ECSS-E-ST-70-32C
31 July 2008
[image: image1.jpg]EUROPEAN COOPERATION

FOR SPACE STANDARDIZATION

 DOCPROPERTY "ECSS Standard Number" * MERGEFORMAT
ECSS-E-ST-70-32C

31 July 2008

 [image: image125.png]

Space engineering
Test and operations procedure language
Foreword
This Standard is one of the series of ECSS Standards intended to be applied together for the management, engineering and product assurance in space projects and applications. ECSS is a cooperative effort of the European Space Agency, national space agencies and European industry associations for the purpose of developing and maintaining common standards. Requirements in this Standard are defined in terms of what shall be accomplished, rather than in terms of how to organize and perform the necessary work. This allows existing organizational structures and methods to be applied where they are effective, and for the structures and methods to evolve as necessary without rewriting the standards.

This Standard has been prepared by the ECSS-E-ST-70-32 Working Group, reviewed by the ECSS Executive Secretariat and approved by the ECSS Technical Authority.

Disclaimer

ECSS does not provide any warranty whatsoever, whether expressed, implied, or statutory, including, but not limited to, any warranty of merchantability or fitness for a particular purpose or any warranty that the contents of the item are error-free. In no respect shall ECSS incur any liability for any damages, including, but not limited to, direct, indirect, special, or consequential damages arising out of, resulting from, or in any way connected to the use of this Standard, whether or not based upon warranty, business agreement, tort, or otherwise; whether or not injury was sustained by persons or property or otherwise; and whether or not loss was sustained from, or arose out of, the results of, the item, or any services that may be provided by ECSS.

Published by:
ESA Requirements and Standards Division

ESTEC, P.O. Box 299,

2200 AG Noordwijk

The Netherlands

Copyright:
2008 © by the European Space Agency for the members of ECSS
Change log
	ECSS-E-70-32A
24 April 2006
	First issue

	ECSS-E-70-32B
	Never issued

	ECSS-E-ST-70-32C
31 July 2008
	Second issue

Editorial changes

Table of contents

3Change log

7Introduction

81 Scope

92 Normative references

103 Terms, definitions and abbreviated terms

103.1
Terms from other standards

103.2
Terms specific to the present standard

123.3
Abbreviated terms

134 Context of the procedure language

134.1
Introduction

134.1.1
The space system

144.1.2
Satellite testing

154.1.3
Mission operations

154.2
EGSE and mission control system (EMCS)

154.2.1
General

154.2.2
Space system model

195 Requirements to be satisfied by procedures

195.1
Procedure structure

205.2
Language constructs

235.3
Language specification

24Annex A (informative) The PLUTO language

24A.1
The structure of a procedure

24A.1.1
Procedure definition

25A.1.2
Procedure declaration body

25A.1.3
Procedure preconditions body

26A.1.4
Procedure main body

26A.1.5
Procedure watchdog body

27A.1.6
Procedure confirmation body

27A.1.7
Structure of a step

29A.2
The behaviour of a procedure

29A.2.1
Procedure execution flow

32A.2.2
Step execution flow

34A.2.3
Activity execution flow

36A.2.4
Execution in parallel

36A.2.5
Continuation following an “initiate and confirm” statement

38A.3
PLUTO language definition

38A.3.1
Conventions

39A.3.2
Language case sensitivity

39A.3.3
Comments

39A.3.4
Keywords

40A.3.5
Identifiers

41A.3.6
Constants

45A.3.7
Types

46A.3.8
System interfaces

47A.3.9
Language constructs

105A.4
Extended Backus-Naur form (EBNF) representation of PLUTO language constructs

105A.4.1
Conventions

106A.4.2
PLUTO language constructs

119A.5
Index of PLUTO language constructs

122Annex B (informative) Engineering units

122B.1
Introduction

122B.2
Engineering units and symbols

128B.3
Engineering units railroad diagrams

131B.4
EBNF representation of the engineering units

133Annex C (informative) Functions

133C.1
Introduction

133C.2
Mathematical functions

135C.3
Time functions

136C.4
String functions

139Bibliography

Figures

14Figure 4‑1: Example of space system elements

17Figure 4‑2: Example of a space system model

25Figure A-1 : Example of a procedure and its elements

32Figure A-2 : Execution states and transitions for a procedure

34Figure A-3 : Execution states and transitions for a step

35Figure A-4 : Execution states and transitions for an activity

37Figure A-5 : Confirmation status and continuation action combinations for main body “initiate and confirm” statements

37Figure A-6 : Confirmation status and continuation action combinations for watchdog “initiate and confirm” statements

39Figure A-7 : Example railroad diagram

Tables

45Table A-1 : Predefined types

80Table A-2 : Activity and step operation requests

80Table A-3 : Reporting data, variable and argument operation requests

99Table A-4 : Predefined operators

103Table A-5 : Activity and step property requests

104Table A-6 : Reporting data, variable and argument property requests

104Table A-7 : Event property requests

106Table A-8 : EBNF symbols and meanings

123Table B-1 : Simple engineering units

125Table B-2 : Acceptable multiple and submultiple of engineering unit

126Table B-3 : Acceptable multiples of binary engineering units

126Table B-4 : Standard compound engineering units

133Table C-1 : Mathematical functions

135Table C-2 : Time functions

136Table C-3 : String functions

Introduction
The procedure is the principal mechanism employed by the end-user to control the space system during pre-launch functional testing and post-launch in-orbit operations.

This Standard identifies the requirements to be satisfied by any language used for the development of automated test and operation procedures.

It also defines a reference language that fulfils these requirements. This language is called the “procedure language for users in test and operations (PLUTO)”.
1
Scope
This Standard specifies:

· The capabilities of the language used for the definition of procedures for space system testing and operations.

· The PLUTO language.

Clause 4 defines the context in which procedures operate.

Clause 5 contains the requirements for the procedure language.

Annex A specifies the PLUTO language. This includes:

· The “building blocks” that constitute procedures and the role that each of these building blocks plays in achieving the overall objectives of the procedure.

· The dynamic aspects of procedures i.e. the execution logic of each building block and execution relationships between these blocks.

· The syntax and semantics of the language itself.

Annex B specifies the engineering units to be supported by the procedure language.

Annex C specifies the mathematical, time and string functions to be supported by the procedure language.

This standard may be tailored for the specific characteristics and constraints of a space project in conformance with ECSS-S-ST-00.

2
Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this ECSS Standard. For dated references, subsequent amendments to, or revisions of any of these publications, do not apply. However, parties to agreements based on this ECSS Standard are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references the latest edition of the publication referred to applies.
	ECSS-S-ST-00-01
	ECSS system – Glossary of terms

	ISO/IEC 14977
	Information technology - Syntactic metalanguage – Extended BNF

3
Terms, definitions and abbreviated terms

3.1 Terms from other standards

For the purpose of this Standard, the terms and definitions from ECSS‑S‑ST‑00‑01 apply.

3.2 Terms specific to the present standard

3.2.1 activity

space system monitoring and control function
3.2.2 compound parameter

record comprised of any sequence of reporting data, arrays of reporting data and sub-records that are interpreted together

EXAMPLE An anomaly report generated by the space segment comprising an anomaly report ID and a set of associated parameters.
3.2.3 confirmation body

part of a procedure (or step) whose purpose is to assess whether or not the objective of the procedure (or step) has been achieved
3.2.4 continuation test

language construct used to define how the execution of a procedure (or step) proceeds after a constituent step (or activity) has been executed

3.2.5 event

occurrence of a condition or set of conditions that can arise during the course of a test session or a mission phase
3.2.6 initiation

act of requesting the execution of a step or an activity
3.2.7 main body

part of a procedure (or step) dedicated to achieving the objectives of the procedure (or step)

3.2.8 parameter

lowest level of elementary information that has a meaning for monitoring the space system
3.2.9 preconditions body

part of a procedure dedicated to ensuring that the procedure only executes if or when pre-defined initial conditions are satisfied

3.2.10 procedure

means for interacting with the space system in order to achieve a given objective or sequence of objectives

3.2.11 reporting data

data used for assessing the functioning of the space system

NOTE Reporting data can consist of a parameter (a simple type) or a compound parameter (a complex type).

3.2.12 space system model

representation of the space system in terms of its decomposition into system elements, the activities that can be performed on these system elements, the reporting data that reflects the state of these system elements and the events that can be raised and handled for the control of these system elements, activities or reporting data

3.2.13 statement

element of the procedure language which, together with other elements, implements the goal of a procedure (or step)

3.2.14 step

component of a procedure that achieves a well-defined sub-goal

3.2.15 system element

representation within the space system model of a functional element of the space system

3.2.16 watchdog body

part of a procedure (or step) which manages contingency situations that can arise during the execution of the procedure (or step)

3.2.17 watchdog step

component of the watchdog body dedicated to detecting the occurrence of a particular contingency condition and executing corrective actions

3.3 Abbreviated terms

For the purpose of this Standard, the abbreviated terms from ECSS-S‑ST‑00‑01 and the following apply:

	Abbreviation
	Meaning

	AIV
	assembly, integration and verification

	EBNF
	extended Backus-Naur form

	EGSE
	electrical ground support equipment

	EMCS
	EGSE and mission control system

	FCP
	flight control procedure

	FOP
	flight operations plan

	MMI
	man-machine interface

	PLUTO
	procedure language for users in test and operations

	SCOE
	special check-out equipment

	SSM
	space system model

4
Context of the procedure language

4.1 Introduction

4.1.1 The space system

ECSS-S-ST-00 defines the overall space system as comprising a space segment, a ground segment and a launch service segment.

An example of the elements of a space system is shown in Figure 4‑1. The space system elements shown in this figure are operational at different times:

· the electrical ground support equipment (EGSE) during the development phase;

· the launch service segment during the pre-launch and launch phases;

· the mission control and ground station systems during the mission operations phase.

[image: image2.emf]

Ground Segment

Ground Station System Mission Control System

OCS

PCS

MES

EGSE

SSCS

SSCS

SSC

ME

ME

ME

GCS

Key : OCS: Operation control system SSC: Space segment control station PCS: Payload control system ME: Mission exploitation station MES: Mission exploitation system GCS: Ground communications subnet AIV: Assembly, integration and ver ification

Space Segment

Spacecraft B

Platfor m

Payloa d

Onboar d subne t

Spacecraft A

Platfor m

Payloa d

Onboard Subnet

Space Subnet

AIV Subnet

Launch Vehicle A

Launch Service Segment

Launch Vehicle B

Launch Vehicle C

Launch Facility

Pre - Launc h Service Link

Comms Link

Figure 4‑1: Example of space system elements

4.1.2 Satellite testing

ECSS-E-ST-10, ECSS-E-ST-10-02 and ECSS-E-ST-10-03 define the requirements for space system engineering, verification and testing.

This Standard does not prescribe the levels of integration and test at which procedures are used. This is considered to be a decision taken when the verification approach for a specific mission is defined. However, automated procedures are generally employed from the subsystem level upwards.

The re-use of test procedures at different levels of integration implies standardization of the functionality of the EGSE. Furthermore, the re-use of these procedures in the mission operations domain implies the harmonisation of the requirements for EGSE and mission control systems.

4.1.3 Mission operations

ECSS-E-ST-70 identifies procedures as the primary mechanism for conducting mission operations and defines two types of flight control procedures (FCP):

· Nominal procedures

These define the set of in-orbit operations of the space system to be used under nominal conditions. They constitute the building blocks from which the mission timelines and schedules of the flight operations plan (FOP) are constructed.

· Contingency procedures

These define the recovery actions used to reconfigure the space system if pre-identified anomalies or failures occur.

Although FCPs have traditionally been executed under manual control, pressure to reduce manpower during routine mission operations implies more automation of routine tasks such as the execution of procedures.

4.2 EGSE and mission control system (EMCS)

4.2.1 General

In this Standard, the elements of the ground segment responsible for the monitoring and control of the overall space system, namely the EGSE and the mission control system are referred to jointly as the EMCS.

The procedure language and the procedure development and execution environments are an integral part of any EMCS. As such, they have direct access to other monitoring and control functions implemented within the overall EMCS.

4.2.2 Space system model

ECSS-E-ST-70-31 introduces the concept of a space system model (SSM) as a means for capturing mission knowledge used during AIV and operations. This knowledge is used by the different EMCS applications in order to interact with the space system and to process the dynamic data that is exchanged with it (i.e. space segment telemetry and telecommands, ranging data, ground segment commands and measurements).

The SSM consists of different types of object and the relationships between these objects. The objects of relevance for the procedure language are system elements, reporting data, activities and events.

System elements correspond to:

· the elements of the space segment resulting from the functional decomposition defined in ECSS-S-ST-00;

· the elements of the ground segment resulting from the functional decomposition defined in ECSS-E-ST-70.

Reporting data and activities are associated with system elements:

· Reporting data comprises parameters and compound parameters. A parameter is the lowest level of elementary information that has a meaning for monitoring the space system. A compound parameter is a record comprised of any sequence of parameters, arrays of parameters and sub-records (see also ECSS-E-ST-70-41). For example, a complete telemetry packet, or part thereof, may be represented as a compound parameter. The parameters within a compound parameter are normally interpreted together (e.g. when interpreting the contents of an anomaly report). Reporting data can have different representations depending on its life cycle within the space system (e.g. an on-board measurement has an encoded value in telemetry and a raw or engineering value when presented on a ground segment display).

· An activity is a space system monitoring and control function. The term activity is introduced to refer generically to procedures, telecommands (either to the space segment or to the ground segment) and any function provided by the underlying EMCS (e.g. a printer request, sending an e-mail, transferring a file using ftp). A given mission can implement additional mission-specific activity types (e.g. conforming to a non-standard protocol).

Events are associated with system elements, reporting data and activities. An event is an occurrence of a condition or set of conditions that can arise during the course of a test session or a mission phase. It is used to trigger a monitoring and control function implemented within the space system.

An example of a space system model is shown in Figure 4‑1.

[image: image3.wmf]Space segment

Temperature

Switch On

Space system

Ground segment

AOCS

Power subsystem

Star tracker

Optical head

EGSE

MCS

Ground Station

Baseband equipment

Telemetry decoder

Switch On

Background Count Report

Telemetry

Lock Status

Go NoGo Status

Source Count

Switch On Failure

Undervoltage

Event

Key:

Reporting data

Activity

Figure 4‑2: Example of a space system model

During the course of spacecraft testing and mission operations, the space system is configured in different ways, for example:

· to test elements of the space segment in a stand-alone manner;

· to test the space segment during integration when some elements are missing;

· to validate the ground segment with a simulated space segment.

The concepts of system elements, activities, reporting data and events provide a complete definition of the SSM independent of any specific space system configuration. However, for a given space system configuration, only a subset of the overall SSM is used.

In order to understand the scope of the procedure language, it is important to understand what is provided by the SSM. The SSM (as specified in ECSS‑E‑ST-70‑31) provides the definition of space system configurations, system elements, activities, reporting data and events.

The procedure language provides the means to:

· refer to system elements, activities, reporting data and events but not to define them;

· define the procedural script.

For activities, the common set of data definitions in the SSM includes:

· name;

· description;

· type (procedure, telecommand or operating system call);

· associated system element;

· version number and configuration history;

· validation status (i.e. information on the testing status of the activity);

· validity period, i.e. the earliest and the latest date on which the activity can be executed;

· expected (i.e. mean) duration;

· maximum and minimum durations;

· list of arguments, including for each argument:

· name,

· description,

· engineering units,

· data type, and

· default value;

· allowed combinations of argument values;

· other attributes used for mission planning purposes such as the profile of resources that the activity utilizes (e.g. onboard power and downlink bandwidth).

In addition, the different types of activity have type-specific definitions; for procedures, this includes:

· default execution mode (manual or automatic);

· activation mode (i.e. whether the procedure is permanently active or is explicitly initiated);

· the procedural script.

5
Requirements to be satisfied by procedures

5.1 Procedure structure

a. The capability shall be provided to construct a high-level, goal-oriented activity (namely a procedure) using elementary activities consisting of telecommands and operating system calls.

b. A procedure may include calls to execute other procedures.

c. The capability shall be provided to define self-contained sub-goals for a procedure.

d. A given sub-goal may be achieved by a single activity call or a sequence of activity calls.

e. An activity may have associated arguments whose values are passed to the activity at the time of initiation.

f. Where the achievement of a sub-goal involves complex logic (such as waiting for a period of time, waiting for a condition to become true or conditional branching), a step construct shall be provided to encapsulate the logic.

g. The capability shall be provided to execute procedure sub-goals in series or in parallel.

NOTE Parallel execution is used, for example, when two or more steps can be performed completely independently.

h. Preconditions may be specified for a procedure.

NOTE Preconditions are conditions to be fulfilled before the procedure can start.

i. Confirmation conditions may be specified for a procedure.

NOTE Confirmation conditions are those conditions that determine whether the goal of a procedure is met.

j. Preconditions and confirmation conditions may also be defined for steps.

k. In addition to the “nominal flow path” of a procedure (i.e. the flow designed to achieve its primary goal), contingency actions may also be defined.

l. A procedure contingency action may be executed upon:

1. detection of space system anomalies;

2. detection of a failure in the execution of the nominal path;

3. other specified events or conditions.

m. In addition to the “nominal flow path” of a step, contingency actions may also be defined.

n. A step contingency action may be executed upon:

1. detection of a failure in the execution of the nominal path;

2. other specified events or conditions.

o. A contingency action should be taken at the level at which a failure occurs, i.e. if a failure occurs in the execution of a step, a contingency action should be taken at the level of the step.

p. A contingency action should rectify the detected anomaly or report it to the user and return control to the nominal flow path of the procedure (or step).

q. If an anomaly cannot be rectified, one of the following actions shall be performed:

1. generate an event to flag the problem at a higher level for resolution;

2. use other means to achieve the goal of the procedure (or sub-goal of a step) and then terminate the procedure (or step);

3. abort the procedure (or step).

r. If a contingency action is invoked, the body of the procedure (or step) shall be suspended until the contingency action is completed.

5.2 Language constructs

a. The capability shall be provided to request the execution of any space system activity.

b. The capability shall be provided to request the execution of an activity and proceed immediately with the execution of the next statement of the procedure.

c. The capability shall be provided to request the execution of an activity and wait for the confirmation of execution before continuing.

d. When a procedure waits for the confirmation of execution of an activity, the result of the execution of the activity shall be tested in order to determine the subsequent course of action.

e. The capability shall be provided to acquire the following data:

1. the execution status or confirmation status of an initiated activity;

2. the initiation time, start time, termination time or completion time of the last execution of an activity;

3. the value of reporting data;

4. the validity status of a parameter;

5. the overall monitoring status or detailed monitoring status (limit-check, delta-check, expected status check or status consistency check) of a parameter;

6. the sampling time of reporting data;

7. the time of the last occurrence of an event.

f. When a given space system function is unavailable (e.g. during an early test phase), the capability shall be provided to replace the missing function. This includes setting:

1. the confirmation status of an activity;

2. the value of a parameter;

3. the validity status of a parameter;

4. the overall monitoring status or detailed monitoring status (limit-check, delta-check, expected status check or status consistency check) of a parameter;

5. the sampling time of reporting data.

g. To avoid the problem that can arise with asynchronous systems where a new instance of reporting data arrives between two successive procedure statements that use different properties of this object, the capability shall be provided to create a local copy of reporting data.

NOTE This ensures that the procedure uses properties of reporting data that have been sampled at the same instant in time.

h. To ensure that any service provided by the EMCS is accessible within a procedure, the following capabilities shall be provided:

1. to request any operation defined for any space system object;

2. to acquire the value of any property of any space system object.

i. The capability shall be provided to perform the following execution flow controls within a procedure:

1. simple conditional branching (i.e. if … then … else …);

2. multiple conditional branching where the path taken is dependent on the value of a specified parameter (or local variable, see j below);

3. repeated execution of a statement (or a group of statements) with the possibility of repeating the execution a specified number of times, repeating the execution indefinitely whilst a given condition holds true or repeating the execution until a given condition becomes true;

4. wait until a given absolute time;

5. wait for a given interval of time to elapse;

6. wait until a given condition becomes true;

7. wait until a given event occurs.

j. Local variables used within a procedure shall be declared and their type explicitly stated.

k. The capability shall be provided to assign a value to a local variable within a procedure.

l. The capability shall be provided to raise a local event within a procedure (e.g. to trigger a contingency action).

m. Local events shall be defined as part of the procedure (or step) declarations.

n. Mathematical, time and string functions as specified in Annex C should be supported.

o. The capability shall be provided to construct expressions that operate on constants, space system parameters acquired from the EMCS, activity arguments (whose values are supplied at runtime) and local variables.

p. Engineering units shall be supported.

q. The capability to assign engineering units to constants shall be supported.

r. The capability to mix compatible units freely within an expression shall be supported

s. The automatic conversion between different, but compatible, units shall be supported.

t. Comments may be included within a procedure.

u. The capability shall be provided to generate a message for acknowledgement by the user.

v. The capability shall be provided to generate a message for entry in the procedure execution log.

w. The capability shall be provided to acquire inputs from the user.

x. The conditions specified for a procedure (or step) precondition or confirmation may be any combination of the following:

1. wait until a given absolute time;

2. wait for a given interval of time to elapse;

3. wait until a given condition becomes true;

4. wait until a given event occurs;

5. test whether a given condition is true;

6. request the user to specify the outcome.

5.3 Language specification

a. Any language that complies with this Standard shall be formally specified using the ISO extended Backus-Naur form (EBNF), in conformance with ISO/IEC 14977.

b. The PLUTO procedure language, engineering units and functions, as specified in Annex A should be used for the automation of procedures in the development and exploitation phases of space systems.

NOTE Use of the PLUTO language ensures conformance with all requirements of this Standard. It also facilitates the transfer of procedure knowledge, acquired in the development phase during functional testing, to the mission operations phase (for a given mission) and encourages the use of a common procedure language across missions.

Annex A (informative)
The PLUTO language

A.1 The structure of a procedure

A.1.1 Procedure definition

A procedure comprises the following elements:

a. An optional declaration body, which declares the local events that can be raised within the procedure.

b. An optional preconditions body, which ensures that the procedure is only executed if (or when) pre-defined initial conditions are satisfied.

c. A mandatory main body, which fulfils the goal of the procedure. The main body can be composed of self-contained sub-goals fulfilled by activities or steps.

d. An optional watchdog body, which manages contingency situations that can arise during the execution of the procedure. The watchdog body is composed of one or more special steps, called watchdog steps, which are all initiated in parallel.

e. An optional confirmation body, which assesses whether the objectives of the procedure have been achieved or not.

An example of a procedure and its elements is shown in Figure A-1.

[image: image4.emf]

Preconditions Body

Main Body Sequential sub - goals Parallel sub - goals

Watchdog Body

Confirmation Body

Watchdog Step Watchdog Step

Declaration Body

Sub - goal

Sub - goal

Sub - goal

Sub - goal

Sub - goal

Figure A-1 : Example of a procedure and its elements

A.1.2 Procedure declaration body

Local events that can be raised within the procedure, but which are accessible outside of the step in which they are raised (e.g. events that trigger a procedure-level watchdog, see clause A.1.5), are declared at procedure level.

Arguments may be passed to a procedure at initiation time by the entity calling the procedure. These arguments are defined externally (see clause 4.2.2) and not as part of the procedure declarations.

Arguments are similar to parameters in their definition and use.

Argument values cannot be changed within a procedure.

A.1.3 Procedure preconditions body

The preconditions body contains the conditions that define whether a procedure can start. They may be any combination of the following:

· wait until a given absolute time;

· wait for a given time interval to elapse;

· wait until a given condition becomes true;

· if the result of a logical expression (Boolean condition) is true;

· request a decision from the user.

A.1.4 Procedure main body

The main body of a procedure consists of a sequence of statements of the following type:

· set procedure context statement;

· initiate in parallel;

· initiate and confirm step;

· initiate and confirm activity;

· initiate activity;

· inform user statement;

· log statement.

The “initiate in parallel” statement enables a combination of steps and activities to be executed in parallel with the subsequent behaviour being one of the following:

f. the set of parallel steps or activities ends when any one of the steps or activities has ended;

g. the set ends when all of the steps or activities have ended.

A.1.5 Procedure watchdog body

The watchdog body is composed of watchdog steps. Each watchdog step monitors for the occurrence of a particular contingency condition and executes corrective actions if the condition occurs.

The purpose of the procedure watchdog body is the following:

· Detection of, and reaction to, system-level events, for example space system anomalies. The procedure watchdog body need not rectify all anomalies internally; it can suspend or abort the procedure whilst another procedure handles the anomaly.

· Ensuring that procedure-level invariant conditions are sustained for the duration of the procedure.

· Management of errors (e.g. failures) in procedure execution that cannot be handled by the watchdog of the relevant procedure main body step (see clause A.1.7.5).

NOTE Error handling following execution of a procedure is managed by the calling entity.

Contingency situations monitored for by concurrently active watchdog steps are independent of each other. The reason for this is that when a watchdog step is triggered, it suspends the main body of the corresponding procedure whilst it takes the appropriate recovery action, but any other watchdog steps that are active continue their monitoring. Consequently, if there is any potential interaction between two or more contingency actions, the design of the procedure ensures that they are handled within the same watchdog step.

A.1.6 Procedure confirmation body

Within the confirmation body, a procedure can be confirmed by any combination of the following conditions:

· wait until a given absolute time;

· wait for a given time interval to elapse;

· wait until a given condition becomes true;

· if the result of a logical expression (Boolean condition) is true;

· request a decision from the user.

A.1.7 Structure of a step

A.1.7.1. Step definition

The structure of a step is identical to the structure of a procedure: a step is composed of an optional declaration body, a preconditions body (optional for a main body step, mandatory for a watchdog step), a mandatory main body, an optional watchdog body and an optional confirmation body.

The declarations at step-level (see clause A.1.7.2) are different from those at procedure-level and the set of statements that can be used in a step main body (see clause A.1.7.4) is different from that which can be used in a procedure main body.

A step has a name, which is unique within a procedure. This name may be used to refer to the step.

Whilst steps within a procedure main body may have a watchdog body, watchdog steps do not have a watchdog body.

The preconditions body is mandatory for a watchdog step (since the preconditions body defines the contingency condition for which the watchdog step is monitoring).

A.1.7.2. Step declaration body

The following are declared at step level:

· Local variables: the objects defined for internal use within a step.

Local variables are similar to parameters in their definition and use. They have an engineering value and a validity status, which is "invalid" until the variable is first assigned a value.

Local variables can be used by steps contained within a step and also by watchdog steps within the step watchdog body.

· Local events: the events that can be raised within the step and which are only accessible from within that step.

A.1.7.3. Step preconditions body

Within the preconditions body of a main body step, the conditions that define whether a step can start may be any combination of the following:

· wait until a given absolute time;

· wait for a given time interval to elapse;

· wait until a given condition becomes true;

· if the result of a logical expression (Boolean condition) is true;

· request a decision from the user.

However, the preconditions body of a watchdog step consists of a single “wait” condition.

A.1.7.4. Step main body

The main body of a step consists of a sequence of statements of the following type:

· set step context statement;

· assignment statement;

· flow control statements:

· if statement;

· case statement;

· loop statements:

· while statement;

· for statement;

· repeat statement;

· wait statement;

· object operation request statement;

· save context statement;

· initiate in parallel (steps or activities or both);

· initiate and confirm step;

· initiate and confirm activity;

· initiate activity;

· inform user statement;

· log statement.

A.1.7.5. Step watchdog body

A step watchdog body manages the following:

· detection of, and reaction to, any failures that occur within the main body of the corresponding step;

· ensuring that step-level invariant conditions are sustained for the duration of the step.

NOTE Error handling following execution of a step is managed by the calling entity.

A.1.7.6. Step confirmation body

Within the confirmation body, a step can be confirmed by any combination of the following conditions:

· wait until a given absolute time;

· wait for a given time interval to elapse;

· wait until a given condition becomes true;

· if the result of a logical expression (Boolean condition) is true;

· request a decision from the user.

A.2 The behaviour of a procedure

A.2.1 Procedure execution flow

Procedures can be initiated by different mechanisms within the EMCS, e.g. by a user via an MMI or automatically as a call from another procedure.

During the execution of a procedure, its “execution status” changes to reflect the path that it follows ("preconditions", "executing", "confirmation" or "completed").

On completion, the “confirmation status” of a procedure changes to reflect its success or failure ("confirmed", "not confirmed" or "aborted"). Prior to completion, the confirmation status of the procedure is "not available".

The execution and confirmation statuses can be used by the calling entity to monitor and control the execution of the procedure.

h. When the procedure is initiated, the procedure preconditions body is executed (execution status: "preconditions", confirmation status: "not available"). The outcome is one of the following:

· the preconditions are satisfied, resulting in the initiation of the watchdog body (i.e. the initiation of all watchdog step preconditions bodies) and then the initiation of the main body;

· the preconditions are not satisfied, resulting in the aborting of the procedure (execution status: "completed", confirmation status: "aborted").

If the procedure has no user-defined preconditions, the watchdog body and main body are started immediately.

i. The procedure main body consists of a sequence of statements, which are of the type “initiate” (initiate activity, initiate and confirm step, initiate and confirm activity or initiate steps or activities in parallel), or are informative in nature (inform user or log), or define the context in which statements are executed.

When the main body is started, the first statement in the sequence is executed. Subsequent statements are executed according to the sequence logic (execution status: "executing", confirmation status: "not available").

The initiate and confirm statements (step or activity) include a continuation test, which determines how the main body continues based on the final value of the confirmation status. The outcome is one of the following:

· continue the execution of the main body;

· restart the current step or activity, i.e. restart from the preconditions body (if defined);

· raise a local event that is caught by a watchdog step;

· abort the procedure (execution status: "completed", confirmation status: "aborted").

j. The watchdog body comprises a number of (watchdog) initiate and confirm step statements. When the watchdog body is started, all of its step statements are initiated in parallel. Each watchdog step is designed to detect a particular contingency situation.

· If none of these contingency situations arises during the procedure execution, the watchdog body is automatically terminated when the procedure main body ends execution;

· If a contingency arises, the main body of the procedure is suspended whilst the contingency is handled by the relevant watchdog step (execution status: "executing", confirmation status: "not available").

Suspension of the main body means that the currently executing atomic statement is completed, but the subsequent action (if any) indicated as a result of that statement is not taken.

NOTE 1
An atomic statement is the lowest level of statement within the procedure language. All statements except “initiate and confirm step”, “initiate activity”, “initiate and confirm activity” and “initiate in parallel” are atomic in nature.

NOTE 2
In the case that the main body is executing an “initiate in parallel” statement, all executing statements are suspended when all currently executing atomic statements are completed.

The subsequent flow depends on the success or otherwise of the recovery and the “continuation action” arising within the watchdog step. The following cases can arise:

· The contingency is rectified and control is returned to the procedure main body (continuation action: "resume", execution status: "executing", confirmation status: "not available"). The execution of the main body is resumed at the end of the previously executing atomic statement. The watchdog step that handled the contingency is re-started.

· The contingency is handled by the watchdog by achieving the procedure goal through an alternative path. The procedure main body and the procedure watchdog body are then terminated and the procedure confirmation body is started (continuation action: "terminate", execution status: "confirmation", confirmation status: "not available").

· The contingency cannot be handled by this watchdog step, in which case either a local event is raised, which triggers another watchdog step (continuation action: "raise event"), or the procedure is aborted (continuation action: "abort", execution status: "completed", confirmation status: "aborted").

· If a second watchdog step is triggered whilst the first is still executing, the two watchdog steps are executed in parallel. Control is only returned to the procedure main body when both watchdog steps have completed execution. The watchdog steps are restarted as soon as they complete execution. If either watchdog step yields an "abort" continuation action, the procedure is aborted immediately.

k. When the main body has completed execution (i.e. when all initiated steps and activities have completed execution), the watchdog body is terminated and the confirmation body is executed (execution status: "confirmation", confirmation status: "not available").

NOTE This execution includes any parallel steps and activities that were initiated as part of an “initiate in parallel” statement with an "until one completes" termination condition.

l. When the confirmation body has completed execution, the procedure execution is completed. The outcome is one of the following:

· the confirmation conditions are fulfilled (execution status: "completed", confirmation status: "confirmed");

· the confirmation conditions are not fulfilled (execution status: "completed", confirmation status: "not confirmed").

If the procedure has no user-defined confirmation conditions, an implicit condition is used instead that depends on whether or not the confirmation body has been initiated by a watchdog step terminate action:

· If the confirmation body has been initiated by a “terminate” action of a watchdog step, the procedure confirmation status is set to the confirmation status of the watchdog step.

· Otherwise, the confirmation status is set to:

· "confirmed" if all the activities and steps that have been initiated in the main body have been confirmed.

· "not confirmed" in all other cases.

Figure A-2 shows the different execution states through which a procedure can pass when it is executed and the allowed transitions between these states.

[image: image5]
Figure A-2 : Execution states and transitions for a procedure

A.2.2 Step execution flow

Steps are initiated by the execution of one of the following statements:

· within a procedure (or step) main body: “initiate and confirm step” or “initiate in parallel”;

· within a procedure (or step) watchdog body: “initiate and confirm step”.

The initiate statement implies both the execution of the step bodies and the “continuation action” derived from the execution result which determines the subsequent course of action.

m. The execution of the step preconditions body and main body proceeds in the same manner as described in clause A.2.1 for the procedure preconditions and main bodies.

n. The step watchdog body comprises a number of watchdog steps, each designed to detect a particular contingency:

· If none of these contingency situations arises during the step execution, the step watchdog body is automatically terminated when the step main body ends execution.

· If a contingency arises, the main body of the step is suspended whilst the contingency is handled by the relevant watchdog step (execution status: "executing", confirmation status: "not available").

The subsequent flow depends on the success or otherwise of the recovery and the continuation action arising within the watchdog step. The following cases can arise:

· The contingency is rectified and control is returned to the step main body (continuation action: "resume", execution status: "executing", confirmation status: "not available"). The watchdog step that handled the contingency is re-started.

· The contingency is handled by the watchdog by achieving the step goal through an alternative path. The step main body and the step watchdog body are then terminated and the step confirmation body is started (continuation action: "terminate", execution status: "confirmation", confirmation status: "not available").

· The contingency cannot be handled by this watchdog step, in which case either a local event is raised, which triggers another watchdog step (continuation action: "raise event") or the step is aborted (continuation action: "abort", execution status: "completed", confirmation status: "aborted").

· If two watchdog steps are triggered at the same time, their subsequent behaviour is the same as described for a procedure.

o. When the step main body has completed execution, the step watchdog body is terminated and the execution of the step confirmation body is initiated (execution status: "confirmation", confirmation status: "not available").

p. When the confirmation body has completed execution, the step execution is completed (confirmation status: "confirmed" or "not confirmed").

q. For a step, the decision on how to proceed following execution is defined within the continuation test, depending on the value of the step confirmation status ("confirmed", "not confirmed" or "aborted"). A continuation action is defined for each confirmation status, either explicitly within the initiate step statement, or by default. This is unlike for a procedure, where the decision on how to proceed following execution remains with the calling entity.

If the outcome of the continuation test is "restart", the step restarts (execution status: "preconditions"). Otherwise, the step completes execution (execution status: "completed").

If there are no user-defined preconditions or confirmation conditions for a given step, default conditions are used. These default conditions are the same as defined in clause A.2.1 for a procedure.

Figure A-3 shows the different execution states through which a step can pass when it is executed and the allowed transitions between these states.

[image: image6]
Figure A-3 : Execution states and transitions for a step

A.2.3 Activity execution flow

Activities are initiated directly within a procedure or within a step by the execution of either an “initiate activity” or an “initiate and confirm activity” statement. The control of the execution of an activity is managed by the EMCS.

Figure A-4 shows the different executions states through which an activity can pass when it is executed and the allowed transitions between these states. Depending on how the activity is implemented, e.g. as a telecommand or a procedure, different notifications are reported by the EMCS for the monitoring of the progress of execution by the initiating entity. These notifications correspond to the state transitions, but also to sub-state transitions which are specific to different activity types (e.g. for telecommand, routing stages such as “released from EMCS”, “reception by ground station” and “reception on-board”).

r. In the case of an “initiate activity” statement, the calling entity (procedure or step) proceeds with the execution of the next statement without waiting for notification of completion of the activity.

s. In the case of an “initiate and confirm activity”, the decision on how to proceed following execution is defined within the continuation test, depending on the value of the confirmation status ("confirmed", "not confirmed" or "aborted"). As for a step, the continuation action is defined for each confirmation status, either explicitly within the initiate statement, or by default.

If the outcome of the continuation test is "restart", the activity restarts (execution status: "preconditions"). Otherwise, the activity completes execution (execution status: "completed").

[image: image7]
Figure A-4 : Execution states and transitions for an activity

A.2.4 Execution in parallel

When an “initiate in parallel” statement is executed, all constituent steps and activities are initiated in parallel.

t. Where the termination condition of the “initiate in parallel” statement is defined as "until one completes", the first step or activity to complete initiates the execution of the next statement in the main body of the calling entity (procedure or step). All other parallel steps and activities continue to execute after the first one has completed. When these other parallel steps and activities complete, the continuation actions indicated in their respective continuation tests are taken, except if the specified action is "continue" when no further action is taken.

u. Where the termination condition of the “initiate in parallel” statement is defined as "until all complete", the continuation actions evaluated within the individual steps and activities (or input by the user, if "ask user" is the continuation action) can be different.

· When the action returned by a given step or activity is "abort", the procedure (or step) is immediately aborted (including aborting any other parallel steps and activities that are still executing).

· When the action returned by a given step or activity is "restart", the action is taken immediately and the initiated step or activity is restarted. Its execution status is reset to "preconditions" and its confirmation status is reset to "not available". The “initiate in parallel” statement cannot complete until the restarted step or activity has completed.

· When the action returned by a given step or activity is "raise event", the event is raised immediately, the event is then caught by a watchdog step which suspends its corresponding main body.

A.2.5 Continuation following an “initiate and confirm” statement

An “initiate and confirm” statement can have an explicit “continuation test” as part of its definition. This continuation test consists of up to three couplets of confirmation status and corresponding continuation action (one couplet for each confirmation status). In the event that no continuation test is specified (or less than three couplets are specified), default continuation actions are defined.

Figure A-5 presents the default, allowed and forbidden combinations of confirmation status and continuation action for “initiate and confirm” statements that are part of a main body.

NOTE The allowed combinations of confirmation status and continuation action can be extended for special testing scenarios. For example, a test can be designed to validate the rejection of a critical command, such as “deploy solar array”, where the successful outcome of the test is that the corresponding activity is "aborted". In this case, the continuation action "continue" can be defined for the confirmation status "aborted".

Figure A-6 presents the default, allowed and forbidden combinations of confirmation status and continuation action for “initiate and confirm” statements that are part of a watchdog.

	Confirmation status
	Continuation action

	
	"resume"
	"abort"
	"restart"
	"ask user"
	"raise event"
	"continue"
	"terminate"

	
	"confirmed"
	
	
	
	
	
	(
	

	
	"not confirmed"
	
	
	
	(
	
	
	

	
	"aborted"
	
	(
	
	
	
	
	

	Key:
	(
	Default
	
	Allowed
	
	Forbidden

Figure A-5 : Confirmation status and continuation action combinations for main body “initiate and confirm” statements

	Confirmation status
	Continuation action

	
	"resume"
	"abort"
	"restart"
	"ask user"
	"raise event"
	"continue"
	"terminate"

	
	"confirmed"
	(
	
	
	
	
	
	

	
	"not confirmed"
	
	
	
	(
	
	
	

	
	"aborted"
	

	(
	
	
	
	
	

	Key:
	(
	Default
	
	Allowed
	
	Forbidden

Figure A-6 : Confirmation status and continuation action combinations for watchdog “initiate and confirm” statements

The meaning of the different continuation actions is as follows:

· "resume"

Only used within the continuation test of a watchdog “initiate and confirm” statement. It resumes the execution of the main body of the procedure (or step) at the place at which it was suspended when the contingency was detected.

· "abort"

Aborts the procedure (or step).

· "restart"

Only used within the continuation test of a main body “initiate and confirm” statement and it restarts the corresponding “initiate and confirm” statement. To avoid a potentially indefinite loop, a timeout or a maximum number of iterations can be specified. The timeout is expressed as a relative time from the start of execution time of the statement. If the timeout or the maximum number of iterations is exceeded then either:

· an event is raised which terminates the statement and is then handled by a corresponding watchdog step, or

· the parent procedure (or step) is aborted.

· "ask user"

Asks the user to specify how to proceed.

For a main body “initiate and confirm” statement, the user may select any continuation action except "resume", "ask user" and "terminate". For a watchdog “initiate and confirm” statement, the user may select any continuation action except "continue" and "ask user".

· "raise event"

Raises a local event, which is caught by a watchdog step of the procedure (or step). When the watchdog step has performed its function, the execution of the main body of the procedure (or step) resumes at the place at which it was suspended when the watchdog was triggered.

· "continue"

Only used within a continuation test of a main body “initiate and confirm” statement. It implies that the procedure (or step) continues to be executed according to the content of the main body.

· "terminate"

Only used within the continuation test of a watchdog “initiate and confirm” statement. It prematurely ends the execution of the procedure (or step) main body and starts the execution of the confirmation body.

In the case of a watchdog “initiate and confirm step” statement, the step itself is re-initiated unless the continuation action is "abort".

A.3 PLUTO language definition

A.3.1 Conventions

The terminology used in defining the syntax of the procedure language is compatible with ISO/IEC 14977.

The syntax of the procedure language is a set of rules, collectively known as a grammar.

Each rule defines a construct of the language, known as a “non-terminal symbol”. A non-terminal symbol is a combination of zero or more non-terminal symbols and “terminal symbols”. A terminal symbol is a sequence of one or more characters forming an irreducible element of the language.

A terminal symbol may consist of one or more words separated by one or more separators. The space, tab and end-of-line characters are separators.

The definition of the language constructs uses a graphical convention known as a “railroad” diagram, an example of which is shown in Figure A-7. The elements of this graphical convention are listed below:

· the name at the top of the diagram is that of the non-terminal symbol being defined;

· the main line corresponds to mandatory elements of the construct;

· branch lines correspond to optional elements;

· “return” lines correspond to optional repetitions of one or more elements;

· non-terminal symbols are enclosed in rectangles;

· terminal symbols are enclosed in round-cornered boxes (in the limit, a circle).

[image: image8.wmf]repeat

Step Statement

until

Expression

;

Repeat Statement =

Timeout

Figure A-7 : Example railroad diagram

Figure A-7 defines that a repeat statement starts with the keyword “repeat” followed by one or more step statements, each separated by a “;”, followed by the keyword “until” and an expression (whose result, when true, terminates the repeat loop), followed by an optional timeout.

A.3.2 Language case sensitivity

Only engineering units (as defined in Annex B) are case sensitive. All other words used in the language are not case-sensitive.

A.3.3 Comments

Comments may be inserted within a procedure. Comments have no effect on the execution of a procedure.

Comments begin and end with the character pair symbols "/*" and "*/" respectively.

A.3.4 Keywords

A number of words have a special meaning in the procedure language. If any of these words are used in the naming of space system objects (e.g. in the name of a parameter), it is important to ensure that there is no potential ambiguity for end-users when interpreting a procedure. For the system implementing the procedure language, the ambiguity is resolved by the application of precedence rules that are either specified implicitly by the grammar or defined explicitly in this Standard.

These words are called “keywords” and are shown in bold face and between straight quotes.

EXAMPLE "procedure", "not confirmed", ">=", "XOR", "execution status", "acos", "is contained in"

NOTE 1
Spaces (such as white space, tab and carriage return) within keywords are treated as single blanks.

NOTE 2
Keywords are not case-sensitive.

A.3.5 Identifiers

An identifier denotes a name and consists of one or more words separated by spaces, where each word is a sequence of letters and digits.

An identifier is unique within its own context. For example, step identifiers are unique within a procedure, but the same step identifier may be used in several procedures.

Reference to an object outside its context is achieved by use of an “object reference path” (see clause A.3.9.8 for the “Object Reference” language construct).

An identifier has the general form:

[image: image9.wmf]Identifier First Word

Identifier

=

Identifier Subsequent Word

[image: image10.wmf]Letter

Letter

Digit

Identifier First Word

=

[image: image11.wmf]Letter

Digit

Identifier Subsequent Word

=

where:

· Letter is an upper-case or lower-case letter of the alphabet;

· Digit is one of the decimal characters from 0 to 9.

A.3.6 Constants

A constant can be one of the following:

[image: image12.wmf]Constant

=

Boolean Constant

Integer Constant

Real Constant

String Constant

Absolute Time Constant

Relative Time Constant

Enumerated Constant

v. A Boolean constant is represented as:

[image: image13.wmf]FALSE

Boolean Constant

=

TRUE

w. An enumerated constant is represented by:

[image: image14.wmf]"

Characters

"

Enumerated Constant

=

where Characters is any sequence of letters or digits or one of the following characters:

space ! " # $ % & ' () * + , - . / : ; < = > ? @ [\] ^ _ ` { | } ~

To enter a double quote, it is preceded by a reverse solidus character (i.e. "\").

To enter a reverse solidus character, it is preceded by a reverse solidus character.

EXAMPLE "red", "yellow", "green", "not confirmed"

x. An integer constant is represented as:

[image: image15.wmf]Digit

Integer Constant

=

Sign

?

Engineering Units

?

Hexadecimal Constant

where Sign is as follows:

[image: image16.wmf]Sign

=

+

-

Digit is one of the decimal characters from 0 to 9.

?Engineering Units? is one of the engineering units defined in Annex B.

NOTE The “?” is a special-sequence-symbol which indicates the start and end of a special sequence (see ISO/IEC 14977); in this case a standalone syntax for Engineering Units.

Hexadecimal Constant is defined as follows:

[image: image17.wmf]Hexadecimal Symbol

Hexadecimal Digit

Hexadecimal Constant =

· The Hexadecimal Symbol is the character pair symbol "0x".

· The Hexadecimal Digit is a decimal character from 0 to 9 or a letter from A to F;

EXAMPLE 23 A, 2056, 0x2056, 0xFFFF

y. A real constant is represented as:

[image: image18.wmf]Real Constant

=

Sign

.

Digit

e

Digit

Sign

Digit

?

Engineering Units

?

EXAMPLES 123.56e12, 0.1, 23E6, 5.3 [kg/m^3]
z. A string constant is represented as:

[image: image19.wmf]"

Characters

"

String Constant =

EXAMPLE "The double-quote character is : \". "

aa. An absolute time constant XE "absolute time constant" is represented as:

[image: image20.wmf]Absolute Time Constant

=

Day Of Month

Hour

Minute

Fraction Of Second

Second

Year

-

-

:

Month

T

Z

:

.

Day

Year

-

Hour

Minute

Fraction Of Second

Second

:

T

:

.

Z

1. Month/day of month calendar variation

Year-Month-Day Of MonthTHour:Minute:Second.Fraction Of Second(Z)

where:

Year = four digits with a value in the range 0001-9999;

Month = two digits with a value in the range 01-12;

Day Of Month = two digits with a value in the range 01-28, 01-29, 01-30, or 01-31;

"T" = calendar-time separator;

Hour = two digits with a value in the range 00-23;

Minute = two digits with a value in the range 00-59;

Second = two digits with a value in the range 00-59 (00-58 or 00-60 during leap seconds);

Fraction Of Second = one to n digits. To obtain a given precision, the appropriate number of digits to the right of the period is used;

"Z" = optional terminator.

EXAMPLE 2001-08-18T21:07:43.137468Z

2. Year/day of year calendar variation

Year-DayTHour:Minute:Second.Fraction Of Second(Z)

where:

Year, "T", Hour, Minute, Second, Fraction Of Second, "Z": are as defined in 1. above;

Day = three digits with a value in the range 001-365 or 001‑366.

EXAMPLE 2001-033T13:21:32.226

NOTE
Leading zeros are included to make up the specified number of digits.

NOTE
Elements shown in brackets are optional.

3. A relative time (duration) constant is represented as:

[image: image21.wmf]Relative Time Constant

=

Days

Hours

Minutes

Fraction Of Second

min

Seconds

.

h

d

s

Days

Hour

Minute

Fraction Of Second

Second

:

:

.

:

Sign

Sign

where:

Days, Hours, Minutes and Seconds are unsigned integers;

Hour, Minute, Second and Fraction Of Second are as defined in f. above.

EXAMPLE 30 h 10 min, 200 s, - 0:00:10:00
A.3.7 Types

A type defines the set of values that variables and expressions possessing that type may assume.

The type of a variable determines its use in various contexts. For example, in an assignment, it is mandatory that the left and right-hand sides of the assignment are type-compatible.

The procedure language supports the predefined types shown in Table A-1.

Table A-1 : Predefined types

	Data type
	Definition

	Boolean
	Defines the set of truth values denoted by the predefined constants true and false

	Enumerated set reference
	Defines a reference to a set of enumerated valuesa

	Signed integer
	Defines an implementation subset of signed integer values

	Unsigned integer
	Defines an implementation subset of unsigned integer values

	Real
	Defines an implementation subset of real values

	String
	Defines a set of values that are character strings

	Absolute time
	Defines a set of values that represent an absolute date such as 2003-02-15

	Relative time
	Defines a set of values that represent an interval of time such as 2 s

	Property value set
	Defines an enumerated set comprising all values of a property of a system element, reporting data, activity or event

Example 1 “application process identifier of system element” returns the enumerated set consisting of all defined APIDs.

Example 2: “name of parameter of power subsystem” returns the enumerated set consisting of all names of parameters belonging to the power subsystem.

	Property data type
	Defines a data type inherited from a property of a given system element, reporting data, activity or event

This can result in one of the following:

· A simple value type, e.g. “value of Voltage of Battery1” returns the type “real with engineering units V”;

· A list of value type, e.g. “value of status of my network printer” returns the enumerated set {"ready", "paused", "printing", "unable to connect"}.

	a
Enumerated sets can be defined on a system-wide basis or locally within a procedure and are referenced by name, e.g. the enumerated set named Event Type comprises the set of values {"Normal", "Low Severity", "Medium Severity", "High Severity"}.

A.3.8 System interfaces

The SSM objects relevant to the procedure language are introduced in clause 4.2.2. Each type and subtype of SSM object has a number of properties and operations that are accessible using services provided by the EMCS.

 “Initiate” and “Initiate and Confirm” are two important EMCS services for activities which can be invoked using dedicated statements of the procedure language. In addition, the language provides two generic mechanisms to invoke other services of the EMCS:

· The Object Property Request which is used to return a property of an object (e.g. get the initiation time of an activity, get the status of a printer). The minimum sets of “standard” property requests for activities, reporting data and events are specified in clause A.3.9.36.

· The Object Operation Request Statement which is used to perform an operation on an object (e.g. clear printer queue, open/close operating system file). The minimum sets of “standard” operation requests for activities and reporting data are specified in clause A.3.9.24.

“Standard” means that these services are supported by all EMCS implementations. A given implementation of the procedure language may also support non-standard services.

A.3.9 Language constructs

A.3.9.1. Procedure Definition
	Meaning
	Defines the elements of a procedure.

	Syntax
	

[image: image22.wmf]Procedure Definition =

Preconditions Body

Procedure Main Body

Watchdog Body

Confirmation Body

Procedure Declaration Body

procedure

end procedure

	Definition
	Procedure Declaration Body
Declares the local events that can be raised within the procedure.

Preconditions Body
Defines the preconditions of the procedure.

Whilst the procedure is waiting for the initial conditions to be satisfied, its execution status is "preconditions".

Procedure Main Body
Contains the statements that achieve the goal of the procedure.

Whilst the main body is executing, the execution status is "executing".

Watchdog Body
Handles contingency situations defined for the procedure.

Whilst the watchdog body is handling a contingency situation, the execution status is "executing".

Confirmation Body
Defines the conditions under which the procedure is confirmed.

Whilst the procedure is waiting to be confirmed, its execution status is "confirmation".

A.3.9.2. Procedure Declaration Body
	Meaning
	Declares the local events that can be raised within a procedure.

	Syntax
	

[image: image23.wmf]Procedure Declaration Body

=

declare

Event Declaration

end declare

,

[image: image24.wmf]Event De

clara

tion

=

event

Description

Event Name

[image: image25.wmf]Event Name =

Identifier

[image: image26.wmf]Description =

described by

String Constant

	Definition
	Event Declaration
Declares a local event that can be raised within the procedure.

Event Name
The name of the local event.

Local events that are declared at procedure level are associated with the procedure and are only used by the procedure watchdog body (e.g. they are not used within steps of the procedure main body).

Description
The (optional) description of the local event.

	Example
	

	Procedure Name
	Slew Manoeuvre

	PLUTO script
	procedure

declare

event Manoeuvre Damping Failed

described by "Cross-track error not reducing to less than 5 arcmin within 100 s of manoeuvre completion"

end declare

<……>

end procedure

A.3.9.3. Preconditions Body
	Meaning
	Defines the conditions under which the execution of a procedure (or step) can proceed once it is initiated.

	Syntax
	

[image: image27.wmf]preconditions

if

Wait Statement

Expression

end preconditions

Preconditions Body =

then

	Definition
	Expression
Yields a result which, if true, allows the associated procedure (or step) to be executed.

Wait Statement
Defines one of the following:

· the absolute time when the execution of the procedure (or step) can start;

· an interval of time after which execution can start;

· a condition to be true or an event to occur before execution can start.

	
	The "then" loop is used to specify a combination of different conditions.

If the expression is not satisfied following evaluation or the optional timeout in the wait condition is reached, then the procedure (or step) is skipped completely and the procedure (or step) confirmation status is set to "aborted".

The preconditions body of a watchdog step is always present and consists of a single “wait statement”.

	Example
	

	Procedure Name
	Switch on Gyro5 in Fine Mode

	PLUTO script
	procedure

preconditions

wait until Gyro Temperature > 60 degC

end preconditions

main

initiate and confirm Switch on Gyro Converter;

initiate and confirm Switch on Gyro5;

initiate and confirm Gyro5 Fine Mode;

end main

end procedure

A.3.9.4. Wait Statement
	Meaning
	Defines a delay.

	Syntax
	

[image: image28.wmf]wait until

wait for

Expression

Event Reference

Wait Statement

=

Save Context

Timeout

event

[image: image29.wmf]Event

 Reference

=

Object Reference

	Definition
	Expression
Yields an absolute time or a Boolean result (wait until) or a relative time (wait for).

An absolute time causes the calling entity (procedure or step) to be delayed until the given time.

A Boolean condition causes the calling entity to be delayed until the condition is satisfied.

A relative time delays the calling entity by the given time interval.

Event Reference
The reference to a local event or a system-level event associated with a system element, activity or reporting data (an object reference of type event).

Save Context
Creates a local copy (a snapshot) of one or more SSM reporting data.

This language construct is included within a wait statement to ensure that the snapshot of SSM reporting data pertains to the instant at which the condition is satisfied or the event occurs.

Timeout
Defines a relative time to be applied as a timeout for the wait statement.

The timeout is not available where the wait condition is either “for a relative time” or “until an absolute time”.

	
	When the wait statement appears in a preconditions body, the raise event option (following a timeout) is not available, since the corresponding watchdog body has not yet been started. Therefore, the procedure (or step) is aborted if the specified timeout interval is exceeded.

A.3.9.5. Save Context
	Meaning
	Creates a copy of reporting data for local use.

	Syntax
	

[image: image30.wmf]Save Context

=

save context

Reporting Data Reference

refer to

Reporting Data Name

to

by

,

[image: image31.wmf]Object Reference

Reporting Data Reference

=

[image: image32.wmf]Reporting Data

 Name

=

Identifier

	Definition
	Reporting Data Reference
The reporting data reference (an object reference of type reporting data) from which the local reporting data is copied.

Reporting Data Name
The name of the local reporting data.

	
	Reporting data has a life cycle that is independent of the procedure execution environment. Reporting data can therefore be updated during the execution of a set of procedure statements.

The purpose of this language construct is to create a snapshot copy of one or more reporting data. The construct is only intended for use where more than one property of a given reporting data is used at different times within a procedure and the contemporaneity of those properties is important.

Local reporting data is associated with the procedure or step in which it is defined. Prior to creation (i.e. saving the context), its validity status is "not available". During creation, local reporting data acquires the properties of the reporting data from which it is copied.

The life cycle and “visibility” of local reporting data is limited to the current instance of the procedure within which it is created, i.e. it is not persistent between successive executions of the procedure.

	Example
	

	Procedure Name
	Eclipse Operations

	PLUTO script
	procedure

main

<……>

wait for event Eclipse Entry

save context refer

to Temperature of Battery1 by TempBatt1,

to Voltage of Battery1 by VoltBatt1;

<……>

end main

end procedure

A.3.9.6. Timeout
	Meaning
	Defines a timeout interval for the current statement.

	Syntax
	

[image: image33.wmf]Timeout

=

timeout

Expression

Raise Event

	Definition
	Expression
Yields a relative time from the statement start of execution time and gives the timeout interval after which, if the statement has not completed execution, either:

· an event is raised which terminates the statement and is then handled by a corresponding watchdog step, or

· the parent procedure (or step) is aborted.

Raise Event
Raises a local event.

A.3.9.7. Raise Event
	Meaning
	Raises a local event.

	Syntax
	

[image: image34.wmf]Raise Event

=

raise event

Event Name

	Definition
	Event Name
The name of the local event.

	Example
	

	Procedure Name
	Slew Manoeuvre

	PLUTO script
	procedure

declare
event Manoeuvre Damping Failed,

<……>

end declare

main

 <……>

wait for Crosstrack Error < 5 arcmin

timeout Manoeuvre End Time + 100 s

raise event Manoeuvre Damping Failed;

 <……>

end main

watchdog

initiate and confirm step Recover Damping Failure

preconditions

wait for event Manoeuvre Damping Failed

end preconditions

<……>

end step;

end watchdog

end procedure

A.3.9.8. Object Reference
	Meaning
	Refers to an object by means of a reference path.

	Syntax
	

[image: image35.wmf]Object Name

Object Reference

of

Object Reference

=

Object Type

[image: image36.wmf]Object Type

=

variable

predefined value set

activity statement

step

argument

system element

reporting data

parameter

record

array

activity

event

[image: image37.wmf]Object Name =

Identifier

	Definition
	Object Reference
The reference path for the object.

Object Type
The explicit type of the object.

Object Name
The name of the object, which may be an activity, an object within an activity (e.g. a step, a variable, a procedure argument), a given initiation instance of an activity (i.e. an activity statement), reporting data (i.e. a parameter, a compound parameter or a component of a compound parameter), an event or a system element.

A component of a compound parameter can be a simple component (i.e. a parameter), an array or a record.

	
	Where the object type is not given explicitly and the result of the object reference is not unique within the overall SSM, the reference is resolved according to the following precedence rules (1 = highest precedence, 14 = lowest precedence):

1. variable

2. local reporting data

3. local event

4. activity statement

5. step

6. argument

7. system element

8. reporting data

9. parameter

10. record

11. array

12. activity

13. predefined value set

14. system event

	Example
	

	PLUTO script
	Temperature of Catalyst Bed of Thruster X of Thruster Main Branch

A.3.9.9. Procedure Main Body
	Meaning
	Contains the statements that achieve the goal of the procedure.

	Syntax
	

[image: image38.wmf]Procedure Main Body =

main

Procedure Statement

;

end main

Procedure Statement

;

[image: image39.wmf]Initiate In Parallel Statement

Initiate And Confirm Step Statement

Initiate Activity Statement

Procedure Statement =

Inform User Statement

Log Statement

Initiate And Confirm Activity Statement

Set Procedure Context Statement

	Definition
	Procedure Statement
A statement allowed within a procedure main body, which is one of the following:

a. Set Procedure Context Statement
Defines the context in which a set of procedure statements executes (overriding the current default context).
b. Initiate In Parallel Statement
Provides the capability to execute steps or activities (or both) concurrently. Each step or activity within the parallel statement has an execution path of its own. The parallel step finishes when one step or activity completes execution or they all complete execution.

c. Initiate And Confirm Step Statement
Initiates and confirms the execution of a step.
d. Initiate And Confirm Activity Statement
Initiates and confirms the execution of an activity.

e. Initiate Activity Statement
Initiates the execution of an activity. The initiated activity proceeds in parallel with the initiating procedure.
f. Inform User Statement
Provides the capability to output a message for acknowledgement by the user.

g. Log Statement
Provides the capability to log a message to the procedure execution log.

	Example
	

	Procedure Name
	Switch on Gyro5 in Fine Mode

	PLUTO script
	procedure

initiate and confirm step Switch on Gyro5 Converter

main

initiate and confirm Switch on Gyro Converter;

end main

end step;

initiate and confirm step Power on Gyro5

main

initiate and confirm Switch on Gyro5;

initiate and confirm Gyro5 Fine Mode;

end main

end step;

end procedure

A.3.9.10. Set Procedure Context Statement
	Meaning
	Defines the context in which a set of procedure statements executes.

	Syntax
	

[image: image40.wmf]Set

Procedure

 Context Statement

=

in the context of

Procedure Statement

;

end context

Object Reference

do

	Definition
	This statement explicitly defines the context in which a set of procedure statements executes. This overrides the current default context which is the one in which the procedure is currently executing.

Object Reference
This is either a system element or reporting data (either a compound parameter or a record-type component of a compound parameter).

Procedure Statement
A statement allowed within a procedure main body.

	Example
	

	Procedure Name
	Test telescopes

	PLUTO script
	procedure

<……>

in the context of Telescope1 do

initiate and confirm Power on;

initiate and confirm Take image;

initiate and confirm Process and display image;

initiate and confirm Power off;

end context;

in the context of Telescope2 do

initiate and confirm Power on;

initiate and confirm Take image;

initiate and confirm Process and display image;

initiate and confirm Power off;

end context;

<……>

end procedure

A.3.9.11. Initiate In Parallel Statement
	Meaning
	Defines a set of steps or activities (or both) that are executed in parallel.

	Syntax
	

[image: image41.wmf]in parallel

until one completes

until all complete

Initiate And Confirm Step Statement

;

end parallel

;

In

itiate In Parallel Statement =

Initiate And Confirm Activity Statement

Initiate And Confirm Step Statement

Initiate And Confirm Activity Statement

	Definition
	Initiate And Confirm Step Statement
Initiates and confirms the execution of a step.
Initiate And Confirm Activity Statement
Initiates and confirms the execution of an activity.

	
	When the parallel statement is executed, each of its constituent steps or activities is initiated in parallel. The termination of the execution depends on the selected termination condition, as defined below:

· "until all complete" (default)

Terminates execution if all of the constituent steps or activities are ended.

· "until one completes"

Terminates execution if any of its constituent steps or activities is ended.

	
	If neither of these conditions is explicitly specified, the default behaviour is "until all complete".

	Example
	

	Procedure Name
	Switch on Gyro3 and Gyro5 in Fine Mode

	PLUTO script
	procedure

preconditions

wait until Gyro3 and Gyro5 Converter = "ON"

end preconditions

main

in parallel until all complete

initiate and confirm step Switch on Gyro3 in Fine Mode

preconditions

wait until Temperature of Gyro3 > 60 degC

end preconditions

main

initiate and confirm Switch on Gyro3;

initiate and confirm Gyro3 Fine Mode;

end main

end step;

initiate and confirm step Switch on Gyro5 in Fine Mode

preconditions

wait until Temperature of Gyro5 > 60 degC

end preconditions

main

initiate and confirm Switch on Gyro5;

initiate and confirm Gyro5 Fine Mode;

end main

end step;

end parallel;

end main

end procedure

A.3.9.12. Initiate And Confirm Step Statement
	Meaning
	Initiates a designated step and waits for confirmation of its execution.

	Syntax
	

[image: image42.wmf]initiate and confirm step

end step

Continuation Test

Step Name

Step Definition

Initiate and Confirm Step Statement =

[image: image43.wmf]Step Name =

Identifier

	Definition
	Step Name
The name of the step.

The identifier is unique within the procedure.

Step Definition
Defines the step.

Continuation Test
Defines how the execution of the initiating procedure (or step) proceeds after the step has been executed. Default actions exist in the case that no continuation test is specified (see clause A.3.9.33 on Continuation Test for more details on the default actions).

	
	The initiated step finishes completely before the initiating procedure (or step) may proceed.

A.3.9.13. Step Definition
	Meaning
	Defines the elements of a step.

	Syntax
	

[image: image44.wmf]Preconditions Body

Step Main Body

Watchdog Body

Confirmation Body

Step Definition =

Step Declaration Body

	Definition
	Step Declaration Body
Declares the local objects of the step.

Preconditions Body
Defines the preconditions of the step.

Whilst the step is waiting for the initial conditions to be satisfied, its execution status is "preconditions".

Step Main Body
Contains the statements that achieve the sub-goal of the step.

Whilst the main body is executing, the execution status of the step is "executing".

Watchdog Body
Handles contingency situations defined for the step.

Whilst the watchdog body is handling a contingency situation, the execution status of the step is "executing".

Confirmation Body
Defines the conditions under which the step is confirmed.

Whilst the step is waiting to be confirmed, its execution status is "confirmation".

A.3.9.14. Step Declaration Body
	Meaning
	Declares the local variables used by a step and the local events that can be raised within it.

	Syntax
	

[image: image45.wmf]Step Declaration Body

=

declare

Event Declaration

Variable Declaration

end declare

,

Enumerated Set Declaration

[image: image46.wmf]Enumerated Set Declaration

=

enumerated

Enumerated Constant

(

Set Name

,

)

Description

[image: image47.wmf]Set

 Name

=

Identifier

[image: image48.wmf]Variable De

clara

tion

=

Predefined Type

Variable Name

Description

with units

?

Engineering Units

?

variable

of type

[image: image49.wmf]Variable Name

=

Identifier

[image: image50.wmf]Predefined Type

=

Boolean

signed integer

real

string

absolute time

relative time

Enumerated Set Reference

Property Value Set

Property Data Type

unsigned integer

[image: image51.wmf]Set Name

Enumerated Set Reference

=

Object Reference

of

[image: image52.wmf]Property Value Set

=

Object Property

of

system element

reporting data

activity

event

system element reference

reporting data reference

activity reference

event reference

current

parameter reference

parameter

Object Property

of

Constant

Object Reference

Object Property

of

Constant

Object Reference

[image: image53.wmf]Property Data Type

=

Object Property

of

system element

reporting data

activity

event

current

parameter

Object Reference

same as

[image: image54.wmf]Standard Object Property Name

Object Property

=

Nonstandard Object Property Name

Object Property

of

[image: image55.wmf]Standard Object Property

 Name

=

Identifier

[image: image56.wmf]Nonstandard Object Property

 Name

=

Identifier

	Definition
	Enumerated Set Declaration
Declares a set of enumerated values that is used locally within the step.

Set Name
The name of the enumerated set.

Description
The (optional) description of the enumerated set.

Variable Declaration
Declares a local variable that is used within the step.

A local variable has a validity status, sampling time and value. It is associated with the step in which it is declared and its scope is limited to the step and its lower level steps. Prior to its first assignment, its validity status is "not available".

Variable Name
The name of the local variable.

Predefined Type
The data type of the local variable.

Enumerated Set Reference
The reference to the enumerated set (and the SSM object to which it is attached).

Property Value Set
An enumerated set comprising all values of a property of a system element, reporting data, activity or event.

Property Data Type
A data type of a property of a given system element, reporting data, activity or event.

Object Property
This can be either a standard property of an activity, step, reporting data, variable, procedure argument or event, or a non-standard object property.

Standard Object Property Name
The name of the standard object property.

Nonstandard Object Property Name
The name of the non-standard object property.

Description
The (optional) description of the local variable.

Event Declaration
Declares a local event that can be raised within the step.

Local events that are declared at step level are associated with the step and can only be used by the step watchdog body (e.g. they cannot be used within the parent procedure or step or lower-level steps).

A.3.9.15. Step Main Body
	Meaning
	Contains the statements that achieve the sub-goal of the step.

	Syntax
	

[image: image57.wmf]Step Main Body =

main

Step Statement

;

end main

Step Statement

;

[image: image58.wmf]Assignment Statement

Flow Control Statement

Wait Statement

Save Context Statement

Initiate In Parallel Statement

Initiate And Confirm Step Statement

Initiate And Confirm Activity Statement

Initiate Activity Statement

Log Statement

Step Statement

=

Inform User Statement

Object Operation Request Statement

Set Step Context Statement

	Definition
	Step Statement
A statement allowed within a step main body, which is one of the following:

a. Set Step Context Statement
Defines the context in which a set of step statements executes (overriding the current default context).

b. Assignment Statement
Replaces the current value of a variable with another computed value.

c. Flow Control Statement
This group of statements controls the execution flow through the step. There are of two types of statement: conditional or repetitive statements.

d. Wait Statement
Causes the delay of a step by a time interval, until a given absolute time, until the condition is true or until an event occurs.

e. Object Operation Request Statement
Requests a specified operation to be performed on an SSM object, namely a system element, activity, reporting data, event or step.

f. Save Context Statement
Makes a copy of one or more SSM reporting data for local use within the step to ensure that all properties used are simultaneously sampled.

g. Initiate In Parallel Statement
Provides the capability to execute steps or activities concurrently. Each step or activity within the parallel statement has an execution path of its own. The parallel step finishes when one step or activity completes execution or they all complete execution.

h. Initiate And Confirm Step Statement
Initiates and confirms the execution of a step.

i. Initiate And Confirm Activity Statement
Initiates and confirms the execution of an activity.

j. Initiate Activity Statement
Initiates the execution of an activity. The initiated activity proceeds in parallel with the initiating step.

k. Inform User Statement
Provides the capability to output a message for acknowledgement by the user.

l. Log Statement
Provides the capability to log a message to the procedure execution log.

A.3.9.16. Set Step Context Statement
	Meaning
	Defines the context in which a set of step statements executes.

	Syntax
	

[image: image59.wmf]Set Step Context Statement

=

in the context of

Step Statement

;

end context

Object Reference

do

	Definition
	This statement explicitly defines the context in which a set of step statements executes. This overrides the current default context which is the one in which the step is currently executing.

Object Reference
This is either a system element or reporting data (either a compound parameter or a record-type component of a compound parameter).

Step Statement
A statement allowed within a step main body.

	Example
	

	Procedure Name
	Payload switch on

	PLUTO script
	procedure

<……>

initiate and confirm step Switch on Telescopes

in the context of Telescope1 do

initiate and confirm Power on;

wait for 5 s;

initiate and confirm Switch on HT;

wait for 5 s;

initiate and confirm Set HT with Voltage := 2000 V

end with;

end context;

in the context of Telescope2 do

initiate and confirm Power on;

wait for 5 s;

initiate and confirm Switch on HT;

wait for 5 s;

initiate and confirm Set HT with Voltage := 2000 V

end with;

end context;

end step;

<……>

end procedure

A.3.9.17. Assignment Statement
	Meaning
	Assigns a value to a local variable.

	Syntax
	

[image: image60.wmf]Variable Reference

:=

Expression

Assignment Statement

=

[image: image61.wmf]Object Reference

Variable Reference

=

	Definition
	Variable Reference
The reference to the local variable that receives the value of the expression (an object reference of type variable).

A step only uses a variable which has been declared in the list of local variables of the step.

The visibility of a variable is limited to the step and its lower-level steps. Where a variable name is reused within a lower-level step, the variable of the parent step is no longer accessible.

Expression
A combination of mathematical and language elements that is processed at run-time to compute the value of the variable.

	Example
	

	PLUTO script
	Voltage := Value of T001 * 10

A.3.9.18. Flow Control Statement
	Meaning
	Conditionally or iteratively executes a set of statements.

	Syntax
	

[image: image62.wmf]If Statement

Case Statement

Repeat Statement

Flow Control Statement

=

While Statement

For Statement

	Definition
	If Statement
Executes one list of statements or another depending on the result of a logical condition.

Case Statement
Executes one of several lists of statements depending on a logical condition.

Repeat Statement
A conditional iteration statement, where the condition is evaluated at the end.

While Statement
A conditional iteration statement, where the condition is evaluated at the beginning.

For Statement
An iteration statement, where the number of iterations is fixed (but evaluated at run-time).

A.3.9.19. If Statement
	Meaning
	Executes one statement (or set of statements) or another depending on the result of a logical condition.

	Syntax
	

[image: image63.wmf]if

Expression

then

Step Statement

else

end if

;

Step Statement

;

If Statement =

	Definition
	Expression
The expression returns a logical result which, if true, results in the execution of the first statement (or set of statements) and, if false, results in the execution of the second statement (or set of statements).

Step Statement
A statement allowed within a step main body.

	Example
	

	Procedure Name
	Slew Manoeuvre

	PLUTO script
	procedure

 <……>

if
Target Offset < 0.05 deg then

initiate and confirm Go to Fine Pointing;
else

initiate and confirm Centre Target;

initiate and confirm Go to Fine Pointing;

end if;

 <……>

end procedure

A.3.9.20. Case Statement
	Meaning
	Multiple conditional branching depending on the value of an expression.

	Syntax
	

[image: image64.wmf]in case

Expression

is

;

otherwise

:

end case

Case Tag

:

Step Statement

Step Statement

;

Case Statement

=

or is

[image: image65.wmf]Case Tag =

Comparative Expression

Comparative Expression

Boolean Operator

	Definition
	Expression
A combination of mathematical and language elements which returns a value.

Case Tag
A comparative expression which, when combined with the "in case" expression, determines whether the corresponding step statement (or set of statements) is executed.

The type of the case tags all correspond to the type of the "in case" expression.

Step Statement
A statement allowed within a step main body.

Boolean Operator
One of the following operators: "AND", "OR" or "XOR" (see also Expression).

Relational Operator
One of the following operators: "=", "!=", "<", ">", "<=" or ">=" (see also Expression).

	
	The case statement works in the following way:

1. If the value of the "in case" expression corresponds to the value of one of the case tags, then the corresponding statement (or set of statements) is executed.

2. If the value of the "in case" expression does not correspond to any of the values of the case tags, and if there is an "otherwise" case tag, then the corresponding statement (or set of statements), and only that one, is executed.

3. Otherwise, no statement (or set of statements) is executed.

If two or more case tags have the same value, only the first one is processed.

If the "in case" expression corresponds to the value of two or more case tags, only the first one is processed.

	Example
	

	PLUTO script
	in case Temperature of Biolab Experiment

is < 5 degC :
Switch On Heater1; Switch On Heater2;

or is < 10 degC : Switch On Heater1;

otherwise:

inform user "The temperature of Biolab is \"Nominal\",

 no action taken";

end case

A.3.9.21. Repeat Statement
	Meaning
	Conditional iteration of a statement (or set of statements) with control at the end, optionally terminated by a timeout.

	Syntax
	

[image: image66.wmf]repeat

Step Statement

until

Expression

;

Repeat Statement =

Timeout

	Definition
	Step Statement
A statement allowed within a step main body.

Expression
Yields a logical result which, when true, terminates the iteration.

Timeout
Defines an (optional) timeout interval after which, if the preceding expression is not true, either:

· an event is raised which terminates the statement and is then handled by a corresponding watchdog step,

or

· the parent step is aborted.

	
	The repeat statement differs from the while statement in that the condition is evaluated after each execution of the statement (or set of statements).

As a result, the statement (or set of statements) is executed at least once.

A.3.9.22. While Statement
	Meaning
	Conditional iteration of a statement (or set of statements) with control at the beginning, optionally terminated by a timeout.

	Syntax
	

[image: image67.wmf]while

Expression

do

Step Statement

;

end while

While Statement =

Timeout

	Definition
	Expression
Yields a logical result which, if false, terminates the iteration.

Timeout
Defines an (optional) timeout interval after which, if the preceding expression is still true, either:

· an event is raised which terminates the statement and is then handled by a corresponding watchdog step,

or

· the parent step is aborted.

Step Statement
A statement allowed within a step main body.

	
	The while statement differs from the repeat statement in that the condition is evaluated before each execution of the statement (or set of statements). As a result, the statement (or set of statements) may never be executed at all.

If the expression is true and there is more than one step statement in the loop, then the complete set of statements is executed, i.e. it is not interrupted if the timeout occurs during its execution; the timeout is invoked at the end.

A.3.9.23. For Statement
	Meaning
	Iterates the execution of a statement (or set of statements) a fixed number of times.

	Syntax
	

[image: image68.wmf]for

Variable Reference

:=

to

Expression

by

Expression

Expression

do

Step Statement

end for

;

For Statement

=

	Definition
	Variable Reference
The reference to a variable that is used as a counter (object reference of type variable).

":=" Expression
An integer expression, which is computed at run-time to determine the first value that is assigned to the counter.

"to" Expression
An integer expression, which is computed at run-time to determine the last value of the counter before leaving the statement.

"by" Expression
An integer expression, which is computed at run-time to determine by what value the counter is increased or decreased, after each iteration of the execution of the list of statements.

When the "by" expression is not present, the default behaviour is “increase by 1”

Step Statement
A statement allowed within a step main body.

	
	The value of the counter may be referred to within the list of statements, but not changed. As a result, the counter is not used as the left-hand side of an assignment statement.

All the expressions are only evaluated once at the beginning of the "for" loop.

	Example
	

	Procedure name
	Enable Payload Thermal Control Lines

	Arguments
	Number of Heater Lines: unsigned integer

	PLUTO script
	procedure

preconditions

wait until All Payloads = "OFF"

end preconditions

main

initiate and confirm step Enabling

declare

unsigned integer Counter

end declare

main

for Counter := 1 to Number of Heater Lines

do

initiate and confirm Enable Thermal Control Line

with Line Number := Counter end with;

end for

end main

end step;

end main

end procedure

A.3.9.24. Object Operation Request Statement
	Meaning
	Invokes an operation of an object.

	Syntax
	

[image: image69.wmf]Object Operation Request Statement

=

Object Operation

of

Object Reference

with

Argument Name

:=

Expression

,

end with

[image: image70.wmf]Object Property

Object Operation

=

Nonstandard Object Operation Name

set

[image: image71.wmf]Nonstandard Object

Operation Name

=

Identifier

	Definition
	Object Operation
The object operation that is requested, which can either be an operation to set a property of an object or any other operation defined for an object within the EMCS.

Nonstandard Object Operation Name
The name of the non-standard object operation.

Argument Name
The name of the argument.

Expression
Yields a result that defines the value of the argument.

	
	The standard operations that can be requested for an activity or step are listed in Table A-2 and for reporting data, variable or procedure argument in Table A-3 (there are no standard operations for an event).

The availability of individual operations depends on the type of the object.

Table A-2 : Activity and step operation requests

	Operation request
	Meaning
	Argument
	Result

	"set confirmation status"
	Sets the confirmation status of the activity or step
	"not available"
or "confirmed"
or "not confirmed"
or "aborted"
	None

Table A-3 : Reporting data, variable and argument operation requests

	Operation request
	Meaning
	Argument
	Result

	"set validity status"
	Sets the validity status of a parameter, a variable or a procedure argument
	"not available"
or "valid"
or "invalid"
	None

	"set value"
	Sets the engineering value of a parameter, a variable or a procedure argument
	any pre-defined type
	None

	"set monitoring status"
	Sets the overall monitoring status of a parameter
	"not available"
or "nominal"
or "failed"
	None

	"set status consistency check status"
	Sets the status consistency check status of a parameter
	"not available"
or "nominal"
or "failed"
	None

	"set limit check status"
	Sets the limit check status of a parameter
	"not available"
or "danger high"
or "warning high"
or "within limits"
or "warning low"
or "danger low"
	None

	"set delta check status"
	Sets the delta check status of a parameter
	"not available"
or "nominal"
or "failed"
	None

	"set expected check status"
	Sets the expected state check status of a parameter
	"not available"
or "nominal"
or "failed"
	None

	NOTE
The procedure language includes operations to set the value, or another property, of reporting data, variables and procedure arguments. These operations are normally performed by other functions of the space system (e.g. the spacecraft, the EMCS health monitoring function) and can only be invoked by the procedure language in configurations where these functions are not present.

	Example
	

	PLUTO script
	set value of T002 with 1.0 end with;

A.3.9.25. Save Context Statement
	Meaning
	Creates a copy of one or more reporting data for local use.

	Syntax
	

[image: image72.wmf]Save Context Statement =

Save Context

	Definition
	Save Context
Performs the local reporting data copy.

A.3.9.26. Initiate And Confirm Activity Statement
	Meaning
	Initiates a designated activity and waits for confirmation of completion.

	Syntax
	

[image: image73.wmf]initiate and confirm

Activity Call

Continuation Test

refer by

Activity Statement

Initiate and Confirm Activity Statement =

[image: image74.wmf]Activity Statement =

Identifier

	Definition
	Activity Call
The call to the activity that is initiated.

Activity Statement
The initiation instance of the activity. The “visibility” of this activity statement is limited to the calling entity. If the initiating statement occurs within a loop, it is always the last instance of the initiating statement that is referred to.

The activity statement is a dynamic object of the EMCS of type activity. It is attached to the procedure or step in which it is defined. It inherits all operations and properties defined for activities (see A.3.9.24 and A.3.9.36) and can be included in an object reference (see A.3.9.8).

Continuation Test
Specifies how the execution of the calling entity proceeds after the associated activity has been executed.

	
	The initiated activity finishes completely before the initiating entity (procedure or step) proceeds.

A.3.9.27. Initiate Activity Statement
	Meaning
	Asynchronously initiates a designated activity.

	Syntax
	

[image: image75.wmf]initiate

Activity Call

refer by

Activity Statement

Initiate Activity Statement

=

	Definition
	Activity Call
The call to the activity that is initiated.

Activity Statement
The initiation instance of the activity.

	
	The initiated activity proceeds in parallel with the initiating entity.

A.3.9.28. Activity Call
	Meaning
	Calls an activity.

	Syntax
	

[image: image76.wmf]Activity Call

=

Activity Reference

end with

Arguments

with directives

Directives

end with

Predefined Value Set Reference

with arguments

with value set

end with

[image: image77.wmf]Activity Reference

=

Object Reference

[image: image78.wmf]Simple Argument

Record Argument

Arguments

=

Array Argument

,

[image: image79.wmf]Predefined Value Set

Reference

 =

Object Reference

[image: image80.wmf]Directives

=

Directive Name

:=

Expression

,

[image: image81.wmf]Directive

 Name

=

Identifier

[image: image82.wmf]Activity Call

Simple Argument

=

Reporting Data Reference

Argument Name

System Element Reference

Expression

:=

activity

parameter

system element

reporting data

Event Reference

event

[image: image83.wmf]Record Argument =

Argument Name

record

Arguments

end record

[image: image84.wmf]Simple Argument

Array Argument

=

Record Argument

end array

array

,

,

Argument Name

[image: image85.wmf]Argument Name

=

Identifier

[image: image86.wmf]Object Reference

System Element Reference

=

	Definition
	Activity Reference
The reference to the activity (an object reference of type activity).

Arguments
The arguments of the activity. The type of the argument can be a simple argument (single value or object), an array (multiple occurrences) or a record. A record is a recursive construct of arguments of type simple or array (see also ECSS-E-70-41).

Predefined Value Set Reference
The reference to a predefined set of argument values for the activity, i.e. predefined in the operations database (an object reference of type predefined value set).

Directives
The directives used by the EMCS when initiating the activity. For example, for an activity of type telecommand, this can include:

· the MAP ID to be used;

· whether the telecommand is to be sent in AD or BD mode;

· specification of the telecommand verification packets to be generated in response to this telecommand.

Whereas arguments are specific to a given activity, directives are specific to a given type of activity (e.g. telecommands).

Directive Name
The name of the directive.

Simple Argument
An argument of simple type, i.e. a value, a parameter, an activity, a system element or an event.

Record Argument
An argument of record (of arguments) type.

Array Argument
An argument of array (of arguments) type.

Argument Name
The name of the argument.

Expression
Yields the value of the argument.

Activity Call
A call to an activity.

System Element Reference
A reference to a system element (an object reference of type system element).

Argument names are optional. If argument names are not provided, they are known implicitly from the order in which the argument values are given. Either no argument names are provided or they are all provided.

	Examples
	Typical examples of the use of the different types of simple argument for activities of type telecommand are:

· Reporting Data Reference: Parameter# in PUS service 12 requests;

· System Element Reference: APID in PUS service 14 requests;

· Activity Call: Inserting telecommand packets in the on-board schedule; PUS service 11,4 request.

	PLUTO script
	initiate Insert into Schedule with array

record Telecommand := activity Switch On Telescope,

Release Time := 2004-117T12:15:00.0Z,

Subschedule := 1,

Interlock Set := 1

end record

record Telecommand := activity Switch On Telescope HT,

Release Time := 2004-117T12:17:00.0Z,

Subschedule := 1,

Interlock Set := 2,

Interlock Assessed := 1

end record

record Telecommand := activity Set Telescope HT

 with Level := 1000 V

 end with,

Release Time := 2004-117T12:19:00.0Z,

Subschedule := 1,

Interlock Assessed := 2

end record

end array

end with;

A.3.9.29. Inform User Statement
	Meaning
	Outputs a message for acknowledgement by the user.

	Syntax
	

[image: image87.wmf]inform user

Expression

,

Inform User Statement =

	Definition
	Expression
Yields the message that is output to the user.

The procedure execution proceeds (up to completion) without waiting for the acknowledgement of the user.

A.3.9.30. Log Statement
	Meaning
	Outputs a message to the procedure execution log.

	Syntax
	

[image: image88.wmf]log

Expression

,

Log Statement =

	Definition
	Expression
Yields the message that is output to the procedure execution log.

A.3.9.31. Watchdog Body
	Meaning
	Handles contingency situations defined for a procedure (or step).

	Syntax
	

[image: image89.wmf]Watchdog Body =

watchdog

Initiate And Confirm Step Statement

end watchdog

;

watchdog

	Definition
	Initiate And Confirm Step Statement
An initiate and confirm statement for the steps that compose the watchdog body (called watchdog steps). When the watchdog body is executed, all of its steps are initiated in parallel. The preconditions body of a watchdog step defines the contingency situation that it is monitoring. The preconditions body of a watchdog step is always present and consists of a single “wait statement”.

	
	When more than one watchdog step is triggered, the following rules apply:

a. If any watchdog step returns the action to abort, the parent procedure (or step) aborts immediately.

b. The main body remains suspended until all watchdog steps are completed.

1. If all actions returned are the same, the procedure (or step) proceeds as indicated.

2. If the actions returned are different, user intervention is requested (i.e. "ask user").

	Example
	

	Procedure name
	Data Bus Reconfiguration

	PLUTO script
	procedure

main

initiate and confirm step Enter Ground Intervention Mode

initiate and confirm Activate GIM;

end step;

initiate and confirm step Reconfigure Data Bus

preconditions

wait until AOCS Mode = "GIM"

end preconditions

initiate and confirm Switch Bus From B To A;

initiate and confirm Activate Bus Acquisition;

end step;

initiate and confirm step Exit Ground Intervention Mode

initiate and confirm Deactivate GIM;

end step;

 end main

watchdog

initiate and confirm step Check Depointing

preconditions

wait until Pitch > 10 deg OR Roll > 10 deg OR

Yaw > 10 deg

end preconditions

initiate and confirm Activate Bus Acquisition;

initiate and confirm Exit Ground Intervention Mode;

initiate and confirm Activate Coarse Mode;

end step;

end watchdog

end procedure

A.3.9.32. Confirmation Body
	Meaning
	Defines the conditions under which a procedure (or step) is confirmed.

	Syntax
	

[image: image90.wmf]confirmation

if

Wait Statement

Expression

end confirmation

Confirmation Body

=

then

	Definition
	"if" Expression
Yields a Boolean value which, if true, sets the confirmation status of the procedure (or step) to "confirmed".

Wait Statement
A logical condition which, when true confirms the procedure (or step).

If the Boolean condition is not satisfied after evaluation or the (optional) timeout is reached in the wait statement, the procedure (or step) confirmation status is set to "not confirmed".

	
	The "then" loop is used to specify a combination of different conditions.

When there is no confirmation body defined for a procedure (or step) the confirmation status is evaluated as follows:

· If all procedure-initiated (or step-initiated) steps and activities of the main body of the procedure (or step) are "confirmed", then the confirmation status changes from "not available" to "confirmed".

· If any of the initiated steps or activities are "not confirmed", then the confirmation status of the initiating procedure (or step) also becomes "not confirmed".

· If an initiated step or activity raises an event within its continuation test (see clause A.3.9.33), the confirmation status of the initiating procedure (or step) is determined by the watchdog step which caught the event.

	Example
	

	Procedure name
	Switch on Gyro5

	PLUTO script
	procedure

<……>

 confirmation

wait until Output of Gyro5 < 0.2 deg/h

end confirmation

end procedure

A.3.9.33. Continuation Test
	Meaning
	Defines how to proceed after the associated “initiate and confirm” statement is executed.

	Syntax
	

[image: image91.wmf]Continuation Test =

Confirmation Status

:

Continuation Action

in case

end case

;

[image: image92.wmf]Confirmation Status =

not confirmed

confirmed

aborted

[image: image93.wmf]Continuation Action =

resume

abort

restart

continue

ask user

terminate

Raise Event

Timeout

max times

Expression

Raise Event

	Definition
	The continuation test comprises a set of couplets of confirmation status and associated action. If a given confirmation status is not specified, a default action applies (see clause A.2.5).

Confirmation Status
A final state of the associated “initiate and confirm” statement, which may be one of the following:

· "confirmed"

The “initiate and confirm” statement is confirmed.

· "not confirmed"

The “initiate and confirm” statement is not confirmed.

· "aborted"

The “initiate and confirm” statement is aborted.

Continuation Action
Defines the action to be taken when the associated “initiate and confirm” statement ends execution. It may be one of the following:

"resume"

Resumes the execution of the main body of the procedure (or step).

"abort"
Aborts the procedure (or step).

"restart"

Restarts the corresponding “initiate and confirm” statement. To avoid this loop continuing indefinitely, it may be terminated either by a timeout or by a specified maximum number of restarts ("max times").

"ask user"

Asks the user to specify how to proceed.

Raise Event
Raises a local event, which is caught by a watchdog step of the procedure (or step).

"continue"

The procedure (or step) continues execution according to the content of the main body.

"terminate"

Prematurely ends the execution of the procedure (or step) main body and starts the execution of the confirmation body.

	Example
	

	Procedure name
	Switch on Gyro5

	PLUTO script
	procedure

main

initiate and confirm step Switch on Gyro5 Converter

main

initiate and confirm Switch on Gyro Converter

in case

not confirmed: restart;

aborted: ask user;

end case;

end main

end step;

initiate and confirm Power on Gyro5

<…...>

end step;

end main

end procedure

A.3.9.34. Expression
	Meaning
	Yields a value by evaluating a grouping of constants, references and operators.

	Syntax
	

[image: image94.wmf]Expression =

Relational Expression

Boolean Operator

Expression

[image: image95.wmf]Relational Expression

=

Term

Comparative Expression

[image: image96.wmf]Boolean Operator =

AND

OR

XOR

[image: image97.wmf]Term

=

Product

Addition Operator

Term

[image: image98.wmf]Product =

Factor

Product

Multiplication Operator

[image: image99.wmf]Comparative Expression

=

between

in

(

Relational Operator

Term

Term

Term

Term

Term

and

,

)

within

Constant

of

?

Engineering Units

?

%

Term

[image: image100.wmf]=

!=

>

<

>=

<=

Relational Operator =

[image: image101.wmf]Factor

=

Simple Factor

**

Factor

[image: image102.wmf]Multiplication Operator =

*

/

[image: image103.wmf]Addition Operator

=

+

-

[image: image104.wmf]Simple Factor

=

Constant

Argument Reference

Object Property Request

Expression

)

(

Variable Reference

ask user

Expression

Function

)

(

Sign

Simple Factor

Negation Boolean Operator

Simple Factor

Expression

Predefined Type

default

expect

[image: image105.wmf]Object Reference

Argument Reference

=

[image: image106.wmf]Negation Boolean Operator =

NOT

	Definition
	Relational Expression
Constants and references combined with relational operators.

Comparative Expression
Constants and references combined with comparative operators.

Object Property Request
A call to return a defined property of any object of the SSM (see clause A.3.9.36).

Function
A predefined (i.e. built-in) function of type mathematical, string or time that operates on zero or more input arguments and returns a result.

	
	It can readily be seen that the syntax for Simple Factor contains several alternatives that can each reduce to an Identifier and hence lead to ambiguity about what is intended. The following precedence rule applies in such cases to define the order in which the possibilities are resolved (1 = highest precedence, 4 = lowest precedence):

1. local variable (searched upwards through the step hierarchy).

2. procedure argument.

3. function name.

4. object name.

The syntax of the expression expresses the precedence rules of the operators.

For each operator, Table A-4 defines the types that can be used for the operands. The operators are listed in descending order of precedence.

Table A-4 : Predefined operators

	Operator
	Meaning
	Left operand
	Right operand
	Result

	"-"
	Unary minus
	integer, real
	N/A
	integer, real

	"+"
	Unary plus
	integer, real
	N/A
	integer, real

	"NOT"
	Boolean NOT
	Boolean
	N/A
	Boolean

	"**"
	Exponentiation
	integer
	integer
	integer

	
	
	integer
	real
	real

	
	
	real
	integer
	real

	
	
	real
	real
	real

	"*"
	Multiplication
	integer
	integer
	integer

	
	
	integer
	real
	real

	
	
	real
	integer
	real

	
	
	real
	real
	real

	
	
	relative time
	integer, real
	relative time

	
	
	integer, real
	 relative time
	relative time

	"/"
	Division
	integer
	integer
	real

	
	
	integer
	real
	real

	
	
	real
	integer
	real

	
	
	real
	real
	real

	
	
	relative time
	integer, real
	relative time

	"+"
	Addition
	integer
	integer
	integer

	
	
	integer
	real
	real

	
	
	real
	integer
	real

	
	
	real
	real
	real

	
	
	absolute time
	relative time
	absolute time

	
	
	relative time
	relative time
	relative time

	
	Concatenation
	string
	any
	string

	
	
	any
	string
	string

	"-"
	Subtraction
	integer
	integer
	integer

	
	
	integer
	real
	real

	
	
	real
	integer
	real

	
	
	real
	real
	real

	
	
	absolute time
	absolute time
	relative time

	
	
	absolute time
	relative time
	absolute time

	
	
	relative time
	relative time
	relative time

	"=", "!=",

"<", ">",

"<=", ">="
	
	integer, real
	integer, real
	Boolean

	
	
	stringa
	string
	Boolean

	
	
	relative time
	relative time
	Boolean

	
	
	absolute time
	absolute time
	Boolean

	"AND"
	Boolean ANDb
	Boolean
	Boolean
	Boolean

	"OR"
	Boolean OR b
	Boolean
	Boolean
	Boolean

	"XOR"
	Boolean Exclusive ORb
	Boolean
	Boolean
	Boolean

	a
Any comparisons performed on strings are done so in a case-insensitive manner.

b
Boolean expressions are evaluated in their entirety, even where the result is yielded part way through. For example, in the expression “A AND B”, where A is "FALSE", the expression is "FALSE" without the need to evaluate B, nevertheless the full expression is evaluated. Therefore, it is important to avoid an expression such as: “X > 0 AND Y/X = Z” since a “division by 0” exception occurs where X = 0.

A.3.9.35. Function
	Meaning
	Obtains the return value of a predefined (built-in) function operating on a list of arguments.

	Syntax
	

[image: image107.wmf]Function

=

Standard Function Name

Nonstandard Function Name

Expression

,

(

)

[image: image108.wmf]Standard

 Function Name

=

Identifier

[image: image109.wmf]Nonstandard

 Function Name

=

Identifier

	Definition
	Standard Function Name
A standard predefined function which is one of those given in Table C-1 (mathematical functions including functions that return the value of a mathematical or physical constant), Table C-2 (time functions) or Table C-3 (string functions).

Nonstandard Function Name
A non-standard predefined function.

Expression(s)

Yields the set of zero or more values to be used as arguments for the function.

A.3.9.36. Object Property Request
	Meaning
	Obtains the requested property of the referenced object.

	Syntax
	

[image: image110.wmf]Object Property Request

=

Object Property

Object Reference

of

get

with

Argument Name

:=

Expression

,

end with

	Definition
	Object Property
The property that is requested, which can be either a standard property for an activity, step, reporting data, variable, procedure argument or event or a non-standard property for any object.

Object Reference
The name of the object whose property is requested.

The object may be an activity, a step, reporting data or an event. However, it may also be any system element defined within the SSM.

	
	The standard properties that can be requested for an activity or step are listed in Table A-5, for reporting data, a variable or a procedure argument in Table A-6 and for an event in 0. The availability of individual property requests, or their result types, depends on the type of the object (for example, a telecommand does not have the same result types for “execution status” as a procedure).

This language construct also provides access to any other property defined within the EMCS for these objects, or properties defined for any system element. The properties that are available depend on the particular implementation of the EMCS.

To simplify the procedure language, the following conventions apply:

· Reference to a property of an object alone implies the "get" request (e.g. “if value of Battery1 Voltage > 15.5 V then…” implies that the value of the parameter Battery1 Voltage is “got”).

· Reference to a parameter alone (i.e. no request and no property) implies the "get" value request (e.g. “wait until Elevation of Redu Prime Antenna < 5 deg …” implies that the value of the parameter Elevation of Redu Prime Antenna is “got”).

Table A-5 : Activity and step property requests

	Property request
	Meaning
	Argument
	Result

	"get execution status"
	Gets the execution status of the activity or step
	None
	"not initiated"
or "preconditions"
or "routing"*
or "executing"
or "confirmation"
or "completed"

	"get initiation time"
	Gets the time at which the activity or step was initiated, i.e. the time at which the preconditions check was initiated
	None
	absolute time

	"get start time"
	Gets the time at which the execution was started, i.e. execution started by destination application process in the case of a telecommand; starting of the main body in the case of a procedure or step
	None
	absolute time

	"get termination time"
	Gets the time at which the execution was terminated in the case of a procedure or step
	None
	absolute time

	"get confirmation status"
	Gets the confirmation status of the activity or step
	None
	"not available"
or "confirmed"
or "not confirmed"
or "aborted"

	"get restart number"
	Gets the number of times the activity or step has been restarted
	None
	unsigned integer

	"get completion time"
	Gets the time at which the activity or step was completed, i.e. confirmation completed in the case of a procedure or step; end-to-end verification completed in the case of a telecommand
	None
	absolute time

	NOTE 1
When requesting properties of an activity or a step, the last initiate statement is implied by default.

NOTE 2
For an activity, if a previous initiate statement is referred to, an “activity statement” is explicitly provided in the initiate statement and used in the request.

NOTE 3
When an initiate statement (activity or step) occurs within a loop, the request automatically applies to the latest iteration within the loop, i.e. previous iterations are not available.

NOTE 4
When an initiate statement (activity or step) is restarted as a result of a continuation action, a counter is available giving the number of restarts.

NOTE 5
Execution statuses indicated with a “*” are only applicable for activities of type telecommand.

Table A-6 : Reporting data, variable and argument property requests

	Property request
	Meaning
	Argument
	Result

	"get validity status"
	Gets the validity status of a parameter, a variable or a procedure argument
	None
	"not available"
or "valid"
or "invalid"

	"get sampling time"
	Gets the sampling time of a parameter or a compound parameter or the time at which a variable or a procedure argument last received a value
	None
	absolute time

	"get value"
	Gets the value of a parameter, a compound parameter, a variable or a procedure argument. Only engineering values are accessible to the language.
	None
	any pre-defined type

	"get monitoring status"
	Gets the overall monitoring status of a parameter
	None
	"not available"
or "nominal"
or "failed"

	"get status consistency check status"
	Gets the status consistency check status of a parameter
	None
	"not available"
or "nominal"
or "failed"

	"get limit check status"
	Gets the limit check status of a parameter
	None
	"not available"
or "danger high"
or "warning high"
or "within limits"
or "warning low"
or "danger low"

	"get delta check status"
	Gets the delta check status of a parameter
	None
	"not available"
or "nominal"
or "failed"

	"get expected check status"
	Gets the expected state check status of a parameter
	None
	"not available"
or "nominal"
or "failed"

Table A-7 : Event property requests

	Property request
	Meaning
	Argument
	Result

	"get last raise time"
	Gets the time at which the event was last raised
	None
	absolute time

	Example
	

	Procedure name
	Activate Freon Loop

	PLUTO script
	procedure

main

initiate and confirm step Heating Up

declare

Boolean Status,

real AvgeTemp units degC

end declare

main

Status := get validity status of Pump of Freon Loop1;

AvgeTemp:= get average value of FreonTemp

with

StartTime := current time () – 10 min,

EndTime:= current time ()

end with;

<…...>

end main

end step;

< …...>
end procedure

	NOTE
 “average value” is a parameter property implemented within the EMCS that corresponds to the average value over a specified time interval.

A.4 Extended Backus-Naur form (EBNF) representation of PLUTO language constructs

A.4.1 Conventions

In this annex, the ISO extended Backus-Naur form (EBNF) is used as an alternative convention to specify the syntax of the procedure language. The complete specification of ISO EBNF is given in ISO/IEC 14977, but the salient features of the convention are summarised below.

Each syntax rule consists of a non-terminal symbol and an EBNF expression separated by an equal sign “=” and terminated with a semicolon “;”, e.g.

Integer Constant = Sign, { Digit }- ;

The right-hand side of the rule is the definition of the non-terminal symbol on the left-hand side.

The EBNF expression consists of terminal symbols, non-terminal symbols and connective symbols as defined in Table A-8, separated by a comma “,”.

A terminal symbol is a sequence of one or more characters forming an irreducible element of the language.

Non-printing characters such as a space or a new-line have no formal effect on the syntax as long as they appear outside of a terminal symbol.

Table A-8 : EBNF symbols and meanings

	Symbol
	Meaning

	X | Y
	One of X or Y (exclusive or)

	[X]
	Zero or one occurrence of X

	{ X }
	Zero or more occurrences of X

	{ X }-
	One or more occurrences of X

	n * X
	A repetition of X exactly n times

	(X Y)
	Grouping construct

	"Text"
	Terminal symbol (text between double quotes representing a keyword of the procedure language). If a double quote is used inside the text, the text is enclosed instead by single quotes.

EXAMPLE 1
Confirmation Status = "confirmed" | "not confirmed" | "aborted";

means that Confirmation Status is defined as being either "confirmed" or "not confirmed" or "aborted".

EXAMPLE 2
If Statement = "if", Expression, "then", {Step Statement, ";"}-, ["else", {Step Statement, ";"}-], "end if";

means that a set of one or more step statements, each followed by a ";" appears after the "then" part of the definition. The part of the definition within the square brackets (the "else" part) is optional, but if present occurs once only in the “if statement”.

EXAMPLE 3
Integer Constant = Sign, { Digit }- ;

means that an integer constant is defined as a sign (a plus or a minus) followed by a sequence of one or more digits.

A.4.2 PLUTO language constructs

The EBNF representations of the language constructs defined in this Standard are listed below:

	Absolute Time Constant =

(Year, "-", Month, "-", Day Of Month,

 "T", Hour, ":", Minute, ":", Second,

 ".", Fraction Of Second, ["Z"])

| (Year, "-", Day,

 "T", Hour, ":", Minute, ":", Second, ".",

 Fraction Of Second, ["Z"]);

	Activity Call =

Activity Reference,

[("with arguments", Arguments, "end with")

| ("with value set", Predefined Value Set Reference , "end with")],

["with directives", Directives, "end with"];

	Activity Reference =

Object Reference;

	Activity Statement =

Identifier;

	Addition Operator =

"+" | "-";

	Argument Name =

Identifier;

	Argument Reference =

Object Reference;

	Arguments =

(Simple Argument | Record Argument | Array Argument),

{",", (Simple Argument | Record Argument
 | Array Argument)};

	Array Argument =

[Argument Name], "array",

 ((Simple Argument, {",", Simple Argument })

 | (Record Argument, {",", Record Argument })),

 "end array";

	Assignment Statement =

Variable Reference, ":=", Expression;

	Boolean Constant =

"TRUE" | "FALSE";

	Boolean Operator =

"AND" | "OR" | "XOR";

	Case Statement =

"in case", Expression, "is", Case Tag, ":", {Step Statement, ";"}-

{"or is", Case Tag, ":", {Step Statement, ";"}-},

["otherwise", ":", {Step Statement, ";"}-],

"end case";

	Case Tag =

Comparative Expression ,

{Boolean Operator, Comparative Expression };

	Characters =

{ Digit | Letter | " " | "!" | '\"' | "#" | "$" | "%" | "&" | "'" | "("

| ")" | "*" | "+" | "," | "-" | "." | "/" | ":" | ";" | "<" | "="| ">"

| "?" | "@"| "[" | "\\" | "]" | "^" | "_" | "`" | "{" | "|" | "}" | "~" }-;

	Comparative Expression =

(Relational Operator, Term)

 | ("between", Term, "and", Term)

 | ("within", Constant , [? Engineering Units ? | "%"], "of", Term)

 | ("in (", Term,{",", Term}-, ")");

	Confirmation Body =

"confirmation", (("if", Expression) | Wait Statement),

{"then", (("if", Expression) | Wait Statement) },

"end confirmation";

	Confirmation Status =

"confirmed" | "not confirmed" | "aborted";

	Constant =

Boolean Constant

| Enumerated Constant

| Integer Constant

| Real Constant

| String Constant

| Absolute Time Constant

| Relative Time Constant;

	Continuation Action =

"resume"

| "abort"

| "restart",

 [Timeout | ("max times", Expression, [Raise Event])]

| "ask user"

| Raise Event

| "continue"

| "terminate";

	Continuation Test =

"in case",

{Confirmation Status, ":", Continuation Action, ";"}-,

"end case";

	Day =

3 * Digit;

	Day Of Month =

2 * Digit;

	Days =

{Digit}-;

	Description =

"described by", String Constant;

	Digit =

"0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9";

	Directive Name =

Identifier;

	Directives =

[Directive Name, ":="], Expression,

{",", [Directive Name, ":="], Expression };

	Enumerated Constant =

'"', Characters, '"';

	Enumerated Set Declaration =

"enumerated", Set Name,

"(", Enumerated Constant,

{",", Enumerated Constant}, ")", [Description];

	Enumerated Set Reference =

Set Name, ["of", Object Reference];

	Event Declaration =

"event", Event Name, [Description];

	Event Name =

Identifier;

	Event Reference =

Object Reference;

	Expression =

Relational Expression, [Boolean Operator, Expression];

	Factor =

Simple Factor, ["**", Factor];

	Flow Control Statement =

If Statement

| Case Statement

| Repeat Statement

| While Statement

| For Statement;

	For Statement =

"for", Variable Reference, ":=", Expression, "to", Expression,

["by", Expression],

"do", {Step Statement, ";"}-, "end for";

	Fraction Of Second =

{Digit}-;

	Function =

(Standard Function Name | Nonstandard Function Name),

"(", [Expression, {",", Expression}], ")";

	Hexadecimal Constant =

Hexadecimal Symbol, {Hexadecimal Digit}-;

	Hexadecimal Digit =

Digit | "A" | "B" | "C" | "D" | "E" | "F";

	Hexadecimal Symbol =

"0x";

	Hour =

2 * Digit;

	Hours =

{Digit}-;

	Identifier =

Identifier First Word, {Identifier Subsequent Word };

	Identifier First Word =

Letter, {Letter | Digit };

	Identifier Subsequent Word =

{Letter | Digit }-;

	If Statement =

"if", Expression,

"then", {Step Statement, ";"}-,

["else", {Step Statement, ";"}-],

"end if";

	Inform User Statement =

"inform user", Expression, {",", Expression};

	Initiate Activity Statement =

"initiate", Activity Call, ["refer by", Activity Statement];

	Initiate And Confirm Activity Statement =

"initiate and confirm", Activity Call,

["refer by", Activity Statement],

[Continuation Test];

	Initiate And Confirm Step Statement =

"initiate and confirm step", Step Name,

Step Definition, "end step",

[Continuation Test];

	Initiate In Parallel Statement =

"in parallel", (["until all complete"] | "until one completes"),

(Initiate And Confirm Step Statement

 | Initiate And Confirm Activity Statement), ";",

{ (Initiate And Confirm Step Statement

 | Initiate And Confirm Activity Statement), ";"}-,

"end parallel";

	Integer Constant =

([Sign], {Digit}-, [? Engineering Units ?])

| Hexadecimal Constant;

	Letter =

"a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j"| "k" | "l" | "m" | "n"

| "o" | "p" | "q" | "r" | "s"| "t" | "u" | "v" | "w" | "x" | "y" | "z" | "A"

| "B"| "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" | "K"| "L" | "M"

| "N" | "O" | "P" | "Q" | "R" | "S" | "T"| "U" | "V" | "W" | "X" | "Y"

| "Z";

	Log Statement =

"log", Expression, {",", Expression};

	Minute =

2 * Digit;

	Minutes =

{Digit}-;

	Month =

2 * Digit;

	Multiplication Operator =

"*" | "/";

	Negation Boolean Operator =

"NOT";

	Nonstandard Function Name = Identifier;

	Nonstandard Object Operation Name = Identifier;

	Nonstandard Object Property Name = Identifier;

	Object Name =

Identifier;

	Object Operation =

("set", Object Property)

|Nonstandard Object Operation Name;

	Object Operation Request Statement =

Object Operation, [["of"], Object Reference],

["with", [Argument Name, ":="], Expression,

{",", [Argument Name, ":="], Expression},

"end with"];

	Object Property =

(Standard Object Property Name

| Nonstandard Object Property Name), ["of", Object Property];

	Object Property Request =

[["get"], Object Property, "of"], Object Reference,

["with", [Argument Name, ":="], Expression,

{",", [Argument Name, ":="], Expression},

"end with"];

	Object Reference =

[Object Type], Object Name, {"of", Object Reference};

	Object Type =

"variable" | "predefined value set" | "activity statement"

| "step" | "argument" | "system element"
| "reporting data"

| "parameter" | "record" | "array" | "activity" | "event";

	Preconditions Body =

"preconditions",

(("if", Expression) | Wait Statement),

 {"then",

 (("if", Expression) | Wait Statement)},

"end preconditions";

	Predefined Type =

 "Boolean"

| Enumerated Set Reference

| "signed integer"

| "unsigned integer"

| "real"

| "string"

| "absolute time"

| "relative time"

| Property Value Set

| Property Data Type;

	Predefined Value Set Reference =

Object Reference;

	Procedure Declaration Body =

"declare",

Event Declaration, {",", Event Declaration},

"end declare";

	Procedure Definition =

"procedure",

[Procedure Declaration Body],

[Preconditions Body],

Procedure Main Body,

[Watchdog Body],

[Confirmation Body],

"end procedure";

	Procedure Main Body =

("main", {Procedure Statement, ";"}-, "end main")

| {Procedure Statement, ";"}-;

	Procedure Statement =

 Set Procedure Context Statement

| Initiate In Parallel Statement

| Initiate And Confirm Step Statement

| Initiate And Confirm Activity Statement

| Initiate Activity Statement

| Inform User Statement

| Log Statement;

	Product =

Factor, [Multiplication Operator, Product];

	Property Data Type =

"same as", Object Property, "of",

(Object Reference | ("current", ("system element" |

"reporting data" | "parameter" | "activity" | "event")));

	Property Value Set =

(Object Property, "of",

(Object Reference | (["current"], ("system element" |

"reporting data" | "parameter" | "activity" | "event"), ["of",

((Object Property, Constant)

| Object Reference)])))

|(("system element reference" |

"reporting data reference" | "parameter reference" |

"activity reference" | "event reference"),

"of", Object Property, Constant);

	Raise Event =

"raise event", Event Name;

	Real Constant =

[Sign], {Digit}-, [".", {Digit}-],

["e", [Sign], {Digit}-],

[? Engineering Units ?];

	Record Argument =

[Argument Name], "record", Arguments, "end record";

	Relational Expression =

Term, [Comparative Expression];

	Relational Operator =

"=" | "!=" | "<" | ">" | "<=" | ">=";

	Relative Time Constant =

([Sign], (Days, "d")

| ([Days, "d"],

 ((Hours, "h")

 | ([Hours, "h"],

 ((Minutes, "min")

 | ([Minutes, "min"], Seconds,

 [".", Fraction Of Second], "s"))))))

| ([Sign], Days, ":", Hour, ":", Minute, ":", Second,

 ":", Fraction Of Second);

	Repeat Statement =

"repeat",

{Step Statement, ";"}-,

"until", Expression, [Timeout];

	Reporting Data Name =

Identifier;

	Reporting Data Reference =

Object Reference;

	Save Context =

"save context",

"refer to", Reporting Data Reference,

 "by", Reporting Data Name,

{",", "to", Reporting Data Reference,

 "by", Reporting Data Name};

	Save Context Statement =

Save Context;

	Second =

2 * Digit;

	Seconds =

{Digit}-;

	Set Name =

Identifier;

	Set Procedure Context Statement =

"in the context of", Object Reference, "do",

{Procedure Statement, ";"}-,

 "end context";

	Set Step Context Statement =

"in the context of", Object Reference, "do",

{Step Statement, ";"}-,

 "end context";

	Sign =

"+" | "-";

	Simple Argument =

 [Argument Name, ":="],

 Expression

 | ("activity", Activity Call)

 | (("parameter" | "reporting data"), Reporting Data Reference)

 | ("system element", System Element Reference)

 | ("event", Event Reference);

	Simple Factor =

 Constant

| Argument Reference

| Variable Reference

| Object Property Request

| ("ask user", "(", Expression, ["default", Expression], ")",

 ["expect", Predefined Type])

| ("(", Expression, ")")

| Function

| (Sign, Simple Factor)

| (Negation Boolean Operator, Simple Factor);

	Standard Function Name = Identifier;

	Standard Object Property Name = Identifier;

	Step Declaration Body =

"declare",

(Enumerated Set Declaration

| Variable Declaration | Event Declaration),

{",", (Enumerated Set Declaration

| Variable Declaration | Event Declaration)},

"end declare";

	Step Definition =

[Step Declaration Body],

[Preconditions Body],

 Step Main Body,

[Watchdog Body],

[Confirmation Body];

	Step Main Body =

("main", {Step Statement, ";"}-, "end main")

| {Step Statement, ";"}-;

	Step Name =

Identifier;

	Step Statement =

 Set Step Context Statement

| Assignment Statement

| Flow Control Statement

| Wait Statement

| Object Operation Request Statement

| Save Context Statement

| Initiate In Parallel Statement

| Initiate And Confirm Step Statement

| Initiate And Confirm Activity Statement

| Initiate Activity Statement

| Inform User Statement

| Log Statement;

	String Constant =

'"', Characters, '"';

	System Element Reference =

Object Reference;

	Term =

Product, [Addition Operator, Term];

	Timeout =

"timeout", Expression, [Raise Event];

	Variable Declaration =

"variable", Variable Name, "of type", Predefined Type,

["with units", ? Engineering Units ?], [Description];

	Variable Name =

Identifier;

	Variable Reference =

Object Reference;

	Wait Statement =

(("wait until", Expression)

 | ("wait for", (("event", Event Reference) | Expression))),

[Save Context],

[Timeout];

	Watchdog Body =

"watchdog", Initiate And Confirm Step Statement, ";",

{ ["watchdog"], Initiate And Confirm Step Statement, ";"},

"end watchdog";

	While Statement =

"while", Expression, [Timeout],

"do", {Step Statement, ";"}-,

"end while";

	Year =

4 * Digit;

A.5 Index of PLUTO language constructs

Absolute Time Constant
42

Activity Call
84
Activity Reference
84
Activity Statement
82
Addition Operator
96
Argument Name
85
Argument Reference
97
Arguments
84
Array Argument
85
Assignment Statement
70
Boolean Constant
41

Boolean Operator
96
Case Statement
73
Case Tag
73
Characters
41

Comparative Expression
96
Confirmation Body
92
Confirmation Status
93
Constant
41
Continuation Action
93
Continuation Test
93
Day
43

Days
44
Description
48
Digit
41
Directive Name
84
Directives
84
Enumerated Constant
41

Enumerated Set Declaration
64
Enumerated Set Reference
64
Event Declaration
48
Event Name
48
Event Reference
48
Expression
96
Factor
96
Flow Control Statement
71
For Statement
77
Function
101
Hexadecimal Constant
42

Hexadecimal Digit
42

Hexadecimal Symbol
42

Hours
43

Identifier
40

Identifier First Word
40

Identifier Subsequent Word
40

If Statement
72
Inform User Statement
88
Initiate Activity Statement
83
Initiate And Confirm Activity Statement
82
Initiate And Confirm Step Statement
62
Initiate In Parallel Statement
60
Integer Constant
41

Letter
40

Log Statement
89
Minutes
43

Multiplication Operator
96
Negation Boolean Operator
97
Nonstandard Function Name
101
Nonstandard Object Operation Name
79
Nonstandard Object Property Name
64
Object Name
55
Object Operation
79
Object Operation Request Statement
79
Object Property
64
Object Property Request
102
Object Reference
55
Object Type
55
Preconditions Body
49
Predefined Type
64
Predefined Value Set Reference
84
Procedure Declaration Body
48
Procedure Definition
47
Procedure Main Body
57
Procedure Statement
57
Product
96
Property Data Type
65
Property Value Set
66
Raise Event
54
Real Constant
42
Record Argument
84
Relational Expression
96
Relational Operator
96
Relative Time Constant
43
Repeat Statement
75
Reporting Data Name
51
Reporting Data Reference
51
Save Context
51
Save Context Statement
81
Second
43

Seconds
44
Set Name
64
Set Procedure Context Statement
59
Set Step Context Statement
69
Sign
41
Simple Argument
84
Simple Factor
97
Standard Function Name
101
Standard Object Property Name
65
Step Declaration Body
64
Step Definition
63
Step Main Body
67
Step Name
62
Step Statement
67
String Constant
42

System Element Reference
84
Term
96
Timeout
53
Variable Declaration
64
Variable Name
64
Variable Reference
70
Wait Statement
50
Watchdog Body
90
While Statement
76
Annex B (informative)
 Engineering units

B.1 Introduction

This annex defines the standard engineering units and their corresponding symbols. These standard engineering units and their syntax representation given in clause B.3 are based on Voluntocracy 2003 (see Bibliography).

B.2 Engineering units and symbols

c. An engineering unit symbol should be an unambiguous string of case-sensitive characters with no “spaces”.

d. The standard set of “simple engineering units” should be as specified in Table B-1.

e. Multiples and submultiples of an engineering unit should be formed using the simple engineering unit symbol combined with a decimal prefix, as specified in Table B-2.

f. Binary multiples of the bit and B (i.e. byte) units should use the binary prefixes specified in Table B-3.

g. “Compound engineering units” should be formed by multiplying and dividing “simple engineering units”.

h. The standard set of “compound engineering units” should be as specified in Table B-4.

i. The language used to express the engineering units symbols defined within this Standard should be as specified in clause B.3. The major characteristics of this language are:

1. Prefix symbols are not used with:

· dB (decibel), AU (astronomical unit), pc (parsec), u (atomic mass unit),

· the time-related unit symbols min (minute), h (hour) and d (day).

2. The unit symbols L (liter), Np (neper), deg (degree), arcmin (1/60 degree), arcsec (1/3600 degree), degC (degree Celsius), rad (radian) and sr (steradian) can only use submultiple prefix symbols.

3. The unit symbols t (tonne), B (byte), r (revolution), and Bd (baud) cannot be used with submultiple prefix symbols.

4. Unit symbols formed from other unit symbols by multiplication are indicated by means of a dot i.e. "." placed between them.

5. Unit symbols formed from other unit symbols by division are indicated by means of a solidus i.e. "/" or negative exponents.

6. The solidus cannot be repeated in the same compound unit unless contained within a parenthesized subexpression.

7. The grouping formed by a prefix symbol attached to a unit symbol constitutes a new inseparable symbol (forming a multiple or submultiple of the unit concerned) which can be raised to a positive or negative power and which can be combined with other unit symbols to form a compound unit symbol.

8. The grouping formed by surrounding compound unit symbols with parentheses ("(" and ")") constitutes a new inseparable symbol which can be raised to a positive or negative power and which can be combined with other unit symbols to form compound unit symbols.

9. Compound prefix symbols cannot be used, i.e. prefix symbols formed by the juxtaposition of two or more prefix symbols.

10. A unit exponent follows the unit, separated by a circumflex, i.e. "^".

11. Exponents are positive or negative.

12. Fractional exponents are parenthesized.

If a mission uses engineering units additional to those defined in this annex, the corresponding engineering units symbols should comply with the language defined in clause B.3.

Table B-1 : Simple engineering units

	Quantity
	Name
	Symbol
	Definition
	Correspondence to other units

	length
	metre
	m
	SI base unit
	

	
	astronomical unit
	AU
	1 AU ≈ 1,495 978 70 × 10-11 m
	

	
	parsec
	pc
	1 pc ≈ 206 265 AU
	

	volume
	litre
	L
	1 L = 10-3 m3
	

	mass
	gram
	g
	1g = 10-3 kg (SI base unit)
	

	
	unified atomic mass unit
	u
	1 u ≈ 1,660 538 73 × 10-27 kg
	

	
	ton
	t
	1 t = 103 kg (SI base unit)
	

	time
	second
	s
	SI base unit
	

	
	minute
	min
	1 min = 60 s
	

	
	hour
	h
	1 h = 60 min = 3 600 s
	

	
	day
	d
	1 d = 24 h = 86 400 s
	

	electric current
	ampere
	A
	SI base unit
	

	temperature
	kelvin
	K
	SI base unit
	

	
	degree Celsius
	degC
	1 oC = 1 K + 273,15
	

	amount of substance
	mole
	mol
	SI base unit
	

	luminous intensity
	candela
	cd
	SI base unit
	

	plane angle
	radian
	rad
	m • m-1 = 1
	

	
	revolution
	r
	1 r = 8 × atan(1) × 1 rad
	

	
	degree
	deg
	1o = (π/180) rad
	

	
	arcminute
	arcmin
	1' = (1/60)o = (π/10 800) rad
	

	
	arcsecond
	arcsec
	1" = (1/3 600)o = (π/648 000) rad
	

	solid angle
	steradian
	sr
	m2 • m-2 = 1
	1 sr = 1 rad^2

	frequency
	hertz
	Hz
	s-1
	

	force
	newton
	N
	m • kg • s-2
	

	pressure
	pascal
	Pa
	m-1 • kg • s-2
	1 Pa = 1 N/m^2

	
	bar
	bar
	1 bar = 105 Pa
	

	energy, work, quantity of heat
	joule
	J
	m2 • kg • s-2
	1 J = 1 N.m

	energy
	electron volt
	eV
	1 eV ≈ 1,602 176 462 × 10-19 J
	

	power, radiant flux
	watt
	W
	m2 • kg • s-3
	1W = 1 J/s

	electric charge
	coulomb
	C
	s • A
	

	electric potential difference, electromotive force
	volt
	V
	m2 • kg • s-3 • A-1
	1 V = 1 W/A

	capacitance
	farad
	F
	m-2 • kg-1 • s4 • A2
	1 F = 1 C/V

	electrical resistance
	ohm (Ω)
	Ohm
	m2 • kg • s-3 • A-2
	1 Ohm = 1 V/A

	electrical conductance
	siemens
	S
	m-2 • kg-1 • s3 • A2
	1 S = 1 A/V

	magnetic flux
	weber
	Wb
	m2 • kg • s-2 • A-1
	1 Wb = 1 V.s

	magnetic flux density
	tesla
	T
	kg • s-2 • A-1
	1 T = 1 Wb/m^2

	inductance
	henry
	H
	m2 • kg • s-2 • A-2
	1 H = 1 Wb/A

	luminous flux
	lumen
	lm
	m2 • m-2 • cd = cd
	1 lm = 1 cd.sr

	illuminance
	lux
	lx
	m2 • m-4 • cd = m-2 • cd
	1 lx = 1 lm/m^2

	logarithm of power ratio
	decibel
	dB
	1 dB = 1/20 × ln (10) × 1 Np
	

	
	neper
	Np
	1 Np = 1
	

	radionuclide activity
	becquerel
	Bq
	s-1
	

	absorbed dose, specific energy (imparted), kerma
	gray
	Gy
	m2 • s-2
	1 Gy = 1 J/kg

	dose equivalent
	sievert
	Sv
	m2 • s-2
	1 Sv = 1 J/kg

	information capacity
	bit
	bit
	
	

	
	byte
	B
	1 B = 8 bit
	

	transmission rate
	baud
	Bd
	1 Bd = 1 bit/s
	

Table B-2 : Acceptable multiple and submultiple of engineering unit

	Factor
	Name
	Symbol
	
	Factor
	Name
	Symbol

	1024
	yotta
	Y
	
	10-1
	deci
	d

	1021
	zetta
	Z
	
	10-2
	centi
	c

	1018
	exa
	E
	
	10-3
	milli
	m

	1015
	peta
	P
	
	10-6
	micro
	u

	1012
	tera
	T
	
	10-9
	nano
	n

	109
	giga
	G
	
	10-12
	pico
	p

	106
	mega
	M
	
	10-15
	femto
	f

	103
	kilo
	k
	
	10-18
	atto
	a

	102
	hecto
	h
	
	10-21
	zepto
	z

	101
	deca
	da
	
	10-24
	yocto
	y

Table B-3 : Acceptable multiples of binary engineering units

	Factor
	Name
	Symbol

	260
	exbi
	Ei

	250
	pebi
	Pi

	240
	tebi
	Ti

	230
	gibi
	Gi

	220
	mebi
	Mi

	210
	kibi
	Ki

Table B-4 : Standard compound engineering units

	Quantity
	Name
	Symbol

	area
	square metre
	m^2

	volume
	cubic metre
	m^3

	rotational frequency
	reciprocal second
	s^-1

	velocity, speed
	metre per second
	m/s

	angular velocity
	radian per second
	rad/s

	
	degree per second
	deg/s

	acceleration
	metre per square second
	m/s^2

	wavenumber
	reciprocal metre
	m^-1

	density, mass density
	kilogram per cubic metre
	kg/m^3

	linear mass density
	kilogram per metre
	kg/m

	momentum
	kilogram metre per second
	kg.m/s

	angular momentum
	kilogram square metre per second
	kg.m^2/s

	moment of inertia
	kilogram square metre
	kg.m^2

	dynamic viscosity
	pascal second
	Pa.s

	torque, moment of force
	newton metre
	N.m

	specific acoustic impedance
	pascal second per metre
	Pa.s/m

	acoustic impedance
	pascal second per cubic metre
	Pa.s/m^3

	kinematic viscosity
	square metre per second
	m^2/s

	volume flow rate
	cubic metre per second
	m^3/s

	surface tension
	newton per metre
	N/m

	linear expansion coefficient
	reciprocal kelvin
	K^-1

	thermal conductivity
	watt per metre kelvin
	W/(m.K)

	coefficient of heat transfer
	watt per square metre kelvin
	W/(m^2.K)

	heat capacity, entropy
	joule per kelvin
	J/K

	specific heat capacity, specific entropy
	joule per kilogram kelvin
	J/(kg.K)

	specific energy
	joule per kilogram
	J/kg

	electrical charge density
	coulomb per cubic metre
	C/m^3

	electrical flux density
	coulomb per square metre
	C/m^2

	electric field strength
	volt per metre
	V/m

	permittivity
	farad per metre
	F/m

	electric dipole moment
	coulomb metre
	C.m

	current density
	ampere per square metre
	A/m^2

	magnetic field strength
	ampere per metre
	A/m

	electrical charge
	ampere hour
	A.h

	magnetic vector potential
	weber per metre
	Wb/m

	permeability
	henry per metre
	H/m

	electromagnetic moment
	ampere square metre
	A.m^2

	magnetization
	ampere per metre
	A/m

	magnetic dipole moment
	weber metre
	Wb.m

	resistivity
	ohm metre
	Ohm.m

	conductivity
	siemens per metre
	S/m

	reluctance
	reciprocal hertz
	H^-1

	radiant intensity
	watt per steradian
	W/sr

	radiance
	watt per square metre steradian
	W/(m^2.sr)

	irradiance, heat flux density
	watt per square metre
	W/m^2

	quantity of light
	lumen second
	lm.s

	luminance
	candela per square metre
	cd/m^2

	luminous exitance
	lumen per square metre
	lm/m^2

	light exposure
	lux second
	lx.s

	luminous efficacy
	lumen per watt
	lm/W

	mechanical impedance
	newton second per metre
	N.s/m

	molar mass
	kilogram per mole
	kg/mol

	molar volume
	cubic metre per mole
	m^3/mol

	molar energy
	joule per mole
	J/mol

	molar entropy, molar heat capacity
	joule per mole kelvin
	J/(mol.K)

	concentration (of amount of substance)
	mole per cubic metre
	mol/m^3

	transmission rate
	bit per second
	bit/s

B.3 Engineering units railroad diagrams

The railroad diagrams defining the syntax of engineering units are shown below.

[image: image111.wmf]Unit Reference

?

Engineering Units

?

=

[

]

Unit Reference

[image: image112.wmf]Unit Reference

 =

Unit Product

Unit Factor

/

[image: image113.wmf]Unit Product

 =

Unit Factor

Unit Product

.

[image: image114.wmf]Unit Simple Factor

Unit Factor

=

(

^

^

Unit Reference

)

Unit Exponent

Unit Exponent

[image: image115.wmf]Unit Simple Factor

=

AU

pc

bit

min

dB

u

h

d

Submultiple Only Simple Unit

Decimal Submultiple Prefix

Decimal Prefix

Multiple Only Simple Unit

Decimal Multiple Prefix

Multiple And Submultiple Simple Unit

Binary Prefix

B

[image: image116.wmf]Unsigned Integer

Unit Exponent

=

(

/

-

)

Unsigned Integer

Unsigned Integer

-

[image: image117.wmf]Multiple And Submultiple Simple Unit

=

mol

cd

Hz

Pa

bar

eV

Ohm

Wb

lm

lx

Bq

Gy

Sv

bit

N

J

m

g

s

K

A

V

W

C

S

T

F

H

[image: image118.wmf]Multiple Only Simple Unit

=

Bd

t

r

B

[image: image119.wmf]Submultiple Only Simple Unit

=

Np

L

sr

arcsec

arcmin

deg

rad

degC

[image: image120.wmf]Decimal Multiple Prefix

Decimal Prefix

=

Decimal Submultiple Prefix

[image: image121.wmf]Decimal Multiple Prefix

=

da

G

Y

Z

E

T

P

h

M

k

[image: image122.wmf]Decimal Submultiple Prefix

=

p

d

c

m

n

u

z

f

a

y

[image: image123.wmf]Digit

Unsigned Integer

=

[image: image124.wmf]Binary Prefix

=

Ki

Gi

Ti

Pi

Ei

Mi

B.4 EBNF representation of the engineering units

The EBNF representations of the PLUTO engineering units syntax are listed below.

	? Engineering Units ? =

("[",Unit Reference, "]")

| Unit Reference;

	Unit Reference =

Unit Product, ["/", Unit Factor];

	Unit Product =

[Unit Product, "."], Unit Factor;

	Unit Factor =

Unit Simple Factor (Unit Simple Factor , ["^", Unit Exponent])

| ("(",Unit Reference, ")", ["^", Unit Exponent]);

	Unit Simple Factor =

([Decimal Multiple Prefix], Multiple Only Simple Unit)

| ([Decimal Submultiple Prefix], Submultiple Only Simple Unit)

| ([Decimal Prefix], Multiple And Submultiple Simple Unit)

| ([Binary Prefix], ("B" | "bit"))

| "AU" | "pc" | "u" | "min" | "h" | "d" | "dB";

	Unit Exponent =

(["-"], Unsigned Integer)

| ("(", ["-"], Unsigned Integer, "/", Unsigned Integer, ")");

	

	Multiple And Submultiple Simple Unit =

"m" | "g" | "s" | "A" | "K" | "mol" | "cd" | "Hz" | "N"

| "Pa" | "bar" | "J" | "eV" | "W" | "C" | "V" | "F" | "Ohm" | "S"

| "Wb" | "T" | "H" | "lm" | "lx" | "Bq" | "Gy" | "Sv" | "bit";

	Multiple Only Simple Unit =

"t" | "r" | "B" | "Bd";

	Submultiple Only Simple Unit =

"L" | "degC" | "rad" | "deg" | "arcmin" | "arcsec" | "sr" | "Np";

	Decimal Prefix =

Decimal Multiple Prefix

| Decimal Submultiple Prefix;

	Decimal Multiple Prefix =

"Y" | "Z" | "E" | "P" | "T" | "G" | "M" | "k" | "h" | "da";

	Decimal Submultiple Prefix =

"d" | "c" | "m" | "u" | "n" | "p" | "f" | "a" | "z" | "y";

	Binary Prefix =

"Ei" | "Pi" | "Ti" | "Gi" | "Mi" | "Ki";

	Unsigned Integer =

{Digit }-;

Annex C (informative)
Functions

C.1 Introduction

This annex defines the standard mathematical, time and string functions.

C.2 Mathematical functions

The standard set of mathematical functions should be as specified in Table C-1.

Table C-1 : Mathematical functions

	Name
	Arguments
	Result
	Description
	Examples

	"abs"
	integer or real
	integer or real
	Returns the absolute value of the argument.
	abs (-9) = 9

	"acos"
	real
	real
	Returns the angle whose cosine is equal to the argument.
	acos (0.5) = 1.05 rad

	"acosec"
	integer or real
	real
	Returns the angle whose cosecant is equal to the argument.
	acosec (2) = 0.524 rad

	"acosec2"
	(list of 2 arguments)

arg1: integer or real

arg2: integer or real
	real
	Returns the angle, in the correct quadrant, whose cosecant is equal to the first argument divided by the second argument.
	acosec2 (-2, 1) = -0.524 rad

	"acotan"
	integer or real
	real
	Returns the angle whose cotangent is equal to the argument.
	acotan (2) = 0.464 rad

	"acotan2"
	(list of 2 arguments)

arg1: integer or real

arg2: integer or real
	real
	Returns the angle, in the correct quadrant, whose cotangent is equal to the first argument divided by the second argument.
	acotan2 (-2, 1) = -0.464 rad

	"asec"
	integer, real
	real
	Returns the angle whose secant is equal to the argument.
	asec (2) = 1.047 rad

	"asec2"
	(list of 2 arguments)

arg1: integer or real

arg2: integer or real
	real
	Returns the angle, in the correct quadrant, whose secant is equal to the first argument divided by the second argument.
	asec2 (-2, 1) = 2.094 rad

	"asin"
	real
	real
	Returns the angle whose sine is equal to the argument.
	asin (0.5) = 0.52 rad

	"atan"
	integer or real
	real
	Returns the angle whose tangent is equal to the argument.
	atan (1) = 0.785 rad

	"atan2"
	(list of 2 arguments)

arg1: integer or real

arg2: integer or real
	real
	Returns the angle, in the correct quadrant, whose tangent is equal to the first argument divided by the second argument.
	atan2 (-1, 1) = -0.785 rad

	"average"
	(list of 2 or more arguments)

arguments: integer or real
	integer or real
	Returns the arithmetic average value of a list of two or more arguments.
	average (1, 2, 3) = 2

	"ceiling"
	integer or real
	integer
	Returns the smallest integer value greater than or equal to the argument.
	ceiling (5.3) = 6

ceiling (-5.3) = -5

ceiling (5) = 5

	"cos"
	integer or real
	real
	Returns the cosine of the argument.
	cos (1 rad) = 0.54

cos (45 deg) = 0.7071

	"cosec"
	integer or real
	real
	Returns the cosecant of the argument.
	cosec (1 rad) = 1.19

	"cosh"
	integer or real
	real
	Returns the hyperbolic cosine of the argument.
	cosh (1 rad) = 1.54

	"cotan"
	integer or real
	real
	Returns the cotangent of the argument.
	cotan (1 rad) = 0.64

	"floor"
	integer or real
	integer
	Returns the largest integer that is less than or equal to the argument.
	floor (5.3) = 5

floor (-5.3) = -6

	"ln"
	integer or real
	real
	Returns the natural logarithm (base e) of the argument.
	ln (1.5) = 0.405

	"log"
	integer or real
	real
	Returns the base 10 logarithm of the argument.
	log (1.5) = 0.176

	"max"
	(list of 2 or more arguments)

arguments: integer or real
	integer or real
	Returns the maximum value in a list of two or more arguments. It returns no value for just one argument.
	max (1 V, 100 mV) = 1 V

	"min"
	(list of 2 or more arguments)

arguments: integer or real
	integer or real
	Returns the minimum value in a list of two or more arguments. It returns no value for just one argument.
	min (1, 3, 7, 4) = 1

	"quotient"
	(list of 2 arguments)

arg1: integer or real

arg2: integer or real
	integer
	Returns the result of dividing the first argument by the second argument, truncated.
	quotient (5, 2) = 2

quotient (5, -2.1) = -2

quotient (-5, 2.1) = -2

	"remainder"
	(list of 2 arguments)

arg1: integer or real

arg2: integer or real
	integer or real
	Returns the remainder that results from dividing the first argument by the second argument.
	remainder (5.3, 2) = 1.3

	"round"
	(1 or 2 arguments)

arg1: integer or real

arg2: integer or real
	integer or real
	Returns the first argument rounded to the number of places to the right of the decimal point given by the second argument. If the second argument is omitted, the argument is rounded to 0 places.
	round (2.4) = 2

round (-2.4) = -2

round (2.5) = 3

round (2.57, 1) = 2.6

	"sec"
	integer or real
	real
	Returns the secant of the argument.
	sec (1 rad) = 1.85

	"sin"
	integer or real
	real
	Returns the sine of the argument.
	sin (1 rad) = 0.84

sin (45 deg) = 0.7071

	"sinh"
	integer or real
	real
	Returns the hyperbolic sine of the argument.
	sinh (1 rad) = 1.18

	"sqrt"
	integer or real
	integer or real
	Returns the square root of the argument. It returns no value if the argument has a negative value.
	sqrt (5) = 2.236

	"tan"

	integer or real
	real
	Returns the tangent of the argument.
	tan (1 rad) = 1.56

	"tanh"
	integer or real
	real
	Returns the hyperbolic tangent of the argument.
	tanh (1 rad) = 0.76

	"truncate"
	real
	integer
	Returns the truncated value of the argument.
	truncate (6.6) = 6

truncate (-5.6) = -5

	"pi"
	none
	real
	Returns the value of Pythagoras’ constant, 
	pi () = 3.1415926536

	"e"
	none
	real
	Returns the value of Napier’s constant, e (base of natural logarithm)
	e () = 2.7182818285

	"G"
	none
	real
	Returns the value of the gravitational constant
	G () = 6.6742e−11 m^3.kg^-1.s^-2

C.3 Time functions

The standard set of time functions should be as specified in Table C-2.

Table C-2 : Time functions

	Name
	Arguments
	Result
	Description
	Examples

	"current time"
	none
	absolute time
	Returns the absolute time corresponding to the current time.
	current time () = 2004-24-21T12:00:00.0Z

	"year"
	absolute time
	integer
	Returns the year of the absolute time as a four-digit integer.
	year (current time ()) = 2003

	"month"
	absolute time
	integer
	Returns the month of the absolute time as an integer in the range 1 - 12 inclusive.
	month (current time ()) = 4

	"day of month"
	absolute time
	integer
	Returns the day of the month of the absolute time as an integer in the range 1 - 31 inclusive.
	day of month (current time ()) = 1

	"day of week"
	absolute time
	string
	Returns the day of the week of the absolute time as one of these strings: Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday.
	day of week (current time ()) = "Tuesday"

	"day of year"
	absolute time
	integer
	Returns the day of the year of the absolute time as an integer in the range 1 - 366 inclusive.
	day of year (current time ()) = 91

	"hour"
	absolute time
	integer
	Returns the hour of the absolute time as an integer in the range 0 - 23 inclusive.
	hour (current time ()) = 11

	"minute"
	absolute time
	integer
	Returns the minute of the absolute time as an integer in the range 0 - 59 inclusive.
	minute (current time ()) = 11

	"second"
	absolute time
	integer
	Returns the second of the absolute time as an integer in the range 0 - 59 inclusive.
	second (current time ()) = 11

	"days"
	relative time
	real
	Returns the number of days in the relative time as a real with associated engineering units.
	days (30 h) = 1.25 d

	"hours"
	relative time
	real
	Returns the number of hours in the relative time as a real with associated engineering units.
	hours (2 d 5 h 30 min) = 53.5 h

	"minutes"
	relative time
	real
	Returns the number of minutes in the relative time as a real with associated engineering units.
	minutes (2 d 5 h 30 min) = 3210 min

	"seconds"
	relative time
	real
	Returns the number of seconds in the relative time as a real with associated engineering units.
	seconds (37 min 4.5 s) = 2224.5 s

C.4 String functions

The standard set of string functions should be as specified in Table C-3.

Table C-3 : String functions

	Name
	Arguments
	Result
	Description
	Examples

	"to string"
	(1 or 2 arguments)

arg1: Boolean or integer or real or absolute time or relative time arg2: engineering units
	string
	Returns the first argument as a string. If a second argument is given the first argument is converted to the units given by the second argument.
	to string (5 V) = "5 V "

to string (5 V, mV) = "5000 mV"

	"to Boolean"
	string
	Boolean
	Returns a Boolean converted from the argument.
	to Boolean ("TRUE") = TRUE

	"to hex"
	integer
	string
	Returns a string, which is the hexadecimal equivalent of the argument.
	to hex (45) = "0x2D"

	"to integer"
	string
	integer
	Returns an integer converted from the argument.
	to integer ("32") = 32 or

to integer ("0x20") = 32

	"to real"
	string
	real
	Returns a real converted from the argument.
	to real ("3.2") = 3.2

	"capitalize"
	string
	string
	Returns a string, which is the argument with the first letter of each word capitalized.
	capitalize ("hello world") = "Hello World"

	"get from"
	(list of 3 arguments)

arg1: string arg2: integer arg3: integer
	string
	Returns a string, which is the string of characters, extracted from the first argument, beginning at the character given by the second argument and ending at the character given by the third argument . Spaces between words are included in the count from left to right.
	get from ("one two three", 5, 7) = "two"

	"insert in"
	(list of 3 arguments)

arg1: string arg2: string arg3: integer
	string
	Returns a string, which consists of the first argument inserted into the second argument, starting at the position specified by the third argument.
	insert in ("not ", "do enter", 4) = "do not enter"

	"is contained in"
	(list of 2 arguments)

arg1: string arg2: string
	Boolean
	Returns “TRUE” if the second argument contains the first argument, and “FALSE” if it does not.
	is contained in ("Your", "Your flight") = TRUE

	"length of"
	string
	integer
	Returns an integer whose value gives the number of characters in the argument.
	length of ("message") = 7

length of ("") = 0

	"lower case"
	string
	string
	Returns a string, which is the same as the argument but with all alphabetic characters appearing in lower-case.
	lower case ("123AbcDef") = "123abcdef"

	"omit from"
	(list of 3 arguments)

arg1: string arg2: integer arg3: integer
	string
	Returns a string, which is the same as the first argument but with the range of characters, beginning at the character given by the second argument and ending at the character given by the third argument, removed.
	omit from ("do not enter", 4, 7) = "do enter"

	"position of"
	(list of 2 arguments)

arg1: string arg2: string
	integer
	Returns an integer value giving the starting position of the first string in the second string. If the first string occurs more than once in the second string, the first occurrence is returned. If the first string is not in the second string, the function returns “0”.
	position of ("fli", "Your flight") = 6

	"upper case"
	string
	string
	Returns a string, which is the same as the argument but with all alphabetic characters in upper- case.
	upper case ("123Abc Def"= "123ABCDEF"

Bibliography
	ECSS-S-ST-00
	ECSS system – Description, implementation and general requirements

	ECSS-E-ST-10
	Space engineering – System engineering general requirements

	ECSS-E-ST-10-02
	Space engineering – Verification

	ECSS-E-ST-10-03
	Space engineering – Testing

	ECSS-E-ST-50
	Space engineering – Communications

	ECSS-E-ST-70
	Space engineering – Ground systems and operations

	ECSS-E-ST-70-31
	Space engineering – Ground systems and operations – Monitoring and control data definition

	ECSS-E-ST-70-41
	Space engineering – Telemetry and telecommand packet utilization

	ISO/IEC 14977
	Information technology – Syntactic metalanguage – Extended BNF

	Voluntocracy 2003:
	Representation of numerical values and SI units in character strings for information interchange (http://swiss.csail.mit.edu/~jaffer/MIXF)

Preconditions

Confirmation

ECSS Secretariat�

ESA-ESTEC

Requirements & Standards Division

Noordwijk, The Netherlands

Completed

Watchdog

Main

Executing

complete (confirmation completed)

abort

confirm (execution completed)

abort (preconditions not OK)

execute (preconditions OK)

confirm (execution terminated)

abort

Not initiated

Preconditions

Completed

Watchdog

Main

Executing

Continuation

Test

Confirmation

Confirmation

complete (execution

completed)

abort

confirm (execution

completed)

restart

abort (preconditions not OK)

initiate

execute (preconditions OK)

confirm (execution terminated)

abort

Not initiated

Preconditions

Completed

Executing

Continuation

Test

Confirmation

Confirmation

complete (confirmation

completed)

abort

confirm (execution completed)

restart

abort (Preconditions not OK)

initiate

route (Preconditions OK)

Routing

Executing

execute

abort

2

_1104736178.vsd

_1140253454.vsd
Activity-Name

;

Preconditions_Body

"

Characters

"

Enumerated Constant =

_1159013311.vsd
Activity-Name

end main

Preconditions_Body

Predefined Type =

Boolean

signed integer

real

string

absolute time

relative time

Property Value Set

Enumerated Set Reference

Property Data Type

unsigned integer

_1160311317.vsd
Activity-Name

Preconditions_Body

Constant =

Boolean Constant

Integer Constant

Real Constant

String Constant

Absolute Time Constant

Relative Time Constant

Enumerated Constant

_1193142729.vsd
Activity-Name

end main

Boolean Constant =

TRUE

FALSE

_1194683840.vsd
Activity-Name

Preconditions_Body

Identifier =

Identifier First Word

Identifier Subsequent Word

_1276066612.doc

Comms Link

Pre-Launch

Service Link

Launch Facility

Launch Vehicle C

Launch Vehicle B

Launch Service Segment

Launch Vehicle A

AIV Subnet

Space

Subnet

Onboard Subnet

Payload

Platform

Spacecraft A

subnet

Onboard

Payload

Platform

Spacecraft B

Space Segment

Key:		OCS: Operation control system		SSC: Space segment control station

			PCS: Payload control system			ME: Mission exploitation station

			MES: Mission exploitation system	GCS: Ground communications subnet

			AIV: Assembly, integration and verification

GCS

ME

ME

ME

SSC

SSCS

SSCS

EGSE

MES

PCS

OCS

Mission Control

System

Ground Station

System

Ground Segment

Comms Link

Pre-Launch

Service Link

Launch Facility

Launch Vehicle C

Launch Vehicle B

Launch Service Segment

Launch Vehicle A

AIV Subnet

Space

Subnet

Onboard Subnet

Payload

Platform

Spacecraft A

subnet

Onboard

Payload

Platform

Spacecraft B

Space Segment

Key: OCS: Operation control system	SSC: Space segment control station

 PCS: Payload control system	ME: Mission exploitation station

 MES: Mission exploitation system	GCS: Ground communications subnet

 AIV: Assembly, integration and verification

GCS

ME

ME

ME

SSC

SSCS

SSCS

EGSE

MES

PCS

OCS

Mission Control

System

Ground Station

System

Ground Segment

_1276066904.doc
[image: image1.bmp]

Sub-goal

Sub-goal

Sub-goal

Sub-goal

Sub-goal

Declaration Body

Watchdog

Step

Watchdog

Step

Confirmation Body

Watchdog Body

Main Body

Sequential

sub-goals

Parallel

sub-goals

Preconditions Body

_1194685242.vsd
Activity-Name

Preconditions_Body

Identifier First Word =

Letter

Letter

Digit

_1275311210.ppt

Space segment

Temperature

Switch On

Space system

Ground segment

AOCS

Power subsystem

Star tracker

Optical head

EGSE

MCS

Ground Station

Baseband equipment

Telemetry decoder

Switch On

Background Count Report

Telemetry Lock Status

Go NoGo Status

Source Count

Undervoltage

Key:

Switch On Failure

Event

Reporting data

Activity

_1194684253.vsd
Activity-Name

Preconditions_Body

Identifier Subsequent Word =

Letter

Digit

_1193213847.vsd
Activity-Name

Preconditions_Body

end main

Object Type =

predefined value set

activity statement

step

argument

system element

reporting data

parameter

record

array

variable

activity

event

_1194683795.vsd
Activity-Name

;

Preconditions_Body

end main

Integer Constant =

Sign

Digit

?Engineering Units?

Hexadecimal Constant

_1194678521.vsd
Activity-Name

Preconditions_Body

;

end main

Property Value Set =

of

Object Reference

Object Property

system element

reporting data

activity

event

system element reference

reporting data reference

activity reference

event reference

current

parameter reference

parameter

Object Property

of

Constant

Object Reference

Object Property

of

Constant

_1193213774.vsd
Activity-Name

Preconditions_Body

;

Object Reference =

Object Name

Object Reference

of

Object Type

_1161697635.vsd
Activity-Name

Preconditions_Body

Term =

Product

Addition Operator

Term

_1193058717.vsd
Activity-Name

Preconditions_Body

end main

;

Absolute Time Constant =

Day Of Month

Year

-

T

Hour

Second

Fraction Of Second

-

Minute

Z

:

Month

:

.

Day

Year

-

Hour

Minute

Fraction Of Second

Second

:

T

:

.

Z

_1193062083.vsd
Activity-Name

Preconditions_Body

;

end main

Real Constant =

Sign

.

Digit

e

Sign

Digit

Digit

?Engineering Units?

_1193136795.vsd
Activity-Name

Preconditions_Body

end main

;

Relative Time Constant =

Days

Hours

Seconds

Fraction Of Second

min

Minutes

.

h

d

s

Days

:

Sign

Hour

Minute

Fraction Of Second

Second

:

:

.

Sign

_1161697651.vsd
Activity-Name

Preconditions_Body

Relational Expression =

Term

Comparative Expression

_1161698217.vsd
Activity-Name

end main

Preconditions_Body

;

Comparative Expression =

Term

between

in (

Relational Operator

Term

Term

Term

Term

and

,

)

within

Constant

of

?Engineering Units?

%

Term

_1160315788.vsd
Activity-Name

end main

Preconditions_Body

;

Set Procedure Context Statement =

Object Reference

in the context of

Procedure Statement

do

end context

_1160315888.vsd
Activity-Name

end main

Preconditions_Body

;

Set Step Context Statement =

Object Reference

in the context of

Step Statement

do

end context

_1161697604.vsd
Activity-Name

;

end main

Addition Operator =

+

-

_1160312194.vsd
Activity-Name

;

end main

Sign =

+

-

_1159612984.vsd
Activity-Name

Preconditions_Body

end main

;

Unit Product =

Unit Factor

Unit Product

.

_1159693349.vsd
Activity-Name

end main

Preconditions_Body

;

Unit Factor =

^

Unit Exponent

Unit Simple Factor

(

^

Unit Reference

)

Unit Exponent

_1159702178.vsd
Activity-Name

Preconditions_Body

end main

;

Decimal Multiple Prefix =

M

k

da

G

Y

Z

E

T

P

h

_1159702189.vsd
Activity-Name

Preconditions_Body

end main

;

Decimal Submultiple Prefix =

f

a

y

p

d

c

m

n

u

z

_1159702211.vsd
Activity-Name

Preconditions_Body

end main

;

Binary Prefix =

Gi

Ti

Pi

Ei

Mi

Ki

_1159702164.vsd
Activity-Name

Preconditions_Body

end main

;

Multiple Only Simple Unit =

B

r

Bd

t

_1159701928.vsd
Activity-Name

Preconditions_Body

Unsigned Integer =

Digit

_1159689741.vsd
Activity-Name

end main

Preconditions_Body

;

Unit Exponent =

/

Unsigned Integer

Unsigned Integer

(

-

)

Unsigned Integer

-

_1159692709.vsd
Activity-Name

Preconditions_Body

end main

;

Submultiple Only Simple Unit =

sr

arcsec

arcmin

deg

rad

degC

Np

L

_1159692992.vsd
Activity-Name

end main

Preconditions_Body

;

Decimal Prefix =

Decimal Multiple Prefix

Decimal Submultiple Prefix

_1159623143.vsd
Activity-Name

Preconditions_Body

end main

;

Unit Simple Factor =

AU

pc

bit

min

Multiple Only Simple Unit

Decimal Multiple Prefix

Multiple And Submultiple Simple Unit

dB

u

h

d

Submultiple Only Simple Unit

Decimal Submultiple Prefix

Decimal Prefix

Binary Prefix

B

_1159688339.vsd
Activity-Name

Preconditions_Body

end main

;

Multiple And Submultiple Simple Unit =

W

C

S

T

F

H

mol

cd

Hz

Pa

bar

eV

Ohm

Wb

lm

lx

Bq

Gy

Sv

bit

N

J

m

g

s

K

A

V

_1159016859.vsd
Activity-Name

Preconditions_Body

end main

Factor =

Simple Factor

**

Factor

_1159606987.vsd
Activity-Name

Preconditions_Body

end main

;

Unit Reference =

Unit Product

Unit Factor

/

_1159015133.vsd
Activity-Name

Preconditions_Body

;

end main

Property Data Type =

of

Object Property

system element

reporting data

activity

event

same as

current

parameter

Object Reference

_1141135343.vsd
Activity-Name

end main

Preconditions_Body

;

No

Variable Declaration =

Description

with units

?Engineering Units?

Predefined Type

Variable Name

variable

of type

_1144669432.vsd
Activity-Name

end main

Preconditions_Body

;

No

Step Declaration Body =

declare

,

Event Declaration

end declare

Variable Declaration

Enumerated Set Declaration

_1144744226.vsd
Activity-Name

end main

Preconditions_Body

Initiate Activity Statement =

initiate

Activity Call

refer by

Activity Statement

_1148733715.vsd
Activity-Name

Preconditions_Body

end main

;

Object Property =

Standard Object Property Name

Nonstandard Object Property Name

Object Property

of

_1144752683.vsd
Activity-Name

Preconditions_Body

end main

;

Array Argument =

array

Simple Argument

Argument Name

Record Argument

end array

,

,

_1144678198.vsd
Activity-Name

end main

Preconditions_Body

;

No

Procedure Declaration Body =

declare

,

Event Declaration

end declare

_1141207236.vsd
Activity-Name

Preconditions_Body

;

Function =

Standard Function Name

Nonstandard Function Name

Expression

(

,

)

_1141222070.vsd
Activity-Name

Preconditions_Body

end main

;

Object Operation =

Object Property

Nonstandard Object Operation Name

set

_1141222229.vsd
Activity-Name

Preconditions_Body

end main

;

Object Property Request =

Object Property

get

of

Object Reference

with

Argument Name

:=

Expression

,

end with

_1141209031.vsd
Activity-Name

end main

Preconditions_Body

;

?Engineering Units? =

]

Unit Reference

[

Unit Reference

_1141198329.vsd
Activity-Name

Preconditions_Body

end main

;

Object Operation Request Statement =

Object Operation

of

Object Reference

with

Argument Name

:=

Expression

,

end with

_1141043949.vsd
Activity-Name

Preconditions_Body

end main

Raise Event =

raise event

Event Name

_1141110274.vsd
Activity-Name

Preconditions_Body

end main

;

Enumerated Set Reference =

Set Name

Object Reference

of

_1141112150.vsd
Activity-Name

Preconditions_Body

;

System Element Reference =

Object Reference

_1141116239.vsd
Activity-Name

Preconditions_Body

;

Argument Reference =

Object Reference

_1141110294.vsd
Activity-Name

Preconditions_Body

end main

Simple Argument =

System Element Reference

Activity Call

:=

activity

parameter

Reporting Data Reference

Expression

Argument Name

system element

reporting data

Event Reference

event

_1141105703.vsd
Activity-Name

Preconditions_Body

end main

;

Arguments =

Simple Argument

Record Argument

Array Argument

,

_1140423306.vsd
Activity-Name

Preconditions_Body

end main

;

Save Context =

save context

Reporting Data Reference

refer to

Reporting Data Name

to

by

,

_1141022214.vsd
Activity-Name

Preconditions_Body

end main

;

Activity Call =

Activity Reference

end with

Arguments

with directives

Directives

end with

Predefined Value Set Reference

with arguments

with value set

end with

_1141039294.vsd
Activity-Name

end main

Preconditions_Body

;

No

Enumerated Set Declaration =

enumerated

(

Enumerated Constant

,

)

Set Name

Description

_1140423345.vsd
Activity-Name

Preconditions_Body

Reporting Data Name =

Identifier

_1140960552.vsd
Activity-Name

Preconditions_Body

Predefined Value Set Reference =

Object Reference

_1140267704.vsd
Activity-Name

Preconditions_Body

Variable Name =

Identifier

_1140423198.vsd
Activity-Name

Preconditions_Body

;

Reporting Data Reference =

Object Reference

_1140271265.vsd
Activity-Name

end main

;

Preconditions_Body

end confirmation

Confirmation Body =

then

confirmation

if

Wait Statement

Expression

_1140260405.vsd
Activity-Name

Preconditions_Body

Set Name =

Identifier

_1123924890.vsd

_1129469223.vsd
Activity-Name

Preconditions_Body

end main

;

Event Reference =

Object Reference

_1129546250.vsd
Activity-Name

end main

Preconditions_Body

;

for

Variable Reference

:=

to

Expression

by

Expression

Expression

do

Step Statement

end for

For Statement =

_1139301371.vsd
Activity-Name

Preconditions_Body

Step Statement =

Assignment Statement

Flow Control Statement

Wait Statement

Save Context Statement

Initiate In Parallel Statement

Initiate And Confirm Step Statement

Initiate And Confirm Activity Statement

Initiate Activity Statement

Set Step Context Statement

Log Statement

Inform User Statement

Object Operation Request Statement

_1139311218.vsd
Activity-Name

end main

Preconditions_Body

;

No

Event Declaration =

event

Description

Event Name

_1139314746.vsd
Activity-Name

end main

Preconditions_Body

;

Case Tag

in case

Expression

is

;

otherwise

:

;

end case

Case Statement =

:

Step Statement

Step Statement

or is

_1139301452.vsd
Activity-Name

Preconditions_Body

Flow Control Statement =

If Statement

Case Statement

Repeat Statement

While Statement

For Statement

_1129548455.vsd
Activity-Name

Preconditions_Body

Directive Name =

Identifier

_1129549080.vsd
Activity-Name

Preconditions_Body

;

end main

Simple Factor =

Constant

Argument Reference

Object Property Request

Expression

)

(

Expression

Variable Reference

ask user

Expression

Function

)

(

Predefined Type

default

expect

Sign

Simple Factor

Negation Boolean Operator

Simple Factor

_1129547410.vsd
Activity-Name

Preconditions_Body

end main

;

Directives =

Expression

,

Directive Name

:=

_1129540490.vsd
Activity-Name

Preconditions_Body

end main

Assignment Statement =

Variable Reference

:=

Expression

_1129540662.vsd
Activity-Name

Preconditions_Body

;

Variable Reference =

Object Reference

_1129470941.vsd
Activity-Name

Preconditions_Body

end main

Timeout =

timeout

Expression

Raise Event

_1127670264.vsd
Activity-Name

Preconditions_Body

end main

;

Activity Reference =

Object Reference

_1127670695.vsd
Activity-Name

Preconditions_Body

Standard Function Name =

Identifier

_1129469024.vsd
Activity-Name

end main

Preconditions_Body

Wait Statement =

wait until

wait for

Save Context

Expression

Event Reference

Timeout

event

_1127670702.vsd
Activity-Name

Preconditions_Body

Nonstandard Function Name =

Identifier

_1127670503.vsd
Activity-Name

Preconditions_Body

Argument Name =

Identifier

_1127670178.vsd
Activity-Name

Preconditions_Body

Standard Object Property Name =

Identifier

_1127670186.vsd
Activity-Name

Preconditions_Body

Nonstandard Object Property Name =

Identifier

_1126951690.vsd

_1127670168.vsd
Activity-Name

Preconditions_Body

Nonstandard Object Operation Name =

Identifier

_1123932465.vsd

_1104911754.vsd

_1104911913.vsd

_1123594503.vsd

_1104910514.vsd

_1104321397.vsd

_1104321546.vsd

_1104321688.vsd

_1104321778.vsd

_1104321902.vsd

_1104321820.vsd

_1104321737.vsd

_1104321587.vsd

_1104321430.vsd

_1104321506.vsd

_1104321412.vsd

_1104315640.vsd

_1104317876.vsd

_1104319906.vsd

_1104317850.vsd

_1104316385.vsd

_1104316450.vsd

_1104315683.vsd

_1104315236.vsd

_1104315270.vsd

_1104315611.vsd

_1104315249.vsd

_1104314247.vsd

_1104314529.vsd

_1104314691.vsd

_1104308837.vsd

