 1 Np = 1

radionuclide activity becquerel Bq s-1

absorbed dose,
specific energy
(imparted), kerma

gray Gy m2 • s-2 1 Gy = 1 J/kg

dose equivalent sievert Sv m2 • s-2 1 Sv = 1 J/kg

bit bit information capacity

byte B 1 B = 8 bit

transmission rate baud Bd 1 Bd = 1 bit/s

 119

ECSS-E-70-32A
24 April 2006

Table B-10: Acceptable multiples and submultiples of engineering units

Factor Name Symbol Factor Name Symbol

1024 yotta Y 10-1 deci d
1021 zetta Z 10-2 centi c
1018 exa E 10-3 milli m
1015 peta P 10-6 micro u
1012 tera T 10-9 nano n
109 giga G 10-12 pico p
106 mega M 10-15 femto f
103 kilo k 10-18 atto a
102 hecto h 10-21 zepto z
101 deca da 10-24 yocto y

Table B-11: Acceptable multiples of binary engineering units

Factor Name Symbol

260 exbi Ei
250 pebi Pi
240 tebi Ti
230 gibi Gi
220 mebi Mi
210 kibi Ki

Table B-12: Standard compound engineering units

Quantity Name Symbol

area square metre m^2
volume cubic metre m^3
rotational frequency reciprocal second s^-1
velocity, speed metre per second m/s

radian per second rad/s angular velocity

degree per second deg/s
acceleration metre per square second m/s^2
wavenumber reciprocal metre m^-1
density, mass density kilogram per cubic metre kg/m^3
linear mass density kilogram per metre kg/m
momentum kilogram metre per second kg.m/s
angular momentum kilogram square metre per second kg.m^2/s
moment of inertia kilogram square metre kg.m^2
dynamic viscosity pascal second Pa.s
torque, moment of force newton metre N.m

120

ECSS-E-70-32A
24 April 2006

Quantity Name Symbol

specific acoustic impedance pascal second per metre Pa.s/m
acoustic impedance pascal second per cubic metre Pa.s/m^3
kinematic viscosity square metre per second m^2/s
volume flow rate cubic metre per second m^3/s
surface tension newton per metre N/m
linear expansion coefficient reciprocal kelvin K^-1
thermal conductivity watt per metre kelvin W/(m.K)
coefficient of heat transfer watt per square metre kelvin W/(m^2.K)
heat capacity, entropy joule per kelvin J/K
specific heat capacity, specific
entropy

joule per kilogram kelvin J/(kg.K)

specific energy joule per kilogram J/kg
electrical charge density coulomb per cub c metre C/m^3 i

electrical flux density coulomb per square metre C/m^2
electric field strength volt per metre V/m
permittivity farad per metre F/m
electric dipole moment coulomb metre C.m
current density ampere per square metre A/m^2
magnetic field strength ampere per metre A/m
electrical charge ampere hour A.h
magnetic vector potential weber per metre Wb/m
permeability henry per metre H/m
electromagnetic moment ampere square metre A.m^2
magnetization ampere per metre A/m
magnetic dipole moment weber metre Wb.m
resistivity etre Ohm.m ohm m

conductivity e S/m siemens per metr

reluctance reciprocal hertz H^-1
radiant intensit W/sr y watt per steradian

radiance n W/(m^2.sr) watt per square metre steradia

irradiance, hea watt per square metre W/m^2 t flux density

quantity of ligh lm.s t lumen second

luminance candela per square metre cd/m^2
luminous exitance lumen per square metre lm/m^2
light exposure .s lux second lx
luminous effica n per watt lm/W cy lume

mechanical impedance newton second per metre N.s/m
molar mass kilogram per mole kg/mol
molar volume m^3/mol cubic metre per mole

molar energy J/mol joule per mole

 121

ECSS-E-70-32A
24 April 2006

Quantity Symbol Name

molar entropy,
capacity

molar heat joule per mole kelvin J/(mol.K)

concentration (
substance)

^3 of amount of mole per cubic metre mol/m

transmission rate bit per second bit/s

B.3 Engineering units railroad diagrams
nits are shown

below.
The railroad diagrams defining the syntax of engineering u

Unit Reference

?Engineering Units? =

[]

Unit Reference

Unit Reference =

Unit Product

Unit Factor/

Unit Product =

Unit Factor

Unit Product .

Unit Simple Factor

Unit Factor =

(

^

^

Unit Reference)

Unit Exponent

Unit Exponent

122

ECSS-E-70-32A
24 April 2006

Unit Simple Factor =

AU

pc

bit

min

dB

u

h

d

Submultiple Only Simple Unit
Decimal Submultiple Prefix

Decimal Prefix

Multiple Only Simple Unit
Decimal Multiple Prefix

Multiple And Submultiple Simple Unit

Binary Prefix B

Unsigned Integer

Unit Exponent =

(/

-

)Unsigned IntegerUnsigned Integer

-

 123

ECSS-E-70-32A
24 April 2006

Multiple And Submultiple Simple Unit =

mol

cd

Hz

Pa

bar

eV

Ohm

Wb

lm

lx

Bq

Gy

Sv

bit

N

J

m

g

s

K

A

V

W

C

S

T

F

H

Multiple Only Simple Unit =

Bd

t

r

B

124

ECSS-E-70-32A
24 April 2006

Submultiple Only Simple Unit =

Np

L

sr

arcmin

deg

ra

arcsec

d

degC

Decimal Multiple Prefix

Decimal Prefix =

Decimal Sub

multiple Prefix

Decimal Multiple Prefix =

da

G

Y

Z

E

T

P

h

M

k

Decimal Submultiple Prefix =

p

d

c

m

n

u

z

f

a

y

Digit

Unsigned Integer =

 125

ECSS-E-70-32A
24 April 2006

Binary Prefix =

Ki

Gi

Ti

Pi

Ei

Mi

BN presenta f t
The EBNF representati e PLUTO engineering ted
below.

? Engineeri its ? =
 ("[t Refere
 | Unit Referenc

Unit Reference =
 Unit Product, ["/", Unit Factor];

Unit Product =
nit Product, "."], Unit Factor;

 | ("(",Unit Reference, ")", ["^", Unit Exponent]);

Unit Simple
 ([Decim mple Unit)

| ([D ubmultiple Pre le Only Simple Unit
| ([Decim], Multiple And le Simple Unit)

 | (ef
 | "A pc" | "

Unit Exponent =
([" ned
| (" Uns

Multiple And Submultip nit =
"m s" |

 | "Pa" | "bar" |
 | "Wb" | "T" | " Bq" | "Gy" | "Sv" | "bit";

le On ple U
 "t" | "r" | "B" | "

ultiple On ple Un
"L " | "

Decimal Prefix =
De ltip

B.4 E F re tion o he engineering units
ons of th units syntax are lis

ng Un
",Uni nce, "]")

e;

 [U

Unit Factor =
 Unit Simple Factor (Unit Simple Factor , ["^", Unit Exponent])

Factor =
al Multiple Prefix], Multiple Only Si

ecimal S
al Prefix

fix], Submultip
 Submultip

)

[Binary Pr
U" | "

ix], ("B" | "bit"))
u" | "min" | "h" | "d" | "dB";

-"], Unsig
(", ["-"],

 Integer)
igned Integer, "/", Unsigned Integer, ")"

le Simple U

);

 " | "g" | " "A" | "K" | "mol" | "cd" | "Hz" | "N"
"J" | "eV" | "W" | "C" | "V" | "F" | "Ohm
H" | "lm" | "lx" | "

" | "S"

Multip ly Sim nit =
Bd";

Subm

ly Sim
" | "degC

it =
rad" | "deg" | "arcmin" | "arcsec" | "sr" | "Np";

 cimal Mu le Prefix

126

ECSS-E-70-32A
24 April 2006

 | Decimal Subm

Decimal Multiple Prefix
 "Y" | "Z" | "E" "G" | "M" | "k" | "h" | "da";

al Sub e Pr
 "d" | "c" | "m" | ";

y Prefi
 "Ei" | "Pi" | "Ti

ed In =
 {Digit }-;

ultiple Prefix;

 =
| "P" | "T" |

Decim multipl efix =
 "u" | "n" | "p" | "f" | "a" | "z" | "y

Binar x =
" | "Gi" | "Mi" | "Ki";

Unsign teger

 127

ECSS-E-70-32A
24 April 2006

(This page is intentionally left blank)

128

ECSS-E-70-32A
24 April 2006

Annex C (informative)
 Functions

C.1 Introduction
This annex defines the standard mathematical, time and string functions.

C.2 Mathematical functions
The standard set of mathematical functions shall be as specified in Table C-1.

Table C-1: Mathematical functions

Name Arguments Examples Result Description

"abs" integer or real integer or
real

Returns the absolute value of the
argument.

abs (-9) = 9

"acos" real real Returns the angle whose cosine is
equal to the argument.

acos (0.5) = 1.05 rad

"acosec" integer or real real Returns the angle whose cosecant is
equal to the argument.

acosec (2) = 0.524 rad

"acosec2" (list of 2 arguments)
arg1: integer or real
arg2: integer or real

real Returns the angle, in the correct
quadrant, whose cosecant is equal to
the first argument divided by the
second argument.

acosec2 (-2, 1) = -0.524
rad

"acotan" integer or real real Returns the angle whose cotangent is
equal to the argument.

acotan (2) = 0.464 rad

"acotan2" (list of 2 arguments)
arg1: integer or real
arg2: integer or real

real Returns the angle, in the correct
quadrant, whose cotangent is equal to
the first argument divided by the
second argument.

acotan2 (-2, 1) = -0.464
rad

"asec" integer, real real Returns the angle whose secant is
equal to the argument.

asec (2) = 1.047 rad

"asec2" (list of 2 arguments)
arg1: integer or real
arg2: integer or real

real Returns the angle, in the correct
quadrant, whose secant is equal to the
first argument divided by the second
argument.

asec2 (-2, 1) = 2.094 rad

"asin" real real Returns the angle whose sine is equal
to the argument.

asin (0.5) = 0.52 rad

 129

ECSS-E-70-32A
24 April 2006

Name Arguments Result Description Examples

"atan" integer or real real Returns the angle whose tangent is
equal to the argument.

atan (1) = 0.785 rad

"atan2" (list of 2 arguments)
arg1: integer or real
arg2: integer or real

real Returns the angle, in the correct
quadrant, whose tangent is equal to t
first argument divided by the second
argument.

atan2 (-1, 1) = -0.785 rad
he

"average" (list of 2 or more
arguments)
arguments: integer
or real

integer or
real

Returns the arithmetic average value of
a list of two or more arguments.

average (1, 2, 3) = 2

"ceiling" integer o ger Retur
greate

6
 = -5

 (5) = 5

r real inte ns the smallest integer value
r than or equal to the argument.

ceiling (5.3) =
ng (-5.3)

ceili
ceiling

"cos" integer o Retur d) = 0.54 r real re ns the cosine of the argument. cos (1 raal
cos (45 deg) = 0.7071

"cosec" integer o Returr real real ns the cosecant of the argument. cosec (1 rad) = 1.19

"cosh" integer or real real Retur
argum

 1.54 ns the hyperbolic cosine of the cosh (1 rad) =
ent.

"cotan" integer or real real Returns the cotangent of the argument. cotan (1 rad) = 0.64

"floor" integer o Retur
than o ent. floor (-5.3) = -6

r real integer ns the largest integer that is less
r equal to the argum

floor (5.3) = 5

"ln" integer o Retur
of the

r real real ns the natural logarithm (base e)
 argument.

ln (1.5) = 0.405

"log" integer or real real Returns the base 10 logarithm of the
argument.

log (1.5) = 0.176

"max" (list of 2 or more
arguments)
arguments: integer
or real

integer or
real

Returns the maximum value in a list of
two or more arguments. It returns no
value for just one argument.

max (1 V, 100 mV) = 1 V

"min" (list of 2 or more
arguments)
arguments: integer
or real

integer or
real

Returns the minimum value in a list of
two or more arguments. It returns no
value for just one argument.

min (1, 3, 7, 4) = 1

"quotient" (list of 2 arguments)
arg1: integer or real
arg2: integer or real

integer Returns the result of dividing the first
argument by the second argument,
truncated.

quotient (5, 2) = 2
quotient (5, -2.1) = -2
quotient (-5, 2.1) = -2

"remainder" (list of 2 arguments)
arg1: integer or real
arg2: integer or real

integer or
real

Returns the remainder that results from
dividing the first argument by the
second argument.

remainder (5.3, 2) = 1.3

"round" (1 or 2 arguments)
arg1: integer or real
arg2: integer or real

integer or
real

Returns the first argument rounded to
the number of places to the right of the
decimal point given by the second
argument. If the second argument is
omitted, the argument is rounded to 0
places.

round (2.4) = 2
round (-2.4) = -2
round (2.5) = 3
round (2.57, 1) = 2.6

"sec" integer or real real Returns the secant of the argument. sec (1 rad) = 1.85

130

ECSS-E-70-32A
24 April 2006

Name Arguments Result Description Examples

"sin" integer or real real Returns the sine of the argument. sin (1 rad) = 0.84
sin (45 deg) = 0.7071

"sinh" integer or real real Returns the hyperbolic sine of the
argument.

sinh (1 rad) = 1.18

"sqrt" integer or real integer or
real

Returns the square root of the
argument. It returns no value if the
argument has a negative value.

sqrt (5) = 2.236

"tan"

integer or real real Returns the tangent of the argument. tan (1 rad) = 1.56

"tanh" integer or real real Returns the hyperbolic tangent of the
argument.

tanh (1 rad) = 0.76

"truncate" real integer Returns the truncated value of the
argument.

truncate (6.6) = 6
truncate (-5.6) = -5

"pi" none real Returns the value of Pythagoras’
constant, π

pi () = 3.1415926536

"e" none real Returns the value of Napier’s constant,
e (base of natural logarithm)

e () = 2.7182818285

"G" none real Returns the value of the gravitational
constant

G () = 6.6742e−11
m^3.kg^-1.s^-2

C.3 Time functions
The standard set of time functions shall be as specified in Table C-2.

Table C-2: Time functions

Name Arguments Result Description Examples

"current
time"

none absolute
time

Returns the absolute time
corresponding to the current time.

current time () = 2004-
24-21T12:00:00.0Z

"year" absolute time integer Returns the year of the absolute time as
a four-digit integer.

year (current time ()) =
2003

"month" absolute time integer Returns the month of the absolute time
as an integer in the range 1 - 12
inclusive.

month (current time ())
= 4

"day of
month"

absolute time integer Returns the day of the month of the
absolute time as an integer in the range
1 - 31 inclusive.

day of month (current
time ()) = 1

"day of week" absolute time string Returns the day of the week of the
absolute time as one of these strings:
Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday, Sunday.

day of week (current
time ()) = "Tuesday"

"day of year" absolute time integer Returns the day of the year of the
absolute time as an integer in the range
1 - 366 inclusive.

day of year (current time
()) = 91

"hour" absolute time integer Returns the hour of the absolute time as hour (current time ()) =

 131

ECSS-E-70-32A
24 April 2006

an integer in the range 0 - 23 inclusive. 11

"minute" absolute time integer Returns the minute of the absolute time minute (current time ())
as an integer in the range 0 - 59
inclusive.

= 11

"second" absolute time integer Returns the second of the
as an integer in the range
inclus

 absolute time
0 - 59

ive.

second (current time ())
= 11

"days" relative time real Returns the number of days in the
relative time as a real with associated

days (30 h) = 1.25 d

engineering units.

"hours" relative
relative time as a real with associated
engineering units.

53.5 h
time real Returns the number of hours in the hours (2 d 5 h 30 min) =

"minutes" relative time real Returns the number of minutes in the
relative time as a real with associated
engineering units.

minutes (2 d 5 h 30 min)
= 3210 min

"seconds" relative time real Returns the number of seconds in the
relative time as a real with associated
engineering units.

seconds (37 min 4.5 s) =
2224.5 s

C.4 String functions
The standard set of string functions shall be as specified in Table C-3.

Table C-3: String functions

Name Arguments Result Description Examples

"to string" (1 or 2 arguments)
arg1: Boolean or
integer or real or
absolute time or
relative time arg2:
engineering units

string Returns the first argument as a string. If a
second argument is given the first
argument is converted to the units given
by the second argument.

to string (5 V) = "5 V "
to string (5 V, mV) =
"5000 mV"

"to Boolean" string Boolean Returns a Boolean converted from the
argument.

to Boolean ("TRUE") =
TRUE

"to hex" integer string Returns a string, which is the
hexadecimal equivalent of the argument.

to hex (45) = "0x2D"

"to integer" string integer Returns an integer converted from the
argument.

to integer ("32") = 32 or
to integer ("0x20") = 32

"to real" string real Returns a real converted from the
argument.

to real ("3.2") = 3.2

"capitalize" string string Returns a string, which is the argument
with the first letter of each word
capitalized.

capitalize ("hello world")
= "Hello World"

"get from" (list of 3 arguments)
arg1: string arg2:
integer arg3: integer

string Returns a string, which is the string of
characters, extracted from the first
argument, beginning at the character

get from ("one two three",
5, 7) = "two"

132

ECSS-E-70-32A
24 April 2006

Name Arguments Result Description Examples

given by the second argument and ending
at the character given by the third
argument . Spaces between words are
included in the count from left to right.

"insert in" (list of 3 arguments)
arg1: string arg2:
string arg3: integer

string Returns a string, which consists of the
first argument inserted into the second
argument, starting at the position
specified by the third argument.

insert in ("not ", "do
enter", 4) = "do not enter"

"is contained
in"

(list of 2 arguments)
arg1: string arg2:
string

Boolean Returns “TRUE” if the second argument
contains the first argument, and
“FALSE” if it does not.

is contained in ("Your",
"Your flight") = TRUE

"length of" string integer Returns an integer whose value gives the
number of characters in the argument.

length of ("message") = 7
length of ("") = 0

"lower case" string string Returns a string, which is the same as the
argument but with all alphabetic
characters appearing in lower-case.

lower case ("123AbcDef")
= "123abcdef"

"omit from" (list of 3 arguments)
arg1: string arg2:
integer arg3: integer

string Returns a string, which is the same as the
first argument but with the range of
characters, beginning at the character
given by the second argument and ending
at the character given by the third
argument, removed.

omit from ("do not enter",
4, 7) = "do enter"

"position of" (list of 2 arguments)
arg1: string arg2:
string

integer Returns an integer value giving the
starting position of the first string in the
second string. If the first string occurs
more than once in the second string, the
first occurrence is returned. If the first
string is not in the second string, the
function returns “0”.

position of ("fli", "Your
flight") = 6

"upper case" string string Returns a string, which is the same as the
argument but with all alphabetic
characters in upper- case.

upper case ("123Abc
Def"= "123ABCDEF"

 133

ECSS-E-70-32A
24 April 2006

134

(This page is intentionally left blank)

ECSS-E-70-32A
24 April 2006

 135

Bibliography

ECSS-E-00 Space Engineering - Policy and principles
ECSS-E-10A Space engineering - System engineering
ECSS-E-10-02 Space engineering - Verification
ECSS-E-10-03 Space engineering - Testing
ECSS-E-50 Space engineering - Communication
ECSS-E-70 Space engineering - Ground systems and operations
ECSS-E-70-31 TP

5
PT Space engineering - Ground systems and operations

– Monitoring and control data definition
ECSS-E-70-41 Space engineering - Ground systems and operations

– Telemetry and telecommand packet utilization
ISO/IEC 14977 Information technology - Syntactic metalanguage –

Extended BNF
Voluntocracy 2003: Representation of numerical values and SI units in

character strings for information interchange
(Hhttp://swiss.csail.mit.edu/~jaffer/MIXFH)

TP

5
PT To be published.

ECSS-E-70-32A
24 April 2006

136

(This page is intentionally left blank)

ECSS-E-70-32A
24 April 2006

 137

ECSS Change Request / Document Improvement Proposal

A Change Request / Document Improvement Proposal for an ECSS Standard may be submitted to the ECSS
Secretariat at any time after the standard’s publication using the form presented below.
This form can be downloaded in MS Word format from the ECSS Website
(www.ecss.nl, in the menus: Standards - ECSS forms).

 ECSS Change Request / Document Improvement Proposal

1. Originator’s name: 2. ECSS Document number:

 Organization: 3. Date:

 e-mail:

4. Number.

5. Location
of deficiency

 clause
page
 (e.g. 3.1
14)

6. Changes

7. Justification

8. Disposition

Filling instructions:
1. Originator’s name - Insert the originator’s name and address
2. ECSS document number - Insert the complete ECSS reference number (e.g. ECSS-M-00B)
3. Date - Insert current date
4. Number - Insert originator’s numbering of CR/DIP (optional)
5. Location - Insert clause, table or figure number and page number where deficiency has been

identified
6. Changes - Identify any improvement proposed, giving as much detail as possible
7. Justification - Describe the purpose, reasons and benefits of the proposed change
8. Disposition - not to be filled in (entered by relevant ECSS Panel)

Once completed, please send the CR/DIP by e-mail to: ecss-secretariat@esa.int

ECSS-E-70-32A
24 April 2006

138

(This page is intentionally left blank)

	Foreword
	Introduction
	Scope
	Normative references
	Terms, definitions and abbreviated terms
	Terms and definitions
	Abbreviated terms

	Context of the procedure language
	Introduction
	The space system
	Satellite testing
	Mission operations

	EGSE and mission control system (EMCS)
	General
	Space system model

	Requirements to be satisfied by procedures
	Procedure structure
	Language constructs
	Language specification

	Bibliography

