ECSS-E-TM-40-07 Volume 4A
25 January 2011

EUROPEAN COOPERATION

Bcss]

FOR SPACE STANDARDIZATION

Space engineering

Simulation modelling platform -
Volume 4: C++ Mapping

ECSS Secretariat

ESA-ESTEC

Requirements & Standards Division
Noordwijk, The Netherlands

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

Foreword

This document is one of the series of ECSS Technical Memoranda. Its Technical Memorandum status
indicates that it is a non-normative document providing useful information to the space systems
developers’ community on a specific subject. It is made available to record and present non-normative
data, which are not relevant for a Standard or a Handbook. Note that these data are non-normative
even if expressed in the language normally used for requirements.

Therefore, a Technical Memorandum is not considered by ECSS as suitable for direct use in Invitation
To Tender (ITT) or business agreements for space systems development.

Disclaimer

ECSS does not provide any warranty whatsoever, whether expressed, implied, or statutory, including,
but not limited to, any warranty of merchantability or fitness for a particular purpose or any warranty
that the contents of the item are error-free. In no respect shall ECSS incur any liability for any
damages, including, but not limited to, direct, indirect, special, or consequential damages arising out
of, resulting from, or in any way connected to the use of this document, whether or not based upon
warranty, business agreement, tort, or otherwise; whether or not injury was sustained by persons or
property or otherwise; and whether or not loss was sustained from, or arose out of, the results of, the
item, or any services that may be provided by ECSS.

Published by: ~ ESA Requirements and Standards Division
ESTEC, P.O. Box 299,
2200 AG Noordwijk
The Netherlands
Copyright: 2011© by the European Space Agency for the members of ECSS

|[EY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

Change log

ECSS-E-TM-40-07 Vol-
ume 4A

25 January 2011

First issue

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

Table of contents

(@1 g = T Vo 1= Lo T PP 3
TN 0o 1¥ Tox o o 5SS 12
S o o o 1 PPN 14
P2 = 1o Tl Y o =T PP P PP PPPRPPPPPPPTPPIN 15
N R o 1 1LY 8/ 0 1= 15
122 00t R O - T SRR 15

20,2 BOO e 15

22 O T || 2 F PSS 16

P2 T S U o | SRS 16

2.1.5 10 TP 16

2 O T U o 1 TSP 17

22 O A |01 1 SRR 17

2.1.8 L 111 52 17

22 L T |01 (7 SO RSPPRR 18

P22 000 O B o 1 7 PR 18

22 0 I [- 1 PSR RPPRR 18

0 N 1 T (R 19

P2 R G T B 11 | - 1o [T 19

P2 N S - 1= I TSP PP PP POTUPPPPPRPPTN 20

2. 1015 SHINGS ..ttt e e et e e e e e e 21

B 1041 0] (=T Y/ o 1= T o 21
2.2.1 Primitive TYPE KiNd.....ooo oot e e e e e e e e e e ennes 21

2.2.2 ANY SIMPIE AITAY ..o 23

2.2.3 ANY SIMPIE 23

2.2.4 Primitive TYPE ValU@.......ccoorieiiii et e e e e 24

2.3 Universally Unique [dentifierS..........uuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiisseiereereeereneseesneenneenn.. 25
228 75 R O TV 1o IR OO OPPPPR 25

G T U 1V 1o [=3 (=S PTRR 26

|[EY

ECSS-E-TM-40-07 Volume 4A

25 January 2011
3 COMPONENT MOUEI .. e e e e e e e e e e e e e eeennnnns 27
G TR0 o =T o] 1o 27
3.1.1 Do =T o] 1T o 27
3.1.2 DUPKICAIE NAIME ... 28
3.1.3 LNV Z= 1 o N 0V 1Y/ o L= 29
3.1.4 INVAlid EVENE Iciiiiiiiie et e et eeeeaaaes 30
3.15 [N VZ= 1 To I @]][o A 1Y/ o= 31
3.2 ODbjects and COMPONENTS........ccoiiiiiiiiiie e e e e e e e e e e e e e eeeaeaaaas 32
.21 OB LS e ———————— 32
0 I O (O] o= o PR 32
3.2.2 COMPONENES .. 34
3.2.2. 1 [COMPONENT.. .ottt e e e e e e a e e e e e et aaerraa, 34
3.2.2.2 Component CoIECHIONuuiiiiee e e e e rre e e as 35
TR T |V, (o Yo [IS = L (<Y N1 L 36
T S 11V, [Yo = N 37
I S T |V (oY [I @ o] | <Y1 1o o [41
T T 1S Y=Y /(o] TN 42
I A Y= oV (o 01| [T 1 0] o 1R 42
3.3 Component MECHANISIMS........ooiiiiiiiiii it e e 43
ICTRC Tt N Vo [0 [1T F- 11 Lo o S 43
I T 201 I R 12X o [(=T = 1 PSP PPPT P PPUPPRPPIN 43
TG I8 I | = =1 (<Y (=] o] = 45
3.3.1.3 REference COllECHON.......ciceeieei et e e e e e e e e e eees 46
3.3.2 COMPOSIIION. ...t ———— 47
TR T2 A (0o 4o 0T 13 | (= PP EUT TR 47
TR I [O0] 41 r- 1] o 1= SR 48
TS I I O] ¢ r= 1] o [=1 g OLo] | [=Tex 1 o] o P 50
3.3.3 7=] £ 50
TG TR 00 R V7T o Y |~ 50
3.3.3.2 EVENt SINK COHBCLION ...t e e e e eees 52
BT T TG T | /=T o A0 LU oL 52
3.3.3.4 EVENt SOUICE COlECHONcuuiiiiii et e e e e e 57
3.34 Y2 o o | £ 57
TR S N 1 1= 1] T 57
R B | o 1 VA =0 | 1 | SRR 59
3.3.4.3 ENntry Point ColleCHONuviiiieeei it 60
3.35 Dynamic INVOCALIONccooviiiiiiii e e e e e eneaaaas 61
3.3.5.1 IDYNAmMIC INVOCALIONuvviiiiiieeeieciiiieeee e e e e e e e e e e e e e e e aeeeae s 62
3.3.5.2 IREQUEST ...ttt 68
3.3.6 Y G 1Y () (o1 <R 75
TG I S 0 R | <Y] 1) N 75
TR G N 15 (o) = Vo [T =TT [T SR 78
TR S T B 1 (o) = Vo [T 1Y | (= SRR 79
R Y o To (=Y Y, (= To g F= T a1 1 F T 80
3.4.1 FalliDIE MOGEBIS. ... e et e e 80
It O A | = | 10] (ST 81
I I | = 1 o] (SN 1Y, Lo To [T 82
3.5 Management INtErfaCES.ccii v i e 84

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42
351

Managed COMPONENTSccoiiiiiiiiiiiiieee e e e s e e e e e 84
G TS T I A 1V =Yg = Vo =T I @ o] = ox SRR 84
TS W72 1V F=To F=To [=To I @do) 0] o Jo] o =1 o | USSR 87
3.5.2 Managed Component MeChaniSMS............cceiiiiieiiiiiiiiiiin e e e e 88
3.5.2.1 1COMPONENE COBCHIONceeiitiiiieiiiiie ettt 89
3.5.2.2 IManaged REfEreNCe........ccooiiiiiiiiiiiie e s 91
3.5.2.3 IMaNaged CONAINETcoiiiiiiiieiiiiie ettt 95
3.5.2.4 IEVENT CONSUIMETceiiiiiiiiiiiiteeeteeaeeeaeasesasssessssssssssssssssssbsbsbsbsbsbsbsbsbsnssssssnnnsnnns 97
3.5.2.5 IEVENE PrOVIAETeeiiiiiieieeeee ettt e e 98
3.5.2.6 IENtry POINt PUDIISNEr........cuiiiiiiiiie e 100
3.5.3 Managed Model MeChaniSMS..........cccivuuiiiiiii e e e e e e eeeeens 102
3.5.3.1 IManaged MOUEL.........cooiiiiiiieiie et 102
B.5.3.2 TFHEIA ... 105
3.5.3.3 TAITAY FIEld ... 108
3.5.3.4 ISIMPIE FIEld....coiiiiiiei e 113
3.5.3.5 1FOrCIDIE Field.......eeeeiieeieiiiiiee e 115
3.5.3.6 VIBW KINA .ot e e e e e e e ennne 116
IS SIS 10 4 1U] = (o] o T =t V7T (0] o 1Y] £ 118
B.68. 1 SIMUIALOTS . . 118
3.6.1.1 Simulator State KiNd.........cooiiiiiiiiiiiee e 119
TG 0 2 111 4311 =1 (o U PURRRP 123
3.6.1.3 IManaged SIMUIALONcieiiiiiieiiiie e 134
B.6.1.4 TFACIONY .eeeeeieeiiiete ettt e e a e e 138
3.6.1.5 FACtOry COlECHON.ccii ittt e 140
3.6.2 PUBNCALION ... 140
3.6.3 ServiCe ACUISITIONuuiiieiiiieiiiiie e e et s e e e e e e e et s e e e e e e e eera e e e e e e eenenes 140
4 SIMUIALION SEIVICES .ooiiiiii i, 142
o R o To [0 [T ST SUPTPTTTTTRRRP 142
e It R | o To o 1= PRSPPI 142
O 0 A 1 T RS RRRRRRPR 144
4.1.1.2 Query Log MesSsage KiNG..........eeiiiiiiiiiiiiiiieee e 144
4.1.2 Log Message KiNd.......oooooiiiiiiiii 144
4.1.3 Predefined Log Message KinNds.............oeiiiiiiiieiieiiiiiiiee e eeeeeeens 145
4.1.4 User defined Log Message Kinds............cccoceeieiiiii e 146
A T2 0 L= == o =T 146
421 ITIME KBEPEI e 146
4.21.1 Get EPOCH TIME ... e e e e e 148
4.2.1.2 Get MISSION TIME ...uviiiiiiiiiie e itiiee et ee ettt e et e et e e e s sbbe e e e s snbeeeeeanes 148
4.2.1.3 Get SIMUIALION TIME...cciiiiiie it 148
N © 1= A | [0 I T 11T 149
4.2.1.5 SetEPOCH TIME ...t 149
4.2.1.6 St MISSION STAIuuiiiiiiie it e e e e e e e e e e e e e anns 149
4.2.1.7 St MISSION TIMEueiiiiiiiiee ettt e et e e e e e e e e enbabeeeaaaeeeaan 150
422 TMe KNG ..o 150
4.3 SCREAUIET ... 154
4.3. 1 ISCREAUIET ...t e e 154
4.3.1.1 Add EPOCh Time EVENL......cccoiiiiiiiiiiiiie e 160
4.3.1.2 Add IMMmediate EVENT......ccoii i 160
4.3.1.3 Add MiSSION TiME EVENL.......cuuuiiiiiiiie i 161

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

4.3.1.4 Add Simulation TIME BEVENT.......oiieei et e e e 161

4.3.1.5 Add ZUlU TIME EVENL....coveeeeie ettt e e e e e e eaaans 162

4.3.1.6 REMOVE BEVENL.... oo e a b 163

4.3.1.7 SEtEVENT COUNT....cuiiiiiiii i e e e b e ra e aaas 163

4.3.1.8 Set EVENt CYCIE TiME..ciiii it e e e e e e e e eannes 164

4.3.1.9 Set Event EPOCH TiME.....ccoi it 164

4.3.1.10 Set EVENE MISSION TiME..cuuuuiiiiiiiiieiiiee e s e e eeeae e e e e e e e e e s e e eeabanas 164

4.3.1.11 Set Event SIMUlation TiMeEccovuuiiiieii i eeeeraaas 165

4.3.1.12 Set EVENE ZUIU TIME . ..cooviiiei ittt s e et e e e e e e eeaaaaes 165

4.3.1.13 InNvalid CYClE TIME ...eeeiiiiiiiie ettt e 166

4.3.1.14 INVAlid EVENE TIME ..ot e e e e e e e e e e neaas 166
4.4 EVENEMANAGETiceiiiiiii ettt e 167
g R | V7= o Y= o = T = 167

Nt R Y o 0| 174

4.4.1.2 QUENY EVENL I ...t e e 174

G T U] o Y=Y o1 | o1 175

o I S O | 1Y U] o 1Yo] o T 175

4.4.1.5 Already SUDSCHDEAcuviiiiiiiiie e 175

4.4.1.6 NOt SUDSCIIDEAccceeeiiieee ettt e e e e e e e e e e e ra s e e eeaas 176
4.4.2 Predefined EVENE TYPESuuueiiiiii e 178
T = == T0] LY = N 180
451 IRESOIVET ... e e e e e e aaan 180

4.5.1.1 RESOIVE ADSOIULE .. .ceveiiieie ettt e e e e e e e e e e eaaas 181

4.5.1.2 RESOIVE REIALIVEcoeeeiieeeeeeeee et e e e 181
452 Component Paths...........ooooi 182
G IR] QLT 0 L3 12 182
4.6.1 ILINK REQISIIY ..coi i 182

0 O R 1 Vo [0 [I TR 184

4.6.1.2 CaAN REMOVE ...ceniiii e e et e e e s e et e s b e e abaas 184

4.6.1.3 G LINKS ..ot e et e e e e e e e aa 185

S S o T I T 185

4.6.1.5 REMOVE LINK .ooviiiiiiiii ettt e e e r s e e e e eaaae 186

4.6.1.6 REMOVE LINKS....ouueiiiiiiiiiiee ettt e e e e e e e e e s e eaaaes 186
LR AU 1 o] 1103 = 140] o 187
5.1 TYPE REGISIIY it a e 187
o0t O R Y/ o= =T £ 1 Y/ 188

L0 I 0 Vo (o [N = | 3/ 1= USSR 191

L0 I Vo [0 [O = T Y/ o 1= OSSR 192

5.1.1.3 Add ENUMErAtioN TYPE....cciiiiiiiieiiiiiie ittt 192

5.1.1.4 Add FIOAE TYPE .ttt 192

5.1.1.5 Add INTEOEN TYPE ..ttt 193

5.1.1.6 Add SENG TY PO .ttt e e e e e e s bb e e e e e e e e e annnes 193

5.1.1.7 Add SEUCIUIE TYPE coiiiiiiiiiiiieiet ettt ettt e e e et e e e e e e e e anneees 194

LN I I S =1 I/ o TSP 194

L0 I I =1 I/ o S EEPR 194

5.1.1.10 Already ReQISIEIred.........ccccuviiiiiiee e e e e e 195
5.1.2 1Y 1 PP 195

5.1.2.1 Get PrHMItIVE TYPC .ueiiiiiii ittt ettt et e e e e e e et nbanee e e e e e s ennnne 196

LN 2 1= L6 [1o IR 197

LN ZC T = o] 1= o VRPN 197
o0 R T | = o 0T g 1T = Tu o] o T 1Y/ o T 197

LT O 00 R Yo [0 [1 <Y = | 198

|[EY

ECSS-E-TM-40-07 Volume 4A

25 January 2011
5. 1.4 IS TUCTUIE Ty e 198

L0 I Yo (o = o SRR 199
o0 0 T [=TT 1Y/ o1 TSP 200
5.1.6 NOtREQISEIEA....ccccce oo 200
5.2 Publication of Fields, Operations and Propertiescccovviveeeeiniiiiiiiiieeeee e 201
5.2.1 IPUblish OPerationccoviiiiiiiii it e e e e e eeanees 201

5.2.1.1 PUDBIiSh Parameter.......ccccciiiiiiiee st 202
5.2.2 IPUBICALION ... 202

5.2.2.1 Create REQUESTciiiiiiiiiiiiiiit et 209

5.2.2.2 Delete REQUEST......eiiiiiiiiiiie ettt 209

5.2.2.3 GetAIMAY FIeldoooiiiiiee e 209

5.2.2.4 Get SIMPIE FIld.....ccooooii e 210

5.2.2.5 GEt TYPE REGISIY wuvriiiieeiiiciiiie ettt e e e e e e e e e e e e e eennnes 210

I T wdU 1 o] 1] [AN -\ YT 210

5.2.2.7 PUDBIISN AITAY ..ottt e e e e e e e 211

5.2.2.8 PUDBIISN Fild.......ouiiiiiiiee et e e e 211

5.2.2.9 PUDBIISh Field.......oiiiieiieie et e e e 212

5.2.2.10 PUDBIISh Fild.......oeiiiiiieie e e s e e e annnnes 212

L N R o o] [T B =Y (o R 212

I W o o] (1] B = (o B 213

I e T o o] [T B =Y (o R 213

LA S w8 o] (1= o T = Lo 214

LA S T w8 o] (1= T = Lo 214

5.2.2.16 PUDBIISh Fild.......oouiiiiiiie e a e e 214

5.2.2.17 PUDBIISN Fild.......ouiiiiiiiii e a e e ennnes 215

5.2.2.18 PUDBIISh Fild.......ouiiiiiiiie e a e 215

5.2.2.19 PUDBIISh Fild.......oviiiiiiiee et e e e e e 215

5.2.2.20 PUDBIISh Fild.......oiiiieiieie et e s e e e e 216

5.2.2.21 PUDIiSh OPEratioN........ccciiieiiiiiiie e e e e e e e e e e 216

5.2.2.22 PUDIISH PrOPEIMYeeeiiiiiiiiee e 217

5.2.2.23 PUDIISN StHUCIUIEeviiiiiiiiiiiieeeiiee bbb eeeeseaaeeaennaae 217

5.2.2.24 Invalid Field TYPE ..oeeiiiiiiei e 217
5.2.3 ACCESS KiNG.....coiieiiiiii e e e e e e e e e e e e e eeae 218
5.2.4 Parameter Direction Kindccooooiiiiiiiiiiii st e e eeaeens 218
1Y, = =T o Yo = PR 220
L0 R O V7= YT 220
6.1.1 Placeholders..........cccccooiiiiiiiiii 220
6.1.2 Coloring and Font Schema............ccoeee i 220
6.1.3 Generation of Type ldentification.............ccoooieiiiii 220
L0 I A N | (=T ¢ F= 1LY/ @ Yo [221
6.1.5 Optional Code.....ccooei i 221
6.2 C++ Specific AUMDULES ..o 221
6.2.1 CH+ AUNDULES. ..o e 221

0 I A 1) 1 - Vo SRR 221

L A - 1 < 0 - T PR 222

6.2.1.3 BY REIEIENCE.... it 222

L I o 1] USSP 223

L T T @ 11 1§ o (0] PSSP 223

B.2. 1.6 OPEIALONeeiieiiiiiiiiee ettt a e e e s e 224

6.2.1.7 OPErator KNeoiiiiiiiiiiiieiei et e e e e e e e e eneeees 224

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

LI T - Vi oS TP 226
L2 e TV /1 o (U - | PSR 227
LSRG T 0o | (= =1 1= 110 =T | £ 227
B.3.1 BaASIC TYPES .. ittt aaaraa 227
L0 700 0 R o 1= 1= PP PP PPPPPRPPPRPRt 227
LT TN A T 1 o= PR 227
6.3.1.3 DESCIIPLION «..eeieiiiiiiie ettt et 227
LT 200 0 U L | TSR 227
6.3.2 EIEBMENLS...... e aaan 227
6.3.2.1 Named EleMENt.......coiiii i 227
6.3.2.2 DOCUMEBNLottt e e e et e e e e e e e e st e e e e e e eeaenen 228
6.3.3 MEAUALA. ... ————— 228
L T T R |V 1= = To = | = PP PPPRPPPPPPPRPR 228
LTG0 A @ o1 1= o | SRR 228
LG TG T0C T o To 014 =T o} = 1o) o ISR 228
LI N 00 (I Y/ o 11 ST UUPPPPTTPTR 228
G TR N I8V o = P 228
6.4.1.1 Visibility EIEMENTccoeiiiieee e 228
6.4.1.2 VIiSibility KiNdcoviiiiiiiiiiicie s rnre e 228
S O T 1Y/ o1 TSP 229
6.4.1.4 LANQUAGE TYPE ..ueeriiiiiiieeiieiiiriie et e s ettt e e e e et e e e e e s s e e e e e e nanee 229
B.4.1.5 VAIUE TYPE cuitiiieiiiiie ettt ettt ettt e et re e e s st ae e e s stbe e e e e nnbee e e nres 229
6.4.1.6 Value REFEIENCE.......uuviiiiiiiiiiiiiiiii e aaanananas 229
6.4.1.7 Native Type and Platform Mapping.......cccccceeveiiiviieeeieee i iiiiieee e e 229
L NV - |11 1= 1Y/ o= T 231
B.4.2.1 SIMPIE TYPE ittt e e e e e e e s e e e e e e e s e e e e e e e e annnne 231
I = 1 011 1)Y= Y/ o1 PR 231
L N T =1 o101 4o L= = 110 o PR 231
6.4.2.4 ENUMEration LItEralcovvviiiiiiiiiiiiiiiiiiiiiiieieieieeseersrersrersrerarararerareaa————.. 231
B.4.2.5 INYET ..o 231
I T 0T | AR PR 232
I A 111 oV TR SRR 232
L T N | -\ PSPPSR 233
B.4.2.9 SITUCKUIE ...t eiii ettt e e e e e b e e e e e e e e bbb e e e e e eeeaees 233
B.4.2.10 ClASS......uteiieiiiiiiie ettt e e anbre e e e e 234
L 5 A b (o= oo o PR 235
B.4.3 FRALUIES .eu i ae 236
LR 0t R @ 1 = T | SRR 236
B.4.3.2 FIIA ...t 236
I T T = (o] o 1= 1 PSP 237
L J A Nt~ Tor = L1 o] o 238
L S @ o 1= -1 i [0 o U 238
6.4.3.6 PaArAmMBLeI .. .cii ittt aaae 240
L RV 111 1 PP 240
L Y - 111 PSR 240
6.4.4.2 SIMPIE VAIUE ..o 240
6.4.4.3 SIMPIE AITAY ValU.........eeiiiiiiiiiie et 241
B.4.4.4 AITAY VAIUE......ooiiiiiiii it 242
6.4.4.5 SHTUCIUIE VAlUE.......evvieiiiiiiiiiiiiiiieitieiiieieerer bbb ae e asaaannnnnnnnnnaan 242
L T N 111 11 (=SSR 242
6.5 SMAlI CatalOQUE......ccoeeeeeiiei e 243
6.5.1 CAlBIOQUE ... e 243
B.5.1.1 CAtAlOQUE ...ttt a e e e e e e e e e e e annae 243

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

6.5.1.2 NAMESPACEiviiiiiieee ettt e et e e e e s e 243
6.5.2 RefEreNCe TYPES oo 243
SR N = LY (=T =T Lo ST Y o ST 243
6.5.2.2 COMPONENT....ciiiiiiiiiie et e e e e e e e e e s e e e e e eeranen 243
B.5.2.3 INLEITACE ..eiiiieiiii e 243
B.5.2.4 IMOUEL......oiiiiiiiiii et 244
B.5.2.5 SEIVICE ..eeiiiiiiieii ettt s 245
6.5.3 Modelling MECNANISIMScoiiiiiiiiiiiiiie e 247
6.5.3.1 Class based DeSigncc.uuuiiiiiiiiiiiiiiiee e 247
6.5.3.2 Component BasSed DESIGN......ccuiaiiiiiiiiiiieie et 247
6.5.3.3 EVENt DASed DESIGNccciiiiiiiiieiee et 247
6.5.4 Catalogue ALHDULESccoiiiiiiie e e e e eeaeee 248
6.5.4.1 View and VIEWKING.........c.ooiiiiiiiii e 248
6.6 SMAI PACKAGE ...ceiiieiiiiiiiieei ittt e e e e eaeeeeas 249
B.6.1 PACKAGE .. oo 249
LG I A = - Tod ¢ Vo (=R 249
6.6.1.2 IMPIEMENTALIONceiiii i e s e e e e e e annrees 250
6.6.2 BUNAIE FOrMAL.....ccooiiiiiiiiiiiii e 250
6.6.3 Binary DistriDUtioNoiiiiiiiii 253
Figures
Figure 1 - Sequence of calls for dynamic invocation..............cooooiiiiiiiii 61
Figure 2 - Simulation Environment State Diagram with State Transition Methods............... 118
Figure 3 - Model State Diagram with State Transition Methods............cccccceeeiiiiiiiiiiieeneen, 119
Figure 4 - Sequence of calls for service acquiSItion ... 141
Figure 5 - Predefined EVENT TYPES. . .ot ee et e e e et s e e e e e e e aaaan s e e e e e e eeeannnans 178
FIQUIE 6 - ADSIIACT........cci ittt 222
FIQUIE 7 - BASE ClaSS......uuueiiiiiiieiiiiie ettt e e e e e e e e s e e s 222
FIgure 8 - BY REFEIENCEooiiiiiiiiiieeeeeeeeeee ettt e neeenenenneennee 222
10 [0S IRe T O] o1 S PPPPPPPP 223
FIQUIE 10 - CONSIIUCTONuiiiiiiieeeiieiit ettt e e e e e e e s e e e e e e e e e eeeeeeas 224
LT[0 20 R @ T = = (o SRR 224
Lo [V (T A @ 01T = 1 (o] g -] o 1S 225
FIQUIE 13 - STAtIC...cciiiiiiiiiiiiiicc ettt ettt e et e e e e e 226
FIQUIE 14 - VIMTUAL ...ttt eeee e s 227
Tables
Table 1 - Enumeration Literals of Primitive TypeKindccccoiiiiiiiiiiiiii e 22
Table 2 - Specification of UUIABYIEScooeiieeeeciee e 26
Table 3 - Enumeration Literals of ModelStateKind...........cooooeeiiieiiiii e, 37
Table 4 - Enumeration Literals of VIEWKING ..., 117
Table 5 - Enumeration Literals of SimulatorStateKindcccoooiiiiiiiineiiiieeee s 121

10

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

Table 6 - Specification of LOgMeSSageKiNGcoiiiiiiiiiiiiiieeee e 145
Table 7 - Enumeration Literals of TIMmeKind ... 151
Table 8 - Enumeration Literals of ACCESSKINGcooviiiiiiiiiiiiiiiiiiiieiee e 218
Table 9 - Enumeration Literals of ParameterDirectionKindccevveeieiiiiiiiiiiiieee s 219
Table 10 - Enumeration Literals of OperatorKind............coooooiiiiii 225
Table 11 — Property Type Modifier depending on type and attributeccccccceeeeiieiinnnns 237
Table 12 — Association Type Modifier depending on type and attribute..............cccccceevinnens 238
Table 13 - Parameter Modifier depending on type and direction ..., 240

11

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

Introduction

Space programmes have developed simulation software for a number of years,
and which are used for a variety of applications including analysis, engineering
operations preparation and training. Typically different departments perform
developments of these simulators, running on several different platforms and
using different computer languages. A variety of subcontractors are involved in
these projects and as a result a wide range of simulation models are often
developed. This Technical Memorandum addresses the issues related to
portability and reuse of simulation models. It builds on the work performed by
ESA in the development of the Simulator Portability Standards SMP1 and
SMP2.

This Technical Memorandum is complementary to ECSS-E-ST-40 because it
provides the additional requirements which are specific to the development of
simulation software. The formulation of this Technical Memorandum takes into
account the Simulation Model Portability specification version 1.2. This
Technical Memorandum has been prepared by the ECSS-E-40-07 Working
Group.

This Technical Memorandum comprises of a number of volumes.

The intended readership of Volume 1 of this Technical Memorandum are the
simulator software customer and all suppliers.

The intended readership of Volume 2, 3 and 4 of this Technical Memorandum is
the Infrastructure Supplier.

The intended readership of Volume 5 of this Technical Memorandum is the
simulator developer.

Note: Volume 1 contains the list of terms and abbreviations used in this
document

. Volume 1 - Principles and requirements

This document describes the Simulation Modelling Platform (SMP) and
the special principles applicable to simulation software. It provides an in-
terpretation of the ECSS-E-ST-40 requirements for simulation software,
with additional specific provisions.

. Volume 2 - Metamodel

This document describes the Simulation Model Definition Language
(SMDL), which provides platform independent mechanisms to design
models (Catalogue), integrate model instances (Assembly), and schedule
them (Schedule). SMDL supports design and integration techniques for
class-based, interface-based, component-based, event-based modelling
and dataflow-based modelling.

12

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

Volume 3 - Component Model

This document provides a platform independent definition of the com-
ponents used within an SMP simulation, where components include
models and services, but also the simulator itself. A set of mandatory in-
terfaces that every model has to implement is defined by the document,
and a number of optional interfaces for advanced component mecha-
nisms are specified.

Additionally, this document includes a chapter on Simulation Services.
Services are components that the models can use to interact with a Simu-
lation Environment. SMP defines interfaces for mandatory services that
every SMP compliant simulation environment must provide.

Volume 4 - C++ Mapping

This document provides a mapping of the platform independent models
(Metamodel, Component Model and Simulation Services) to the
ANSI/ISO C++ target platform. Further platform mappings are foreseen
for the future.

The intended readership of this document is the simulator software cus-
tomer and supplier. The software simulator customer is in charge of pro-
ducing the project Invitation to Tender (ITT) with the Statement of Work
(SOW) of the simulator software. The customer identifies the simulation
needs, in terms of policy, lifecycle and programmatic and technical re-
quirements. It may also provide initial models as inputs for the model-
ling activities. The supplier can take one or more of the following roles:

Infrastructure Supplier - is responsible for the development of generic in-
frastructure or for the adaptation of an infrastructure to the specific
needs of a project. In the context of a space programme, the in-
volvement of Infrastructure Supplier team(s) may not be required
if all required simulators are based on full re-use of exiting infra-
structure(s), or where the infrastructure has open interfaces allow-
ing adaptations to be made by the Simulator Integrator.

Model Supplier - is responsible for the development of project specific
models or for the adaptation of generic models to the specific
needs of a project or project phase.

Simulator Integrator — has the function of integrating the models into a
simulation infrastructure in order to provide a full system simula-
tion with the appropriate services for the user (e.g. system engi-
neer) and interfaces to other systems.

Volume 5 - SMP usage

This document provides a user-oriented description of the general con-
cepts behind the SMP documents Volume 1 to 4, and provides instruc-
tions for the accomplishment of the main tasks involved in model and
simulator development using SMP.

13

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

1
Scope

The Platform Independent Model (PIM) of the Simulation Modelling Platform
(SMP) consists of two parts:

1. The SMP Metamodel, also called Simulation Model Definition Language
(SMDL).

2. The SMP Component Model, which includes SMP Simulation Services.

This document provides a mapping of both parts of the PIM to the ISO/ANSI
C++ Platform as defined by the International Organization for Standardization
(ISO) and the American National Standards Institute (ANSI). Therefore, this
document provides a Platform Specific Model (PSM). The mapping of these
two parts is different in nature:

J The SMP Component Model is mapped to a number of C++ types, which
are available in source code format as well (see annex).

o The SMP Metamodel is mapped to a process of how to turn Metaclasses
into C++ types which make use of the Component Model C++ types.

Due to the dependency of the Metamodel mapping on the Component Model
mapping, the latter is introduced first in this document.

14

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

2
Base Types

2.1 Primitive Types

The type system is based on a number of pre-defined primitive types. For each
platform, a mapping of these types to native platform types has to be provided.
The semantics of these types is defined in the Component Model, so that they

have a consisting semantics on all platforms.

As various C++ compilers on various operating systems differ in their definition
especially of the integer types, the SMP C++ type system is bootstrapped with
the definition of Native Types for all Primitive Types. This definition is
included from a file called Platform.h, which has to be provided for each
compiler and operating system. The file delivered with the standard already
provides a number of common compilers and operating systems.

211 Char8
8 bit character type.
File

#include "Smp/PrimitiveTypes.h"
Namespace

Smp
Declaration of Char8

/// Unique ldentifier of type Char8.
extern const Uuid Uuid_Char8;

/// 8 bit character type.
typedef NT_Char8 Char8;

2.1.2 Bool

Boolean with true and false.
File
#include "Smp/PrimitiveTypes.h"

Namespace

Smp

15

ECSS-E-TM-40-07 Volume 4A
25 January 2011

|E[Y
Declaration of Bool

/// Unique ldentifier of type Bool.
extern const Uuid Uuid_Bool;

/// Boolean with true and false.
typedef NT_Bool Bool;

2.1.3 Int8
8 bit signed integer type.
File

#include "Smp/PrimitiveTypes.h"
Namespace

Smp

Declaration of Int8

/// Unique ldentifier of type Int8.
extern const Uuid Uuid_Int8;

/// 8 bit signed integer type.
typedef NT_Int8 IntS8;

2.1.4 Uint8

8 bit unsigned integer type.

File

#include "Smp/PrimitiveTypes.h"
Namespace

Smp
Declaration of UInt8

/// Unique ldentifier of type UInt8.
extern const Uuid Uuid _UInt8;

/// 8 bit unsigned integer type.
typedef NT_UInt8 UInt8;

215 Intl6

16 bit signed integer type.
File
#include "Smp/PrimitiveTypes.h"

Namespace

Smp

16

ECSS-E-TM-40-07 Volume 4A
25 January 2011

|E[Y
Declaration of Int16

/// Unique ldentifier of type Intl6.
extern const Uuid Uuid_Intl6;

/// 16 bit signed integer type.
typedef NT_Intl6 Intl6;

2.1.6 Ulintl6

16 bit unsigned integer type.

File

#include "Smp/PrimitiveTypes.h"
Namespace

Smp
Declaration of Ulnt16

/// Unique ldentifier of type UIntl6.
extern const Uuid Uuid_UIntl6;

/// 16 bit unsigned integer type.
typedef NT_UIntl6 UIntl6;

2.1.7 Int32

32 bit signed integer type.

File

#include "Smp/PrimitiveTypes.h"
Namespace

Smp
Declaration of Int32

/// Unique ldentifier of type Int32.
extern const Uuid Uuid_Int32;

/// 32 bit signed integer type.
typedef NT_Int32 Int32;

2.1.8 UlInt32

32 bit unsigned integer type.
File
#include "Smp/PrimitiveTypes.h"

Namespace

Smp

17

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

Declaration of Ulnt32

/// Unique ldentifier of type UInt32.
extern const Uuid Uuid_UInt32;

/// 32 bit unsigned integer type.
typedef NT_UInt32 UInt32;

219 Inte4d

64 bit signed integer type.

File

#include "Smp/PrimitiveTypes.h"
Namespace

Smp
Declaration of Int64

/// Unique ldentifier of type Int64.
extern const Uuid Uuid_Int64;

/// 64 bit signed integer type.
typedef NT_Int64 Int64;

2.1.10 Uinte4

64 bit unsigned integer type.

File

#include "Smp/PrimitiveTypes.h"
Namespace

Smp
Declaration of Ulnt64

/// Unique ldentifier of type UInt64.
extern const Uuid Uuid_UInt64;

/// 64 bit unsigned integer type.
typedef NT_UInt64 UInt64;

2.1.11 Float32

32-bit single-precision float type.
File
#include "Smp/PrimitiveTypes.h"

Namespace

Smp

18

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

Declaration of Float32

/// Unique ldentifier of type Float32.
extern const Uuid Uuid_Float32;

/// 32-bit single-precision float type.
typedef NT_Float32 Float32;

2.1.12 Float64

64-bit double-precision float type.
File

#include "Smp/PrimitiveTypes.h"
Namespace

Smp
Declaration of Float64

/// Unique ldentifier of type Float64.
extern const Uuid Uuid_Float64;

/// 64-bit double-precision float type.
typedef NT_Float64 Float64;

2.1.13 Duration

Duration in nanoseconds.

This type is used for relative time values. It specifies a duration in nanoseconds.
The following holds for Duration:

e Duration is a value measured in nanoseconds, which is the lowest level
of granularity supported for time in SMP.

e Duration is stored as a signed 64-bit integer value.

e Positive values correspond to positive durations, and negative values
correspond to negative durations.

This allows specifying duration values roughly between -290 years and 290
years. With this definition, the Duration type is compatible with the DateTime

type.

File

#include "Smp/PrimitiveTypes.h"
Namespace

Smp

Declaration of Duration

/// Unique ldentifier of type Duration.
extern const Uuid Uuid_Duration;

/// Duration in nanoseconds.

/// This type is used for relative time values. It specifies a duration in
/// nanoseconds. The following holds for Duration:

///

/// - Duration is a value measured in nanoseconds, which is the lowest
/// level of granularity supported for time in SMP.

19

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

77/
/77
/77
/77
/77
/77
/77

- Duration is stored as a signed 64-bit integer value.

- Positive values correspond to positive durations, and negative
values correspond to negative durations.

This allows specifying duration values roughly between -290 years and
290 years. With this definition, the Duration type is compatible with
the DateTime type.

typedef NT_Duration Duration;

2.1.14 Date Time

Absolute time in nanoseconds.

This type is used for absolute time values. It specifies a time in nanoseconds,
relative to a reference time.

The following holds for DateTime:

e Time is a value measured in nanoseconds, which is the lowest level of
granularity supported for time in SMP.

e Time is stored as a signed 64-bit integer value, relative to the reference
time (01.01.2000, 12:00, Modified Julian Date (MJD) 2000+0.5).

e DPositive values correspond to times after the reference time, and
negative values correspond to time values before the reference time.

This allows specifying time values roughly between 1710 and 2290. With this
definition, the DateTime type is compatible with the Duration type.

File
#include "Smp/PrimitiveTypes.h"
Namespace

Smp

Declaration of DateTime

/77

Unique ldentifier of type DateTime.

extern const Uuid Uuid _DateTime;

77/
/77
/77
/77
/77
/77
/77
/77
/77
/77
/77
/77
/77
/77
/77
77/
//7/

Absolute time iIn nanoseconds.

This type is used for absolute time values. It specifies a time in
nanoseconds, relative to a reference time.

The following holds for DateTime:

- Time i1s a value measured iIn nanoseconds, which is the lowest
level of granularity supported for time in SMP.

- Time is stored as a signed 64-bit integer value, relative to the
reference time (01.01.2000, 12:00, Modified Julian Date (MJD)
2000+0.5).

- Positive values correspond to times after the reference time,
and negative values correspond to time values before the reference
time.

This allows specifying time values roughly between 1710 and 2290. With
this definition, the DateTime type is compatible with the Duration
type.

typedef NT_DateTime DateTime;

20

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

2.1.15 String8

8 bit character string.

File

#include "Smp/PrimitiveTypes.h"
Namespace

Smp

Declaration of String8

/// Unique ldentifier of type String8.
extern const Uuid Uuid_String8;

/// 8 bit character string.
typedef NT_String8 String8;

The C++ language has limited support for strings. Many applications use null-
terminated arrays of characters to store string values, others use the string class
from the Standard Template Library (STL). In the PSM, all strings of the PIM
are mapped to constant character pointers (const Char8¥*).

2.2 Simple Type Union

Some of the interfaces defined in the Component Model make use of the
AnySimple type. This data type represents a type that can hold any of the
simple types defined in SMP, which includes all primitive types defined above.
As for the primitive types, a native platform mapping has to be provided for
each platform.

2.2.1 Primitive Type Kind

This is an enumeration of the available primitive types.
File

#include "Smp/PrimitiveTypes.h"

Namespace

Smp

Declaration of PrimitiveTypeKind

/// Unique ldentifier of type PrimitiveTypeKind.
extern const Uuid Uuid_PrimitiveTypeKind;

/// This is an enumeration of the available primitive types.
enum PrimitiveTypeKind
{

/// No type, e.g. for void.

PTK_None,

/// 8 bit character type.
PTK_Chars,

21

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

/// Boolean with true and false.
PTK_Bool,

/// 8 bit signed integer type.
PTK_Int8,

/// 8 bit unsigned integer type.
PTK_UINtS,

/// 16 bit signed integer type.
PTK_Intl6,

/// 16 bit unsigned integer type.
PTK_UIntl6,

/// 32 bit signed integer type.
PTK_Int32,

/// 32 bit unsigned integer type.
PTK_UInt32,

/// 64 bit signed integer type.
PTK_Int64,

/// 64 bit unsigned integer type.
PTK_UInt64,

/// 32 bit single-precision floating-point type.
PTK_Float32,

/// 64 bit double-precision floating-point type.
PTK_Float64,

/// Duration in nanoseconds.
PTK_Duration,

/// Absolute time iIn nanoseconds.
PTK_DateTime,

/// 8 bit character string.
PTK_String8

s
Table 1 - Enumeration Literals of PrimitiveTypeKind

Name Description
PTK_None No type, e.g. for void.
PTK_Char8 8 bit character type.
PTK_Bool Boolean with true and false.
PTK_Int8 8 bit signed integer type.
PTK_Ulnt8 8 bit unsigned integer type.
PTK_Intl6 16 bit signed integer type.
PTK_Ulnt16 16 bit unsigned integer type.
PTK_Int32 32 bit signed integer type.
PTK_Ulnt32 32 bit unsigned integer type.
PTK_Int64 64 bit signed integer type.
PTK_Ulnt64 64 bit unsigned integer type.

22

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

Name

Description

PTK_Float32

32 bit single-precision floating-point type.

PTK_Float64

64 bit double-precision floating-point type.

PTK_Duration

Duration in nanoseconds.

PTK_DateTime

Absolute time in nanoseconds.

PTK_String8

8 bit character string.

2.2.2 Any Simple Array

Array of AnySimple values.

Namespace
Smp

2.2.3 Any Simple

Variant that can store a value of any of the simple types. The type attribute
defines the type used to represent the value, while the value attribute contains
the actual value.

File
#include "Smp/AnySimple.h"
Namespace

Smp
Declaration of AnySimple

/// Unique ldentifier of type AnySimple.
extern const Uuid Uuid_AnySimple;

/// Variant that can store a value of any of the simple types. The type
/// attribute defines the type used to represent the value, while the value
/// attribute contains the actual value.

struct AnySimple

/// Type of the contained value.
Smp: :PrimitiveTypeKind type;

/// Value stored in the AnySimple instance.
Smp: :PrimitiveTypeValue value;

/// Default constructor.

/// Copy constructor from another AnySimple instance.

that Instance to copy from.

AnySimple(const Smp::AnySimple& that);

/// Destructor that releases memory.
virtual ~AnySimple(Q);

/// Assignment operator from another AnySimple instance.

that Instance to assign from.

/// @return Reference to instance.
virtual Smp::AnySimple& operator=(const Smp::AnySimple& that);

{
AnySimple();
/// @param
/// @param
}:

23

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

2.2.4 Primitive Type Value

Union of primitive type values, which is used for the value field of AnySimple.
File

#include "Smp/PrimitiveTypes.h"

Namespace

Smp

Declaration of PrimitiveTypeValue

/// Unique ldentifier of type PrimitiveTypeValue.
extern const Uuid Uuid_PrimitiveTypeValue;

/// Union of primitive type values, which is used for the value field of
/// AnySimple.
union PrimitiveTypeValue

//7/
Smp

/77

Smp:

177/

Smp:

177/

Smp:

77/

Smp:

177/

Smp:

77/

Smp:

/77

Smp:

/77

Smp:

/77

Smp:

/77

Smp:

177/

Smp:

177/

Smp:

///
Smp

/77
Smp

8 bit character value.
::Char8 char8Value;

Boolean with true and false.
:Bool boolValue;

8 bit signed integer value.
Int8 int8value;

8 bit unsigned integer value.
:UInt8 ulnt8value;

16 bit signed integer value.
:Intl6 intl6Value;

16 bit unsigned integer value.
:UIntl6 ulntl6Value;

32 bit signed integer value.
:Int32 int32Value;

32 bit unsigned integer value.
:UInt32 ulnt32value;

64 bit signed integer value.
:Int64 int64Value;

64 bit unsigned integer value.
:UInt64 ulnt64value;

32 bit single-precision floating-point value.
:Float32 float32Value;

64 bit double-precision floating-point value.
:Float64 float64Value;

Duration in nanoseconds.
:Duration durationValue;

Absolute time in nanoseconds.
::DateTime dateTimeValue;

8 bit character string value.
1 :String8 string8Value;

24

[EEY

ECSS-E-TM-40-07 Volume 4A

25 January 2011
Alternatives
Name Type Description
char8Value Char8 8 bit character value.
boolValue Bool Boolean with true and false.
int8Value Int8 8 bit signed integer value.
ulnt8Value Ulnt8 8 bit unsigned integer value.
intl6Value Int16 16 bit signed integer value.
ulntl6Value Ulntl6 16 bit unsigned integer value.
int32Value Int32 32 bit signed integer value.
ulnt32Value UlInt32 32 bit unsigned integer value.
int64Value Int64 64 bit signed integer value.
ulnt64Value Ulnt64 64 bit unsigned integer value.
float32Value Float32 32 bit single-precision floating-point value.
float64Value Float64 64 bit double-precision floating-point value.
durationValue | Duration | Duration in nanoseconds.
dateTimeValue | DateTime | Absolute time in nanoseconds.
string8Value String8 8 bit character string value.
2.3 Universally Unique Identifiers

For a unique identification of types (and hence models), SMP uses Universally

Unique Identifiers

with the format specified by the Open Group

(http://www.opengroup.org).

231

Uuid

Universally Unique Identifier.

A Universally Unique Identifier is 128 bit long, separated into 32 hex nibbles
(where each hex nibble stands for 4 bits).

File

#include "Smp/Platform.h"

Namespace

Smp

Declaration of Uuid

/// Universally Unique ldentifier.

/// For a unique identification of types (and hence models), SMP uses
/// Universally Unique ldentifiers with the format specified by the Open
/// Group (http://www.opengroup.org).

struct Uuid

/// 8 hex nibbles.
Smp::NT_UInt32 Datal;

25

http://www.opengroup.org/�

[EEY

ECSS-E-TM-40-07 Volume 4A

25 January 2011

/// 4 hex nibbles.

Smp::NT_UIntl6 Data2;

/// 4 hex nibbles.

Smp::NT_UIntl6 Data3;

/// 4+12 hex nibbles.
Smp: :UuidBytes Data4;

}:
Fields
Name Type Description
Datal Ulnt32 8 hex nibbles.
Data2 Ulntl6 4 hex nibbles.
Data3 Ulntl6 4 hex nibbles.
Data4 UuidBytes | 4+12 hex nibbles.

2.3.2 Uuid Bytes

Final 8 bytes of Uuid.

File

#include "Smp/Platform.h"

Namespace

Smp

Declaration of UuidBytes

/// Final 8 bytes of Uuid.
typedef Smp::NT_UInt8 UuidBytes[8];

Table 2 - Specification of UuidBytes

Item type

Size

Ulnt8

8

26

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

3
Component Model

3.1 Exceptions

SMP defines some basic exceptions which are used in several interfaces, and
which are therefore defined outside of an individual interface. For each
exception, see the detailed specification of the interfaces to find out which
methods actually may raise this exception.

3.1.1 Exception

This is the base class for all SMP exceptions.

This exception is the base class for all other SMP exceptions. It provides Name,
Description and Message.

File
#include "Smp/Exceptions.h"
Namespace

Smp

Declaration of Exception

/// This is the base class for all SMP exceptions.
/// This exception is the base class for all other SMP exceptions. It
/// provides Name, Description and Message.
class Exception
{
protected:
/// Constructor for new exception.
/// @param name Name of the exception that is returned by GetName.
/// @param description Description of the exception that is returned
/// by GetDescription.
Exception(
Smp: :String8 name,
Smp: :String8 description) throw();

/// Copy constructor.
Exception(
Exception& ex) throw();

/// Virtual destructor to release memory.
virtual ~Exception();

/// Name of the exception that is returned by GetName.
Smp: :String8 name;

/// Description of the exception that is returned by GetDescription.
Smp::String8 description;

/// Description of the problem that is returned by GetMessage.
Smp: :String8 message;

27

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

public:
/// Returns the name of the exception class. This name can be used e.g.
/// for debugging purposes.
/// @return Name of the exception class.
virtual Smp::String8 GetName() const;

/// Returns a textual description of the exception class. This
/// description can be used e.g. for debugging purposes.

/// Q@return Textual description of the exception class.
virtual Smp::String8 GetDescription() const;

/// Returns the description of the problem encountered. This message
/// can be used e.g. for debugging purposes.

/// @return Textual description of the problem encountered.

virtual Smp::String8 GetMessage() const;

protected:
/// Defines the description of the problem encountered.
/// This message can be used e.g.
/// for debugging purposes.
/// Q@param message Textual description of the problem encountered.
virtual void SetMessage(Smp::String8 message);

/// Assignment operator.
Exception& operator =(const Exception& ex);

s
Base Exceptions
None
Fields
Name Type | Description
description String8 | Description of the exception that is returned by GetDe-
scription.
message String8 | Description of the problem that is returned by GetMes-
sage.
name String8 | Name of the exception that is returned by GetName.

3.1.2 Duplicate Name

This exception is raised when trying to add an object to a collection of objects,

which have to have unique names, but another object with the same name does

exist already in this collection. This would lead to duplicate names.
File

#include "Smp/Exceptions.h"

Namespace

Smp

Declaration of DuplicateName

/// This exception is raised when trying to add an object to a collection
/// of objects, which have to have unique names, but another object with
/// the same name does exist already in this collection. This would lead to
/// duplicate names.

28

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

class DuplicateName : public Smp::Exception

{
public:
/// Constructor for new exception.
/// @param duplicateName Name that already exists in the collection.
DuplicateName(
Smp: :String8 duplicateName) throw();

/// Copy constructor.
DuplicateName(
DuplicateName& ex) throw();

/// Virtual destructor to release memory.
virtual ~DuplicateName();

/// Name that already exists in the collection.
Smp: :String8 duplicateName;

}s
Base Exceptions
Smp::Exception
Fields
Name Type Description

duplicateName | String8 | Name that already exists in the collection.

3.1.3 Invalid Any Type

This exception is raised when trying to use an AnySimple argument of wrong
type.

File

#include "Smp/Exceptions.h"

Namespace

Smp

Declaration of InvalidAnyType

/// This exception is raised when trying to use an AnySimple argument of
/// wrong type.
/// @remarks This can happen when assigning a value to an AnySimple

/// instance, but as well when e.g. registering an event sink with
/// an event source of another event argument type.

class InvalidAnyType : public Smp::Exception

{

public:

/// Constructor for new exception.
/// @param invalidType Type that is not valid.
/// @param expectedType Type that was expected.
Inval idAnyType(

Smp: :PrimitiveTypeKind invalidType,

Smp: :PrimitiveTypeKind expectedType) throw();

/// Copy constructor.
Inval idAnyType(
InvalidAnyType& ex) throw();

/// Virtual destructor to release memory.
virtual ~InvalidAnyType(Q);

29

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

/// Type that is not valid.

Smp:

PrimitiveTypeKind invalidType;

/// Type that was expected.

Smp: :PrimitiveTypeKind expectedType;
};
Remark: This can happen when assigning a value to an AnySimple instance,
but as well when e.g. registering an event sink with an event source of another
event argument type.
Base Exceptions
Smp::Exception
Fields
Name Type Description

expectedType | PrimitiveTypeKind | Type that was expected.

invalidType

PrimitiveTypeKind | Type that is not valid.

3.1.4 Invalid Event Id

This exception is raised when an invalid event id is provided, e.g. when calling
Subscribe(), Unsubscribe() or Emit() of the Event Manager (using an invalid
global event id), or when calling SetEventSimulationTime(),
SetEventMissionTime(), SetEventEpochTime(), SetEventZuluTime(),
SetEventCycleTime(), SetEventCount() or RemoveEvent() of the Scheduler
(using an invalid scheduler event id).

File

#include "Smp/Exceptions.h"
Namespace

Smp::Services

Declaration of InvalidEventId

/77
/77
177/
V4
177/
V4
177/

This exception is raised when an invalid event id is provided, e.g.
when calling Subscribe(), Unsubscribe() or Emit() of the Event
Manager (using an invalid global event id), or when calling
SetEventSimulationTime(), SetEventMissionTime(),
SetEventEpochTime(), SetEventZuluTime(), SetEventCycleTime(),
SetEventCount() or RemoveEvent() of the Scheduler (using an invalid
scheduler event id).

class InvalidEventld : public Smp::Exception

public:

/// Constructor for new exception.
/// Q@param eventld Invalid event identifier.
InvalidEventld(

Smp::Services: :Eventld eventld) throw();

/// Copy constructor.
InvalidEventld(
InvalidEventld& ex) throw();

/// Virtual destructor to release memory.
virtual ~InvalidEventld();

30

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

/// Invalid event identifier.
Smp::Services: :Eventld eventld;

}:

Base Exceptions

Smp::Exception
Fields

Name Type Description

eventld Eventld | Invalid event identifier.

3.1.5 Invalid Object Type

This exception is raised when trying to pass an object of wrong type.
File

#include "Smp/Exceptions.h"

Namespace

Smp
Declaration of InvalidObjectType

/// This exception is raised when trying to pass an object of wrong type.
/// @remarks This can happen when adding a component to a container or

/// reference which is semantically typed by a specific type
//7/ implementing IComponent.

class InvalidObjectType : public Smp::Exception

{

public:

/// Constructor for new exception.
/// @param invalidObject Object that is not of valid type.
InvalidObjectType(

Smp::10bject* invalidObject) throw();

/// Copy constructor.
InvalidObjectType(
InvalidObjectType& ex) throw();

/// Virtual destructor to release memory.
virtual ~InvalidObjectType();

/// Object that is not of valid type.
Smp::10bject* invalidObject;

Remark: This can happen when adding a component to a container or reference
which is semantically typed by a specific type implementing IComponent.

Base Exceptions

Smp::Exception
Fields

Name Type | Description

invalidObject IObject | Object that is not of valid type.

31

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

3.2

Objects and Components

In SMP, a simulation is composed of components, where models, services, and
the simulation environment all implement a common base interface. Other
elements in SMP are not components, but only objects.

3.2.1 Objects

Objects are elements of the simulation which provide name and description.

3.2.1.1 IObject

This interface is the base interface for almost all other SMP interfaces. While
most interfaces derive from IComponent, which itself is derived from IObject,
some objects (including IField, IFailure, IEntryPoint, IEventSink, IEventSource,
IContainer and IReference) are directly derived from IObject.

File
#include "Smp/IObject.h"
Namespace

Smp
Declaration of IObject

/// Unique ldentifier of type I0bject.
extern const Uuid Uuid_IObject;

/// This interface is the base interface for almost all other SMP

/// interfaces. While most interfaces derive from IComponent, which itself
/// is derived from I0bject, some objects (including IField, IFailure,
/// 1EntryPoint, IEventSink, IEventSource, IContainer and IReference) are
/// directly derived from IObject.

/// @remarks The two methods of this interface ensure that all SMP objects
/// can be shown with a name, and with an optional description.
class I10bject

{
public:

/// Virtual destructor to release memory.
virtual ~10bject() {}

/// Return the name of the object ('property getter').
/// Names must

/77 - be unique within their context,

/// - not be empty,

/77 - start with a letter, and

/// - only contain letters, digits, the underscore ('_'") and

/// brackets ([and "]™).

//7/

/// @remarks Applications may display the name as user readable object
/// identification.

/// @remarks It is recommended that names do not exceed 32 characters
/// in size.

/// @return Name of object.
virtual Smp::String8 GetName() const = 0;

/// Return the description of the object (“property getter'™).
/// Descriptions are optional and may be empty.

32

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

/// @remarks Applications may display the description as additional

/77

information about the object.

/// Q@return Description of object.
virtual Smp::String8 GetDescription() const = 0;

Remark: The two methods of this interface ensure that all SMP objects can be
shown with a name, and with an optional description.

Base Interfaces
None

Operations

Name

Description

GetDescription

Return the description of the object ("property getter").

GetName

Return the name of the object ("property getter").

3.2.1.1.1 Get Description

Return the description of the object ("property getter").
Descriptions are optional and may be empty.

Remark: Applications may display the description as additional information
about the object.

Parameters

Name

Dir. Type | Description

return | String8 | Description of object.

Exceptions

None
3.2.1.1.2 Get Name

Return the name of the object ("property getter").
Names must

* be unique within their context,

e not be empty,

e start with a letter, and

e only contain letters, digits, the underscore ("_") and brackets ("[" and

T).

Remark: Applications may display the name as user readable object
identification.

Remark: It is recommended that names do not exceed 32 characters in size.

33

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

Parameters

Name

Dir. Type | Description

return | String8 | Name of object.

Exceptions

None

3.2.2 Components
Most elements in SMP are components, which implement the IComponent
interface.

The three most important component types are models, services, and the
simulator. The first two of these interfaces are introduced in this section, while
the ISimulator interface is explained in section 3.6.1.2.

3.2.2.1 IComponent

This is the base interface for all SMP components.
File

#include "Smp/IComponent.h"

Namespace

Smp

Declaration of IComponent

/// Unique ldentifier of type I1Component.
extern const Uuid Uuid_IComponent;

/// This is the base interface for all SMP components.

/// Q@remarks SMP components are typically models and services.
class I1Component :

public virtual Smp::IObject

{

public:

/// Virtual destructor to release memory.
virtual ~I1Component() {}

/// Return

the parent component of the component (‘'property getter').

/// Components link to their parent to allow traversing the tree of
/// components upwards to the root component of a composition.
/// @remarks Typically, only the simulator itself is a root component,

177/

so all other components should have a parent component.

/// Q@return Parent component of component or null if component has no

177/

parent.

virtual Smp::IComposite* GetParent() const = O;

/// Query for an interface specified by its Uuid.

/// @param
/// Q@param
///

interfaceld Uuid of interface to query for.
result Interface to component or NULL if component does
not implement the requested interface.

/// @return True if the interface is implemented, false otherwise.
virtual Smp::Bool Querylnterface(Smp::Uuid interfaceld, void* result) const

34

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

Remark: SMP components are typically models and services.

Base Interfaces

Smp:10bject

Operations
Name Description
GetParent Return the parent component of the component ("“property get-
ter").
QuerylInterface | Query for an interface specified by its Uuid.
3.22.11 Get Parent
Return the parent component of the component ("property getter").
Components link to their parent to allow traversing the tree of components
upwards to the root component of a composition.
Remark: Typically, only the simulator itself is a root component, so all other
components should have a parent component.
Parameters
Name Dir. Type Description
return | IComposite | Parent component of component or null if com-
ponent has no parent.
Exceptions
None
3.2.2.1.2 Query Interface
Query for an interface specified by its Uuid.
Parameters
Name Dir. Type | Description
interfaceld in Uuid | Uuid of interface to query for.
result inout | void* | Interface to component or NULL if component does
not implement the requested interface.
return | Bool True if the interface is implemented, false otherwise.
Exceptions
None

3.2.2.2 Component Collection

A component collection is an ordered collection of components, which allows
iterating all members.

This type is platform specific. For details see the SMP Platform Mappings.

35

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

File
#include "Smp/IComponent.h"
Namespace

Smp

Declaration of ComponentCollection

/// Unique ldentifier of type ComponentCollection.
extern const Uuid Uuid_ComponentCollection;

/// A component collection is an ordered collection of components, which
/// allows iterating all members.

/// This type is platform specific. For details see the SMP Platform
/// Mappings.

typedef std::vector<lComponent*> ComponentCollection;

3.2.2.3 Model State Kind

This is an enumeration of the available states of a model. Each model is always
in one of these four model states.

File
#include "Smp/IModel.h"
Namespace

Smp
Declaration of ModelStateKind

/// Unique ldentifier of type ModelStateKind.
extern const Uuid Uuid_ModelStateKind;

/// This is an enumeration of the available states of a model. Each model
/// is always in one of these four model states.
enum ModelStateKind
{
/// The Created state is the initial state of a model. Model creation
/// is done by an external mechanism, e.g. by factories.
/// This state is entered automatically after the model has been
/// created.
/// This state is left via the Publish() state transition.
MSK_Created,

/// In Publishing state, the model is allowed to publish features. This
/// includes publication of fields, operations and properties. In

/// addition, the model is allowed to create other models.

/// This state is entered via the Publish() state transition.

/// This state is left via the Configure() state transition.
MSK_Publishing,

/// In Configured state, the model has been fully configured. This

/// configuration may be done by external components, or internally by
/// the model itself, e.g. by reading data from an external source.
/// This state is entered via the Configure() state transition.

/// This state is left via the Connect() state transition.
MSK_Configured,

/// In Connected state, the model is connected to the simulator. In
/// this state, neither publication nor creation of other models is
/// allowed anymore.

/// This state is entered via the Connect() state transition.

/// This is the final state of a model, and only left on termination.
MSK_Connected

36

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

Table 3 - Enumeration Literals of ModelStateKind

Name

Description

MSK_Created

The Created state is the initial state of a model. Model creation is
done by an external mechanism, e.g. by factories.

This state is entered automatically after the model has been cre-
ated.

This state is left via the Publish() state transition.

MSK_Publishing

In Publishing state, the model is allowed to publish features. This
includes publication of fields, operations and properties. In addi-
tion, the model is allowed to create other models.

This state is entered via the Publish() state transition.

This state is left via the Configure() state transition.

MSK_Configured

In Configured state, the model has been fully configured. This
configuration may be done by external components, or internally
by the model itself, e.g. by reading data from an external source.
This state is entered via the Configure() state transition.

This state is left via the Connect() state transition.

MSK_Connected

In Connected state, the model is connected to the simulator. In
this state, neither publication nor creation of other models is al-
lowed anymore.

This state is entered via the Connect() state transition.

This is the final state of a model, and only left on termination.

3.2.2.4 IModel

Interface for a model.

All SMP models implement this interface. As models interface to the simulation
environment, they have a dependency to it via the two interfaces IPublication
and ISimulator.

This is the only mandatory interface models have to implement. All other
interfaces (component and model mechanisms and managed interfaces) are
optional.

File
#include "Smp/IModel.h"

Namespace

Smp

37

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

Declaration of IModel

77/

Unique ldentifier of type IModel.

extern const Uuid Uuid_IModel;

//7/
77/
//7/
77/
Va4
77/
//7/

Interface for a model.

All SMP models implement this interface. As models interface to the
simulation environment, they have a dependency to it via the two
interfaces IPublication and ISimulator.

This is the only mandatory interface models have to implement. All
other interfaces (component and model mechanisms and managed
interfaces) are optional.

class IModel

{

public virtual Smp::I1Component

public:

/// Virtual destructor to release memory.
virtual ~IModel () {}

/// Returns the state the model is currently in.

/// The model state can be changed using the Publish(), Configure() and
/// Connect() state transition methods.

/// @return Current model state.

virtual Smp::ModelStateKind GetState() const = 0;

/// Request the model to publish its fields, properties and operations
/// against the provided publication receiver.
/// This method can only be called once for each model, and only when
/// the model is in the Created state. The method raises an
/// InvalidModelState exception if the model is not in Created state.
/// When this operation is called, the model immediately enters the
/// Publishing state, before it publishes any of its features.
/// @remarks The simulation environment typically calls this method in
/77 the Building state.
/// Q@param receiver Publication receiver.
/// @throws Smp::IModel::InvalidModelState
virtual void Publish(Smp::1Publication* receiver) throw (

Smp: : IModel: : InvalidModelState) = O;

/// Request the model to perform any custom configuration. The model
/// can create and configure other models using the field values of its
/// published fields.
/// This method can only be called once for each model, and only when
/// the model is in Publishing state. The method raises an
/// InvalidModelState exception if the model is not in Publishing
/// state.
/// The model can still publish further features in this call, and can
/// even create other models, but at the end of this call, it needs to
/// enter the Configured state.
/// @remarks The simulation environment typically calls this method in
/// the Building state.
/// Q@param logger Logger service for logging of error messages during
//7/ configuration.
/// @throws Smp::IModel::InvalidModelState
virtual void Configure(Smp::Services::ILogger* logger) throw (

Smp: : IModel: : InvalidModelState) = O;

/// Allow the model to connect to the simulator.

/// This method can only be called once for each model, and only when
/// the model is in the Configured state. The method raises an

/// InvalidModelState exception if the model is not in Configured
/// state.

/// When this operation is called, the model immediately enters the
/// Connected state, before it uses any of the simulator methods and
/// services.

/// In this method, the model may query for and use any of the

/// available simulation services, as they are all guaranteed to be
/// fully functional at that time. It may as well connect to other

38

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

77/
/77
/77
/77
/77
/77
/77

models® functionality (e.g. to event sources), as it iIs guaranteed

that all models have been created and configured before the

Connect() method of any model is called.

@remarks The simulation environment typically calls this method in
the Connecting state.

@param simulator Simulation Environment that hosts the model.

@throws Smp::IModel::InvalidModelState

virtual void Connect(Smp::I1Simulator* simulator) throw (

Smp: : IModel: : InvalidModelState) = O;

Base Interfaces

Smp:: IComponent

Operations

Name

Description

Configure

Request the model to perform any custom configuration. The
model can create and configure other models using the field values
of its published fields.

Connect

Allow the model to connect to the simulator.

GetState

Returns the state the model is currently in.

Publish

Request the model to publish its fields, properties and operations
against the provided publication receiver.

3.224.1

Configure

Request the model to perform any custom configuration. The model can create
and configure other models using the field values of its published fields.

This method can only be called once for each model, and only when the model
is in Publishing state. The method raises an InvalidModelState exception if the
model is not in Publishing state.

The model can still publish further features in this call, and can even create
other models, but at the end of this call, it needs to enter the Configured state.

Remark: The simulation environment typically calls this method in the Building

state.

Parameters

Name

Dir.

Type

Description

logger

in

ILogger

Logger service for logging of error messages during
configuration.

Exceptions

Smp::IModel::InvalidModelState

3.2.2.4.2

Connect

Allow the model to connect to the simulator.

39

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

This method can only be called once for each model, and only when the model
is in the Configured state. The method raises an InvalidModelState exception if
the model is not in Configured state.

When this operation is called, the model immediately enters the Connected
state, before it uses any of the simulator methods and services.

In this method, the model may query for and use any of the available
simulation services, as they are all guaranteed to be fully functional at that time.
It may as well connect to other models' functionality (e.g. to event sources), as it
is guaranteed that all models have been created and configured before the
Connect() method of any model is called.

Remark: The simulation environment typically calls this method in the
Connecting state.

Parameters

Name

Dir. Type Description

simulator

in ISimulator | Simulation Environment that hosts the model.

Exceptions

Smp::IModel::InvalidModelState
3.2.243 Get State

Returns the state the model is currently in.

The model state can be changed using the Publish(), Configure() and Connect()
state transition methods.

Parameters

Name

Dir. Type Description

return | ModelStateKind | Current model state.

Exceptions

None
3.2.24.4 Publish

Request the model to publish its fields, properties and operations against the
provided publication receiver.

This method can only be called once for each model, and only when the model
is in the Created state. The method raises an InvalidModelState exception if the
model is not in Created state.

When this operation is called, the model immediately enters the Publishing
state, before it publishes any of its features.

Remark: The simulation environment typically calls this method in the Building
state.

Parameters

Name

Dir. Type Description

receiver

in [Publication | Publication receiver.

40

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

Exceptions

Smp::IModel::InvalidModelState
3.2.245 Invalid Model State

This exception is raised by a model when one of the state transition commands
is called in an invalid state.

File

#include "Smp/IModel.h"
Namespace

Smp:IModel

Declaration of InvalidModelState

V4
177/

This exception is raised by a model when one of the state
transition commands is called in an invalid state.

class InvalidModelState : public Smp::Exception

{

public:

/// Constructor for new exception.
/// @param invalidState State that is not valid.
/// @param expectedState State that was expected.
Inval idModelState(

Smp: :ModelStateKind invalidState,

Smp: :ModelStateKind expectedState) throw();

/// Copy constructor.
Inval idModelState(
InvalidModelState& ex) throw();

/// Virtual destructor to release memory.
virtual ~InvalidModelState();

/// State that is not valid.
Smp: :ModelStateKind invalidState;

/// State that was expected.
Smp: :ModelStateKind expectedState;

Fields

Name

Type Description

expectedState | ModelStateKind | State that was expected.

invalidState

ModelStateKind | State that is not valid.

3.2.2.5 Model Collection

A model collection is an ordered collection of models, which allows iterating all
members.

This type is platform specific. For details see the SMP Platform Mappings.
File
#include "Smp/IModel.h"

41

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

Namespace

Smp

Declaration of ModelCollection

/// Unique ldentifier of type ModelCollection.
extern const Uuid Uuid_ModelCollection;

/// A model collection is an ordered collection of models, which allows
/// iterating all members.

/// This type is platform specific. For details see the SMP Platform
/// Mappings.

typedef std::vector<IModel*> ModelCollection;

3.2.2.6 IService

Base interface for all SMP services.
File

#include "Smp/IService.h"
Namespace

Smp

Declaration of IService

/// Unique ldentifier of type IService.
extern const Uuid Uuid_IService;

/// Base interface for all SMP services.
/// @remarks Currently, this interface does not add any functionality.
class IService :
public virtual Smp::IComponent
{

}:

Remark: Currently, this interface does not add any functionality.
Base Interfaces

Smp:: IComponent

Operations
None

3.2.2.7 Service Collection

A service collection is an ordered collection of services, which allows iterating
all members.

This type is platform specific. For details see the SMP Platform Mappings.
File
#include "Smp/IService.h"

Namespace

Smp

42

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

Declaration of ServiceCollection

/// Unique ldentifier of type ServiceCollection.
extern const Uuid Uuid_ServiceCollection;

/// A service collection is an ordered collection of services, which allows
/// iterating all members.

/// This type is platform specific. For details see the SMP Platform

/// Mappings.

typedef std::vector<IlService*> ServiceCollection;

3.3 Component Mechanisms

While the IComponent base interface provides mechanisms to get name,
description, and parent, it does not allow specifying further relations between
components. The mechanisms supported by SMP are aggregation, composition,
inter-component events via event sources and event sinks, dynamic invocation
and persistence.

3.3.1 Aggregation

Via aggregation, a component can reference other components in the
component hierarchy to use their methods. As opposed to composition, an
aggregated component is not owned, but only referenced.

3.3.1.1 IAggregate
Interface for an aggregate component.

A component with references to other components implements this interface.
Referenced components are held in named references.

File
#include "Smp/IAggregate.h"
Namespace

Smp
Declaration of IAggregate

/// Unique ldentifier of type lAggregate.
extern const Uuid Uuid_lAggregate;

/// Interface for an aggregate component.
/// A component with references to other components implements this
/// interface. Referenced components are held in named references.
/// @remarks This interface represents the Aggregation mechanism in the SMP
/// Metamodel (via References). In UML 2.0, this is represented by
/// a required interface.
class lAggregate :
public virtual Smp::I1Component

{
public:

/// Virtual destructor to release memory.
virtual ~l1Aggregate() {}

/// Query for the collection of all references of the aggregate
/// component.
/// The returned collection may be empty if no references exist for the

43

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

/// aggregate.
/// @return Collection of references.
virtual const Smp::ReferenceCollection* GetReferences() const = 0;

/// Query for a reference of this aggregate component by its name.
/// The returned reference may be null if no reference with the given
/// name could be found. If more than one reference with this name
/// exists, it is not defined which one is returned.

/// @param name Reference name.

/// Q@return Reference queried for by name, or null if no reference
/// with this name exists.

virtual Smp::IReference* GetReference(Smp::String8 name) const = 0O;

Remark: This interface represents the Aggregation mechanism in the SMP
Metamodel (via References). In UML 2.0, this is represented by a required
interface.

Base Interfaces

Smp:: IComponent

Operations

Name

Description

GetReference Query for a reference of this aggregate component by its name.

GetReferences | Query for the collection of all references of the aggregate compo-

nent.

3.3.1.11 Get Reference

Query for a reference of this aggregate component by its name.

The returned reference may be null if no reference with the given name could
be found. If more than one reference with this name exists, it is not defined
which one is returned.

Parameters
Name Dir. Type Description
return | IReference | Reference queried for by name, or null if no refer-
ence with this name exists.
name in String8 Reference name.
Exceptions
None
3.3.1.1.2 Get References
Query for the collection of all references of the aggregate component.
The returned collection may be empty if no references exist for the aggregate.
Parameters
Name Dir. Type Description

return | ReferenceCollection | Collection of references.

44

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

Exceptions

None

3.3.1.2 IReference

Interface for a reference.

A reference allows querying for the referenced components.
File

#include "Smp/IReference.h"

Namespace

Smp

Declaration of IReference

Va4

Unique ldentifier of type IReference.

extern const Uuid Uuid_IReference;

/77
/77
/77
/77

Interface for a reference.

A reference allows querying for the referenced components.

@remarks References are used together with the IAggregate interface for
aggregation.

class IReference :

public virtual Smp::IObject

public:

/// Virtual destructor to release memory.
virtual ~IReference() {}

/// Query for the collection of all referenced components.

/// The returned collection may be empty if no components are

/// referenced.

/// Q@return Collection of referenced components.

virtual const Smp::ComponentCollection* GetComponents() const = 0O;

/// Query for a referenced component by its name.

/// The returned component may be null if no component with the given
/// name could be found.

/// Q@param name Component name.

/// @return Referenced component with the given name, or null if no
/// referenced component with the given name could be found.
virtual Smp::I1Component* GetComponent(Smp::String8 name) const = 0;

Remark: References are used together with the IAggregate interface for
aggregation.

Base Interfaces

Smp:10bject

Operations

Name

Description

GetComponent | Query for a referenced component by its name.

GetComponents | Query for the collection of all referenced components.

45

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

3.3.1.21 Get Component

Query for a referenced component by its name.

The returned component may be null if no component with the given name
could be found.

Parameters

Name

Dir. Type Description

return | IComponent | Referenced component with the given name, or
null if no referenced component with the given
name could be found.

name

in String8 Component name.

Exceptions

None
3.3.1.2.2 Get Components

Query for the collection of all referenced components.
The returned collection may be empty if no components are referenced.

Parameters

Name Dir. Type Description

return | ComponentCollection | Collection of referenced components.

Exceptions
None

3.3.1.3 Reference Collection

A reference collection is an ordered collection of references, which allows
iterating all members.

This type is platform specific. For details see the SMP Platform Mappings.
File

#include "Smp/IReference.h"

Namespace

Smp

Declaration of ReferenceCollection

/// Unique ldentifier of type ReferenceCollection.
extern const Uuid Uuid_ReferenceCollection;

/// A reference collection is an ordered collection of references, which
/// allows iterating all members.

/// This type is platform specific. For details see the SMP Platform
/// Mappings.

typedef std::vector<lReference*> ReferenceCollection;

46

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

3.3.2 Composition

Via composition, a component can contain other components in the component
hierarchy. As opposed to aggregation, a component is owned, and its life-time
coincides with its parent component. Composition is the counter-part to the
GetParent() method of the IComponent interface and allows traversing the tree
of components in downward direction.

3.3.2.1 IComposite
Interface for a composite component.

A component with children implements this interface. Child components are
held in named containers.

File
#include "Smp/IComposite.h"
Namespace

Smp

Declaration of IComposite

/// Unique ldentifier of type IComposite.
extern const Uuid Uuid_IComposite;

/// Interface for a composite component.
/// A component with children implements this interface. Child components
/// are held in named containers.
/// @remarks This interface represents the Composition mechanism in the SMP
/// Metamodel (via Containers). In UML 2.0, this is represented by
//7/ composite aggregation.
class 1Composite :

public virtual Smp::IComponent

{
public:
/// Virtual destructor to release memory.
virtual ~IComposite() {}
/// Query for the collection of all containers of the composite
/// component.
/// The returned collection may be empty if no containers exist for the
/// composite.
/// @return Collection of containers.
virtual const Smp::ContainerCollection* GetContainers() const = 0;
/// Query for a container of this composite component by its name.
/// The returned container may be null if no container with the given
/// name could be found.
/// @param name Container name.
/// Q@return Container queried for by name, or null if no container
//7/ with this name exists.
virtual Smp::IContainer* GetContainer(Smp::String8 name) const = O;
}:

Remark: This interface represents the Composition mechanism in the SMP
Metamodel (via Containers). In UML 2.0, this is represented by composite
aggregation.

Base Interfaces

Smp:: IComponent

47

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

Operations

Name

Description

GetContainer

Query for a container of this composite component by its name.

GetContainers

Query for the collection of all containers of the composite compo-
nent.

3.3.2.11 Get Container

Query for a container of this composite component by its name.

The returned container may be null if no container with the given name could
be found.

Parameters

Name

Dir. Type Description

return | IContainer | Container queried for by name, or null if no con-
tainer with this name exists.

name

in String8 Container name.

Exceptions

None
3.3.2.1.2 Get Containers

Query for the collection of all containers of the composite component.
The returned collection may be empty if no containers exist for the composite.

Parameters

Name Dir. Type Description

return | ContainerCollection | Collection of containers.

Exceptions

None

3.3.2.2 IContainer

Interface for a container.

A container allows querying for its children.

Containers are used together with the IComposite interface for composition.
File

#include "Smp/IContainer.h"

Namespace

Smp

48

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

Declaration of IContainer

/// Unique ldentifier of type IContainer.
extern const Uuid Uuid_IContainer;

/// Interface for a container.
/// A container allows querying for its children.
/// Containers are used together with the IComposite interface for
/// composition.
class IContainer :
public virtual Smp::IObject

public:

/// Virtual destructor to release memory.
virtual ~I1Container() {}

/// Query for the collection of all components in the container.

/// The returned collection may be empty if no components exist for the
/// container.

/// @return Collection of contained components.

virtual const Smp::ComponentCollection* GetComponents() const = 0O;

/// Query for a component contained in the container by name.

/// The returned component may be null if no child with the given name
/// could be found.

/// @param name Child name.

/// @return Child component, or null if no child component with the

177/

virtual Smp::I1Component* GetComponent(Smp::String8 name) const = O;

given name exists.

};
Base Interfaces
Operations
Name Description
GetComponent | Query for a component contained in the container by name.
GetComponents | Query for the collection of all components in the container.
3.3.2.21 Get Component
Query for a component contained in the container by name.
The returned component may be null if no child with the given name could be
found.
Parameters
Name Dir. Type Description
return | IComponent | Child component, or null if no child component
with the given name exists.
name in String8 Child name.
Exceptions
None

49

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

3.3.2.2.2 Get Components

Query for the collection of all components in the container.
The returned collection may be empty if no components exist for the container.

Parameters

Name Dir. Type Description

return | ComponentCollection | Collection of contained components.

Exceptions
None

3.3.2.3 Container Collection

A container collection is an ordered collection of containers, which allows
iterating all members.

This type is platform specific. For details see the SMP Platform Mappings.
File

#include "Smp/IContainer.h"

Namespace

Smp

Declaration of ContainerCollection

/// Unique ldentifier of type ContainerCollection.
extern const Uuid Uuid_ContainerCollection;

/// A container collection is an ordered collection of containers, which
/// allows iterating all members.
/// This type is platform specific. For details see the SMP Platform

/// Mappings.

typedef std::vector<lContainer*> ContainerCollection;

3.3.3 Events

Events are used in event-based programming. Event-based programming
works via event sources and event sinks that can be registered to and
unregistered from event sources. When an event source emits an event, it
notifies all subscribed event sinks.

3.3.3.1 IEvent Sink

Interface of an event sink that can be subscribed to an event source
(IEventSource).

This interface provides a notification method (event handler) that can be called
by event sources when an event is emitted.

File
#include "Smp/IEventSink.h"

50

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

Namespace

Smp

Declaration of IEventSink

/// Unique ldentifier of type IEventSink.
extern const Uuid Uuid_IEventSink;

/// Interface of an event sink that can be subscribed to an event source
/// (1EventSource).

/// This interface provides a notification method (event handler) that can
/// be called by event sources when an event is emitted.

class lEventSink :

public virtual Smp::IObject

public:

/// Virtual destructor to release memory.
virtual ~l1EventSink(Q) {}

/// This method returns the Component that owns the event sink.

/// @remarks This is required to be able to store and restore event
/// sinks.

/// @return Owner of event sink.

virtual Smp::IComponent* GetOwner() const = 0;

/// This event handler method is called when an event is emitted.

/// Components providing event sinks must ensure that these event sinks
/// do not throw exceptions.

/// @param sender Object emitting the event.

/// @param arg Event argument.

virtual void Notify(Smp::IObject* sender, Smp::AnySimple arg) = O;

s
Base Interfaces
Smp::IObject
Operations
Name Description
GetOwner This method returns the Component that owns the event sink.
Notify This event handler method is called when an event is emitted.
3.3.3.1.1 Get Owner
This method returns the Component that owns the event sink.
Remark: This is required to be able to store and restore event sinks.
Parameters
Name Dir. Type Description

return | [Component | Owner of event sink.

Exceptions

None

51

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

3.3.3.1.2 Notify

This event handler method is called when an event is emitted.

Components providing event sinks must ensure that these event sinks do not
throw exceptions.

Parameters
Name Dir. Type Description
sender in IObject Object emitting the event.
arg in AnySimple | Event argument.
Exceptions
None

3.3.3.2 Event Sink Collection

An event sink collection is an ordered collection of event sinks, which allows
iterating all members.

This type is platform specific. For details see the SMP Platform Mappings.
File

#include "Smp/IEventSink.h"

Namespace

Smp

Declaration of EventSinkCollection

/// Unique ldentifier of type EventSinkCollection.
extern const Uuid Uuid_EventSinkCollection;

/// An event sink collection is an ordered collection of event sinks, which
/// allows iterating all members.
/// This type is platform specific. For details see the SMP Platform

/// Mappings.

typedef std::vector<lEventSink*> EventSinkCollection;

3.3.3.3 IEvent Source

Interface of an event source that event sinks (IEventSink) can subscribe to.

This interface allows event consumers to subscribe to or unsubscribe from an
event.

File
#include "Smp/IEventSource.h"

Namespace

Smp

52

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

Declaration of IEventSource

/// Unique ldentifier of type IEventSource.
extern const Uuid Uuid_IlEventSource;

/// Interface of an event source that event sinks (IEventSink) can
/// subscribe to.
/// This interface allows event consumers to subscribe to or unsubscribe
/// from an event.
class lEventSource :
public virtual Smp::IObject

public:

/// Virtual destructor to release memory.
virtual ~1EventSource() {}

/// Subscribe to the event source, i.e. request notifications.
/// This method raises the AlreadySubscribed exception, if the given
/// event sink is already subscribed to the event source. In addition,
/// an exception of type InvalidEventSink may be raised when the event
/// argument of the event sink is not of the type the event source
/// expects. This exception depends on additional metadata that is not
/// defined in this component model.
/// An event sink can only be subscribed once to each event source.
/// Event sinks will be called in the order they have been subscribed
/// to the event source.
/// Models providing event sinks must ensure that these event sinks do
/// not throw exceptions.
/// @remarks Implementations may perform type checking on the optional
/// event argument of the event source and event sink.
/// Q@param eventSink Event sink to subscribe to event source.
/// @throws Smp::I1EventSource::AlreadySubscribed
/// @throws Smp::IlEventSource::InvalidEventSink
virtual void Subscribe(Smp::IEventSink* eventSink) throw (

Smp: : IEventSource: :AlreadySubscribed,

Smp: : 1EventSource: : InvalidEventSink) = 0;

/// Unsubscribe from the event source, i.e. cancel notifications.
/// This method raises the NotSubscribed exception if the given event
/// sink is not subscribed to the event source.
/// An event sink can only be unsubscribed if it has been subscribed
/// before.
/// @param eventSink Event sink to unsubscribe from event source.
/// @throws Smp::IEventSource::NotSubscribed
virtual void Unsubscribe(Smp::1EventSink* eventSink) throw (

Smp: : IEventSource: :NotSubscribed) = 0;

}:
Base Interfaces
Operations
Name Description
Subscribe Subscribe to the event source, i.e. request notifications.
Unsubscribe Unsubscribe from the event source, i.e. cancel notifications.

3.3.3.3.1 Subscribe

Subscribe to the event source, i.e. request notifications.

53

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

This method raises the AlreadySubscribed exception, if the given event sink is
already subscribed to the event source. In addition, an exception of type
InvalidEventSink may be raised when the event argument of the event sink is
not of the type the event source expects. This exception depends on additional
metadata that is not defined in this component model.

An event sink can only be subscribed once to each event source. Event sinks
will be called in the order they have been subscribed to the event source.

Models providing event sinks must ensure that these event sinks do not throw
exceptions.

Remark: Implementations may perform type checking on the optional event
argument of the event source and event sink.

Parameters

Name Dir. Type Description

eventSink in [EventSink | Event sink to subscribe to event source.
Exceptions
Smp::IEventSource::AlreadySubscribed, Smp::IEventSource::InvalidEventSink
3.3.3.3.2 Unsubscribe
Unsubscribe from the event source, i.e. cancel notifications.
This method raises the NotSubscribed exception if the given event sink is not
subscribed to the event source.
An event sink can only be unsubscribed if it has been subscribed before.
Parameters

Name Dir. Type Description

eventSink in [EventSink | Event sink to unsubscribe from event source.
Exceptions

Smp::IEventSource::NotSubscribed
3.3.3.3.3 Already Subscribed

This exception is raised when trying to subscribe an event sink to an event
source that is already subscribed.

File
#include "Smp/IEventSource.h"
Namespace

Smp::IEventSource

54

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

Declaration of AlreadySubscribed

/// This exception is raised when trying to subscribe an event sink to
/// an event source that is already subscribed.
class AlreadySubscribed : public Smp::Exception

public:
/// Constructor for new exception.
/// Q@param eventSource Event source the event sink iIs subscribed

/77 to.
/// Q@param eventSink Event sink that is already subscribed.
AlreadySubscribed(

const Smp::1EventSource* _eventSource,
const Smp::lEventSink* eventSink) throw();

/// Copy constructor.
AlreadySubscribed(
AlreadySubscribed& ex) throw();

/// Virtual destructor to release memory.
virtual ~AlreadySubscribed();

/// Event source the event sink is subscribed to.
Smp:: IEventSource* eventSource;

/// Event sink that is already subscribed.
Smp: : IEventSink* eventSink;

}s
Fields
Name Type Description
eventSink IEventSink | Event sink that is already subscribed.
eventSource IEventSource | Event source the event sink is subscribed to.

3.3.3.34 Invalid Event Sink

This exception is raised when trying to subscribe an event sink to an event
source that has a different event type.

File
#include "Smp/IEventSource.h"
Namespace

Smp::IEventSource

Declaration of InvalidEventSink

/// This exception is raised when trying to subscribe an event sink to
/// an event source that has a different event type.
class InvalidEventSink : public Smp::Exception
{
public:
/// Constructor for new exception.
/// @param eventSource Event source the event sink is subscribed
//7/ to.
/// @param eventSink Event sink that is not of valid type.
InvalidEventSink(
const Smp::l1EventSource* _eventSource,
const Smp::IEventSink* eventSink) throw();

/// Copy constructor.
Inval idEventSink(

55

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

InvalidEventSink& ex) throw();

/// Virtual destructor to release memory.
virtual ~InvalidEventSink();

/// Event source the event sink Is subscribed to.
Smp:: IEventSource* eventSource;

/// Event sink that is not of valid type.
Smp: : IEventSink* eventSink;

}:
Fields
Name Type Description
eventSink IEventSink | Event sink that is not of valid type.
eventSource IEventSource | Event source the event sink is subscribed to.

3.3.3.35 Not Subscribed

This exception is raised when trying to unsubscribe an event sink from an event
source that is not subscribed to it.

File
#include "Smp/IEventSource.h"
Namespace

Smp::IEventSource

Declaration of NotSubscribed

/// This exception is raised when trying to unsubscribe an event sink
/// from an event source that is not subscribed to it.
class NotSubscribed : public Smp::Exception

{
public:
/// Constructor for new exception.
/// Q@param eventSource Event source the event sink is not
/// subscribed to.
/// Q@param eventSink Event sink that is not subscribed.
NotSubscribed(
const Smp::l1EventSource* _eventSource,
const Smp::lEventSink* eventSink) throw();
/// Copy constructor.
NotSubscribed(
NotSubscribed& ex) throw();
/// Virtual destructor to release memory.
virtual ~NotSubscribed();
/// Event source the event sink Is not subscribed to.
Smp: - IEventSource* eventSource;
/// Event sink that is not subscribed.
Smp: : IEventSink* eventSink;
}s

56

[EEY

ECSS-E-TM-40-07 Volume 4A

25 January 2011
Fields
Name Type Description
eventSink IEventSink Event sink that is not subscribed.
eventSource IEventSource | Event source the event sink is not subscribed to.

3.3.3.4 Event Source Collection

An event source collection is an ordered collection of event sources, which
allows iterating all members.

This type is platform specific. For details see the SMP Platform Mappings.
File

#include "Smp/IEventSource.h"

Namespace

Smp

Declaration of EventSourceCollection

/// Unique ldentifier of type EventSourceCollection.
extern const Uuid Uuid_EventSourceCollection;

/// An event source collection is an ordered collection of event sources,
/// which allows iterating all members.

/77

/// This type is platform specific. For details see the SMP Platform

/// Mappings.

typedef std::vector<lEventSource*> EventSourceCollection;

3.3.4 Entry Points

An entry point is an interface that exposes a void function with no return value
that can be called by the scheduler or event manager service.

3.3.4.1 |ITask
Interface for a task, which is an ordered collection of entry points.

This interface extends IEntryPoint to allow executing a number of entry points
in one operation.

File
#include "Smp/ITask.h"

Namespace

Smp

57

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

Declaration of ITask

/// Unique ldentifier of type ITask.
extern const Uuid Uuid_ITask;

/// Interface for a task, which is an ordered collection of entry points.
/// This interface extends IEntryPoint to allow executing a number of entry
/// points in one operation.
class ITask :

public virtual Smp::IEntryPoint

{
public:

/// Virtual destructor to release memory.
virtual ~1TaskQ {}

/// Add an entry point to the task.

/// Entry points in a task will be executed in the order they have been
/// added.

/// @param entryPoint Entry point to add to task.

virtual void AddEntryPoint(const Smp::IEntryPoint* entryPoint) = 0;

/// Query for the collection of all entry points. The order of entry
/// points in the collection is the order in which they have been added
/// to the task.

/// The returned collection may be empty if no entry points have been
/// added to the task.

/// @return Collection of entry points.

virtual const Smp::EntryPointCollection* GetEntryPoints() const = 0;

}s
Base Interfaces
Smp::IEntryPoint
Operations
Name Description

AddEntryPoint | Add an entry point to the task.

GetEntryPoints | Query for the collection of all entry points. The order of entry
points in the collection is the order in which they have been added
to the task.

3.3.4.1.1 Add Entry Point

Add an entry point to the task.

Entry points in a task will be executed in the order they have been added.

Parameters

Name Dir. Type Description

entryPoint in IEntryPoint | Entry point to add to task.
Exceptions
None

58

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

3.3.4.1.2 Get Entry Points

Query for the collection of all entry points. The order of entry points in the
collection is the order in which they have been added to the task.

The returned collection may be empty if no entry points have been added to the

task.
Parameters
Name Dir. Type Description

return | EntryPointCollection | Collection of entry points.

Exceptions

None

3.3.4.2 IEntry Point
Interface of an entry point.

This interface provides a notification method (event handler) that can be called
e.g. by the Scheduler or Event Manager when an event is emitted.

File
#include "Smp/IEntryPoint.h"
Namespace

Smp
Declaration of IEntryPoint

/// Unique ldentifier of type IEntryPoint.
extern const Uuid Uuid_lEntryPoint;

/// Interface of an entry point.

/// This interface provides a notification method (event handler) that can
/// be called e.g. by the Scheduler or Event Manager when an event is

/// emitted.

class IEntryPoint :

public virtual Smp::IObject

public:

/// Virtual destructor to release memory.
virtual ~1EntryPoint(Q) {}

/// This method returns the Component that owns the entry point.
/// @remarks This is required to be able to store and restore entry
/77 points.

/// @return Owner of entry point.

virtual Smp::I1Component* GetOwner() const = 0;

/// This method is called when an associated event is emitted.

/// Components providing entry points must ensure that these entry
/// points do not throw exceptions.

virtual void Execute() const = 0;

Base Interfaces

Smp::IO0bject

59

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

Operations

Name

Description

Execute

This method is called when an associated event is emitted.

GetOwner

This method returns the Component that owns the entry point.

3.34.2.1 Execute

This method is called when an associated event is emitted.

Components providing entry points must ensure that these entry points do not
throw exceptions.

Parameters
None
Exceptions

None
3.34.2.2 Get Owner

This method returns the Component that owns the entry point.
Remark: This is required to be able to store and restore entry points.

Parameters

Name

Dir. Type Description

return | IComponent | Owner of entry point.

Exceptions
None

3.3.4.3 Entry Point Collection

An entry point collection is an ordered collection of entry points, which allows
iterating all members.

This type is platform specific. For details see the SMP Platform Mappings.
File

#include "Smp/IEntryPoint.h"

Namespace

Smp

Declaration of EntryPointCollection

/// Unique ldentifier of type EntryPointCollection.
extern const Uuid Uuid_EntryPointCollection;

/// An entry point collection is an ordered collection of entry points,
/// which allows iterating all members.
/// This type is platform specific. For details see the SMP Platform

/// Mappings.

typedef std::vector<const lEntryPoint*> EntryPointCollection;

60

[E

ECSS-E-TM-40-07 Volume 4A
25 January 2011

3.3.5 Dynamic Invocation

Dynamic invocation is a mechanism that makes the operations of a component
available via a standardised interface (as opposed to a custom interface of the
component which is not known at compile time of the simulation environment).
In order to allow calling a named method with any number of parameters, a
request object has to be created which contains all information needed for the
method invocation. This request object is as well used to transfer back a return
value of the operation.

The dynamic invocation concept presented here standardises the request objects
(IRequest interface). In addition, two methods are provided as part of
IDynamicInvocation to create and delete request objects. However, it is not
mandatory to use these methods, as request objects can well be created and
deleted using another implementation. A reason for doing this could be to
minimise the number of round-trips between a client (that calls a method) and a
component that implements IDynamicInvocation. The sequence diagram in
Figure 1 shows all steps involved when using the CreateRequest() and
DeleteRequest() methods.

Remark: Especially when running distributed components, this implementation
is slow. In these cases, the request object should be created by the client, and
only passed to the component on Invoke().

Client : IComponent Model : IDynamiclnvocation Request : IRequest
| | |
|1 CrggthgggggxgggrgtignNgmg:gpgrgtignNgmgL |

|
2: Create () X
< Jreturn . _ _ _
4: SetParameterValue(index=index, value=value)
5: Invoke ()
Z: Invoke Native ﬁppratinq
8: SetReturnValue(value=value)
:return
< Q:retun . _ _ _ _ _
10: GetReturnValue()
11: DeleteRequest()
12: destroy
13: return >_<

Figure 1 - Sequence of calls for dynamic invocation

61

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

The sequence diagram in Figure 1, using a Client component and a Model
implementing IDynamicInvocation, contains the following steps:

1. The client calls the CreateRequest() operation of the component to
create a request object for the operation, passing it the name of the
operation.

2. The component creates a request object for the operation, using the

default values of all parameters.

3. The component returns the Request object via its IRequest interface
to the client.

4. The client calls the SetParameterValue() operation of the Request
object to set parameters to non-default values.

5. The client calls the Invoke() operation of the component to invoke
the corresponding operation.

6. The component calls the GetParameterValue() operation of the Re-
quest object to get parameters.

7. The component calls its internal operation that corresponds to the
invoked operation.

8. The component calls the SetReturnValue() operation of the Request
object to set the return value.

9. The component returns control to the client.

10. The client calls the GetReturnValue() operation of the Request ob-
ject to get the return value.

11. The client calls the DeleteRequest() operation of the component to
delete the Request object.

12. The component destroys the request object.
13. The component returns control to the client.

Like all mechanisms in this section, dynamic invocation is an optional
mechanism.

3.3.5.1 IDynamic Invocation
Interface for a component that supports dynamic invocation of operations.

A component may implement this interface in order to allow dynamic
invocation of its operations.

File
#include "Smp/IDynamicInvocation.h"

Namespace

Smp

62

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

Declaration of IDynamicInvocation

/// Unique ldentifier of type IDynamiclnvocation.
extern const Uuid Uuid_IDynamiclnvocation;

/// Interface for a component that supports dynamic invocation of
/// operations.
/// @remarks Dynamic invocation is typically used for scripting.
/// A component may implement this interface in order to allow dynamic
/// invocation of its operations.
class IDynamiclnvocation :
public virtual Smp::I1Component

public:

/// Virtual destructor to release memory.
virtual ~IDynamiclnvocation() {}

/// Return a request object for the given operation that describes the
/// parameters and the return value.

/// The request object may be null if no operation with the given name
/// could be found, or if the operation with the given name does not
/// support dynamic invocation.

/// @param operationName Name of operation.

/// @return Request object for operation, or null if either no

/// operation with the given name could be found, or the
/77 operation with the given name does not support dynamic
/// invocation.

virtual Smp::IRequest* CreateRequest(Smp::String8 operationName) = O;

/// Dynamically invoke an operation using a request object that has
/// been created and filled with parameter values by the caller.
/// OGremarks The same request object can be used to invoke a method

/// several times.

/77 This method raises the InvalidOperationName exception if
/// the request object passed does not name an operation that
//7/ allows dynamic invocation. When calling invoke with a

/// wrong number of parameters, the InvalidParameterCount
/// exception is raised. When passing a parameter of wrong
/// type, the InvalidParameterType exception is raised.

/// @param request Request object to invoke.
/// @throws Smp::IDynamiclnvocation::InvalidOperationName
/// @throws Smp::IDynamiclnvocation::InvalidParameterCount
/// @throws Smp::IDynamiclnvocation::InvalidParameterType
virtual void Invoke(Smp::IRequest* request) throw (

Smp: : IDynamiclnvocation: : Inval idOperationName,

Smp: : IDynamiclnvocation: : Inval idParameterCount,

Smp: : IDynamiclnvocation: : InvalidParameterType) = O;

/// Destroy a request object that has been created with the

/// CreateRequest() method before.

/// The request object must not be used anymore after DeleteRequest()
/// has been called for it.

/// @param request Request object to destroy.

virtual void DeleteRequest(Smp::IRequest* request) = O;

Remark: Dynamic invocation is typically used for scripting.
Base Interfaces

Smp:IComponent

63

[EEY

ECSS-E-TM-40-07 Volume 4A

25 January 2011
Operations
Name Description
CreateRequest | Return a request object for the given operation that describes the
parameters and the return value.
DeleteRequest | Destroy a request object that has been created with the CreateRe-
quest() method before.
Invoke Dynamically invoke an operation using a request object that has
been created and filled with parameter values by the caller.
3.35.1.1 Create Request
Return a request object for the given operation that describes the parameters
and the return value.
The request object may be null if no operation with the given name could be
found, or if the operation with the given name does not support dynamic
invocation.
Parameters
Name Dir. Type Description
return | IRequest | Request object for operation, or null if either no op-
eration with the given name could be found, or the
operation with the given name does not support
dynamic invocation.
operationName | in String8 | Name of operation.
Exceptions
None
3.3.5.1.2 Delete Request
Destroy a request object that has been created with the CreateRequest() method
before.
The request object must not be used anymore after DeleteRequest() has been
called for it.
Parameters
Name Dir. Type Description
request in IRequest | Request object to destroy.
Exceptions
None

3.35.1.3 Invoke

Dynamically invoke an operation using a request object that has been created
and filled with parameter values by the caller.

64

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

This method raises the InvalidOperationName exception if the request object
passed does not name an operation that allows dynamic invocation. When
calling invoke with a wrong number of parameters, the InvalidParameterCount
exception is raised. When passing a parameter of wrong type, the
InvalidParameterType exception is raised.

Remark: The same request object can be used to invoke a method several times.

Parameters
Name Dir. Type Description
request in IRequest | Request object to invoke.
Exceptions
Smp::IDynamiclnvocation::InvalidOperationName,
Smp::IDynamiclnvocation::Invalid ParameterCount,
Smp::IDynamiclnvocation::Invalid ParameterType
3.3.5.1.4 Invalid Operation Name
This exception is raised by the Invoke() method when trying to invoke a
method that does not exist, or that does not support dynamic invocation.
File
#include "Smp/IDynamicInvocation.h"
Namespace
Smp::IDynamiclnvocation
Declaration of InvalidOperationName
/// This exception is raised by the Invoke() method when trying to
/// invoke a method that does not exist, or that does not support
/// dynamic invocation.
class InvalidOperationName : public Smp::Exception
{
public:
/// Constructor for new exception.
/// @param operationName Operation name of request passed to the
/// Invoke() method.
Inval idOperationName(
Smp: :String8 operationName) throw();
/// Copy constructor.
Inval idOperationName(
InvalidOperationName& ex) throw();
/// Virtual destructor to release memory.
virtual ~InvalidOperationName();
/// Operation name of request passed to the Invoke() method.
Smp: :String8 operationName;
}:
Fields
Name Type | Description

operationName | String8 | Operation name of request passed to the Invoke()

method.

65

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

3.3.5.15 Invalid Parameter Count

This exception is raised by the Invoke() method when trying to invoke a
method with a wrong number of parameters.

File
#include "Smp/IDynamicInvocation.h"
Namespace

Smp::IDynamiclnvocation

Declaration of InvalidParameterCount

/// This exception is raised by the Invoke() method when trying to
/// invoke a method with a wrong number of parameters.
class InvalidParameterCount : public Smp::Exception
{
public:
/// Constructor for new exception.
/// @param operationName Operation name of request passed to the
/// Invoke() method.
/// @param operationParameters Correct number of parameters of
/// operation.
/// @param requestParameters Wrong number of parameters of
/// operation.
Inval idParameterCount(
Smp: :String8 operationName,
Smp::Int32 operationParameters,
Smp::Int32 requestParameters) throw();

/// Copy constructor.
Inval idParameterCount(
InvalidParameterCount& ex) throw();

/// Virtual destructor to release memory.
virtual ~InvalidParameterCount();

/// Operation name of request passed to the Invoke() method.
Smp: :String8 operationName;

/// Correct number of parameters of operation.
Smp::Int32 operationParameters;

/// Wrong number of parameters of operation.
Smp::Int32 requestParameters;

Fields

Name

Type | Description

operationName String8 | Operation name of request passed to the Invoke()

method.

operationParameters | Int32 | Correct number of parameters of operation.

requestParameters | Int32 | Wrong number of parameters of operation.

3.3.5.1.6 Invalid Parameter Type

This exception is raised by the Invoke() method when trying to invoke a
method passing a parameter of wrong type.

66

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

File
#include "Smp/IDynamicInvocation.h"
Namespace

Smp::IDynamiclnvocation

Declaration of InvalidParameterType

/// This exception is raised by the Invoke() method when trying to
/// invoke a method passing a parameter of wrong type.
/// @remarks The index of the parameter of wrong type can be extracted

//7/ from the request using the method GetParameterindex().
class InvalidParameterType : public Smp::Exception

{

public:

/// Constructor for new exception.
/// @param operationName Operation name of request passed to the
/// Invoke() method.
/// @param parameterName Name of parameter of wrong type.
/// @param invalidType Type that is not valid.
/// @param expectedType Type that was expected.
Inval idParameterType(
Smp: :String8 operationName,
Smp: :String8 parameterName,
Smp: :PrimitiveTypeKind invalidType,
Smp: :PrimitiveTypeKind expectedType) throw();

/// Copy constructor.
InvalidParameterType(
Inval idParameterType& ex) throw();

/// Virtual destructor to release memory.
virtual ~InvalidParameterType(Q);

/// Operation name of request passed to the Invoke() method.
Smp: :String8 operationName;

/// Name of parameter of wrong type.
Smp: :String8 parameterName;

/// Type that is not valid.
Smp: :PrimitiveTypeKind invalidType;

/// Type that was expected.
Smp: :PrimitiveTypeKind expectedType;

};

Remark: The index of the parameter of wrong type can be extracted from the
request using the method GetParameterIndex().
Fields

Name Type Description

expectedType PrimitiveTypeKind | Type that was expected.

invalidType PrimitiveTypeKind | Type that is not valid.

operationName | String8 Operation name of request passed to the In-

voke() method.
parameterName | String8 Name of parameter of wrong type.

67

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

3.3.5.2 [IRequest

A request holds information, which is passed between a client invoking an
operation via the IDynamicInvocation interface and a component being
invoked.

File
#include "Smp/IRequest.h"
Namespace

Smp

Declaration of IRequest

/// Unique ldentifier of type IRequest.
extern const Uuid Uuid_IRequest;

/// A request holds information, which is passed between a client invoking
/// an operation via the IDynamiclnvocation interface and a component being

/// invoked.

class IRequest

public:

/// Virtual destructor to release memory.
virtual ~IRequest() {}

/// Return

the name of the operation that this request is for.

/// @remarks A request is typically created using the CreateRequest()

177/
V4
177/
/77

method to dynamically call a specific method of a
component implementing the IDynamiclnvocation interface.
This method returns the name passed to it, to allow
finding out which method is actually called on Invoke().

/// Q@return Name of the operation.
virtual Smp::String8 GetOperationName() const = 0;

/// Return

the number of parameters stored in the request.

/// Parameters can be accessed by their 0-based index. This index

/77 -
/77 -

must not be negative,
must be smaller than the parameter count.

/// @remarks The GetParameterindex() method may be used to access

/77

parameters by name.

/// @return Number of parameters in request object.
virtual Smp::Int32 GetParameterCount() const = 0;

/// Query for a parameter index by parameter name.
/// The index values are 0O-based. An index of -1 indicates a wrong
/// parameter name.

/// @param

parameterName Name of parameter.

/// Q@return Index of parameter with the given name, or -1 if no

177/

parameter with the given name could be found.

virtual Smp::Int32 GetParameterIlndex(Smp::String8 parameterName) const = O;

/// Assign

a value to a parameter at a given position.

/// This method raises an exception of type InvalidParameterindex if

/// called

with an illegal parameter index. If called with an invalid

/// parameter type, it raises an exception of type InvalidAnyType. IFf

/// called

with an invalid value for the parameter, it raises an

/// exception of type InvalidParameterValue.

/// @param
/// @param

index Index of parameter (0O-based).
value Value of parameter.

/// @throws Smp::InvalidAnyType
/// @throws Smp::IRequest::InvalidParameterIndex
/// @throws Smp::IRequest::InvalidParameterValue

68

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

throw (

virtual void SetParameterValue(Smp::Int32 index, Smp::AnySimple value)

Smp: : InvalidAnyType,
Smp: : IRequest: : Inval idParameterindex,
Smp: : IRequest: : InvalidParameterValue)

0;

/// Query a value of a parameter at a given position.

/// This method raises an exception of type InvalidParameterindex if

/// called with an illegal parameter index.

/// @param index Index of parameter (0O-based).

/// @return Value of parameter.

/// @throws Smp::IRequest::InvalidParameterIndex

virtual Smp::AnySimple GetParameterValue(Smp::Int32 index) const throw (
Smp: : IRequest: : InvalidParameterindex) = 0O;

/// Assign the return value of the operation.
/// This method raises an exception of type VoidOperation if called for
/// a request object of a void operation. If called with an invalid
/// return type, it raises an exception of type InvalidAnyType. If
/// called with an invalid value for the return type, this method
/// raises an exception of type InvalidReturnValue.
/// Q@param value Return value.
/// @throws Smp::InvalidAnyType
/// @throws Smp::IRequest::InvalidReturnvalue
/// @throws Smp::lRequest::VoidOperation
virtual void SetReturnValue(Smp::AnySimple value) throw (

Smp: : InvalidAnyType,

Smp: : IRequest: : InvalidReturnvalue,

Smp: : IRequest: :VoidOperation) = O;

/// Query the return value of the operation.
/// This method raises an exception of type VoidOperation if called for
/// a request object of a void operation.
/// @return Return value of the operation.
/// @throws Smp::IRequest::VoidOperation
virtual Smp::AnySimple GetReturnValue() const throw (
Smp: : IRequest: :VoidOperation) = 0;

Base Interfaces
None

Operations

Name

Description

GetOperationName | Return the name of the operation that this request is for.

GetParameterCount | Return the number of parameters stored in the request.

GetParameterIndex | Query for a parameter index by parameter name.

GetParameterValue | Query a value of a parameter at a given position.

GetReturnValue Query the return value of the operation.

SetParameterValue | Assign a value to a parameter at a given position.

SetReturnValue Assign the return value of the operation.

3.3.5.2.1 Get Operation Name

Return the name of the operation that this request is for.

Remark: A request is typically created using the CreateRequest() method to
dynamically call a specific method of a component implementing the

69

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

IDynamicInvocation interface. This method returns the name passed to it, to
allow finding out which method is actually called on Invoke().

Parameters
Name Dir. Type | Description
return | String8 | Name of the operation.
Exceptions
None
3.3.5.2.2 Get Parameter Count
Return the number of parameters stored in the request.
Parameters can be accessed by their 0-based index. This index
e must not be negative,
e must be smaller than the parameter count.
Remark: The GetParameterIndex() method may be used to access parameters
by name.
Parameters
Name Dir. Type | Description
return | Int32 | Number of parameters in request object.
Exceptions
None
3.3.5.2.3 Get Parameter Index
Query for a parameter index by parameter name.
The index values are 0-based. An index of -1 indicates a wrong parameter
name.
Parameters
Name Dir. Type | Description
return | Int32 | Index of parameter with the given name, or -1 if no
parameter with the given name could be found.
parameterName | in String8 | Name of parameter.
Exceptions
None

3.3.5.24 Get Parameter Value

Query a value of a parameter at a given position.

This method raises an exception of type InvalidParameterIndex if called with an
illegal parameter index.

70

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

Parameters

Name

Dir. Type Description

return | AnySimple | Value of parameter.

index

in Int32 Index of parameter (0-based).

Exceptions

Smp::IRequest::InvalidParameterIndex
3.3.5.25 Get Return Value

Query the return value of the operation.

This method raises an exception of type VoidOperation if called for a request
object of a void operation.

Parameters

Name

Dir. Type Description

return | AnySimple | Return value of the operation.

Exceptions

Smp::IRequest::VoidOperation
3.35.2.6 Set Parameter Value

Assign a value to a parameter at a given position.

This method raises an exception of type InvalidParameterIndex if called with an
illegal parameter index. If called with an invalid parameter type, it raises an
exception of type InvalidAnyType. If called with an invalid value for the
parameter, it raises an exception of type InvalidParameterValue.

Parameters

Name

Dir. Type Description

index

in Int32 Index of parameter (0-based).

value

in AnySimple | Value of parameter.

Exceptions

Smp::InvalidAnyType, Smp::IRequest::InvalidParameterIndex,

Smp::IRequest::InvalidParameterValue
3.35.2.7 Set Return Value

Assign the return value of the operation.

This method raises an exception of type VoidOperation if called for a request
object of a void operation. If called with an invalid return type, it raises an
exception of type InvalidAnyType. If called with an invalid value for the return
type, this method raises an exception of type InvalidReturnValue.

Parameters

Name

Dir. Type Description

value

in AnySimple | Return value.

71

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

Exceptions

Smp::InvalidAnyType, Smp::IRequest:: InvalidReturnValue,
Smp::IRequest::VoidOperation
3.3.5.2.8 Invalid Parameter Index

This exception is raised when using an invalid parameter index to set
(SetParameterValue()) or get (GetParameterValue()) a parameter value of an
operation in a request.

File
#include "Smp/IRequest.h"
Namespace

Smp::IRequest

Declaration of InvalidParameterIndex

/// This exception is raised when using an invalid parameter index to
/// set (SetParameterValue()) or get (GetParameterValue()) a parameter
/// value of an operation in a request.

class InvalidParameterindex : public Smp::Exception

{
public:
/// Constructor for new exception.
/// @param operationName Name of operation.
/// @param parameterindex Invalid parameter index used.
/// @param parameterCount Number of parameters of the operation.
Inval idParameterIndex(
Smp: :String8 operationName,
Smp::Int32 parameterlIndex,
Smp: :Int32 parameterCount) throw();

/// Copy constructor.
Inval idParameterIndex(
InvalidParameterindex& ex) throw();

/// Virtual destructor to release memory.
virtual ~InvalidParameterindex();

/// Name of operation.
Smp: :String8 operationName;

/// Invalid parameter index used.
Smp::Int32 parameterlndex;

/// Number of parameters of the operation.
Smp::Int32 parameterCount;

Fields

Name Type | Description

operationName | String8 | Name of operation.

parameterCount | Int32 | Number of parameters of the operation.

parameterIndex | Int32 | Invalid parameter index used.

72

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

3.3.5.2.9 Invalid Parameter Value

This exception is raised when trying to assign an illegal value to a parameter of

an operation in a request using SetParameterValue().
File

#include "Smp/IRequest.h"

Namespace

Smp::IRequest

Declaration of InvalidParameterValue

/// This exception is raised when trying to assign an illegal value to
/// a parameter of an operation In a request using SetParameterValue().
class InvalidParameterValue : public Smp::Exception
{
public:
/// Constructor for new exception.
/// @param parameterName Name of parameter value was assigned to.
/// @param value Value that was passed as parameter.
Inval idParameterValue(
Smp: :String8 parameterName,
Smp: :AnySimple value) throw();

/// Copy constructor.
Inval idParameterValue(
Inval idParameterValue& ex) throw();

/// Virtual destructor to release memory.
virtual ~InvalidParameterValue();

/// Name of parameter value was assigned to.
Smp: :String8 parameterName;

/// Value that was passed as parameter.
Smp: :AnySimple value;

Fields

Name

Type Description

parameterName | String8 Name of parameter value was assigned to.

value

AnySimple | Value that was passed as parameter.

3.3.5.2.10 Invalid Return Value

This exception is raised when trying to assign an invalid return value of an

operation in a request using SetReturnValue().
File

#include "Smp/IRequest.h"

Namespace

Smp::IRequest

Declaration of InvalidReturnValue

/// This exception is raised when trying to assign an invalid return
/// value of an operation in a request using SetReturnValue().

73

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

class InvalidReturnValue : public Smp::Exception

{
public:

/// Constructor for new exception.
/// @param operationName Name of operation the return value was
/// assigned to.
/// @param value Value that was passed as return value.
InvalidReturnValue(

Smp: :String8 operationName,

Smp: :AnySimple value) throw();

/// Copy constructor.
InvalidReturnVvValue(
InvalidReturnvValue& ex) throw();

/// Virtual destructor to release memory.
virtual ~InvalidReturnValue();

/// Name of operation the return value was assigned to.
Smp: :String8 operationName;

/// Value that was passed as return value.
Smp: :AnySimple value;

}:
Fields
Name Type Description
operationName | String8 Name of operation the return value was assigned to.
value AnySimple | Value that was passed as return value.

3.3.5.2.11 Void Operation

This exception is raised when trying to read (GetReturnValue()) or write
(SetReturnValue()) the return value of a void operation.

File
#include "Smp/IRequest.h"
Namespace

Smp::IRequest

Declaration of VoidOperation

/// This exception is raised when trying to read (GetReturnValue()) or
/// write (SetReturnvValue()) the return value of a void operation.
class VoidOperation : public Smp::Exception

{

public:

/// Constructor for new exception.
/// @param operationName Name of operation.
VoidOperation(

Smp: :String8 operationName) throw();

/// Copy constructor.
VoidOperation(
VoidOperation& ex) throw();

/// Virtual destructor to release memory.
virtual ~VoidOperation();

/// Name of operation.
Smp: :String8 operationName;

74

ECSS-E-TM-40-07 Volume 4A
25 January 2011

[EEY

Fields
Name Type | Description
operationName | String8 | Name of operation.

3.3.6

Persistence

Persistence of SMP components can be handled in one of two ways:

1.

External Persistence: The simulation environment stores and restores
the model’s state by directly accessing the fields that are published to
the simulation environment, i.e. via the IPublication interface.

Remark: This should be the preferred mechanism for the majority of
models.

Self-Persistence: The component may implement the IPersist interface,
which allows it to store and restore (part of) its state into or from
storage that is provided by the simulation environment.

Remark: This mechanism is usually only needed by specialised models,
for example embedded models that need to load on-board software from
a specific file. Further, this mechanism can be used by simulation services
if desired. For example, the Scheduler service may use it to store and
restore its current state.

Like all mechanisms in this section, self-persistence of models and components

is an

optional mechanism, while external persistence (via the Store() and

Restore() methods of the ISimulator interface) is a mandatory feature of every
SMP simulation environment.

3.3.6.1 [IPersist

Interface of a self-persisting component that provides operations to allow for

storing and restoring its state.

A component may implement this interface if it wants to have control over
storing and restoring of its state. This is an optional interface which needs to be

implemented by components with self-persistence only.

File

#include "Smp/IPersist.h"

Namespace

Smp

Declaration of IPersist

/// Unique ldentifier of type IPersist.
extern const Uuid Uuid_IPersist;

/// Interface of a self-persisting component that provides operations to
/// allow for storing and restoring its state.

/// A component may implement this interface if it wants to have control
/// over storing and restoring of its state. This is an optional interface
/// which needs to be implemented by components with self-persistence only.

75

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

class IPersist :

public virtual Smp::IComponent

public:

/// Virtual destructor to release memory.
virtual ~IPersist() {}

/// Restore component state from storage.
/// This method raises an exception of type CannotRestore if reading
/// data from the storage reader fails.
/// @param reader Interface that allows reading from storage.
/// @throws Smp::IPersist::CannotRestore
virtual void Restore(Smp::l1StorageReader* reader) throw (
Smp: : IPersist: :CannotRestore) = 0;

/// Store component state to storage.
/// This method raises an exception of type CannotStore if writing data
/// to the storage writer fails.
/// @param writer Interface that allows writing to storage.
/// @throws Smp::IPersist::CannotStore
virtual void Store(Smp::IStorageWriter* writer) throw (
Smp: :IPersist::CannotStore) = 0;

Base Interfaces

Smp:: IComponent

Operations

Name

Description

Restore

Restore component state from storage.

Store

Store component state to storage.

3.3.6.1.1 Restore

Restore component state from storage.

This method raises an exception of type CannotRestore if reading data from the
storage reader fails.

Parameters

Name

Dir. Type Description

reader

in IStorageReader | Interface that allows reading from storage.

Exceptions

Smp::[Persist::CannotRestore
3.3.6.1.2 Store

Store component state to storage.

This method raises an exception of type CannotStore if writing data to the
storage writer fails.

76

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

Parameters

Name Dir. Type Description

writer in IStorageWriter | Interface that allows writing to storage.
Exceptions

Smp::IPersist::CannotStore
3.3.6.1.3 Cannot Restore

This exception is raised when the content of the storage reader passed to the
Restore() method contains invalid data.

File

#include "Smp/IPersist.h"
Namespace
Smp::[Persist

Declaration of CannotRestore

/// This exception is raised when the content of the storage reader
/// passed to the Restore() method contains invalid data.

/// @remarks This typically happens when a Store() has been created
/// from a different configuration of components.

class CannotRestore : public Smp::Exception

public:
/// Constructor for new exception.
CannotRestore() throw();

/// Copy constructor.
CannotRestore(
CannotRestore& ex) throw();

/// Virtual destructor to release memory.
virtual ~CannotRestore();

Remark: This typically happens when a Store() has been created from a
different configuration of components.

Fields

None
3.3.6.1.4 Cannot Store

This exception is raised when the component cannot store its data to the storage
writer given to the Store() method.

File

#include "Smp/IPersist.h"
Namespace
Smp::IPersist

Declaration of CannotStore

/// This exception is raised when the component cannot store its data

77

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

/// to the storage writer given to the Store() method.
/// Q@remarks This may e.g. be if there is no disk space left.
class CannotStore : public Smp::Exception

public:
/// Constructor for new exception.
CannotStore() throw();

/// Copy constructor.
CannotStore(
CannotStore& ex) throw();

/// Virtual destructor to release memory.
virtual ~CannotStore();

Remark: This may e.g. be if there is no disk space left.

Fields

None

3.3.6.2 IStorage Reader

This interface provides functionality to read data from storage.

This interface is platform specific. For details see the SMP Platform Mappings.
File

#include "Smp/IStorageReader.h"

Namespace

Smp

Declaration of IStorageReader

//7/

Unique ldentifier of type IStorageReader.

extern const Uuid Uuid_IStorageReader;

77/
//7/
77/
/77
/77
/777
/77

This interface provides functionality to read data from storage.
@remarks A client (typically the simulation environment) provides this
interface to allow components implementing the IPersist
interface to restore their state. It is passed to the
Restore() method of every model implementing IPersist.
This interface is platform specific. For details see the SMP
Platform Mappings.

class IStorageReader

{

public:

/// Virtual destructor to release memory.
virtual ~IStorageReader() {}

/// Restore data from storage.

/// This method reads a memory block of data from the state vector. It
/// is the component®s responsibility to Store a block of the same size
/// to IStorageWriter on Store.

/// @param address Memory address of memory block.

/// @param size Size of memory block.

virtual void Restore(void* address, Smp::Int32 size) = 0;

78

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

Remark: A client (typically the simulation environment) provides this interface
to allow components implementing the IPersist interface to restore their state. It
is passed to the Restore() method of every model implementing IPersist.

Base Interfaces

None
Operations
Name Description
Restore Restore data from storage.
3.3.6.2.1 Restore
Restore data from storage.
This method reads a memory block of data from the state vector. It is the
component's responsibility to Store a block of the same size to IStorageWriter
on Store.
Parameters
Name Dir. Type | Description
address inout | void Memory address of memory block.
size in Int32 | Size of memory block.
Exceptions
None

3.3.6.3 IStorage Writer

This interface provides functionality to write data to storage.

This interface is platform specific. For details see the SMP Platform Mappings.
File

#include "Smp/IStorageWriter.h"

Namespace

Smp

Declaration of IStorageWriter

/// Unique ldentifier of type IStorageWriter.
extern const Uuid Uuid_IStorageWriter;

/// This interface provides functionality to write data to storage.
/// @remarks A client (typically the simulation environment) provides this

//7/
/77
/77
/77
/77

interface to allow components implementing the IPersist
interface to store their state. It is passed to the Store()
method of every model implementing IPersist.

This interface is platform specific. For details see the SMP
Platform Mappings.

class IStorageWriter

{
public:

/// Virtual destructor to release memory.

79

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

virtual ~I1StorageWriter() {}

/// Store data to storage.

/// This method writes a memory block of data to the state vector. It
/// is the component®s responsibility to Restore a block of the same
/// size from IStorageReader on Restore.

/// @param address Memory address of memory block.

/// @param size Size of memory block.

virtual void Store(void* address, Smp::Int32 size) = 0;

s

Remark: A client (typically the simulation environment) provides this interface
to allow components implementing the IPersist interface to store their state. It is
passed to the Store() method of every model implementing IPersist.
Base Interfaces
None
Operations

Name Description

Store Store data to storage.
3.3.6.3.1 Store
Store data to storage.
This method writes a memory block of data to the state vector. It is the
component's responsibility to Restore a block of the same size from
IStorageReader on Restore.
Parameters

Name Dir. Type | Description

address inout | void Memory address of memory block.

size in Int32 | Size of memory block.
Exceptions
None

3.4 Model Mechanisms

While the IModel interface defines the mandatory functionality every SMP
model has to provide, this section introduces additional mechanisms available
for more advanced use.

3.4.1 Fallible Models

Fallible models expose their failure state and a collection of failures.

80

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

3.4.1.1 |IFailure

Interface for a failure.

A Failure allows to query and to set its state to Failed or Unfailed.
File

#include "Smp/IFailure.h"

Namespace

Smp

Declaration of IFailure

/77

Unique ldentifier of type IFailure.

extern const Uuid Uuid_IFailure;

/77
/77

Interface for a failure.
A Failure allows to query and to set its state to Failed or Unfailed.

class IFailure :

public virtual Smp::IObject

{
public:
/// Virtual destructor to release memory.
virtual ~IFailure() {}
/// Sets the state of the failure to failed.
virtual void Fail() = 0;
/// Sets the state of the failure to unfailed.
virtual void Unfail() = O;
/// Returns whether the failure®"s state is set to failed.
/// @return Returns true if the failure state is Failed, false
/// otherwise.
virtual Smp::Bool IsFailed() const = 0O;
};
Base Interfaces
Smp::10bject
Operations
Name Description
Fail Sets the state of the failure to failed.
IsFailed Returns whether the failure's state is set to failed.
Unfail Sets the state of the failure to unfailed.

34111 Fail

Sets the state of the failure to failed.
Parameters

None

Exceptions

None

81

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

34112 Is Failed

Returns whether the failure's state is set to failed.

Parameters
Name Dir. Type | Description
return | Bool Returns true if the failure state is Failed, false other-
wise.
Exceptions
None

3.4.1.1.3 Unfall

Sets the state of the failure to unfailed.
Parameters

None

Exceptions

None

3.4.1.2 IFallible Model

Interface for a fallible model that exposes its failure state and a collection of

failures.

A fallible model allows querying for its failures by name.
File

#include "Smp/IFallibleModel.h"

Namespace

Smp
Declaration of IFallibleModel

/// Unique ldentifier of type IFallibleModel.
extern const Uuid Uuid_IFallibleModel;

/// Interface for a fallible model that exposes its failure state and a
/// collection of failures.
/// A fallible model allows querying for its failures by name.
class IFallibleModel
public virtual Smp::IModel
{

public:

/// Virtual destructor to release memory.
virtual ~IFallibleModel) {}

/// Query for whether the model is failed. A model is failed when at
/// least one of its failures is failed.

/// @return Whether the model is failed or not.

virtual Smp::Bool IsFailed() = O;

/// Get a failure by name.

/// The returned failure may be null if no child with the given name
/// could be found.

/// @param name Name of the failure to return.

/// Q@return Failure queried for by name, or null If no failure with

82

ECSS-E-TM-40-07 Volume 4A
25 January 2011

|E [

this name exists.

virtual Smp::IlFailure* GetFailure(Smp::String8 name) const = 0;

/// Query for the collection of all failures.

/// The returned collection may be empty if no failures exist for the
/// fallible model.

/// @return Failure collection of the model.

virtual const Smp::FailureCollection* GetFailures() const = 0O;

}:

Base Interfaces
Smp::IModel
Operations

Name Description

GetFailure Get a failure by name.

GetFailures Query for the collection of all failures.

IsFailed Query for whether the model is failed. A model is failed when at
least one of its failures is failed.
3.4.121 Get Failure
Get a failure by name.
The returned failure may be null if no child with the given name could be
found.
Parameters

Name Dir. Type Description

name in String8 | Name of the failure to return.
return | [Failure | Failure queried for by name, or null if no failure with

this name exists.

Exceptions
None
3.4.1.22 Get Failures
Query for the collection of all failures.
The returned collection may be empty if no failures exist for the fallible model.
Parameters

Name Dir. Type Description

return | FailureCollection | Failure collection of the model.

Exceptions

None

83

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

3.4.1.23 Is Failed

Query for whether the model is failed. A model is failed when at least one of its
failures is failed.

Parameters
Name Dir. Type | Description
return | Bool Whether the model is failed or not.
Exceptions
None

3.5 Management Interfaces

Managed interfaces allow external components to access all mechanisms by
name. This includes the basic component mechanisms, optional component
mechanisms and optional model mechanisms.

Managed interfaces allow full access to all functionality of components. For
composition and aggregation, they extend the existing interfaces by methods to
add new components or references, respectively. For entry points, event sources
and event sinks, the managed interfaces provide access to the elements by
name. For fields, access by name is provided by an extended model interface.

All management interfaces are optional, and only need to be provided for
models used in a managed environment. Typically, in a managed environment
a model configuration is built from an XML document (namely an SMDL
Assembly) during the Creating phase.

Remark: Typically, a Loader or Model Manager component calls these
interfaces to push configuration information into the models, which has been
read from an SMDL Assembly file. Initialisation of models from an SMDL
Configuration file does not require managed models.

3.5.1 Managed Components

Managed components provide write access to their properties, i.e. they provide
corresponding “setter” methods for the Name, Description, and Parent
properties. This allows putting them into a hierarchy with a given name and
description.

3.5.1.1 IManaged Object

Interface of a managed object.

A managed object additionally allows assigning name and description.
File

#include "Smp/Management/IManagedObject.h"

84

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

Namespace

Smp::Management

Declaration of IManagedObject

/// Unique ldentifier of type IManagedObject.
extern const Uuid Uuid_IManagedObject;

/// Interface of a managed object.
/// A managed object additionally allows assigning name and
/// description.
class IManagedObject :
public virtual Smp::IObject

{
public:
//7/

Virtual destructor to release memory.

virtual ~IManagedObject() {}

/777
177/
/777
/77
/777
177/
/777
//7/
V4
//7/
V4
//7/
/77
//7/
/77
//7/
V4
//7/

Define the name of the managed object (‘'property setter'™).
This method throws an exception of type InvalidObjectName when
the given name is not valid.
Names must

- be unique within their context,

- not be empty,

- start with a letter, and

- only contain letters, digits, the underscore (*"_') and
brackets ("'[" and "]').

@remarks Except for the first rule (uniqueness of names), the
SetName() method should test for all other rules.

@remarks It is recommended that names do not exceed 32
characters in size.

@param name Name of object.

@throws Smp::Management:: IManagedObject: : InvalidObjectName

virtual void SetName(Smp::String8 name) throw (

Smp: :Management: : IManagedObject: : InvalidObjectName) = O;

/// Define the description of the managed object (‘‘property
/// setter™).
/// @param description Description of object.
virtual void SetDescription(Smp::String8 description) = 0;
};
Base Interfaces
Smp::IObject
Operations
Name Description
SetDescription | Define the description of the managed object ("property setter").
SetName Define the name of the managed object ("property setter").

3.5.1.1.1 Set Description

Define the description of the managed object ("property setter").

85

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

Parameters

Name

Dir. Type | Description

description

in String8 | Description of object.

Exceptions

None
35.1.1.2 Set Name

Define the name of the managed object ("property setter").

This method throws an exception of type InvalidObjectName when the given
name is not valid.

Names must
e be unique within their context,
e not be empty,
e start with a letter, and

¢ only contain letters, digits, the underscore ("_") and brackets ("[" and

T).

Remark: Except for the first rule (uniqueness of names), the SetName() method
should test for all other rules.

Remark: It is recommended that names do not exceed 32 characters in size.

Parameters

Name

Dir. Type | Description

name

in String8 | Name of object.

Exceptions

Smp::Management::IManagedObiject::InvalidObjectName
3.5.1.1.3 Invalid Object Name

This exception is raised when trying to set an object's name to an invalid name.
Names

e must not be empty,
e must start with a letter, and

e must only contain letters, digits, the underscore ("_") and brackets ("["
and "").

File
#include "Smp/Management/IManagedObject.h"
Namespace

Smp::Management::IManagedObiject

86

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

Declaration of InvalidObjectName

/// This exception is raised when trying to set an object"s name to
/// an invalid name. Names

///

/// - must not be empty,

/77 - must start with a letter, and

/// - must only contain letters, digits, the underscore ("'_")

/// and brackets ('[" and "]").

///

class InvalidObjectName : public Smp::Exception

public:

/// Constructor for new exception.

/// @param

objectName Invalid object name passed to SetName().

Inval idObjectName(
Smp: :String8 objectName) throw();

/// Copy constructor.
Inval idObjectName(
InvalidObjectName& ex) throw();

/// Virtual destructor to release memory.
virtual ~InvalidObjectName();

/// Invalid object name passed to SetName().-
Smp: :String8 objectName;

s
Fields
Name Type | Description
objectName String8 | Invalid object name passed to SetName().
3.5.1.2 [IManaged Component

Interface of a managed component.

A managed component additionally allows assigning the parent.

File

#include "Smp/Management/IManagedComponent.h"

Namespace

Smp::Management

Declaration of IManagedComponent

/// Unique ldentifier of type IManagedComponent.
extern const Uuid Uuid_IManagedComponent;

/// Interface of a managed component.
/// A managed component additionally allows assigning the parent.
class IManagedComponent :

public virtual Smp::I1Component,

public virtual Smp::Management::IManagedObject

{
public:

/// Virtual destructor to release memory.
virtual ~IManagedComponent() {}

/// Define the parent component (“'property setter'™). Components
/// link to their parent to allow traversing the tree of components

87

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

/// upwards.
/// @param parent Parent composite of component.
virtual void SetParent(Smp::IComposite* parent) = 0;

s
Base Interfaces
Smp::Management::IManagedObject, Smp::IComponent
Operations
Name Description
SetParent Define the parent component ("property setter"). Components link
to their parent to allow traversing the tree of components upwards.
3.5.1.2.1 SetParent
Define the parent component ("property setter"). Components link to their
parent to allow traversing the tree of components upwards.
Parameters
Name Dir. Type Description
parent in IComposite | Parent composite of component.
Exceptions
None

3.5.2 Managed Component Mechanisms

The component mechanisms introduced in section 3.3 (Component
Mechanisms) do not provide full access for external components, but only
limited access:

e Aggregation provides collections of references, but does not allow
adding new references to a Reference.

e Composition provides a tree of components, but does not allow adding
new components to a Container.

e Event sinks can be connected by models if they have access to event
sources, but an external component can not query for event sinks and
event sources by name.

e Entry points can be registered with services by models, but an external
component can not query for entry points by name.

To overcome these limitations, managed interfaces are provided with full access
to all functionality. For composition and aggregation, these extend the existing
interfaces by methods to add new components or references, respectively. For
event sources and event sinks, the managed interfaces provide access to the
elements by name. For entry points, the managed interface provides access to
the entry points by name.

88

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

3.5.2.1 IComponent Collection

Base interface for managed collections, which are either references or
containers.

File
#include "Smp/Management/IComponentCollection.h"
Namespace

Smp::Management

Declaration of IComponentCollection

/// Unique ldentifier of type IComponentCollection.
extern const Uuid Uuid_IComponentCollection;

/// Base interface for managed collections, which are either references
/// or containers.
class 1ComponentCollection

public:

/// Virtual destructor to release memory.
virtual ~I1ComponentCollection() {}

/// Query for the number of components in the collection.
/// Q@return Current number of components in the collection.
virtual Smp::Int64 GetCount() const = 0;

/// Query the maximum number of components in the collection.
/// A return value of -1 indicates that the collection has no upper

///7 limit.

//7/

/// @remarks This information can be used to check whether another
/// component can be added to the collection.

/// @remarks This is consistent with the use of upper bounds in
/// UML, where a value of -1 represents no limit

/// (typically shown as *).

/// @return Maximum number of components in the collection. (-1 =
/// unlimited).

virtual Smp::Int64 GetUpper() const = 0;

/// Query the minimum number of components in the collection.
/// @remarks This information can be used to validate a model

/// hierarchy. 1f a collection specifies a Lower value
/// above its current Count, then it is not properly
/// configured. An external component may use this
/// information to validate the configuration before
/77 executing it.

/// Q@return Minimum number of components in the collection.
virtual Smp::Int64 GetLower() const = 0;

}:
3

Base Interfaces
None
Operations

Name Description

GetCount Query for the number of components in the collection.

GetLower Query the minimum number of components in the collection.

89

|[EY

ECSS-E-TM-40-07 Volume 4A

25 January 2011
Name Description
GetUpper Query the maximum number of components in the collection.
3.5.2.1.1 Get Count
Query for the number of components in the collection.
Parameters
Name Dir. Type | Description
return | Int64 | Current number of components in the collection.
Exceptions
None
3.5.2.1.2 GetLower
Query the minimum number of components in the collection.
Remark: This information can be used to validate a model hierarchy. If a
collection specifies a Lower value above its current Count, then it is not
properly configured. An external component may use this information to
validate the configuration before executing it.
Parameters
Name Dir. Type | Description
return | Int64 | Minimum number of components in the collection.
Exceptions
None
3.5.2.1.3 Get Upper
Query the maximum number of components in the collection.
A return value of -1 indicates that the collection has no upper limit.
Remark: This information can be used to check whether another component can
be added to the collection.
Remark: This is consistent with the use of upper bounds in UML, where a value
of -1 represents no limit (typically shown as *).
Parameters
Name Dir. Type | Description

return | Int64 | Maximum number of components in the collection. (-

1 = unlimited).

Exceptions

None

90

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

3.5.2.2 [IManaged Reference

Interface of a managed reference.

A managed reference additionally allows querying the size limits and adding
and removing referenced components.

File
#include "Smp/Management/IManagedReference.h"
Namespace

Smp::Management

Declaration of IManagedReference

/// Unique ldentifier of type IManagedReference.
extern const Uuid Uuid_IManagedReference;

/// Interface of a managed reference.
/// A managed reference additionally allows querying the size limits

/// and

adding and removing referenced components.

class IManagedReference :

publ
publ

{
public:

177/

ic virtual Smp::IReference,
ic virtual Smp::Management::1ComponentCollection

Virtual destructor to release memory.

virtual ~IManagedReference() {}

/77
177/
/77
177/
/77
//7/
77/
//7/
/77
//7/
/77
//7/
/77

Add a referenced component.

This method raises an exception of type ReferenceFull if called
for a full reference, i.e. when the Count has reached the Upper
limit. This method may raise an exception of type
InvalidObjectType when it expects the given component to
implement another interface as well.

Adding a component with a name that already exists in the
reference does not throw an exception, although GetComponent()
will no longer allow to return both referenced components by
name.

@param component New referenced component.

@throws Smp::InvalidObjectType

@throws Smp::Management:: IManagedReference: :ReferenceFull

virtual void AddComponent(Smp::IComponent* component) throw (

/77
177/
/777
177/
/777
177/
77/
177/

Smp::InvalidObjectType,
Smp: :Management: : IManagedReference: :ReferenceFull) = 0;

Remove a referenced component.

This method raises an exception of type NotReferenced if called
with a component that is not referenced. If the number of
referenced components is less than or equal to the Lower limit,
this method raises an exception of type CannotRemove.

@param component Referenced component to remove.

@throws Smp::Management:: IManagedReference: :CannotRemove
@throws Smp::Management:: IManagedReference: :NotReferenced

virtual void RemoveComponent(Smp::1Component* component) throw (

Smp: :Management: : IManagedReference: :CannotRemove,
Smp: :Management: : IManagedReference: :NotReferenced) = O;

Base Interfaces

Smp::Management::IComponentCollection, Smp::IReference

91

[EEY

ECSS-E-TM-40-07 Volume 4A

25 January 2011
Operations
Name Description
AddComponent Add a referenced component.

RemoveComponent | Remove a referenced component.

3.5.2.2.1 Add Component

Add a referenced component.

This method raises an exception of type ReferenceFull if called for a full
reference, i.e. when the Count has reached the Upper limit. This method may
raise an exception of type InvalidObjectType when it expects the given
component to implement another interface as well.

Adding a component with a name that already exists in the reference does not
throw an exception, although GetComponent() will no longer allow to return
both referenced components by name.

Parameters

Name Dir. Type Description

component in IComponent | New referenced component.
Exceptions
Smp::InvalidObjectType,
Smp::Management::IManagedReference::ReferenceFull
3.5.2.22 Remove Component
Remove a referenced component.
This method raises an exception of type NotReferenced if called with a
component that is not referenced. If the number of referenced components is
less than or equal to the Lower limit, this method raises an exception of type
CannotRemove.
Parameters

Name Dir. Type Description

component in IComponent | Referenced component to remove.
Exceptions

Smp::Management::IManagedReference::CannotRemove,
Smp::Management::IManagedReference::NotReferenced

3.5.2.2.3 Cannot Remove

This exception is thrown when trying to remove a component from a reference
when the number of referenced components is lower than or equal to the Lower
limit.

File

#include "Smp/Management/IManagedReference.h"

92

/ E CSS / ECSS-E-TM-40-07 Volume 4A

25 January 2011

Namespace

Smp::Management::IManagedReference

Declaration of CannotRemove

/// This exception is thrown when trying to remove a component from
/// a reference when the number of referenced components is lower
/// than or equal to the Lower limit.

class CannotRemove : public Smp::Exception

{

public:

/// Constructor for new exception.
/// Q@param referenceName Name of reference.
/// Q@param component Component that could not be removed.
/// @param lowerLimit Lower limit of the reference.
CannotRemove(

Smp: :String8 referenceName,

Smp: - IComponent* component,

Smp::Int64 lowerLimit) throw();

/// Copy constructor.
CannotRemove(
CannotRemove& ex) throw();

/// Virtual destructor to release memory.
virtual ~CannotRemove();

/// Name of reference.
Smp: :String8 referenceName;

/// Component that could not be removed.
Smp: - IComponent* component;

/// Lower limit of the reference.
Smp::Int64 lowerLimit;

Fields

Name

Type Description

component

IComponent | Component that could not be removed.

lowerLimit

Int64 Lower limit of the reference.

referenceName

String8 Name of reference.

35224 Not Referenced

This exception is thrown when trying to remove a component from a reference
which was not referenced before.

File
#include "Smp/Management/IManagedReference.h"
Namespace

Smp::Management::IManagedReference

Declaration of NotReferenced

/// This exception is thrown when trying to remove a component from
/// a reference which was not referenced before.
class NotReferenced : public Smp::Exception

{

public:

93

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

/// Constructor for new exception.
/// @param referenceName Name of reference.
/// @param component Component that is not referenced.
NotReferenced(
Smp: :String8 referenceName,
Smp: : IComponent* component) throw();

/// Copy constructor.
NotReferenced(
NotReferenced& ex) throw();

/// Virtual destructor to release memory.
virtual ~NotReferenced();

/// Name of reference.
Smp: :String8 referenceName;

/// Component that is not referenced.
Smp: - IComponent* component;

s
Fields
Name Type Description
component IComponent | Component that is not referenced.
referenceName | String8 Name of reference.
3.5.2.2.5 Reference Full
This exception is raised when trying to add a component to a reference that is
full, i.e. where the Count has reached the Upper limit.
File
#include "Smp/Management/IManagedReference.h"
Namespace
Smp::Management::]ManagedReference
Declaration of ReferenceFull
/// This exception is raised when trying to add a component to a
/// reference that is full, i.e. where the Count has reached the
/// Upper limit.

class ReferenceFull : public Smp::Exception

{
public:

/// Constructor for new exception.
/// @param referenceName Name of reference.
/// @param referenceSize Number of components in the
/// reference, which is its Upper limit when the
/// reference is full.
ReferenceFul I (

Smp: :String8 referenceName,

Smp::Int64 referenceSize) throw();

/// Copy constructor.
ReferenceFull (
ReferenceFull& ex) throw();

/// Virtual destructor to release memory.
virtual ~ReferenceFull();

/// Name of reference.

94

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

Smp: :String8 referenceName;

/// Number of components in the reference, which is its Upper
/// limit when the reference is full.
Smp::Int64 referenceSize;

Fields

Name Type | Description

referenceName | String8 | Name of reference.

referenceSize Int64 | Number of components in the reference, which is its Up-
per limit when the reference is full.

3.5.2.3 IManaged Container

Interface of a managed container.

A managed container additionally allows querying the size limits and adding
contained components.

File
#include "Smp/Management/IManagedContainer.h"
Namespace

Smp::Management

Declaration of IManagedContainer

/// Unique ldentifier of type IManagedContainer.
extern const Uuid Uuid_IManagedContainer;

/// Interface of a managed container.
/// A managed container additionally allows querying the size limits
/// and adding contained components.
class IManagedContainer :
public virtual Smp::IContainer,
public virtual Smp::Management::1ComponentCollection

{
public:

/// Virtual destructor to release memory.
virtual ~IManagedContainer() {}

/// Add a contained component to the container.
/// This method raises an exception of type ContainerFull if called
/// for a full container, i.e. when the Count has reached the Upper
///7 limit. It raises an exception of type DuplicateName when trying
/// to add a component with a name that is already contained in the
/// container, as this would lead to duplicate names in the
/// container. This method may raise an exception of type
/// InvalidObjectType when it expects the given component to
/// implement another interface as well.
/// @param component New contained component.
/// @throws Smp::Management::IManagedContainer::ContainerFull
/// @throws Smp::DuplicateName
/// @throws Smp::InvalidObjectType
virtual void AddComponent(Smp::I1Component* component) throw (
Smp: :Management: : IManagedContainer: :ContainerFull,
Smp: :DuplicateName,
Smp::InvalidObjectType) = 0;

95

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

Base Interfaces

Smp::Management::IComponentCollection, Smp::IContainer

Operations

Name

Description

AddComponent | Add a contained component to the container.

3.5.2.3.1 Add Component

Add a contained component to the container.

This method raises an exception of type ContainerFull if called for a full
container, i.e. when the Count has reached the Upper limit. It raises an
exception of type DuplicateName when trying to add a component with a name
that is already contained in the container, as this would lead to duplicate names
in the container. This method may raise an exception of type InvalidObjectType
when it expects the given component to implement another interface as well.

Parameters

Name

Dir. Type Description

component

in IComponent | New contained component.

Exceptions

Smp::DuplicateName, Smp::InvalidObjectType,
Smp::Management::IManagedContainer::ContainerFull
3.5.2.3.2 Container Full

This exception is raised when trying to add a component to a container that is
full, i.e. where the Count has reached the Upper limit.

File
#include "Smp/Management/IManagedContainer.h"
Namespace

Smp::Management::IManagedContainer

Declaration of ContainerFull

/77
177/
/77

This exception is raised when trying to add a component to a
container that is full, i.e. where the Count has reached the
Upper limit.

class ContainerFull : public Smp::Exception

{
publ

ic:
/// Constructor for new exception.
/// @param containerName Name of full container.
/// Q@param containerSize Number of components in the
/// container, which is its Upper limit when the
//7/ container is full.
ContainerFull(
Smp: :String8 containerName,
Smp::Int64 containerSize) throw();

/// Copy constructor.
ContainerFull(

96

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

ContainerFull& ex) throw();

/// Virtual destructor to release memory.
virtual ~ContainerFull();

/// Name of full container.
Smp: :String8 containerName;

/// Number of components in the container, which is its Upper
/// limit when the container is full.
Smp::Int64 containerSize;

Fields

Name

Type | Description

containerName | String8 | Name of full container.

containerSize Int64 Number of components in the container, which is its Up-

per limit when the container is full.

3.5.2.4 IEvent Consumer
Interface of an event consumer.

An event sonsumer is a omponent that holds event sinks, which may be
subscribed to other component's event sources.

This is an optional interface. It needs to be implemented for managed
components only, which want to allow access to event sinks by name.

File
#include "Smp/Management/IEventConsumer.h"

Namespace

Smp::Management

Declaration of IEventConsumer

/// Unique ldentifier of type lEventConsumer.
extern const Uuid Uuid_IlEventConsumer;

/// Interface of an event consumer.
/// An event sonsumer is a omponent that holds event sinks, which may
/// be subscribed to other component®s event sources.
/77
/// This is an optional interface. It needs to be implemented for
/// managed components only, which want to allow access to event sinks
/// by name.
class lEventConsumer :
public virtual Smp::IComponent
{

public:

/// Virtual destructor to release memory.
virtual ~l1EventConsumer() {}

/// Query for the collection of all event sinks of the component.
/// The collection may be empty if no event sinks exist.

/// @return Collection of event sinks.

virtual const Smp::EventSinkCollection* GetEventSinks() const = 0;

/// Query for an event sink of this component by its name.
/// The returned event sink may be null if no event sink with the
/// given name could be found.

97

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

/// Q@param name Event sink name.

/// @return Event sink with the given name, or null if no event
/// sink with the given name could be found.

virtual Smp::I1EventSink* GetEventSink(Smp::String8 name) const = 0;

};
Base Interfaces
Smp::IComponent
Operations
Name Description
GetEventSink Query for an event sink of this component by its name.
GetEventSinks | Query for the collection of all event sinks of the component.

35241 Get Event Sink

Query for an event sink of this component by its name.

The returned event sink may be null if no event sink with the given name could
be found.

Parameters

Name Dir. Type Description

return | [EventSink | Event sink with the given name, or null if no event
sink with the given name could be found.

name in String8 Event sink name.
Exceptions
None

3.5.2.4.2 Get Event Sinks
Query for the collection of all event sinks of the component.
The collection may be empty if no event sinks exist.

Parameters

Name Dir. Type Description

return | EventSinkCollection | Collection of event sinks.

Exceptions

None

3.5.2.5 IEvent Provider
Interface of an event provider.

An event provider is a omponent that holds event sources, which allow other
components to subscribe their event sinks.

This is an optional interface. It needs to be implemented for managed
components only, which want to allow access to event sources by name.

98

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

File
#include "Smp/Management/IEventProvider.h"
Namespace

Smp::Management

Declaration of IEventProvider

/// Unique ldentifier of type lEventProvider.
extern const Uuid Uuid_lEventProvider;

/// Interface of an event provider.
/// An event provider is a omponent that holds event sources, which
/// allow other components to subscribe their event sinks.
/// This is an optional interface. It needs to be implemented for
/// managed components only, which want to allow access to event
/// sources by name.
class IEventProvider :

public virtual Smp::IComponent

£
public:
/// Virtual destructor to release memory.
virtual ~l1EventProvider() {}
/// Query for an event source of this component by its name.
/// The returned event source may be null if no event source with
/// the given name could be found.
/// @param name Event source name.
/// Q@return Event source with the given name or null if no event
/// source with the given name could be found.
virtual Smp::IlEventSource* GetEventSource(Smp::String8 name) const = O;
/// Query for the collection of all event sources of the component.
/// The collection may be empty if no event sources exist.
/// @return Collection of event sources.
virtual const Smp::EventSourceCollection* GetEventSources() const = 0;
}:
Base Interfaces
Smp::IComponent
Operations
Name Description
GetEventSource | Query for an event source of this component by its name.
GetEventSources | Query for the collection of all event sources of the component.

3.5.25.1 Get Event Source

Query for an event source of this component by its name.

The returned event source may be null if no event source with the given name
could be found.

99

[EEY

ECSS-E-TM-40-07 Volume 4A

25 January 2011
Parameters
Name Dir. Type Description
return | [EventSource | Event source with the given name or null if no
event source with the given name could be
found.
name in String8 Event source name.
Exceptions
None
3.5.25.2 Get Event Sources
Query for the collection of all event sources of the component.
The collection may be empty if no event sources exist.
Parameters
Name Dir. Type Description

return | EventSourceCollection | Collection of event sources.

Exceptions

None

3.5.2.6 IEntry Point Publisher

Interface of an entry point publisher.

An entry point publisher is a model that publishes entry points.

This is an optional interface. It needs to be implemented for managed models
only, which want to provide access to their entry points by name.

File

#include "Smp/Management/IEntryPointPublisher.h"

Namespace

Smp::Management

Declaration of IEntryPointPublisher

/// Unique ldentifier of type IEntryPointPublisher.

extern const

/// Interface of an entry point publisher.

/// An entry
///
/// @remarks
///
///
///
///

class IEntryPointPublisher :
public virtual Smp::IComponent

{
public:

/// Virtual destructor to release memory.
virtual ~1EntryPointPublisher() {}

Uuid Uuid_lEntryPointPublisher;

point publisher is a model that publishes entry points.

The entry points may be registered, for example, with the
Scheduler or the Event Manager services.

This is an optional interface. It needs to be implemented
for managed models only, which want to provide access to
their entry points by name.

100

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

/// Query for the collection of all entry points of the model.

/// The collection may be empty if no entry points exist.

/// @return Collection of entry points.

virtual const Smp::EntryPointCollection* GetEntryPoints() const = 0;

/// Query for an entry point of this model by its name.

/// The returned entry point may be null if no entry point with the
/// given name could be found.

/// @param name Entry point name.

/// @return Entry point with given name, or null if no entry point
/// with given name could be found.

virtual const Smp::lEntryPoint* GetEntryPoint(Smp::String8 name) const

Remark: The entry points may be registered, for example, with the Scheduler or
the Event Manager services.

Base Interfaces

Smp::IComponent

Operations

Name

Description

GetEntryPoint | Query for an entry point of this model by its name.

GetEntryPoints | Query for the collection of all entry points of the model.

3.5.26.1 GetEntry Point

Query for an entry point of this model by its name.

The returned entry point may be null if no entry point with the given name
could be found.

Parameters

Name Dir. Type Description
return | [EntryPoint | Entry point with given name, or null if no entry
point with given name could be found.

name in String8 Entry point name.

Exceptions

None

3.5.2.6.2 Get Entry Points

Query for the collection of all entry points of the model.

The collection may be empty if no entry points exist.

Parameters
Name Dir. Type Description

return | EntryPointCollection | Collection of entry points.

101

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

Exceptions

None

3.5.3 Managed Model Mechanisms
The model mechanisms introduced in section 3.4 (Model Mechanisms) do not
provide full access for external components, but only limited access:

e Fields are published against the simulation environment, but an
external component can not query for fields by name.

To overcome these limitations, managed interfaces are provided with full access
to all functionality. For fields, the managed interface allows for querying a
dedicate field of a model by name. Via the returned ISimpleField and the
IArrayField interface it is possible to read and write field values.

Field Names:

In SMP, models can have fields of various types, including not only the base
types introduced in section 2 (
Base Types), but also complex types (strings, arrays, structures, classes). The
available types are documented in the Metamodel. As the methods GetValue()
and SetValue() of ISimpleField only support fields of simple types,
structured types have to be accessed by accessing their individual members.

Rule 1: Members of structures and classes are separated with one of the
following characters: "\", "/", "!", "."

Rule 2: Members of strings and arrays with non-simple item type are addressed
by their 0-based index enclosed in brackets ("[" and "]").

Examples:
MyField.Position[2]
Structure!Field

Class/Array[1]/Structure/Field

3.5.3.1 IManaged Model

Interface of a managed model.
A managed model additionally allows querying for fields by name.

This is an optional interface. It needs to be implemented for managed models
only, which want to allow access to fields by name.

File
#include "Smp/Management/IManagedModel.h"
Namespace

Smp::Management

102

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

Declaration of IManagedModel

/// Unique ldentifier of type IManagedModel.
extern const Uuid Uuid_IManagedModel ;

/// Interface of a managed model.
/// A managed model additionally allows querying for fields by name.
/// This is an optional interface. It needs to be implemented for
/// managed models only, which want to allow access to fields by name.
class IManagedModel :

public virtual Smp::IModel,

public virtual Smp::Management: : IManagedComponent

public:

/// Virtual destructor to release memory.
virtual ~IManagedModel () {}

/// Get the field of given name that is typed by a simple type.
//7/

/// This method raises an exception of type InvalidFieldName if
/// called with a field name for which no corresponding field
/// exists or for which the corresponding field is not of simple

/// type.

/// This method can only be used to get fields of simple types.

//7/

/// @remarks For getting access to fields of structured or array
/// types, this method may be called multiply, for example
/// by specifying a field name "MyField.Position[2]" in
/// order to access an array item of a structure.

/// @param fullName Fully qualified field name (relative to the
/// model) .

/// @return Simple field.
/// @throws Smp::Management: :IManagedModel: : InvalidFieldName
virtual Smp::ISimpleField* GetSimpleField(Smp::String8 fullName) const

throw (
Smp: :Management: : IManagedModel : : Inval idFieldName) = O;
/// Get the field of given name that is an array of a simple type.
/// This method raises an exception of type InvalidFieldName if
/// called with a field name for which no corresponding field
/// exists or for which the corresponding field is not an array of
/// simple type.
/77
/// This method can only be used to get array fields with items of
/// simple type.
/// @param fullName Fully qualified array field name (relative to
/// the model)
/// @return Array field.
/// @throws Smp::Management::IManagedModel: : InvalidFieldName
virtual Smp::lArrayField* GetArrayField(Smp::String8 fullName) const
throw (
Smp: :Management: : IManagedModel : : InvalidFieldName) = O;
}:
Base Interfaces
Smp::Management::IManagedComponent, Smp::IModel
Operations
Name Description

GetArrayField | Get the field of given name that is an array of a simple type.

GetSimpleField | Get the field of given name that is typed by a simple type.

103

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

3.5.3.1.1 Get Array Field

Get the field of given name that is an array of a simple type.

This method raises an exception of type InvalidFieldName if called with a field
name for which no corresponding field exists or for which the corresponding
field is not an array of simple type.

This method can only be used to get array fields with items of simple type.

Parameters

Name

Dir. Type Description

fullName

in String8 Fully qualified array field name (relative to the
model)

return | [ArrayField | Array field.

Exceptions

Smp::Management::IManagedModel::InvalidFieldName
3.5.3.1.2 Get Simple Field

Get the field of given name that is typed by a simple type.

This method raises an exception of type InvalidFieldName if called with a field
name for which no corresponding field exists or for which the corresponding
field is not of simple type.

This method can only be used to get fields of simple types.

Remark: For getting access to fields of structured or array types, this method
may be called multiply, for example by specifying a field name
"MyField.Position[2]" in order to access an array item of a structure.

Parameters

Name

Dir. Type Description

return | ISimpleField | Simple field.

fullName

in String8 Fully qualified field name (relative to the
model).

Exceptions

Smp::Management::IManagedModel::InvalidFieldName
3.5.3.1.3 Invalid Field Name

This exception is raised when an invalid field name is specified.
File

#include "Smp/Management/IManagedModel.h"

Namespace

Smp::Management::IManagedModel

104

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

Declaration of InvalidFieldName

/// This exception is raised when an invalid field name is
/// specified.
class InvalidFieldName : public Smp::Exception

public:
/// Constructor for new exception.
/// @param fieldName Fully qualified field name that is
/77 invalid.
InvalidFieldName(
Smp::String8 fieldName) throw();

/// Copy constructor.
InvalidFieldName(
InvalidFieldName& ex) throw();

/// Virtual destructor to release memory.
virtual ~InvalidFieldName();

/// Fully qualified field name that is invalid.
Smp::String8 fieldName;

};
Fields
Name Type | Description
fieldName String8 | Fully qualified field name that is invalid.

3.5.3.2 IField
Interface of a field.

File

#include "Smp/IField.h"
Namespace

Smp
Declaration of IField

/// Unique ldentifier of type IField.
extern const Uuid Uuid_IField;

/// Interface of a field.
class IField :

public virtual Smp::IObject

public:

/// Virtual destructor to release memory.
virtual ~IFieldQ {}

/// Return View kind of the field.

/// @return The View kind of the field.

/// The view kind indicates which user roles have visibility of the
//7/ field.

virtual Smp::ViewKind GetView() const = 0;

/// Return State flag of the field.

/// @return The State flag of the field.

/// When true, the state of the field shall be stored by the simulation
/// infrastructure persistence mechanism on Store(), and restored on
/// Restore().

virtual Smp::Bool IsState() const = O;

105

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

/// Return Input flag of the field.

/// @return The Input flag of the field.

/// When true, the field is considered an input into the model and can
/// be used as target of a field link in data flow based design.
virtual Smp::Bool Islnput() const = 0;

/// Return Output flag of the field.

/// @return The Output flag of the field.

/// When true, the field is considered an output of the model and can
/// be used as source of a field link in data flow based design.
virtual Smp::Bool IsOutput() const = O;

}:
Base Interfaces
Smp::10bject
Operations
Name Description
GetView Return View kind of the field.
IsInput Return Input flag of the field.
IsOutput Return Output flag of the field.
IsState Return State flag of the field.
35321 Get View
Return View kind of the field.
Parameters
Name Dir. Type Description
return | ViewKind | The View kind of the field.
The view kind indicates which user roles have
visibility of the field.
Exceptions
None
3.5.3.2.2 Is Input
Return Input flag of the field.
Parameters
Name Dir. Type | Description

return | Bool The Input flag of the field.

When true, the field is considered an input into the
model and can be used as target of a field link in data
flow based design.

Exceptions

None

106

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

3.5.3.23 Is Output

Return Output flag of the field.

Parameters
Name Dir. Type | Description
return | Bool The Output flag of the field.
When true, the field is considered an output of the
model and can be used as source of a field link in
data flow based design.
Exceptions
None
35.3.24 s State
Return State flag of the field.
Parameters
Name Dir. Type | Description

return | Bool The State flag of the field.

When true, the state of the field shall be stored by the
simulation infrastructure persistence mechanism on
Store(), and restored on Restore().

Exceptions

None
3.5.3.25 Invalid Field Value

This exception is raised when trying to assign an illegal value to a field.
File

#include "Smp/IField.h"

Namespace

Smp::IField

Declaration of InvalidFieldValue

/// This exception is raised when trying to assign an illegal value to

/77 a fi

class InvalidFieldValue : public Smp::Exception

public:
///
//7/
///
//7/
///

InvalidFieldValue(

/77

InvalidFieldValue(

eld.

Constructor for new exception.

@param FieldName Fully qualified field name the value was
assigned to.

@param invalidFieldvalue Value that was passed as new field
value.

Smp::String8 fieldName,
Smp::AnySimple invalidFieldValue) throw();

Copy constructor.

107

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

InvalidFieldvalue& ex) throw();

/// Virtual destructor to release memory.
virtual ~InvalidFieldvalue();

/// Fully qualified field name the value was assigned to.
Smp::String8 fieldName;

/// Value that was passed as new field value.
Smp: :AnySimple invalidFieldValue;

};
Fields
Name Type Description
fieldName String8 Fully qualified field name the value was assigned

to.

invalidFieldValue | AnySimple | Value that was passed as new field value.

3.5.3.3 IArray Field

Interface of a field which is an array of a simple type.
File

#include "Smp/IArrayField.h"

Namespace

Smp
Declaration of IArrayField

/// Unique ldentifier of type lArrayField.
extern const Uuid Uuid_lArrayField;

/// Interface of a field which is an array of a simple type.
class lArrayField :

{

public virtual Smp::IField

public:

/// Virtual destructor to release memory.
virtual ~lArrayFieldQ {}

/// Get a value from a specific index of the array field.

/// This method raises an exception of type Invalidlndex if called with

/// an index value beyond the size of the array.

/// Q@param index Index of value to get.

/// @return Value from given index.

/// @throws Smp::IlArrayField::Invalidlndex

virtual Smp::AnySimple GetValue(Smp::UInt64 index) const throw (
Smp::lArrayField: :Invalidlndex) = O;

/// Set a value at given index of the array field.

/// This method raises an exception of type InvalidFieldvalue if called

/// with an invalid value and an exception of type Invalidlndex if

/// called with an index value beyond the size of the array.

/// @param index Index of value to set.

/// @param value Value to set at given index.

/// @throws Smp::IField::InvalidFieldvalue

/// @throws Smp::IlArrayField::Invalidlndex

virtual void SetvValue(Smp::UInt64 index, Smp::AnySimple value) throw (
Smp::IField: :InvalidFieldvValue,

108

[EEY

/77
/77
/77
V44
/77
V44
/77
/77
/77

Smp::lArrayField: :Invalidlndex) = O;

Get all values of the array field.

This method raises an exception of type InvalidArraySize if called
with an array of wrong size.

The array with the values has to be pre-allocated by the caller,
and has to be released by the caller as well. Therefore, an inout
parameter is used, not a return value of the method.

@param length Size of given values array.

@param values Pre-allocated array of values to store result to.
@throws Smp::IlArrayField::InvalidArraySize

virtual void GetValues(Smp::UInt64 length, Smp::AnySimpleArray values)

const throw

77/
177/
77/
177/
//7/
177/
77/

(
Smp::1ArrayField::InvalidArraySize) = O;

Set all values of the array field.

This method raises an exception of type InvalidArraySize if called
with an array of wrong size and an exception of type
InvalidArrayValue if called with an invalid values array.

@param length Size of given values array.

@param values Array of values to store in array field.

@throws Smp::lArrayField::InvalidArraySize

/// @throws Smp::lArrayField::InvalidArrayValue
virtual void SetValues(Smp::UInt64 length, Smp::AnySimpleArray values)
throw (
Smp::1ArrayField: : InvalidArraySize,
Smp::lArrayField: : InvalidArrayValue) = O;
/// Get the size (nhumber of array items) of the field.
/// @return Size (number of array items) of the field.
virtual Smp::UInt64 GetSize() const = 0;
}:
Base Interfaces
Smp::[Field
Operations
Name Description
GetSize Get the size (number of array items) of the field.
GetValue Get a value from a specific index of the array field.
GetValues Get all values of the array field.
SetValue Set a value at given index of the array field.
SetValues Set all values of the array field.
3.5.33.1 GetSize
Get the size (number of array items) of the field.
Parameters
Name Dir. Type | Description

return | Ulnt64 | Size (number of array items) of the field.

Exceptions

None

ECSS-E-TM-40-07 Volume 4A
25 January 2011

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

3.5.3.3.2 Get Value

Get a value from a specific index of the array field.

This method raises an exception of type InvalidIndex if called with an index
value beyond the size of the array.

Parameters

Name

Dir. Type Description

return | AnySimple | Value from given index.

index

in Ulnt64 Index of value to get.

Exceptions

Smp::IArravField::InvalidIndex
3.5.3.3.3 Get Values

Get all values of the array field.

This method raises an exception of type InvalidArraySize if called with an array
of wrong size.

The array with the values has to be pre-allocated by the caller, and has to be
released by the caller as well. Therefore, an inout parameter is used, not a
return value of the method.

Parameters

Name

Dir.

Type

Description

length

in

Ulnt64

Size of given values array.

values

inout

AnySimpleArray

Pre-allocated array of values to store result
to.

Exceptions

Smp::IArrayField::Invalid ArraySize

3.5.3.34 Set Value

Set a value at given index of the array field.

This method raises an exception of type InvalidFieldValue if called with an
invalid value and an exception of type Invalidindex if called with an index
value beyond the size of the array.

Parameters

Name

Dir.

Type Description

index

in

Ulnt64 Index of value to set.

value

in

AnySimple | Value to set at given index.

Exceptions

Smp::IField::InvalidFieldValue, Smp::IArrayField::InvalidIndex

110

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

3.5.3.35 Set Values

Set all values of the array field.

This method raises an exception of type InvalidArraySize if called with an array
of wrong size and an exception of type InvalidArrayValue if called with an
invalid values array.

Parameters

Name Dir. Type Description

length in Ulnt64 Size of given values array.

values in AnySimpleArray | Array of values to store in array field.
Exceptions

Smp::IArrayField::InvalidArraySize, Smp::[ArrayField::InvalidArrayValue
3.5.3.3.6 Invalid Array Size

This exception is raised when an invalid array size is specified.
File

#include "Smp/IArrayField.h"

Namespace

Smp::JArrayField

Declaration of InvalidArraySize

/// This exception is raised when an invalid array size is specified.
class InvalidArraySize : public Smp::Exception

public:
/// Constructor for new exception.
/// @param fieldName Name of field that has been accessed.
/// @param invalidSize Invalid array size.
/// @param arraySize Real array size.
InvalidArraySize(
Smp::String8 fieldName,
Smp::Int64 invalidSize,
Smp::Int64 arraySize) throw();

/// Copy constructor.
InvalidArraySize(
InvalidArraySize& ex) throw();

/// Virtual destructor to release memory.
virtual ~InvalidArraySize();

/// Name of field that has been accessed.
Smp::String8 fieldName;

/// Invalid array size.
Smp::Int64 invalidSize;

/// Real array size.
Smp::Int64 arraySize;

111

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

Fields

Name

Type | Description

arraySize

Int64 | Real array size.

fieldName

String8 | Name of field that has been accessed.

invalidSize

Int64 | Invalid array size.

3.5.3.3.7 Invalid Array Value

This exception is raised when trying to assign an illegal value to an array field.
File

#include "Smp/IArrayField.h"

Namespace

Smp::IArrayField

Declaration of InvalidArrayValue

77/

This exception is raised when trying to assign an illegal value to

/// an array field.
class InvalidArrayValue : public Smp::Exception

{
public:

/// Constructor for new exception.
/// @param fieldName Fully qualified field name the value was
/// assigned to.
/// @param validlndex Index in array where the first invalid
/// value was found.
InvalidArrayValue(

Smp::String8 fieldName,

Smp::Int32 invalidvaluelndex) throw();

/// Copy constructor.
InvalidArrayValue(
InvalidArrayValue& ex) throw();

/// Virtual destructor to release memory.
virtual ~InvalidArrayValue(Q);

/// Fully qualified field name the value was assigned to.
Smp: :String8 fieldName;

/// Index in array where the Ffirst invalid value was found.
Smp::Int32 invalidvaluelndex;

Fields

Name

Type | Description

fieldName

String8 | Fully qualified field name the value was assigned to.

invalidValuelndex | Int32 | Index in array where the first invalid value was found.

3.5.3.3.8 Invalid Index

This exception is raised when an invalid index is specified.

112

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

File
#include "Smp/IArrayField.h"
Namespace

Smp::IArrayField

Declaration of InvalidIndex

/// This exception is raised when an invalid index is specified.
class Invalidlndex : public Smp::Exception

public:
/// Constructor for new exception.
/// @param fieldName Fully qualified field name the value was
/// assigned to.
/// @param arraySize Real array size.
/// @param invalidlndex Invalid Index.
InvalidIndex(
Smp: :String8 fieldName,
Smp::Int64 arraySize,
Smp::Int64 invalidlndex) throw();

/// Copy constructor.
Invalidindex(
Invalidindex& ex) throw();

/// Virtual destructor to release memory.
virtual ~Invalidindex();

/// Fully qualified field name the value was assigned to.
Smp: :String8 fieldName;

/// Real array size.
Smp::Int64 arraySize;

/// Invalid Index.
Smp::Int64 invalidlndex;

}:
Fields
Name Type | Description
arraySize Int64 | Real array size.
fieldName String8 | Fully qualified field name the value was assigned to.
invalidIndex Int64 | Invalid Index.

3.5.3.4 ISimple Field

Interface of a field of simple type.
File

#include "Smp/ISimpleField.h"
Namespace

Smp
Declaration of ISimpleField

/// Unique ldentifier of type ISimpleField.
extern const Uuid Uuid_ISimpleField;

113

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

/// Interface of a field of simple type.
class ISimpleField :
public virtual Smp::IField

{
public:

/// Virtual destructor to release memory.
virtual ~I1SimpleField(Q) {}

/// Get the value of the simple field.
/// @return Field value.
virtual Smp::AnySimple GetValue() const = 0O;

/// Set the value of the simple field.

/// This method raises an exception of type InvalidFieldvalue if called

/// with an invalid value.

/// @param value Field value.

/// @throws Smp::IField::InvalidFieldvalue

virtual void SetValue(Smp::AnySimple value) throw (
Smp::IField::InvalidFieldvalue) = 0O;

Base Interfaces
Smp::IField

Operations

Name Description

GetValue Get the value of the simple field.

SetValue Set the value of the simple field.

3.5.34.1 Get Value

Get the value of the simple field.

Parameters

Name Dir. Type Description

return | AnySimple | Field value.

Exceptions

None
3.5.34.2 Set Value

Set the value of the simple field.

This method raises an exception of type InvalidFieldValue if called with an
invalid value.

Parameters

Name Dir. Type Description

value in AnySimple | Field value.

Exceptions

Smp::IField::InvalidFieldValue

114

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

3.5.3.5 IForcible Field

Interface of a forcible field.

File

#include "Smp/IForcibleField.h"
Namespace

Smp
Declaration of IForcibleField

/// Unique ldentifier of type IForcibleField.
extern const Uuid Uuid_IForcibleField;

/// Interface of a forcible field.
class IForcibleField :

{

public virtual Smp::ISimpleField

public:

/// Virtual destructor to release memory.
virtual ~lForcibleField) {}

/// Force field to given value.

/// This method raises an exception of type InvalidFieldvalue if called

/// with an invalid value.

/// @param value Value to force field to.

/// @throws Smp::IField::InvalidFieldvalue

virtual void Force(Smp::AnySimple value) throw (
Smp::IField::InvalidFieldvalue) = 0;

/// Force field to its current value.
virtual void Freeze() = 0;

/// Unforce field.
virtual void Unforce() = 0O;

/// Query for the forced state of the field.
/// @return Whether the field is forced or not.
virtual Smp::Bool IsForced() = O;

Base Interfaces

Smp::ISimpleField

Operations

Name

Description

Force

Force field to given value.

Freeze

Force field to its current value.

IsForced Query for the forced state of the field.

Unforce

Unforce field.

3.5.35.1 Force

Force field to given value.

This method raises an exception of type InvalidFieldValue if called with an
invalid value.

115

[EEY

ECSS-E-TM-40-07 Volume 4A

25 January 2011

Parameters

Name

Dir. Type Description

value

in AnySimple | Value to force field to.

Exceptions

Smp::IField::InvalidFieldValue
3.5.3.5.2 Freeze

Force field to its current value.
Parameters

None

Exceptions

None
3.5.3.5.3 Is Forced

Query for the forced state of the field.

Parameters

Name

Dir. Type | Description

return | Bool Whether the field is forced or not.

Exceptions

None
3.5.354 Unforce

Unforce field.
Parameters
None
Exceptions

None

3.5.3.6 View Kind

This enumeration defines possible options for the View attribute, which can be
used to control if and how an element is made visible when published to the

simulation infrastructure.

The simulation infrastructure must at least support the "None" and the

"EndUser" roles (i.e. hidden or always visible).

The simulation infrastructure may support the selection of different user roles
("Debug", "Expert", "End User"), in which case the "Debug" and the "Expert" role

must also be supported as described.
File
#include "Smp/ViewKind.h"

116

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

Namespace

Smp

Declaration of ViewKind

//7/

Unique ldentifier of type ViewKind.

extern const Uuid Uuid_ViewKind;

77/
//7/
77/
Va4
77/
/77
/77
/77

This enumeration defines possible options for the View attribute, which
can be used to control if and how an element is made visible when
published to the simulation infrastructure.

The simulation infrastructure must at least support the "None" and the
"EndUser™ roles (i.e. hidden or always visible).

The simulation infrastructure may support the selection of different
user roles ('Debug", "Expert', "End User'™), in which case the '"Debug"
and the "Expert” role must also be supported as described.

enum ViewKind

{

/// The element is not made visible to the user (this is the default).
VK_None,

/// The element is made visible for debugging purposes.

/// The element is not visible to end users. If the simulation

/// infrastructure supports the selection of different user roles, then
/// the element shall be visible to "Debug" users only.

VK_Debug,

/// The element is made visible for expert users.

/// The element is not visible to end users. If the simulation

/// infrastructure supports the selection of different user roles, then
/// the element shall be visible to "Debug"™ and "Expert" users.
VK_Expert,

/// The element is made visible to all users.
VK_ATI

Table 4 - Enumeration Literals of ViewKind

Name

Description

VK_None The element is not made visible to the user (this is the default).

VK_Debug The element is made visible for debugging purposes.

The element is not visible to end users. If the simulation infrastruc-
ture supports the selection of different user roles, then the element
shall be visible to "Debug" users only.

VK_Expert The element is made visible for expert users.

The element is not visible to end users. If the simulation infrastruc-
ture supports the selection of different user roles, then the element
shall be visible to "Debug" and "Expert" users.

VK_All

The element is made visible to all users.

117

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

3.6 Simulation Environments

Setup

A Simulation Environment has to implement the ISimulator interface to give
access to the models and services. This interface is derived from IComposite to
give access to at least two managed containers, namely the “Models” and
“Services” containers. Finally, a simulation environment has to pass a
publication server to all models in the Publishing state.

3.6.1 Simulators

The Simulation Environment is always in one of the defined simulator states,
with well-defined state transition methods between these states.

Configure() @ Building i) Publish()

Connect()
Connecting
\l/ (automatic)
Initialising
Initialise() (automatic)
Reconnect() Store() Q/
Storing
(automatic) (automatic) J
Reconnecting —— > Standby 3
Exit() Restoring
Restore() 4\
Hold() Run()
Abort()
; Abort can be
; Executin
Execution g called from any
state
Termination NN Exiting Aborting

Figure 2 - Simulation Environment State Diagram with State Transition Methods

The available simulator states are enumerated by the SimulatorStateKind
enumeration, while the ISimulator interface provides the corresponding state
transition methods. Except for the Abort() state transition, which can be called
from any other state, all other state transitions should be called only from the
appropriate states, as shown in the Simulation Environment State Diagram in
Figure 2, and explained in the following subsections. However, when calling a
state transition from another state, the simulation environment shall not raise
an exception, but ignore the state transition. It may use the Logger service to log
a warning message.

118

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

The simulator states correspond to dedicated Model states. Therefore a model is
always in one of the defined model states too, with well-defined state transition
methods between these states. The available model states are enumerated by
the ModelStateKind enumeration, while the IModel interface provides the
corresponding state transition methods.

Created

\L Publish()
Published

\L Configure()
Configured

\L Connect()

Connected

Figure 3 - Model State Diagram with State Transition Methods

During the Building state the Simulation Environment builds the models and
calls Publish() and Configure() to initiate the transition of the models from
Created via Published to Configured state. During the Connecting state the
Simulation Environment initiates the transition of the models into Connected
state.

3.6.1.1 Simulator State Kind

This is an enumeration of the available states of the simulator. The Setup phase
is split into three different states, the Execution phase has five different states,
and the Termination phase has two states.

File
#include "Smp/ISimulator.h"
Namespace

Smp

Declaration of SimulatorStateKind

/// Unique ldentifier of type SimulatorStateKind.
extern const Uuid Uuid_SimulatorStateKind;

/// This is an enumeration of the available states of the simulator. The

/// Setup phase is split into three different states, the Execution phase
/// has five different states, and the Termination phase has two states.

enum SimulatorStateKind

{

/// In Building state, the model hierarchy is created. This is done by
/// an external component, not by the simulator.

/// This state is entered automatically after the simulation

/// environment has performed its initialisation.

/// This state is left with the Connect() state transition method.
SSK_Building,

/// In Connecting state, the simulation environment traverses the model

119

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

/// hierarchy and calls the Connect() method of each model.

/// This state is entered using the Connect() state transition.

/// After connecting all models to the simulator, an automatic state
/// transition to the Initialising state is performed.
SSK_Connecting,

/// In Initialising state, the simulation environment executes all

/// initialisation entry points in the order they have been added to
/// the simulator using the AddInitEntryPoint() method.

/// This state is either entered automatically after the simulation
/// environment has connected all models to the simulator, or manually
/// from Standby state using the Initialise() state transition.

/// After calling all initialisation entry points, an automatic state
/// transition to the Standby state is performed.

SSK_Initialising,

/// 1In Standby state, the simulation environment (namely the Time

/// Keeper Service) does not progress simulation time. Only entry

/// points registered relative to Zulu time are executed.

/// This state is entered automatically from the Initialising, Storing,
/// and Restoring states, or manually from the Executing state using
/// the Hold() state transition.

/// This state is left with one of the Run(), Store(), Restore(),

/// Initialise(), Reconnect() or Exit() state transitions.

SSK_Standby,

/// In Executing state, the simulation environment (namely the Time
/// Keeper Service) does progress simulation time. Entry points
/// registered with any of the available time kinds are executed.
/// This state is entered using the Run() state transition.

/// This state is left using the Hold() state transition.
SSK_Executing,

/// In Storing state, the simulation environment first stores the

/// values of all fields published with the State attribute to storage
/// (typically a file). Afterwards, the Store() method of all

/// components (Models and Services) implementing the optional IPersist
/// interface is called, to allow custom storing of additional

/// information. While in this state, fields published with the State
/// attribute must not be modified by the models, to ensure that a

/// consistent set of field values is stored.

/// This state is entered using the Store() state transition.

/// After storing the simulator state, an automatic state transition to
/// the Standby state is performed.

SSK_Storing,

/// In Restoring state, the simulation environment first restores the
/// values of all fields published with the State attribute from

/// storage. Afterwards, the Restore() method of all components

/// implementing the optional IPersist interface is called, to allow
/// custom restoring of additional information. While in this state,
/// fields published with the State attribute must not be modified by
/// the models, to ensure that a consistent set of field values is
/// restored.

/// This state is entered using the Restore() state transition.

/// After restoring the simulator state, an automatic state transition
/// to the Standby state is performed.

SSK_Restoring,

/// In Reconnecting state, the simulation environment makes sure that
/// models that have been added to the simulator after leaving the
/// Building state are properly published, configured and connected.
/// This state is entered using the Reconnect() state transition.

/// After connecting all new models, an automatic state transition to
/// the Standby state is performed.

SSK_Reconnecting,

/// In Exiting state, the simulation environment is properly

120

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

/// terminating a running simulation.

/// This state is entered using the Exit() state transition. After
/// exiting, the simulator is in an undefined state.

SSK_Exiting,

/// In this state, the simulation environment performs an abnormal
/// simulation shut-down.

/// This state is entered using the Abort() state transition. After
/// aborting, the simulator is in an undefined state.

SSK_Aborting

}:
Table 5 - Enumeration Literals of SimulatorStateKind
Name Description
SSK_Building In Building state, the model hierarchy is created. This is done by

an external component, not by the simulator.

This state is entered automatically after the simulation environ-
ment has performed its initialisation.

This state is left with the Connect() state transition method.

SSK_Connecting | In Connecting state, the simulation environment traverses the
model hierarchy and calls the Connect() method of each model.
This state is entered using the Connect() state transition.

After connecting all models to the simulator, an automatic state
transition to the Initialising state is performed.

SSK_Initialising In Initialising state, the simulation environment executes all ini-
tialisation entry points in the order they have been added to the
simulator using the AddInitEntryPoint() method.

This state is either entered automatically after the simulation
environment has connected all models to the simulator, or
manually from Standby state using the Initialise() state transi-
tion.

After calling all initialisation entry points, an automatic state
transition to the Standby state is performed.

SSK_Standby In Standby state, the simulation environment (namely the Time
Keeper Service) does not progress simulation time. Only entry
points registered relative to Zulu time are executed.

This state is entered automatically from the Initialising, Storing,
and Restoring states, or manually from the Executing state using
the Hold() state transition.

This state is left with one of the Run(), Store(), Restore(), Initial-
ise(), Reconnect() or Exit() state transitions.

121

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

Name

Description

SSK_Executing

In Executing state, the simulation environment (namely the
Time Keeper Service) does progress simulation time. Entry
points registered with any of the available time kinds are exe-
cuted.

This state is entered using the Run() state transition.

This state is left using the Hold() state transition.

SSK_Storing

In Storing state, the simulation environment first stores the val-
ues of all fields published with the State attribute to storage
(typically a file). Afterwards, the Store() method of all compo-
nents (Models and Services) implementing the optional IPersist
interface is called, to allow custom storing of additional informa-
tion. While in this state, fields published with the State attribute
must not be modified by the models, to ensure that a consistent
set of field values is stored.

This state is entered using the Store() state transition.

After storing the simulator state, an automatic state transition to
the Standby state is performed.

SSK_Restoring

In Restoring state, the simulation environment first restores the
values of all fields published with the State attribute from stor-
age. Afterwards, the Restore() method of all components im-
plementing the optional IPersist interface is called, to allow cus-
tom restoring of additional information. While in this state,
fields published with the State attribute must not be modified by
the models, to ensure that a consistent set of field values is re-
stored.

This state is entered using the Restore() state transition.

After restoring the simulator state, an automatic state transition
to the Standby state is performed.

SSK_Reconnecting

In Reconnecting state, the simulation environment makes sure
that models that have been added to the simulator after leaving
the Building state are properly published, configured and con-
nected.

This state is entered using the Reconnect() state transition.

After connecting all new models, an automatic state transition to
the Standby state is performed.

SSK_Exiting

In Exiting state, the simulation environment is properly termi-
nating a running simulation.

This state is entered using the Exit() state transition. After exit-
ing, the simulator is in an undefined state.

122

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

Name

Description

SSK_Aborting In this state, the simulation environment performs an abnormal

simulation shut-down.
This state is entered using the Abort() state transition. After
aborting, the simulator is in an undefined state.

3.6.1.2 ISimulator

This interface gives access to the simulation environment state and state
transitions. Further, it provides convenience methods to add models, and to
add and retrieve simulation services.

This is a mandatory interface that every SMP compliant simulation
environment has to implement.

File
#include "Smp/ISimulator.h"
Namespace

Smp

Declaration of ISimulator

/// Unique ldentifier of type ISimulator.
extern const Uuid Uuid_ISimulator;

/// This interface gives access to the simulation environment state and
/// state transitions. Further, it provides convenience methods to add
/// models, and to add and retrieve simulation services.

/// This is a mandatory interface that every SMP compliant simulation
/// environment has to implement.

class ISimulator :

public virtual Smp::IComposite

public:

/// Virtual destructor to release memory.
virtual ~I1Simulator() {}

/// This method asks the simulation environment to call all

/// initialisation entry points again.

/// This method can only be called when in Standby state, and enters
/// Initialising state. After completion, the simulator automatically
/// returns to Standby state.

/// The entry points will be executed in the order they have been added
/// to the simulator using the AddInitEntryPoint() method.

virtual void Initialise() = 0;

/// This method asks the simulation environment to call the Publish()
/// method of all model instances in the model hierarchy which are
/// still in Created state.

/77

/// This method must only be called when in Building state.

/// @remarks This method is typically called by an external component
/// after creating new model instances, typically from

//7/ information in an SMDL Assembly.

virtual void Publish() = 0;

/// This method asks the simulation environment to call the Configure()
/// method of all model instances which are still in Publishing state.
///

/// This method must only be called when in Building state.

123

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

/// @remarks This method is typically called by an external component

/// after setting field values of new model instances,
/// typically using the information in an SMDL Assembly or
/// SMDL Configuration.

virtual void Configure() = 0;

/// This method informs the simulation environment that the hierarchy
/// of model instances has been configured, and can now be connected to
/// the simulator. Thus, the simulation environment calls the Connect()
/// method of all model instances.

/// In this method, the simulation environment first enters Connecting
/// state and calls the Connect() method of every model in the model
/// hierarchy, then enters Initialising state and calls the

/// initialisation entry points, and finally enters Standby state.

/// This method must only be called when in Building state.

/// @remarks This method is typically called by an external component
/77 after configuring all model instances.

virtual void Connect() = 0O;

/// This method changes from Standby to Executing state.

/// This method must only be called when in Standby state, and enters
/// Executing state.

virtual void Run() = 0;

/// This method changes from Executing to Standby state.

/// This method must only be called when in Executing state, and enters
/// Standby state.

virtual void Hold() = 0O;

/// This method is used to store a state vector to file.

/// This method must only be called when in Standby state, and enters
/// Storing state. On completion, it automatically returns to Standby
/// state.

/// @param filename Name to use for simulation state vector file.
virtual void Store(Smp::String8 filename) = O;

/// This method is used to restore a state vector from file.

/// This method must only be called when in Standby state, and enters
/// Restoring state. On completion, it automatically returns to Standby
/// state.

/// Q@param filename Name of simulation state vector file.

virtual void Restore(Smp::String8 filename) = 0;

/// This method asks the simulation environment to reconnect the

/// component hierarchy starting at the given root component.

/// This method must only be called when in Standby state.

/// @remarks This method is typically called after creating additional

/77 model instances and adding them to the existing model
/// hierarchy.

/77 The simulation environment has to ensure that all models
/// under the given root (but not the root itself) are

/// published, configured and connected, so that all child
/// models are finally in Connected state.

/// @param root Root component to start reconnecting from. This can
/// be the parent component of a newly added model, or e.g.
/// the simulator itself.

virtual void Reconnect(Smp:: IComponent* root) = O;

/// This method is used for a normal termination of a simulation.

/// This method must only be called when in Standby state, and enters
/// Exiting state.

virtual void Exit() = 0;

/// This method is used for an abnormal termination of a simulation.
/// This method can be called from any other state, and enters Aborting
/// state.

virtual void Abort() = O;

124

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

/// Return the current simulator state.
/// @return Current simulator state.
virtual Smp::SimulatorStateKind GetState() const = O;

/// This method can be used to add entry points that shall be executed
/// in the Initialising state.
/// @remarks The ITask interface (which is derived from IEntryPoint)

/// can be used to add several entry points in a well-defined
/77 order.

/// The entry points will be executed in the order they have
/77 been added to the simulator.

/// @param entryPoint Entry point to execute in Initialising state.
virtual void AddInitEntryPoint(Smp::IEntryPoint* entryPoint) = O;

/// This method adds a model to the models collection of the simulator,
/// i.e. to the "Models'" container.
/// This method raises an exception of type DuplicateName if the name
/// of the new model conflicts with the name of an existing component
/// (model or service).
/// The container for the models has no upper limit and thus the
/// ContainerFull exception will never be thrown.
/// The method will never throw the InvalidObjectType exception either,
/// as it gets a component implementing the IModel interface.
/// Q@param model New model to add to collection of root models, i.e.
/77 to the "Models'" container.
/// @throws Smp::DuplicateName
virtual void AddModel (Smp::IModel* model) throw (

Smp: :DuplicateName) = 0;

/// This method adds a user-defined service to the services collection,
/// i.e. to the "Services" container.

/// This method raises an exception of type DuplicateName if the name
/// of the new service conflicts with the name of an existing component
/// (model or service).

/// The container for the services has no upper limit and thus the

/// ContainerFull exception will never be thrown.

/// The method will never throw the InvalidObjectType exception either,
/// as it gets a component implementing the IService interface.

/// @remarks It is recommended that custom services include a project

/// or company acronym as prefix in their name, to avoid

/// collision of service names.

//7/

/// The container for the services has no upper limit and thus
//7/ the ContainerFull exception will never be thrown.

/// The method will never throw the InvalidObjectType

/// exception, as it expects a component implementing the

/// IService interface.

/// @param service Service to add to services collection.

/// @throws Smp::DuplicateName

virtual void AddService(Smp::IService* service) throw (
Smp: :DuplicateName) = O;

/// Query for a service component by its name.

/// The returned component is null if no service with the given name
/// could be found. Standard names are defined for the standardised
/// services, while custom services use custom names.

/// The existence of custom services is not guaranteed, so models
/// should expect to get a null reference.

/// @param name Service name.

/// Q@return Service with the given name, or null If no service with
/// the given name could be found.

virtual Smp::IService* GetService(Smp::String8 name) const = 0;

/// Return interface to logger service.
/// @remarks This is a type-safe convenience method, to avoid having to

/// use the generic GetService() method. For the standardised
/// services, it is recommended to use the convenience
/77 methods, which are guaranteed to return a valid reference.

125

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

/// Q@return Interface to mandatory logger service.
virtual Smp::Services::lLogger* GetLogger() const = O;

/// Return interface to time keeper service.
/// @remarks This is a type-safe convenience method, to avoid having to

/// use the generic GetService() method. For the standardised
/// services, it is recommended to use the convenience
/// methods, which are guaranteed to return a valid reference.

/// @return Interface to mandatory time keeper service.
virtual Smp::Services::1TimeKeeper* GetTimeKeeper() const = 0;

/// Return interface to scheduler service.
/// @remarks This is a type-safe convenience method, to avoid having to

/// use the generic GetService() method. For the standardised
/// services, it is recommended to use the convenience
/77 methods, which are guaranteed to return a valid reference.

/// @return Interface to mandatory scheduler service.
virtual Smp::Services::1Scheduler* GetScheduler() const = 0;

/// Return interface to event manager service.
/// @remarks This is a type-safe convenience method, to avoid having to

/// use the generic GetService() method. For the standardised
/// services, it is recommended to use the convenience
/77 methods, which are guaranteed to return a valid reference.

/// @return Interface to mandatory event manager service.
virtual Smp::Services::l1EventManager* GetEventManager() const = 0O;

/// Return interface to resolver service.
/// @remarks This is a type-safe convenience method, to avoid having to

/// use the generic GetService() method. For the standardised
/// services, It Is recommended to use the convenience
/// methods, which are guaranteed to return a valid reference.

/// Q@return Interface to mandatory resolver service.
virtual Smp::Services::IResolver* GetResolver() const = 0;

/// Return interface to link registry service.
/// @remarks This is a type-safe convenience method, to avoid having to

/// use the generic GetService() method. For the standardised
/// services, It Is recommended to use the convenience
/// methods, which are guaranteed to return a valid reference.

/// Q@return Interface to mandatory link registry service.
virtual Smp::Services::lLinkRegistry* GetLinkRegistry() const = 0;

}s
Base Interfaces
Smp::IComposite
Constants
Name Type Description Value

SMP_SimulatorModels | String8 | Name of the model container. | Models

SMP_SimulatorServices | String8 | Name of the service container. | Services

Operations
Name Description
Initialise This method asks the simulation environment to call all initiali-
sation entry points again.

126

[EEY

ECSS-E-TM-40-07 Volume 4A

25 January 2011

Name Description

Publish This method asks the simulation environment to call the Pub-
lish() method of all model instances in the model hierarchy
which are still in Created state.

Configure This method asks the simulation environment to call the Con-
figure() method of all model instances which are still in Publish-
ing state.

Connect This method informs the simulation environment that the hier-
archy of model instances has been configured, and can now be
connected to the simulator. Thus, the simulation environment
calls the Connect() method of all model instances.

Run This method changes from Standby to Executing state.

Hold This method changes from Executing to Standby state.

Store This method is used to store a state vector to file.

Restore This method is used to restore a state vector from file.

Reconnect This method asks the simulation environment to reconnect the
component hierarchy starting at the given root component.

Exit This method is used for a normal termination of a simulation.

Abort This method is used for an abnormal termination of a simula-
tion.

GetState Return the current simulator state.

AddInitEntryPoint | This method can be used to add entry points that shall be exe-
cuted in the Initialising state.

AddModel This method adds a model to the models collection of the simu-
lator, i.e. to the "Models" container.

AddService This method adds a user-defined service to the services collec-
tion, i.e. to the "Services" container.

GetService Query for a service component by its name.

GetLogger Return interface to logger service.

GetTimeKeeper Return interface to time keeper service.

GetScheduler Return interface to scheduler service.

GetEventManager | Return interface to event manager service.

GetResolver Return interface to resolver service.

GetLinkRegistry | Return interface to link registry service.

3.6.1.2.1 Initialise

This method asks the simulation environment to call all initialisation entry
points again.

This method can only be called when in Standby state, and enters Initialising
state. After completion, the simulator automatically returns to Standby state.

The entry points will be executed in the order they have been added to the
simulator using the AddInitEntryPoint() method.

127

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

Parameters
None
Exceptions

None
3.6.1.2.2 Publish

This method asks the simulation environment to call the Publish() method of all
model instances in the model hierarchy which are still in Created state.

This method must only be called when in Building state.

Remark: This method is typically called by an external component after creating
new model instances, typically from information in an SMDL Assembly.

Parameters
None
Exceptions

None
3.6.1.2.3 Configure

This method asks the simulation environment to call the Configure() method of
all model instances which are still in Publishing state.

This method must only be called when in Building state.

Remark: This method is typically called by an external component after setting
field values of new model instances, typically using the information in an
SMDL Assembly or SMDL Configuration.

Parameters
None
Exceptions

None
3.6.1.2.4 Connect

This method informs the simulation environment that the hierarchy of model
instances has been configured, and can now be connected to the simulator.
Thus, the simulation environment calls the Connect() method of all model
instances.

In this method, the simulation environment first enters Connecting state and
calls the Connect() method of every model in the model hierarchy, then enters
Initialising state and calls the initialisation entry points, and finally enters
Standby state.

This method must only be called when in Building state.

Remark: This method is typically called by an external component after
configuring all model instances.

Parameters

None

128

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

Exceptions

None
3.6.1.2.5 Run

This method changes from Standby to Executing state.

This method must only be called when in Standby state, and enters Executing
state.

Parameters
None
Exceptions

None
3.6.1.2.6 Hold

This method changes from Executing to Standby state.

This method must only be called when in Executing state, and enters Standby
state.

Parameters
None
Exceptions

None
3.6.1.2.7 Store

This method is used to store a state vector to file.

This method must only be called when in Standby state, and enters Storing
state. On completion, it automatically returns to Standby state.

Parameters

Name Dir. Type | Description

filename in String8 | Name to use for simulation state vector file.
Exceptions
None
3.6.1.2.8 Restore
This method is used to restore a state vector from file.
This method must only be called when in Standby state, and enters Restoring
state. On completion, it automatically returns to Standby state.
Parameters

Name Dir. Type | Description

filename in String8 | Name of simulation state vector file.
Exceptions
None

129

[E[Y

ECSS-E-TM-40-07 Volume 4A
25 January 2011

3.6.1.2.9 Reconnect

This method asks the simulation environment to reconnect the component
hierarchy starting at the given root component.

This method must only be called when in Standby state.

The simulation environment has to ensure that all models under the given root
(but not the root itself) are published, configured and connected, so that all
child models are finally in Connected state.

Remark: This method is typically called after creating additional model
instances and adding them to the existing model hierarchy.

Parameters

Name

Dir. Type Description

root

in IComponent | Root component to start reconnecting from. This
can be the parent component of a newly added
model, or e.g. the simulator itself.

Exceptions

None
3.6.1.2.10 Exit

This method is used for a normal termination of a simulation.

This method must only be called when in Standby state, and enters Exiting
state.

Parameters
None
Exceptions

None
3.6.1.2.11 Abort

This method is used for an abnormal termination of a simulation.

This method can be called from any other state, and enters Aborting state.
Parameters

None

Exceptions

None
3.6.1.2.12 Get State

Return the current simulator state.

Parameters

Name

Dir. Type Description

return | SimulatorStateKind | Current simulator state.

130

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

Exceptions

None
3.6.1.2.13 Add Init Entry Point

This method can be used to add entry points that shall be executed in the
Initialising state.

The entry points will be executed in the order they have been added to the
simulator.

Remark: The ITask interface (which is derived from IEntryPoint) can be used to
add several entry points in a well-defined order.

Parameters

Name

Dir. Type Description

entryPoint

in IEntryPoint | Entry point to execute in Initialising state.

Exceptions

None
3.6.1.2.14 Add Model

This method adds a model to the models collection of the simulator, i.e. to the
"Models" container.

This method raises an exception of type DuplicateName if the name of the new
model conflicts with the name of an existing component (model or service).

The container for the models has no upper limit and thus the ContainerFull
exception will never be thrown.

The method will never throw the InvalidObjectType exception either, as it gets
a component implementing the IModel interface.

Parameters

Name

Dir. Type | Description

model

in IModel | New model to add to collection of root models, i.e. to
the "Models" container.

Exceptions

Smp::DuplicateName
3.6.1.2.15 Add Service

This method adds a user-defined service to the services collection, i.e. to the
"Services" container.

This method raises an exception of type DuplicateName if the name of the new
service conflicts with the name of an existing component (model or service).

The container for the services has no upper limit and thus the ContainerFull
exception will never be thrown.

131

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

The method will never throw the InvalidObjectType exception either, as it gets
a component implementing the IService interface.

The container for the services has no upper limit and thus the ContainerFull
exception will never be thrown.

The method will never throw the InvalidObjectType exception, as it expects a
component implementing the IService interface.

Remark: It is recommended that custom services include a project or company
acronym as prefix in their name, to avoid collision of service names.

Parameters

Name Dir. Type Description

service in IService | Service to add to services collection.
Exceptions

Smp::DuplicateName
3.6.1.2.16 Get Service

Query for a service component by its name.

The returned component is null if no service with the given name could be
found. Standard names are defined for the standardised services, while custom
services use custom names.

The existence of custom services is not guaranteed, so models should expect to
get a null reference.

Parameters

Name Dir. Type Description

return | IService | Service with the given name, or null if no service
with the given name could be found.

name in String8 | Service name.
Exceptions
None

3.6.1.2.17 Get Logger

Return interface to logger service.

Remark: This is a type-safe convenience method, to avoid having to use the
generic GetService() method. For the standardised services, it is recommended
to use the convenience methods, which are guaranteed to return a valid
reference.

Parameters

Name Dir. Type Description

return | ILogger | Interface to mandatory logger service.

132

[E[Y

ECSS-E-TM-40-07 Volume 4A
25 January 2011

Exceptions

None
3.6.1.2.18 Get Time Keeper

Return interface to time keeper service.

Remark: This is a type-safe convenience method, to avoid having to use the
generic GetService() method. For the standardised services, it is recommended
to use the convenience methods, which are guaranteed to return a valid
reference.

Parameters

Name

Dir. Type Description

return | ITimeKeeper | Interface to mandatory time keeper service.

Exceptions

None
3.6.1.2.19 Get Scheduler

Return interface to scheduler service.

Remark: This is a type-safe convenience method, to avoid having to use the
generic GetService() method. For the standardised services, it is recommended
to use the convenience methods, which are guaranteed to return a valid
reference.

Parameters

Name

Dir. Type Description

return | IScheduler | Interface to mandatory scheduler service.

Exceptions

None
3.6.1.2.20 Get Event Manager

Return interface to event manager service.

Remark: This is a type-safe convenience method, to avoid having to use the
generic GetService() method. For the standardised services, it is recommended
to use the convenience methods, which are guaranteed to return a valid
reference.

Parameters

Name

Dir. Type Description

return | IEventManager | Interface to mandatory event manager service.

Exceptions

None

133

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

3.6.1.2.21 Get Resolver

Return interface to resolver service.

Remark: This is a type-safe convenience method, to avoid having to use the
generic GetService() method. For the standardised services, it is recommended
to use the convenience methods, which are guaranteed to return a valid

reference.
Parameters

Name Dir. Type Description
return | IResolver | Interface to mandatory resolver service.
Exceptions
None
3.6.1.2.22 Get Link Registry
Return interface to link registry service.
Remark: This is a type-safe convenience method, to avoid having to use the
generic GetService() method. For the standardised services, it is recommended
to use the convenience methods, which are guaranteed to return a valid
reference.
Parameters

Name Dir. Type Description

return | ILinkRegistry | Interface to mandatory link registry service.

Exceptions

None

3.6.1.3 IManaged Simulator

This interface gives access to a managed simulator.

This interface extends the ISimulator interface and adds methods to create
components (typically models) from component factories. It makes use of the
IFactory interface for component factories.

This is an optional interface the simulation environment may implement.
File

#include "Smp/Management/IManagedSimulator.h"

Namespace

Smp::Management

Declaration of IManagedSimulator

/// Unique ldentifier of type IManagedSimulator.
extern const Uuid Uuid_IManagedSimulator;

/// This interface gives access to a managed simulator.

/// This interface extends the ISimulator interface and adds methods to
/// create components (typically models) from component factories. It
/// makes use of the IFactory interface for component factories.

134

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

/// This is an optional interface the simulation environment may
/// implement.
class IManagedSimulator :

public virtual Smp::ISimulator

{
public:
/// Virtual destructor to release memory.
virtual ~IManagedSimulator() {}
/// This method registers a component factory with the managed
/// simulator. The managed simulator can use this factory to create
/// component instances of the component implementation in its
/// Createlnstance() method.
/// This method raises an exception of type DuplicateUuid if
/// another factory has been registered using the same
///7 implementation identifier already.
/// @remarks This method is typically called early in the Building
/// state to register the available component factories
/// before the hierarchy of model instances is created.
/// @param componentFactory Factory to create instance of the
/// component implementation.
/// @throws Smp::Management:: IManagedSimulator: :DuplicateUuid
virtual void RegisterFactory(Smp::l1Factory* componentFactory) throw (
Smp: :Management: : IManagedSimulator: :DuplicateUuid) = O;
/// This method creates an instance of the component with the given
/// implementation identifier.
/// @remarks This method is typically called during Creating state
/// when building the hierarchy of models.
/// @param implUuid Implementation identifier of the component.
/// @return New instance of the component with the given
/// implementation identifier or null in case no factory
/// for the given implementation identifier has been
/// registered.
virtual Smp::IComponent* Createlnstance(Smp::Uuid implUuid) = O;
/// This method returns the factory of the component with the given
/// implementation identifier.
/// @param implUuid Implementation identifier of the component.
/// Q@return Factory of the component with the given implementation
/// identifier or null in case no factory for the given
/// implementation identifier has been registered.
virtual Smp::IlFactory* GetFactory(Smp::Uuid implUuid) const = O;
/// This method returns all factories of components with the given
/// specification identifier.
/// The returned collection may be empty if no factories have been
/// registered for the given specification identifier.
/// @param specUuid Specification identifier of the component.
/// @return Collection of factories for the given specification
/// identifier.
virtual const Smp::FactoryCollection* GetFactories(Smp::Uuid specUuid)
const = O;
}:
Base Interfaces
Smp::ISimulator
Operations
Name Description

Createlnstance | This method creates an instance of the component with the given

implementation identifier.

135

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

Name

Description

GetFactories

This method returns all factories of components with the given
specification identifier.

GetFactory

This method returns the factory of the component with the given
implementation identifier.

RegisterFactory

This method registers a component factory with the managed
simulator. The managed simulator can use this factory to create
component instances of the component implementation in its Cre-
atelnstance() method.

3.6.1.3.1 Create Instance

This method creates an instance of the component with the given
implementation identifier.

Remark: This method is typically called during Creating state when building
the hierarchy of models.

Parameters

Name

Dir. Type Description

return

IComponent | New instance of the component with the given

implementation identifier or null in case no fac-
tory for the given implementation identifier has
been registered.

implUuid

in

Uuid Implementation identifier of the component.

Exceptions

None

3.6.1.3.2

Get Factories

This method returns all factories of components with the given specification
identifier.

The returned collection may be empty if no factories have been registered for
the given specification identifier.

Parameters

Name

Dir.

Type

Description

return

FactoryCollection

Collection of factories for the given specifi-
cation identifier.

specUuid

in

Uuid

Specification identifier of the component.

Exceptions

None

136

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

3.6.1.3.3 Get Factory

This method returns the factory of the component with the given
implementation identifier.

Parameters

Name Dir. Type Description

return | IFactory | Factory of the component with the given implemen-
tation identifier or null in case no factory for the
given implementation identifier has been registered.

implUuid in Uuid Implementation identifier of the component.
Exceptions
None

3.6.1.34 Register Factory

This method registers a component factory with the managed simulator. The
managed simulator can use this factory to create component instances of the
component implementation in its CreateInstance() method.

This method raises an exception of type DuplicateUuid if another factory has
been registered using the same implementation identifier already.

Remark: This method is typically called early in the Building state to register
the available component factories before the hierarchy of model instances is

created.
Parameters
Name Dir. Type Description
componentFactory | in [Factory | Factory to create instance of the component im-
plementation.
Exceptions

Smp::Management::IManagedSimulator::DuplicateUuid
3.6.1.35 Duplicate Uuid

This exception is raised when trying to register a factory under a Uuid that has
already been used to register another (or the same) factory.This would lead to
duplicate implementation Uuids.

File
#include "Smp/Management/IManagedSimulator.h"
Namespace

Smp::Management::IManagedSimulator

Declaration of DuplicateUuid

/// This exception is raised when trying to register a factory

/// under a Uuid that has already been used to register another (or
/// the same) factory.This would lead to duplicate implementation
/// Uuids.

class DuplicateUuid : public Smp::Exception

137

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42
{

public:
/// Constructor for new exception.
/// @param newName Name of factory that tried to register

//7/ under this Uuid.
/// @param oldName Name of factory already registered under
//7/ this Uuid.

DuplicateUuid(
Smp: :String8 newName,
Smp: :String8 oldName) throw();

/// Copy constructor.
DuplicateUuid(
DuplicateUuid& ex) throw();

/// Virtual destructor to release memory.
virtual ~DuplicateUuid(Q);

/// Name of factory that tried to register under this Uuid.
Smp: :String8 newName;

/// Name of factory already registered under this Uuid.
Smp: :String8 oldName;

}:
Fields
Name Type | Description
newName String8 | Name of factory that tried to register under this Uuid.
oldName String8 | Name of factory already registered under this Uuid.

3.6.1.4 IFactory

Interface for a component factory.
File

#include "Smp/IFactory.h"
Namespace

Smp
Declaration of IFactory

/// Unique ldentifier of type IFactory.
extern const Uuid Uuid_IlFactory;

/// Interface for a component factory.
class IFactory :

{

public virtual Smp::IObject

public:

/// Virtual destructor to release memory.
virtual ~lFactory() {}

/// Get specification identifier of factory.
/// @return Universally unique identifier of component specification.
virtual Smp::Uuid GetSpecification() const = 0;

/// Get implementation identifier of factory.
/// @return Universally unique identifier of component implementation.
virtual Smp::Uuid Getlmplementation() const = O;

138

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

/// Create a new instance.
/// @return New component instance.
virtual Smp::IComponent* Createlnstance() = O;

/// Delete an existing instance.
/// @param instance Instance to delete.
virtual void Deletelnstance(Smp::1Component* instance) = 0;

s
Base Interfaces
Operations
Name Description
Createlnstance Create a new instance.
Deletelnstance Delete an existing instance.
Getlmplementation | Get implementation identifier of factory.
GetSpecification Get specification identifier of factory.

36141 Create Instance

Create a new instance.

Parameters

Name Dir. Type Description

return | IComponent | New component instance.

Exceptions

None
3.6.1.4.2 Delete Instance

Delete an existing instance.

Parameters
Name Dir. Type Description
instance in IComponent | Instance to delete.
Exceptions
None

3.6.1.4.3 Get Implementation

Get implementation identifier of factory.

Parameters

Name Dir. Type | Description

return | Uuid | Universally unique identifier of component imple-
mentation.

139

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

Exceptions

None
3.6.1.4.4 Get Specification

Get specification identifier of factory.

Parameters

Name Dir. Type | Description

return | Uuid | Universally unique identifier of component specifica-
tion.

Exceptions
None

3.6.1.5 Factory Collection

A factory collection is an ordered collection of factories, which allows iterating
all members.

This type is platform specific. For details see the SMP Platform Mappings.
File

#include "Smp/IFactory.h"

Namespace

Smp

Declaration of FactoryCollection

/// Unique ldentifier of type FactoryCollection.
extern const Uuid Uuid_FactoryCollection;

/// A factory collection is an ordered collection of factories, which
/// allows iterating all members.

/77

/// This type is platform specific. For details see the SMP Platform
/// Mappings.

typedef std::vector<lFactory*> FactoryCollection;

3.6.2 Publication

As part of the initialisation, every model needs to be given access to a
publication receiver to publish its fields and operations. While the simulation
environment does not have to implement the [Publication interface itself, it has
to provide a publication receiver to each model during the Publishing state.

As the publication mechanism for C++ is complex, it has been moved to a
dedicated section 5 (Publication).

3.6.3 Service Acquisition

Simulation services are closely related to models: Models need a mechanism to
acquire simulation services, and most services interact with models. Further,

140

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

: ISimulator

simulation services are themselves components of the SMP Component Model.
Therefore, this document puts simulation services into context with models and
the simulation environment.

When the simulation environment connects a model, it calls the Connect()
method of the IModel interface, passing it a global reference of ISimulator. A
model can either immediately use this reference to query services, or store the
reference to query services on demand.

Before a Model can call an operation of a Service, the following steps are

needed:

1. The Simulator calls the Connect() operation of the Model, passing it a

reference to itself.

2. The Model calls the GetService() operation of the Simulator, passing it
the name of the required service.

The Simulator returns the required Service to the Model.

The Model calls the desired operation of the Service.

3
4
5. The Service returns the desired value to the Model.
6

The Model returns control to the Simulator.

If the model keeps a reference to the service, it can call the service again at any

other time.

7. The Model calls the desired operation of the Service.

8. The Service returns the desired value to the Model.

These steps are shown in a sequence diagram in Figure 4.

1: Connect()

Q

6: return

Q

: IModel : ISimulator : IService
| |
| |
a |
2: GetService(haggg=name)
<« _ 3retun _Fm
4: Inyoke any service operation’m
« - - — — _ 5. ret_Llrn _______
| |
e | |
7: Indoke any service operation |
| ’D
<« — — — — _ 8.return
|

Figure 4 - Sequence of calls for service acquisition

141

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

4
Simulation Services

4.1

Logger

In order to facilitate the inter-operability between SMP compliant simulation
environments (i.e. run-time simulation kernels), several Simulation Services are
defined in the SMP specification. All services are mandatory.

Any SMP compliant simulation environment shall support the following
standard services.

The Logger service provides a method to send a log message to the simulation
log.

4.1.1 ILogger

This interface gives access to the Logger Service.

All objects in a simulation can log messages using this service. Objects can
either use pre-defined log message kinds, or define their own message kinds.

File

#include "Smp/Services/ILogger.h"
Namespace

Smp::Services

Declaration of ILogger

/// Unique ldentifier of type lLogger.
extern const Uuid Uuid_lLogger;

/// This interface gives access to the Logger Service.
/// All objects in a simulation can log messages using this service.
/// Objects can either use pre-defined log message kinds, or define
/// their own message kinds.
class lLogger :

public virtual Smp::I1Service

{
public:

/// Virtual destructor to release memory.
virtual ~lLogger(Q {}

/// Return identifier of log message kind by name.

/77

/// @remarks This method can be used for predefined log message

77/
177/
77/
177/

kinds, but is especially useful for user-defined log
message kinds.

It is guaranteed that this method always returns the
same id for the same messageKindName string.

/// @param messageKindName Name of log message kind.

142

[EEY

ECSS-E-TM-40-07 Volume 4A

25 January 2011

/// @return

Identifier of log message kind.

virtual Smp::Services::LogMessageKind QuerylLogMessageKind(Smp::String8

messageKindName) = 0;

/// This function logs a message to the simulation log.

/// @param
/// @param
/// @param

virtual void Log(
const Smp::I10bject* sender,
Smp: :String8 message,
Smp::Services: :LogMessageKind kind = 0) = 0;

sender Object that sends the message.
message The message to log.
kind Kind of message.

};
Base Interfaces
Smp::IService
Constants
Name Type Description Value
LMK_Debug LogMessageKind | The message contains | 4
debug information.
LMK_DebugName String8 The message contains | Debug
debug information.
LMK_Error LogMessageKind | The message has been | 3
raised because of an
error.
LMK_ErrorName String8 The message has been | Error
raised because of an
error.
LMK_Event LogMessageKind | The message has been |1
sent from an event,
typically from a state
transition.
LMK_EventName String8 The message has been | Event
sent from an event,
typically from a state
transition.
LMK _Information LogMessageKind | The message contains | 0
general information.
LMK _InformationName | String8 The message contains | Information
general information.
LMK_Warning LogMessageKind | The message contains a | 2
warning.
LMK_WarningName String8 The message contains a | Warning
warning.
SMP_Logger String8 Name of the logger Logger
service.

143

[EEY

ECSS-E-TM-40-07 Volume 4A

25 January 2011
Operations
Name Description
Log This function logs a message to the simulation log.
QueryLogMessageKind | Return identifier of log message kind by name.
4,111 Log
This function logs a message to the simulation log.
Parameters
Name Dir. Type Description
sender in IODbject Object that sends the message.
message in String8 The message to log.
kind in LogMessageKind | Kind of message.
Exceptions
None
4.1.1.2 Query Log Message Kind
Return identifier of log message kind by name.
It is guaranteed that this method always returns the same id for the same
messageKindName string.
Remark: This method can be used for predefined log message kinds, but is
especially useful for user-defined log message kinds.
Parameters
Name Dir. Type Description
return | LogMessageKind | Identifier of log message kind.
messageKindName | in String8 Name of log message kind.
Exceptions
None
4.1.2 Log Message Kind

This type is used as identifier of a log message kind.

File

#include "Smp/Services/ILogger.h"

Namespace

Smp::Services

144

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

Declaration of LogMessageKind

/// Unique ldentifier of type LogMessageKind.
extern const Uuid Uuid_LogMessageKind;

/// This type is used as identifier of a log message kind.
typedef Smp::1nt32 LogMessageKind;

/// The message contains general information.
const Smp::Services::LogMessageKind LMK_Information = O;

/// The message has been sent from an event, typically from a state
/// transition.
const Smp::Services::LogMessageKind LMK_Event = 1;

/// The message contains a warning.
const Smp::Services::LogMessageKind LMK Warning = 2;

/// The message has been raised because of an error.
const Smp::Services::LogMessageKind LMK _Error = 3;

/// The message contains debug information.
const Smp::Services::LogMessageKind LMK Debug = 4;

/// The message contains general information.
const Smp::String8 LMK _InformationName = "Information™;

/// The message contains debug information.
const Smp::String8 LMK _DebugName = "‘Debug";

/// The message has been raised because of an error.
const Smp::String8 LMK_ErrorName = "Error";

/// The message contains a warning.
const Smp::String8 LMK_WarningName = "‘Warning';

/// The message has been sent from an event, typically from a state
/// transition.
const Smp::String8 LMK _EventName = "Event";

Table 6 - Specification of LogMessageKind

Minimum Maximum Primitive Type

0 2147483647 Int32

4.1.3 Predefined Log Message Kinds

When logging a message with the logger service, an additional kind parameter
is passed to the Log() method to identify the kind of message. The application
can use any valid number, for example to allow filtering messages by message
kind. However, the standard pre-defines a few message kinds that are assumed
to be used in most simulations.

Message Kind | Id | Description

Information 0 The message contains general information.

Event 1 The message has been sent from an event, typically from a state transition.
Warning 2 The message contains a warning.

145

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

Error 3

The message has been raised because of an error.

Debug 4

The message contains debug information.

4.1.4 User defined Log Message Kinds

With the QueryLogMessageKind() method, it is possible to add a user-defined
log message kind to the logger service. The first call of this method with a user-
defined message kind name returns a new, unique identifier that can be used as
third parameter for the Log() method. Further calls of the method
QueryLogMessageKind() with the same user-defined message kind name are
guaranteed to return the same identifier again.

This mechanism allows using a user-defined log message kind within several
different models, without the need to store the log message kind identifier into
a global variable. Further, it assigns a user-readable name to each log message
kind, so that e.g. a log message viewer can show log message kinds by name
rather than by identifier.

4.2 Time Keeper

SMP supports four different kinds of time. The time managed by the Time
Keeper simulation service is called Simulation Time. The service keeps track of
simulation time and puts it into relation with epoch time and mission time.
Further, the service provides Zulu time based on the clock of the computer.

4.2.1 ITime Keeper

This interface gives access to the Time Keeper Service.

Components can query for the time (using the four available time kinds), and
can change the epoch or mission time.

File

#include "Smp/Services/ITimeKeeper.h"
Namespace

Smp::Services

Declaration of ITimeKeeper

/// Unique ldentifier of type ITimeKeeper.
extern const Uuid Uuid_ITimeKeeper;

/// This interface gives access to the Time Keeper Service.
/// Components can query for the time (using the four available time
/// kinds), and can change the epoch or mission time.
class ITimeKeeper :
public virtual Smp::IService

public:

/// Virtual destructor to release memory.
virtual ~I1TimeKeeper() {}

/// Return Simulation time.
/// Simulation time is a relative time that starts at O.

146

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

/// @return Current simulation time.
virtual Smp::Duration GetSimulationTime() const = 0;

/// Return Epoch time.

/// Epoch time is an absolute time with a fixed offset to
/// simulation time. Epoch time typically progresses with

/// simulation time, but can be changed with SetEpochTime.
/// Q@return Current epoch time.

virtual Smp::DateTime GetEpochTime() const = 0;

/// Return Mission time.

/// Mission time is a relative time with a fixed offset to

/// simulation time. Mission time typically progresses with

/// simulation time, but can be changed with the two methods
/// SetMissionTime and SetMissionStart. Further, mission time is
/// updated when changing epoch time with SetEpochTime.

/// @return Current mission time.

virtual Smp::Duration GetMissionTime() const = 0O;

/// Return Zulu time.

/// Zulu time iIs a system dependent time and not related to

/// simulation time. Zulu time is typically related to the system
/// clock of the computer.

/// @return Current Zulu time.

virtual Smp::DateTime GetZuluTime() const = O;

/// Set Epoch time.

/77

/// Changes the offset between simulation time and epoch time.

/// Calling this method shall raise a global EpochTimeChanged event
/// in the Event Manager.

/// @param epochTime New epoch time.

virtual void SetEpochTime(Smp::DateTime epochTime) = O;

/// Set Mission time by defining the mission start time.

/// Changes the offset between simulation time and mission time.
/// The mission time itself will be calculated as the offset
/// between the current epoch time and the given mission start:
/// MissionTime = EpochTime - MissionStart

///

/// Calling this method shall raise a global MissionTimeChanged
/// event in the Event Manager.

/// Q@param missionStart New mission start date and time.
virtual void SetMissionStart(Smp::DateTime missionStart) = O;

/// Set Mission time.

/// Changes the offset between simulation time and mission time.
/// Calling this method shall raise a global MissionTimeChanged
/// event in the Event Manager.

/// @param missionTime New mission time.

virtual void SetMissionTime(Smp::Duration missionTime) = O;

Base Interfaces
Smp::IService

Constants

Name

Type | Description Value

SMP_TimeKeeper | String8 | Name of the TimeKeeper service. | TimeKeeper

147

|[EY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

Operations

Name Description
GetEpochTime Return Epoch time.
GetMissionTime Return Mission time.

GetSimulationTime | Return Simulation time.

GetZuluTime Return Zulu time.
SetEpochTime Set Epoch time.
SetMissionStart Set Mission time by defining the mission start time.
SetMissionTime Set Mission time.
4.2.1.1 Get Epoch Time
Return Epoch time.
Epoch time is an absolute time with a fixed offset to simulation time. Epoch
time typically progresses with simulation time, but can be changed with
SetEpochTime.
Parameters
Name Dir. Type Description
return | DateTime | Current epoch time.
Exceptions
None
4.2.1.2 Get Mission Time
Return Mission time.
Mission time is a relative time with a fixed offset to simulation time. Mission
time typically progresses with simulation time, but can be changed with the
two methods SetMissionTime and SetMissionStart. Further, mission time is
updated when changing epoch time with SetEpochTime.
Parameters
Name Dir. Type Description

return | Duration | Current mission time.

Exceptions

None

4.2.1.3 Get Simulation Time
Return Simulation time.

Simulation time is a relative time that starts at 0.

148

|[EY

ECSS-E-TM-40-07 Volume 4A

25 January 2011
Parameters
Name Dir. Type Description
return | Duration | Current simulation time.
Exceptions
None
4214 Get Zulu Time
Return Zulu time.
Zulu time is a system dependent time and not related to simulation time. Zulu
time is typically related to the system clock of the computer.
Parameters
Name Dir. Type Description
return | DateTime | Current Zulu time.
Exceptions
None
4.2.1.5 Set Epoch Time
Set Epoch time.
Changes the offset between simulation time and epoch time.
Calling this method shall raise a global EpochTimeChanged event in the Event
Manager.
Parameters
Name Dir. Type Description
epochTime in DateTime | New epoch time.
Exceptions
None
4.2.1.6 Set Mission Start
Set Mission time by defining the mission start time.
Changes the offset between simulation time and mission time. The mission time
itself will be calculated as the offset between the current epoch time and the
given mission start:
MissionTime = EpochTime - MissionStart
Calling this method shall raise a global MissionTimeChanged event in the
Event Manager.
Parameters
Name Dir. Type Description
missionStart in DateTime | New mission start date and time.

149

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

Exceptions

None

4.2.1.7 Set Mission Time

Set Mission time.

Changes the offset between simulation time and mission time.

Calling this method shall raise a global MissionTimeChanged event in the

Event Manager.

Parameters
Name Dir. Type Description
missionTime in Duration | New mission time.
Exceptions
None

422 Time Kind

Enumeration of supported time kinds.

File

#include "Smp/Services/IScheduler.h"

Namespace

Smp::Services

Declaration of TimeKind

/// Unique ldentifier of type TimeKind.
extern const Uuid Uuid_TimeKind;

/// Enumeration of supported time kinds.

enum TimeKind

{
/// Simulation time.
TK_SimulationTime,

/// Mission time.
TK_MissionTime,

/// Epoch time.
TK_EpochTime,

/// Zulu time.
TK_ZuluTime

150

|[EY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

Table 7 - Enumeration Literals of TimeKind

Name

Description

TK_SimulationTime

Simulation time.
Simulation time is a relative time. It does only exist within the
time keeper service. The following holds for simulation time:

Simulation time is a non-negative value measured in
nanoseconds, which is the lowest level of granularity
supported for time in SMP.

Simulation time is stored in a signed 64-bit integer
value. This allows specifying time values of more than
290 years.

Simulation time can be queried using the GetSimula-
tionTime() method of the time keeper (via the ITime-
Keeper interface).

Simulation time is initialised to 0 at the beginning of the
initialisation phase. That is, during initialisation the
time keeper service will return a simulation time of 0.
Simulation time is only progressed when the simulation
environment is in Executing state.

When storing a state vector, simulation time is stored as
well.

When restoring a state vector, simulation time is re-
stored as well.

The standard does not define how quickly simulation time is
progressed when the simulator is in Executing state. Typical
examples are:

Real-Time: The simulation time progresses with real-
time, where real-time is typically defined by the com-
puter clock. Note that two types of real-time simula-
tions exist: hard real-time and soft real-time simula-
tions. In a hard real-time simulation, strict requirements
on timing have to be met, while in a soft real-time simu-
lation, the requirements are less demanding such that
latencies in a certain range are allowed, which is called
real-time slip.

Accelerated: The simulation time progresses relative to
real-time using a constant acceleration factor. This factor
may be larger than 1.0, which relates to "faster than real-
time", smaller than 1.0, which means "slower than real-
time", or 1.0, which coincides with real-time.

Free Running: The simulation time progresses as fast as
possible, and is not related to real-time. Typically, the
speed is coordinated with the timed events of the

151

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

Name

Description

scheduler, which underlines the close relationship be-
tween these two services (Time Keeper and Scheduler).
e Debugging: The simulation is executed in a step-by-
step manner using break points in order to inspect data
or trace calls within the simulation.
SMP does not mandate which of these modes a simulation en-
vironment has to support.

TK_MissionTime

Mission time.

Mission time is a relative time, i.e. it measures elapsed time
from a definite point in time (called the mission start). Mission
time is stored as a number relative to the mission start date.
Mission time is maintained using a fixed offset to epoch time,
and hence progresses together with simulation and epoch
time, except for the case when the offset is changed. The fol-
lowing holds for mission time:

e Mission time is a value measured in nanoseconds,
which is the lowest level of granularity supported for
time in SMP.

e Mission time is returned as a signed 64-bit integer
value, relative to a mission start date and time (which
itself is not stored).

e Mission time can be queried using the GetMission-
Time() method of the time keeper (via the ITimeKeeper-
interface).

e Mission time is initialised to 0 at the beginning of the
initialisation phase, but can be changed already before
entering the execution phase. As epoch time is initial-
ised to 01.01.2000, 12:00, the default mission start is as
well 01.01.2000, 12:00.

e Mission time is progressed linearly with epoch and
simulation time (i.e. with a fixed offset to epoch time).
Using either the SetMissionTime() method or the Set-
MissionStart() method of the time keeper (via the
ITimeKeeper interface), the offset between simulation
time and mission time can be changed.

e When storing a state vector, mission time is stored as
well.

e When restoring a state vector, mission time is restored
as well.

152

|[EY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

Name

Description

TK_EpochTime

Epoch time.

Epoch time is an absolute time, i.e. it defines a definite point in
time. It is not only used as a way to express date and time, but
as well to determine all time-dependent variables at that time,
such as barycentric positions of all solar system bodies. Epoch
time is stored as a number relative to a reference date, which
has been defined as the 1st of January 2000 mid-day
(01.01.2000, 12:00). Epoch time is maintained using a fixed off-
set to simulation time, and hence progresses together with
simulation time, except for the case when the offset is changed.
The following holds for epoch time:

e Epoch time is a value measured in nanoseconds, which
is the lowest level of granularity supported for time in
SMP.

e Epoch time is returned as a signed 64-bit integer value,
relative to the epoch reference time (01.01.2000, 12:00,
Modified Julian Date 2000+0.5). This allows specifying
time values roughly between 1710 and 2290.

e Epoch time can be queried using the GetEpochTime()
method of the time keeper (via the ITimeKeeperinter-
face).

e Epoch time is initialised to 0 (i.e. 01.01.2000, 12:00) at the
beginning of the initialisation phase, but can be changed
already before entering the execution phase.

e Epoch time is progressed linearly with simulation time
(i.e. with a fixed offset to simulation time). Using the
SetEpochTime() method of the time keeper (via the
ITimeKeeper interface), the offset between simulation
time and epoch time can be changed.

e When storing a state vector, epoch time (i.e. its offset to
simulation time) is stored as well.

e When restoring a state vector, epoch time (i.e. its offset
to simulation time) is restored as well.

153

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

Name

Description

TK_ZuluTime

Zulu time.
From the Mobile Aeronautics Education Laboratory (MAEL) of
the NASA, the following definition of Zulu Time is cited
(http://www.grc.nasa.gov/WWW/MAEL/ag/zulu.htm):
"The world is divided into 24 time zones. For easy reference in
communications, a letter of the alphabet has been assigned to
each time zone. The "clock" at Greenwich, England is used as
the standard clock for international reference of time in com-
munications, military, maritime and other activities that cross
time zones. The letter designator for this clock is Z.
Times are usually written in military time or 24 hour format
such as 1830Z (6:30 pm). To pronounce this, the phonetic al-
phabet is used for the letter Z, or Zulu. This time is sometimes
referred to as Zulu Time because of its assigned letter. Its offi-
cial name is Coordinated Universal Time or UTC. Previously it
had been known as Greenwich Mean Time or GMT but this
has been replaced with UTC."
In SMP, Zulu time is not related to simulation time, but typi-
cally to the computer clock (or to some external clock). The fol-
lowing holds for Zulu time:

e Zulu time is measured in nanoseconds.

e Zulu time is returned as a signed 64-bit integer value,

relative to the epoch reference time.
e Zulu time represents the current time at Greenwich,
England, called as well UTC or GMT.

As Zulu time is not managed by the time keeper service, but
provided based on an external clock (typically the computer
clock), it is not related to simulation time, and progresses in-
dependently of the state of the simulation environment. When
a simulator interfaces to an external system, for example a
ground station or some Hardware-In-The-Loop (HITL), Zulu
time is often used as a time stamp.

4.3 Scheduler

The scheduler service calls entry points of models based on events triggered by
one of the four time kinds.

4.3.1 IScheduler

This interface gives access to the Scheduler Service.

154

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

Components can register (Add) and unregister (Remove) entry points for
scheduling. Further, they can set (Set) individual attributes of events on the
scheduler.

File

#include "Smp/Services/IScheduler.h"
Namespace

Smp::Services

Declaration of IScheduler

/// Unique ldentifier of type IScheduler.
extern const Uuid Uuid_IScheduler;

/// This interface gives access to the Scheduler Service.
/// Components can register (Add) and unregister (Remove) entry points
/// for scheduling. Further, they can set (Set) individual attributes
/// of events on the scheduler.
class 1Scheduler :

public virtual Smp::I1Service

{
public:

/// Virtual destructor to release memory.
virtual ~IScheduler(Q) {}

/// Add an immediate event to the scheduler.

/// An immediate event is an event that will be added as a

/// simulation time event (with simulation delta time of 0) at the

/// front of the event queue. As such, it will be executed when the

/// scheduler processes its simulation time events again, but not

/// immediately in the call to AddImmediateEvent().

/// When the simulator is in Standby state, simulation time does

/// not progress, and simulation time events (including immediate

/// events) are not processed.

/// Q@remarks To execute an entry point immediately without going

/// through the scheduler, its Execute() method can be

/// called.

/// @param entryPoint Entry point to call from event.

/// Q@return Event identifier that can be used to change or remove

/// event.

virtual Smp::Services::Eventld AddImmediateEvent(const
Smp::1EntryPoint* entryPoint) = O;

/// Add event to scheduler that is called based on simulation time.
/// An event with repeat=0 is not cyclic. It will be removed

/// automatically after is has been triggered.

/// An event with repeat>0 is cyclic, and will be repeated repeat
/// times. Therefore, it will be called repeat+l times, and then it
/// will be removed automatically.

/// An event with repeat=-1 is cyclic as well, but it will be

/// triggered forever, unless it is removed from the scheduler

/// using the RemoveEvent() method.

/// For a cyclic event, the cycleTime needs to be positive. For

/// non-cyclic events, it is ignored.

/// The simulationTime must not be negative. Otherwise, the event
/// will never be executed, but immediately removed.

/// @param entryPoint Entry point to call from event.

/// @param simulationTime Duration from now when to trigger the
//7/ event for the first time.

/// @param cycleTime Duration between two triggers of the event.
/// @param repeat Number of times the event shall be repeated, or

/77 0 for a single event, or -1 for no limit.
/// @return Event identifier that can be used to change or remove
/// event.

155

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

77/
/77

@throws Smp::Services::1Scheduler::InvalidCycleTime
@throws Smp::Services::1Scheduler::InvalidEventTime

virtual Smp::Services::Eventld AddSimulationTimeEvent(

177/
/777
177/
/77
//7/
77/
//7/
/77
//7/
177/
//7/
77/
//7/
/77
//7/
77/
/777
177/
/777
177/
/777
177/
/777
177/

const lEntryPoint* entryPoint,

Smp: :Duration simulationTime,

Smp: :Duration cycleTime = 0,

Smp::Int64 repeat = 0) throw (
Smp::Services::IScheduler::InvalidCycleTime,
Smp::Services::IScheduler::InvalidEventTime) = 0;

Add event to scheduler that is called based on mission time.

An event with repeat=0 is not cyclic. It will be removed

automatically after is has been triggered.

An event with repeat>0 is cyclic, and will be repeated repeat

times. Therefore, it will be called repeat+l times, and then it

will be removed automatically.

An event with repeat=-1 is cyclic as well, but it will be

triggered forever, unless it is removed from the scheduler

using the RemoveEvent() method.

For a cyclic event, the cycleTime needs to be positive. For

non-cyclic events, it is ignhored.

The missionTime must not be before the current mission time of

the ITimeKeeper service. Otherwise, the event will never be

executed, but immediately removed.

@param entryPoint Entry point to call from event.

@param missionTime Absolute mission time when to trigger the
event for the first time.

@param cycleTime Duration between two triggers of the event.

@param repeat Number of times the event shall be repeated, or
0 for a single event, or -1 for no limit.

@return Event identifier that can be used to change or remove
event.

@throws Smp::Services::1Scheduler::InvalidCycleTime

@throws Smp::Services::1Scheduler::InvalidEventTime

virtual Smp::Services::Eventld AddMissionTimeEvent(

V4
//7/
V4
//7/
/77
//7/
/77
V4
/77
//7/
177/
/777
177/
/777
177/
77/
177/
/777
177/
77/
17/
77/
177/
/77

const lEntryPoint* entryPoint,

Smp: :Duration missionTime,

Smp: :Duration cycleTime = 0,

Smp::Int64 repeat = 0) throw (
Smp::Services::1Scheduler::InvalidCycleTime,
Smp::Services::IScheduler::InvalidEventTime) = O;

Add event to scheduler that is called based on epoch time.

An event with repeat=0 is not cyclic. It will be removed

automatically after is has been triggered.

An event with repeat>0 is cyclic, and will be repeated repeat

times. Therefore, it will be called repeat+l times, and then it

will be removed automatically.

An event with repeat=-1 is cyclic as well, but it will be

triggered forever, unless it is removed from the scheduler

using the RemoveEvent() method.

For a cyclic event, the cycleTime needs to be positive. For

non-cyclic events, it is ignored.

The epochTime must not be before the current epoch time of the

ITimeKeeper service. Otherwise, the event will never be

executed, but immediately removed.

@param entryPoint Entry point to call from event.

@param epochTime Epoch time when to trigger the event for the
first time.

@param cycleTime Duration between two triggers of the event.

@param repeat Number of times the event shall be repeated, or
0 for a single event, or -1 for no limit.

@return Event identifier that can be used to change or remove
event.

@throws Smp::Services::1Scheduler::InvalidCycleTime

@throws Smp::Services::1Scheduler::InvalidEventTime

virtual Smp::Services::Eventld AddEpochTimeEvent(

const lIEntryPoint* entryPoint,

156

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

177/
/77
177/
/777
177/
/777
177/
/77
//7/
77/
//7/
/77
//7/
177/
//7/
77/
//7/
/77
//7/
77/
/777
177/
/777
177/

Smp: :DateTime epochTime,

Smp: :Duration cycleTime = 0,

Smp::Int64 repeat = 0) throw (
Smp::Services::IScheduler::InvalidCycleTime,
Smp::Services::IScheduler::InvalidEventTime) = 0;

Add event to scheduler that is called based on Zulu time.

An event with repeat=0 is not cyclic. It will be removed

automatically after is has been triggered.

An event with repeat>0 is cyclic, and will be repeated repeat

times. Therefore, it will be called repeat+l times, and then it

will be removed automatically.

An event with repeat=-1 is cyclic as well, but it will be

triggered forever, unless it is removed from the scheduler

using the RemoveEvent() method.

For a cyclic event, the cycleTime needs to be positive. For

non-cyclic events, it is ignhored.

The zuluTime must not be before the current Zulu time of the

ITimeKeeper service. Otherwise, the event will never be

executed, but immediately removed.

@param entryPoint Entry point to call from event.

@param simulationTime Absolute (Zulu) time when to trigger
the event for the First time.

@param cycleTime Duration between two triggers of the event.

@param repeat Number of times the event shall be repeated, or
0 for a single event, or -1 for no limit.

@return Event identifier that can be used to change or remove
event.

@throws Smp::Services::1Scheduler::InvalidCycleTime

@throws Smp::Services::1Scheduler::InvalidEventTime

virtual Smp::Services::Eventld AddZuluTimeEvent(

/77
//7/
/77
//7/
77/
//7/
77/
//7/
/77
//7/
/77
V4
/77

const IEntryPoint* entryPoint,

Smp::DateTime simulationTime,

Smp: :Duration cycleTime = 0,

Smp::Int64 repeat = 0) throw (
Smp::Services::IScheduler::InvalidCycleTime,
Smp::Services::IScheduler::InvalidEventTime) = 0O;

Update when an existing simulation time event on the scheduler
shall be triggered.

When the given event Id is not a valid identifier of a
scheduler event, the method throws an exception of type
InvalidEventld. In case an event is registered under the given
event Id but it is not an simulation time event, the method
throws an exception of type InvalidEventld as well.

The simulationTime must not be negative. Otherwise, the event
will never be executed, but immediately removed.

@param event ldentifier of event to modify.

@param simulationTime Duration from now when to trigger event.
@throws Smp::Services::InvalidEventld

virtual void SetEventSimulationTime(Smp: :Services::Eventld event,
Smp: :Duration simulationTime) throw (

/77
177/
/77
177/
/77
177/
/77
17/
/77
177/
/77
//7/
///

Smp::Services::InvalidEventld) = 0;

Update when an existing mission time event on the scheduler
shall be triggered.

When the given event Id is not a valid identifier of a
scheduler event, the method throws an exception of type
InvalidEventld. In case an event is registered under the given
event Id but it is not an mission time event, the method throws
an exception of type InvalidEventld as well.

The missionTime must not be before the current mission time of
the ITimeKeeper service. Otherwise, the event will never be
executed, but immediately removed.

@param event ldentifier of event to modify.

@param missionTime Absolute mission time when to trigger event.

157

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

77/

@throws Smp::Services::InvalidEventld

virtual void SetEventMissionTime(Smp::Services::Eventld event,
Smp: :Duration missionTime) throw (

/77
177/
/77
177/
/77
177/
/77
177/
/77
//7/
77/
//7/
/77
//7/
77/

Smp::Services::InvalidEventld) = 0;

Update when an existing epoch time event on the scheduler (an
event that has been registered using AddEpochTimeEvent()) shall
be triggered.

When the given event Id is not a valid identifier of a
scheduler event, the method throws an exception of type
InvalidEventld. In case an event is registered under the given
event Id but it is not an epoch time event, the method throws
an exception of type InvalidEventld as well.

The epochTime must not be before the current epoch time of the
ITimeKeeper service. Otherwise, the event will never be
executed, but immediately removed.

@param event ldentifier of event to modify.

@param epochTime Epoch time when to trigger event.

@throws Smp::Services::InvalidEventld

virtual void SetEventEpochTime(Smp::Services::Eventld event,
Smp: :DateTime epochTime) throw (

//7/
77/
/77
177/
/77
177/
/77
177/
/77
177/
/77
177/
/77

Smp::Services::InvalidEventld) = O;

Update when an existing zulu time event on the scheduler shall
be triggered.

When the given event Id is not a valid identifier of a
scheduler event, the method throws an exception of type
InvalidEventld. In case an event is registered under the given
event Id but it is not an zulu time event, the method throws an
exception of type InvalidEventld as well.

The zuluTime must not be before the current Zulu time of the
ITimeKeeper service. Otherwise, the event will never be
executed, but immediately removed.

@param event ldentifier of event to modify.

@param zuluTime Absolute (Zulu) time when to trigger event.
@throws Smp::Services::InvalidEventld

virtual void SetEventZuluTime(Smp::Services::Eventld event,
Smp::DateTime zuluTime) throw (

//7/
V4
//7/
V4
//7/
/77
//7/
/77

Smp::Services::InvalidEventld) = O;

Update cycle time of an existing event on the scheduler.

When the given event is not a valid identifier of a scheduler
event, the method throws an exception of type InvalidEventld.
For a cyclic event, the cycleTime needs to be positive. For
non-cyclic events, it is ignhored.

@param event ldentifier of event to modify.

@param cycleTime Duration between two triggers of the event.
@throws Smp::Services::InvalidEventld

virtual void SetEventCycleTime(Smp::Services::Eventld event,
Smp: :Duration cycleTime) throw (

/77
177/
/77
177/
/77
177/
/77
177/
/77
17/
/77
177/
/77
//7/
///

Smp::Services::InvalidEventld) = O;

Update the count of an existing event on the scheduler.

When the given event is not a valid identifier of a scheduler
event, the method throws an exception of type InvalidEventld.
An event with count=0 is not cyclic. It will be removed
automatically after is has been triggered.

An event with count>0 is cyclic, and will be repeated count
times. Therefore, it will be called count+ltimes, and then it
will be removed automatically.

An event with count=-1 is cyclic as well, but it will be
triggered forever, unless it is removed from the scheduler
using the RemoveEvent() method.

For a cyclic event, the cycleTime needs to be positive. For
non-cyclic events, it is ignored.

@param event ldentifier of event to modify.

@param count Number of times the event shall be repeated, or

158

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

/77 0 for a single event, or -1 for no limit.
/// @throws Smp::Services::InvalidEventld
virtual void SetEventCount(Smp::Services::Eventld event, Smp::Int64
count) throw (
Smp::Services::InvalidEventld) = 0;

/// Remove an event from the scheduler.

/// When the given event is not a valid identifier of a scheduler

/// event, the method throws an exception of type InvalidEventld.

/// An event with count=0 is removed automatically after it has

/// been triggered.

/// @param event Event identifier of the event to remove.

/// @throws Smp::Services::InvalidEventld

virtual void RemoveEvent(Smp::Services::Eventld event) throw (
Smp::Services::InvalidEventld) = O;

};
Base Interfaces
Smp::IService
Constants
Name Type | Description Value
SMP_Scheduler | String8 | Name of the Scheduler service. Scheduler
Operations
Name Description
AddEpochTimeEvent Add event to scheduler that is called based on epoch
time.
AddImmediateEvent Add an immediate event to the scheduler.
AddMissionTimeEvent Add event to scheduler that is called based on mission
time.

AddSimulationTimeEvent | Add event to scheduler that is called based on simula-

tion time.
AddZuluTimeEvent Add event to scheduler that is called based on Zulu
time.
RemoveEvent Remove an event from the scheduler.
SetEventCount Update the count of an existing event on the scheduler.
SetEventCycleTime Update cycle time of an existing event on the scheduler.
SetEventEpochTime Update when an existing epoch time event on the

scheduler (an event that has been registered using Ad-
dEpochTimeEvent()) shall be triggered.

SetEventMissionTime Update when an existing mission time event on the
scheduler shall be triggered.

SetEventSimulationTime | Update when an existing simulation time event on the
scheduler shall be triggered.

SetEventZuluTime Update when an existing zulu time event on the sched-
uler shall be triggered.

159

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

4.3.1.1 Add Epoch Time Event

Add event to scheduler that is called based on epoch time.

An event with repeat=0 is not cyclic. It will be removed automatically after is
has been triggered.

An event with repeat>0 is cyclic, and will be repeated repeat times. Therefore, it
will be called repeat+1 times, and then it will be removed automatically.

An event with repeat=-1 is cyclic as well, but it will be triggered forever, unless
it is removed from the scheduler using the RemoveEvent() method.

For a cyclic event, the cycleTime needs to be positive. For non-cyclic events, it is
ignored.

The epochTime must not be before the current epoch time of the ITimeKeeper
service. Otherwise, the event will never be executed, but immediately removed.

Parameters
Name Dir. Type Description
return | Eventld Event identifier that can be used to change or re-
move event.
entryPoint in IEntryPoint | Entry point to call from event.
epochTime in DateTime | Epoch time when to trigger the event for the first
time.
cycleTime in Duration Duration between two triggers of the event.
repeat in Int64 Number of times the event shall be repeated, or 0
for a single event, or -1 for no limit.
Exceptions

Smp::Services::IScheduler::InvalidCycleTime,
Smp::Services::IScheduler::InvalidEventTime

4.3.1.2 Add Immediate Event

Add an immediate event to the scheduler.

An immediate event is an event that will be added as a simulation time event
(with simulation delta time of 0) at the front of the event queue. As such, it will
be executed when the scheduler processes its simulation time events again, but
not immediately in the call to AddImmediateEvent().

When the simulator is in Standby state, simulation time does not progress, and
simulation time events (including immediate events) are not processed.

Remark: To execute an entry point immediately without going through the
scheduler, its Execute() method can be called.

160

[EEY

ECSS-E-TM-40-07 Volume 4A

25 January 2011
Parameters
Name Dir. Type Description
entryPoint in IEntryPoint | Entry point to call from event.
return | Eventld Event identifier that can be used to change or re-
move event.
Exceptions
None
4.3.1.3 Add Mission Time Event
Add event to scheduler that is called based on mission time.
An event with repeat=0 is not cyclic. It will be removed automatically after is
has been triggered.
An event with repeat>0 is cyclic, and will be repeated repeat times. Therefore, it
will be called repeat+1 times, and then it will be removed automatically.
An event with repeat=-1 is cyclic as well, but it will be triggered forever, unless
it is removed from the scheduler using the RemoveEvent() method.
For a cyclic event, the cycleTime needs to be positive. For non-cyclic events, it is
ignored.
The missionTime must not be before the current mission time of the
ITimeKeeper service. Otherwise, the event will never be executed, but
immediately removed.
Parameters
Name Dir. Type Description
return | Eventld Event identifier that can be used to change or
remove event.
entryPoint in IEntryPoint | Entry point to call from event.
missionTime in Duration Absolute mission time when to trigger the event
for the first time.
cycleTime in Duration Duration between two triggers of the event.
repeat in Int64 Number of times the event shall be repeated, or 0
for a single event, or -1 for no limit.
Exceptions

Smp::Services::IScheduler::InvalidCycleTime,
Smp::Services::IScheduler::InvalidEventTime

4.3.1.4 Add Simulation Time Event

Add event to scheduler that is called based on simulation time.

An event with repeat=0 is not cyclic. It will be removed automatically after is
has been triggered.

161

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

An event with repeat>0 is cyclic, and will be repeated repeat times. Therefore, it
will be called repeat+1 times, and then it will be removed automatically.

An event with repeat=-1 is cyclic as well, but it will be triggered forever, unless
it is removed from the scheduler using the RemoveEvent() method.

For a cyclic event, the cycleTime needs to be positive. For non-cyclic events, it is
ignored.

The simulationTime must not be negative. Otherwise, the event will never be
executed, but immediately removed.

Parameters
Name Dir. Type Description
return | Eventld Event identifier that can be used to change or
remove event.
entryPoint in IEntryPoint | Entry point to call from event.
simulationTime | in Duration Duration from now when to trigger the event for
the first time.
cycleTime in Duration Duration between two triggers of the event.
repeat in Int64 Number of times the event shall be repeated, or 0
for a single event, or -1 for no limit.
Exceptions

Smp::Services::IScheduler::InvalidCycleTime,
Smp::Services::IScheduler::InvalidEventTime

4.3.1.5 Add Zulu Time Event

Add event to scheduler that is called based on Zulu time.

An event with repeat=0 is not cyclic. It will be removed automatically after is
has been triggered.

An event with repeat>0 is cyclic, and will be repeated repeat times. Therefore, it
will be called repeat+1 times, and then it will be removed automatically.

An event with repeat=-1 is cyclic as well, but it will be triggered forever, unless
it is removed from the scheduler using the RemoveEvent() method.

For a cyclic event, the cycleTime needs to be positive. For non-cyclic events, it is
ignored.

The zuluTime must not be before the current Zulu time of the ITimeKeeper
service. Otherwise, the event will never be executed, but immediately removed.

Parameters
Name Dir. Type Description
return | Eventld Event identifier that can be used to change or
remove event.
entryPoint in IEntryPoint | Entry point to call from event.
simulationTime | in DateTime | Absolute (Zulu) time when to trigger the event
for the first time.

162

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

Name Dir. Type Description

cycleTime in Duration Duration between two triggers of the event.

repeat in Int64 Number of times the event shall be repeated, or 0
for a single event, or -1 for no limit.

Exceptions

Smp::Services::IScheduler::InvalidCycleTime,
Smp::Services::IScheduler::InvalidEventTime

4.3.1.6 Remove Event

Remove an event from the scheduler.

When the given event is not a valid identifier of a scheduler event, the method
throws an exception of type InvalidEventId.

An event with count=0 is removed automatically after it has been triggered.

Parameters

Name Dir. Type Description

event in Eventld | Event identifier of the event to remove.
Exceptions

Smp::Services::InvalidEventld

4.3.1.7 Set Event Count

Update the count of an existing event on the scheduler.

When the given event is not a valid identifier of a scheduler event, the method
throws an exception of type InvalidEventld.

An event with count=0 is not cyclic. It will be removed automatically after is has
been triggered.

An event with count>0 is cyclic, and will be repeated count times. Therefore, it
will be called count+1times, and then it will be removed automatically.

An event with count=-1 is cyclic as well, but it will be triggered forever, unless
it is removed from the scheduler using the RemoveEvent() method.

For a cyclic event, the cycleTime needs to be positive. For non-cyclic events, it is

ignored.
Parameters
Name Dir. Type Description
event in Eventld | Identifier of event to modify.
count in Int64 Number of times the event shall be repeated, or 0 for
a single event, or -1 for no limit.
Exceptions

Smp::Services::InvalidEventld

163

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

4.3.1.8 Set Event Cycle Time

Update cycle time of an existing event on the scheduler.

When the given event is not a valid identifier of a scheduler event, the method
throws an exception of type InvalidEventId.

For a cyclic event, the cycleTime needs to be positive. For non-cyclic events, it is

ignored.
Parameters

Name Dir. Type Description

event in Eventld | Identifier of event to modify.

cycleTime in Duration | Duration between two triggers of the event.
Exceptions
Smp::Services::InvalidEventld
4.3.1.9 Set Event Epoch Time
Update when an existing epoch time event on the scheduler (an event that has
been registered using AddEpochTimeEvent()) shall be triggered.
When the given event Id is not a valid identifier of a scheduler event, the
method throws an exception of type InvalidEventld. In case an event is
registered under the given event Id but it is not an epoch time event, the
method throws an exception of type InvalidEventld as well.
The epochTime must not be before the current epoch time of the ITimeKeeper
service. Otherwise, the event will never be executed, but immediately removed.
Parameters

Name Dir. Type Description

event in Eventld | Identifier of event to modify.

epochTime in DateTime | Epoch time when to trigger event.
Exceptions

Smp::Services:: InvalidEventld

4.3.1.10 Set Event Mission Time

Update when an existing mission time event on the scheduler shall be
triggered.

When the given event Id is not a valid identifier of a scheduler event, the
method throws an exception of type InvalidEventld. In case an event is
registered under the given event Id but it is not an mission time event, the
method throws an exception of type InvalidEventld as well.

The missionTime must not be before the current mission time of the
ITimeKeeper service. Otherwise, the event will never be executed, but
immediately removed.

164

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

Parameters

Name

Dir. Type Description

event

in Eventld | Identifier of event to modify.

missionTime

in Duration | Absolute mission time when to trigger event.

Exceptions

Smp::Services:: InvalidEventld

4.3.1.11 Set Event Simulation Time

Update when an existing simulation time event on the scheduler shall be
triggered.

When the given event Id is not a valid identifier of a scheduler event, the
method throws an exception of type InvalidEventld. In case an event is
registered under the given event Id but it is not an simulation time event, the
method throws an exception of type InvalidEventld as well.

The simulationTime must not be negative. Otherwise, the event will never be
executed, but immediately removed.

Parameters

Name

Dir. Type Description

event

in Eventld | Identifier of event to modify.

simulationTime

in Duration | Duration from now when to trigger event.

Exceptions

Smp::Services::InvalidEventld

4.3.1.12 Set Event Zulu Time

Update when an existing zulu time event on the scheduler shall be triggered.

When the given event Id is not a valid identifier of a scheduler event, the
method throws an exception of type InvalidEventld. In case an event is
registered under the given event Id but it is not an zulu time event, the method
throws an exception of type InvalidEventld as well.

The zuluTime must not be before the current Zulu time of the ITimeKeeper
service. Otherwise, the event will never be executed, but immediately removed.

Parameters

Name

Dir. Type Description

event

in Eventld | Identifier of event to modify.

zuluTime

in DateTime | Absolute (Zulu) time when to trigger event.

Exceptions

Smp::Services:: InvalidEventld

165

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

4.3.1.13 Invalid Cycle Time

This exception is thrown by one of the AddEvent() methods of the scheduler
when the event is a cyclic event (i.e. repeat is not 0), but the cycle time specified

is not a positive duration.

File

#include "Smp/Services/IScheduler.h"
Namespace

Smp::Services::IScheduler

Declaration of InvalidCycleTime

/// This exception is thrown by one of the AddEvent() methods of
/// the scheduler when the event is a cyclic event (i.e. repeat is
/// not 0), but the cycle time specified is not a positive

/// duration.

class InvalidCycleTime : public Smp::Exception

{
public:
/// Constructor for new exception.
InvalidCycleTime() throw();
/// Copy constructor.
InvalidCycleTime(
InvalidCycleTime& ex) throw();
/// Virtual destructor to release memory.
virtual ~InvalidCycleTime();
}:
Fields
None

4.3.1.14 Invalid Event Time

This exception is thrown by one of the AddEvent() methods of the scheduler

when the time specified for the first execution of the event is in the past.
File

#include "Smp/Services/IScheduler.h"

Namespace

Smp::Services::IScheduler

Declaration of InvalidEventTime

/// This exception is thrown by one of the AddEvent() methods of
/// the scheduler when the time specified for the first execution
/// of the event is in the past.
class InvalidEventTime : public Smp::Exception
{
public:

/// Constructor for new exception.

InvalidEventTime() throw();

/// Copy constructor.
InvalidEventTime(
InvalidEventTime& ex) throw();

/// Virtual destructor to release memory.

166

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

virtual ~InvalidEventTime();

Fields

None

4.4 Event Manager

The event manager service provides a global notification mechanism.
Components can register entry points with a global event. Several pre-defined
event types exist, but applications can define their own, specific global events as
well.

Although it is possible that any component triggers one of the pre-defined
events by calling the Emit() method, models shall not emit pre-defined events,
but only user-defined events.

To prevent accidentally emitting pre-defined events, these have been put into a
“namespace”, i.e. a prefix string “Smp_" has been added. It is recommended
that wuser events include a “namespace” as well, for example
“MyApp_MyEventl”.

4.4.1 |Event Manager

This interface gives access to the Event Manager Service.

Components can register entry points with events, and they can define and emit
events.

File

#include "Smp/Services/IEventManager.h"
Namespace

Smp::Services

Declaration of IEventManager

/// Unique ldentifier of type lEventManager.
extern const Uuid Uuid_IlEventManager;

/// This interface gives access to the Event Manager Service.
/// Components can register entry points with events, and they can
/// define and emit events.
class IEventManager :
public virtual Smp::IService

public:

/// Virtual destructor to release memory.
virtual ~l1EventManager() {}

/// Get unique event identifier for an event name.

/// 1t is guaranteed that this method will always return the same
/// value when called with the same event name. This holds for
/// pre-defined event names as well as for user-defined events.

167

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

/// Q@param eventName Name of the global event.
/// Q@return Event identifier for global event with given name.
virtual Smp::Services::Eventld QueryEventld(Smp::String8 eventName) =

/// Subscribe entry point to a global event.
/// This method raises an exception of type InvalidEventld when
/// called with an invalid event identifier. When the entry point
/// is already subscribed to the same event, an exception of type
/// AlreadySubscribed is raised.
/77
/// An entry point can only be subscribed once to an event.
/// @param event Event identifier of global event to subscribe to.
/// Q@param entryPoint Entry point to subscribe to global event.
/// @throws Smp::Services::IEventManager::AlreadySubscribed
/// @throws Smp::Services::InvalidEventld
virtual void Subscribe(Smp::Services::Eventld event, const
Smp: i 1EntryPoint* entryPoint) throw (
Smp: :Services: : IEventManager: :AlreadySubscribed,
Smp::Services::InvalidEventld) = 0O;

/// Unsubscribe entry point from a global event.
/// This method raises an exception of type InvalidEventld when
/// called with an invalid event identifier. When the entry point
/// is not subscribed to the event, an exception of type
/// NotSubscribed is raised.
/// An entry point can only be unsubscribed from an event when it
/// has been subscribed earlier using Subscribe().
/// @param event Event identifier of global event to unsubscribe
/77 from.
/// @param entryPoint Entry point to unsubscribe from global event.
/// @throws Smp::Services::InvalidEventld
/// @throws Smp::Services::IEventManager::NotSubscribed
virtual void Unsubscribe(Smp::Services::Eventld event, const
Smp: i 1EntryPoint* entryPoint) throw (
Smp::Services::InvalidEventld,
Smp::Services:: IEventManager: :NotSubscribed) = 0;

/// Emit a global event.

/// This will call all entry points that are subscribed to the
/// global event with the given identifier at the time Emit() is
/// called. Entry point subscription/unsubscription during the
/// execution of Emit() is taken into account the next time Emit()
/// is called. Entry points will be called in the order they have
/// been subscribed to the global event.

/// @param event Event identifier of global event to emit.

/// @param synchronous Flag whether to emit the given event

/// synchronously (the default) or asynchronously.
virtual void Emit(Smp::Services::Eventld event, Smp::Bool synchronous =

true) =

“ O

Base Interfaces

Smp::IService

168

|[EY

ECSS-E-TM-40-07 Volume 4A

25 January 2011

Constants

Name

Type

Description

Value

SMP_EnterAborting

String8

Enter Aborting
state.

SMP_EnterAborting

SMP_EnterAbortingld

Eventld

This event is
raised when enter-
ing the Aborting
state with the
Abort() state tran-
sition command
from any other
state.

13

SMP_EnterExecuting

String8

Enter Executing
state.

SMP_EnterExecuting

SMP_EnterExecutingld

Eventld

This event is
raised when enter-
ing the Executing
state with the
Run() state transi-
tion command
from Standby
state.

6

SMP_EnterExiting

String8

Enter Exiting
state.

SMP_EnterExiting

SMP_EnterExitingld

Eventld

This event is
raised when enter-
ing the Exiting
state with the
Exit() state transi-
tion command
from Standby
state.

12

SMP_EnterInitialising

String8

Enter Initialising
state.

SMP_EnterInitialising

169

|[EY

ECSS-E-TM-40-07 Volume 4A

25 January 2011

Name

Type

Description

Value

SMP_EnterInitialisingld

Eventld

This event is
raised when enter-
ing the Initialising
state with an
automatic state
transition from
Connecting state,
or with the Initial-
ise() state transi-
tion.

2

SMP_EnterReconnecting

String8

Enter Reconnect-
ing state.

SMP_EnterReconnecting

SMP_EnterReconnectingld

Eventld

This event is
raised when enter-
ing the Reconnect-
ing state with the
Reconnect() state
transition from
Standby state.

16

SMP_EnterRestoring

String8

Enter Restoring
state.

SMP_EnterRestoring

SMP_EnterRestoringld

Eventld

This event is
raised when enter-
ing the Restoring
state with the Re-
store() state transi-
tion command
from Standby
state.

10

SMP_EnterStandby

String8

Enter Standby
state.

SMP_EnterStandby

170

|[EY

ECSS-E-TM-40-07 Volume 4A

25 January 2011

Name

Type

Description

Value

SMP_EnterStandbyld

Eventld

This event is
raised when enter-
ing the Standby
state with an
automatic state
transition from
Initialising, Stor-
ing or Restoring
state, or with the
Hold() state tran-
sition command
from Executing
state.

4

SMP_EnterStoring

String8

Enter Storing
state.

SMP_EnterStoring

SMP_EnterStoringld

Eventld

This event is
raised when enter-
ing the Storing
state with the
Store() state tran-
sition command
from Standby
state.

SMP_EpochTimeChanged

String8

Epoch Time has
changed.

SMP_EpochTimeChanged

SMP_EpochTimeChangedId

Eventld

This event is
raised when
changing the ep-
och time with the
SetEpochTime()
method of the
time keeper ser-
vice.

14

SMP_EventManager

String8

Name of the
EventManager
service.

EventManager

SMP_LeaveConnecting

String8

Leave Connecting
state.

SMP_LeaveConnecting

171

|[EY

ECSS-E-TM-40-07 Volume 4A

25 January 2011

Name

Type

Description

Value

SMP_LeaveConnectingld

Eventld

This event is
raised when leav-
ing the Connect-
ing state with an
automatic state
transition to Ini-
tializing state.

1

SMP_LeaveExecuting

String8

Leave Executing
state.

SMP_LeaveExecuting

SMP_LeaveExecutingld

Eventld

This event is
raised when leav-
ing the Executing
state with the
Hold() state tran-
sition command
to Standby state.

SMP_Leavelnitialising

String8

Leave Initialising
state.

SMP_Leavelnitialising

SMP_Leavelnitialisingld

Eventld

This event is
raised when leav-
ing the Initialising
state with an
automatic state
transition to
Standby state.

3

SMP_LeaveReconnecting

String8

Leave Reconnect-
ing state.

SMP_LeaveReconnecting

SMP_LeaveReconnectingld

Eventld

This event is
raised when leav-
ing the Reconnect-
ing state with an
automatic state
transition to
Standby state.

17

SMP_LeaveRestoring

String8

Leave Restoring
state.

SMP_LeaveRestoring

172

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

Name Type Description Value
SMP_LeaveRestoringld Eventld | This event is 11
raised when leav-
ing the Restoring

state with an
automatic state
transition to
Standby state.

SMP_LeaveStandby String8 | Leave Standby SMP_LeaveStandby
state.

SMP_LeaveStandbyld Eventld | This event is 5
raised when leav-
ing the Standby
state with the
Run() state transi-
tion command to
Executing state,
with the Store()
state transition
command to Stor-
ing state, with the
Restore() state
transition com-
mand to Restoring
state, or with the
Initialise() state
transition com-
mand to Initialis-

ing state.

SMP_LeaveStoring String8 | Leave Storing SMP_LeaveStoring
state.

SMP_LeaveStoringld Eventld | This event is 9

raised when leav-
ing the Storing
state with an
automatic state
transition to
Standby state.

SMP_MissionTimeChanged | String8 | Mission time has | SMP_MissionTimeChanged
changed.

173

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

Name Type Description Value

SMP_MissionTimeChangedld | Eventld | This event is 15
raised when
changing the mis-
sion time with one
of the SetMission-
Time() and Set-
MissionStart()
methods of the
time keeper ser-
vice.

Operations
Name Description
Emit Emit a global event.
QueryEventld | Get unique event identifier for an event name.
Subscribe Subscribe entry point to a global event.
Unsubscribe Unsubscribe entry point from a global event.
4.41.1 Emit

Emit a global event.

This will call all entry points that are subscribed to the global event with the
given identifier at the time Emit() is called. Entry point
subscription/unsubscription during the execution of Emit() is taken into account
the next time Emit() is called. Entry points will be called in the order they have
been subscribed to the global event.

Parameters
Name Dir. Type Description
event in Eventld | Event identifier of global event to emit.
synchronous in Bool Flag whether to emit the given event synchronously
(the default) or asynchronously.
Exceptions
None

4.4.1.2 Query Event Id

Get unique event identifier for an event name.

It is guaranteed that this method will always return the same value when called
with the same event name. This holds for pre-defined event names as well as
for user-defined events.

174

[EEY

ECSS-E-TM-40-07 Volume 4A

25 January 2011
Parameters
Name Dir. Type Description
return | Eventld | Event identifier for global event with given name.
eventName in String8 | Name of the global event.
Exceptions
None
4.4.1.3 Subscribe
Subscribe entry point to a global event.
This method raises an exception of type InvalidEventld when called with an
invalid event identifier. When the entry point is already subscribed to the same
event, an exception of type AlreadySubscribed is raised.
An entry point can only be subscribed once to an event.
Parameters
Name Dir. Type Description
event in Eventld Event identifier of global event to subscribe to.
entryPoint in IEntryPoint | Entry point to subscribe to global event.
Exceptions
Smp::Services::InvalidEventld,
Smp::Services::IEventManager::AlreadySubscribed
4.4.1.4 Unsubscribe
Unsubscribe entry point from a global event.
This method raises an exception of type InvalidEventld when called with an
invalid event identifier. When the entry point is not subscribed to the event, an
exception of type NotSubscribed is raised.
An entry point can only be unsubscribed from an event when it has been
subscribed earlier using Subscribe().
Parameters
Name Dir. Type Description
event in Eventld Event identifier of global event to unsubscribe
from.
entryPoint in IEntryPoint | Entry point to unsubscribe from global event.
Exceptions

Smp::Services:: InvalidEventld, Smp::Services:: IEventManager::NotSubscribed

4415 Already Subscribed

This exception is raised when trying to subscribe an entry point to an event that
is already subscribed.

175

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

File
#include "Smp/Services/I[EventManager.h"
Namespace

Smp::Services:: I[EventManager

Declaration of AlreadySubscribed

/// This exception is raised when trying to subscribe an entry
/// point to an event that is already subscribed.
class AlreadySubscribed : public Smp::Exception

{
public:
/// Constructor for new exception.
/// @param eventName Name of event the entry point is already

/// subscribed to.
/// @param entryPoint Entry point that is already subscribed.
AlreadySubscribed(

Smp: :String8 eventName,
const lEntryPoint* _entryPoint) throw() ;

/// Copy constructor.
AlreadySubscribed(
AlreadySubscribed& ex) throw();

/// Virtual destructor to release memory.
virtual ~AlreadySubscribed();

/// Name of event the entry point is already subscribed to.
Smp: :String8 eventName;

/// Entry point that is already subscribed.
Smp::1EntryPoint* entryPoint;

}:
Fields
Name Type Description
entryPoint IEntryPoint | Entry point that is already subscribed.
eventName String8 Name of event the entry point is already subscribed
to.

4.4.1.6 Not Subscribed

This exception is raised when trying to unsubscribe an entry point from an
event that is not subscribed to it.

File
#include "Smp/Services/IEventManager.h"
Namespace

Smp::Services:: JEventManager

Declaration of NotSubscribed

/// This exception is raised when trying to unsubscribe an entry
/// point from an event that is not subscribed to it.
class NotSubscribed : public Smp::Exception
{
public:
/// Constructor for new exception.

176

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

/// Q@param eventName Name of event the entry point is not
/// subscribed to.
/// @param entryPoint Entry point that is not subscribed.
NotSubscribed(

Smp: :String8 eventName,

Smp: : 1EntryPoint* entryPoint) throw();

/// Copy constructor.
NotSubscribed(
NotSubscribed& ex) throw();

/// Virtual destructor to release memory.
virtual ~NotSubscribed();

/// Name of event the entry point is not subscribed to.
Smp: :String8 eventName;

/// Entry point that is not subscribed.
const Smp::lEntryPoint* entryPoint;

s
Fields
Name Type Description
entryPoint IEntryPoint | Entry point that is not subscribed.
eventName String8 Name of event the entry point is not subscribed to.

177

[EEY

ECSS-E-TM-40-07 Volume 4A

25 January 2011

4.4.2

Predefined Event Types

IEventManager

<<constant>>+SMP

LeaveConnectingld : Eventld = 1

<<constant>>+SMP

LeaveConnecting : String8 = SMP_LeaveConnecting

<<constant>>+SMP

Enterlnitialisingld : Eventld = 2

<<constant>>+SMP

Enterlnitialising : String8 = SMP_Enterlnitialising

<<constant>>+SMP

Leavelnitialisingld : Eventld = 3

<<constant>>+SMP.

Leavelnitialising : String8 = SMP_ Leavelnitialising

<<constant>>+SMP

EnterStandbyld : Eventld = 4

<<constant>>+SMP

EnterStandby : String8 = SMP_EnterStandby

<<constant>>+SMP

LeaveStandbyld : Eventld =5

<<constant>>+SMP

LeaveStandby : String8 = SMP_LeaveStandby

<<constant>>+SMP

EnterExecutingld : Eventld = 6

<<constant>>+SMP

EnterExecuting : String8 = SMP_EnterExecuting

<<constant>>+SMP.

LeaveExecutingld : Eventld =7

<<constant>>+SMP

LeaveExecuting : String8 = SMP_LeaveExecuting

<<constant>>+SMP

EnterStoringld : Eventld = 8

<<constant>>+SMP

EnterStoring : String8 = SMP_EnterStoring

<<constant>>+SMP

LeaveStoringld : Eventld = 9

<<constant>>+SMP

LeaveStoring : String8 = SMP_LeaveStoring

<<constant>>+SMP

EnterRestoringld : Eventld = 10

<<constant>>+SMP.

EnterRestoring : String8 = SMP_EnterRestoring

<<constant>>+SMP

LeaveRestoringld : Eventld = 11

<<constant>>+SMP

LeaveRestoring : String8 = SMP_| eaveRestoring

<<constant>>+SMP

EnterExitingld : Eventld = 12

<<constant>>+SMP

EnterExiting : String8 = SMP_EnterExiting

<<constant>>+SMP

EnterAbortingld : Eventld = 13

<<constant>>+SMP.

EnterAborting : String8 = SMP_EnterAborting

<<constant>>+SMP

EpochTimeChangedld : Eventld = 14

<<constant>>+SMP

EpochTimeChanged : String8 = SMP_EpochTimeChanged

<<constant>>+SMP

MissionTimeChangedid : Eventld = 15

<<constant>>+SMP

MissionTimeChanged : String8 = SMP_MissionTimeChanged

<<constant>>+SMP

EnterReconnectingld : Eventld = 16

<<constant>>+SMP.

EnterReconnecting : String8 = SMP_EnterReconnecting

<<constant>>+SMP

LeaveReconnectingld : Eventld = 17

<<constant>>+SMP

LeaveReconnecting : String8 = SMP_LeaveReconnecting

Figure 5 - Predefined Event Types

The Event Manager supports some global event names and ids defined for state
changes of the simulation environment, or for a modified epoch or mission
time. The state transition events clearly indicate in their names whether they are
emitted when entering the corresponding state, or when leaving it.

The events indicating changes in either mission or epoch time are raised after
the corresponding time has been changed, so that an immediate call to the time
keeper service will return the new epoch or mission time, respectively.

The names and ids of the predefined event kinds are as listed in the table below.
As most of these events relate to state changes, the state diagram of the
simulation environment is shown in Figure 2 - Simulation Environment State
Diagram with State Transition Methods on page 118.

178

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

Event Name

Description

LeaveConnecting

This event is raised when leaving the Connecting state with
an automatic state transition to Initializing state.

EnterInitialising

This event is raised when entering the Initialising State
with an automatic state transition from Connecting state, or
with the Initialise () state transition.

Leavelnitialising

This event is raised when leaving the Initialising state
with an automatic state transition to Standby state.

EnterStandby

This event is raised when entering the Standby state with an
automatic state transition from Initialising, Storing or
Restoring state, or with the Hold() state transition
command from Executing state.

LeaveStandby

This event is raised when leaving the Standby state with the
Run () state transition command to Executing state, with the
Store () state transition command to Storing state, with the
Restore () state transition command to Restoring state, or
with the 1Initialise() state transiton command to
Initialising state.

EnterExecuting

This event is raised when entering the Executing State with
the Run () state transition command from Standby state.

LeaveExecuting

This event is raised when leaving the Execut ing state with the
Hold () state transition command to Standby state.

EnterStoring

This event is raised when entering the Storing state with the
Store () state transition command from Standby state.

LeaveStoring

This event is raised when leaving the Storing state with an
automatic state transition to Standby state.

EnterRestoring

10

This event is raised when entering the Restoring state with
the Restore () state transition command from Standby state.

LeaveRestoring

11

This event is raised when leaving the Restoring state with an
automatic state transition to Standby state.

EnterExiting

12

This event is raised when entering the Exiting state with the
Exit () state transition command from Standby state.

EnterAborting

13

This event is raised when entering the Abort ing state with the
Abort () state transition command from any other state.

EpochTimeChanged

14

This event is raised when changing the epoch time with the
SetEpochTime () method of the time keeper service.

MissionTimeChanged

15

This event is raised when changing the mission time with one of
the SetMissionTime () and SetMissionStart () methods
of the time keeper service.

EnterReconnecting

16

This event is raised when entering the Reconnecting state with
the Reconnect() state transition from Standby state.

LeaveReconnecting

17

This event is raised when leaving the Reconnecting state with
an automatic state transition to Standby state.

179

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

User-defined event ids can be generated using the QueryEventld() method,
which will return the same identifier every time it is called with the identical
event name.

4.5 Resolver

Components can use the Resolver to resolve references to other components by
name. References can either be specified using a fully qualified path, or using a
path relative to some other component.

451 |Resolver

This interface gives access to the Resolver Service.
File

#include "Smp/Services/IResolver.h"

Namespace

Smp::Services

Declaration of IResolver

/// Unique ldentifier of type IResolver.
extern const Uuid Uuid_IResolver;

/// This interface gives access to the Resolver Service.
class IResolver :
public virtual Smp::I1Service

{

public:

}:

/// Virtual destructor to release memory.
virtual ~IResolver() {}

/// Resolve reference to component via absolute path.

/77

/// An absolute path contains the name of either the Models or the
/// Services container, but not the name of the simulator, although
/// the simulator itself is the top-level component. This allows
/// keeping names as short as possible, and avoids a dependency on
/// the name of the simulator itself.

/// @param absolutePath Absolute path to component in simulation.
/// @return Component identified by path, or null if no component

/77

with the given path could be found.

virtual Smp::I1Component* ResolveAbsolute(Smp::String8 absolutePath) =

/// Resolve reference to component via relative path.

/// @param relativePath Relative path to component in simulation.
/// @param sender Component that asks for resolving the reference.
/// @return Component identified by path, or null if no component

/77

with the given path could be found.

virtual Smp::I1Component* ResolveRelative(Smp::String8 relativePath,
Smp: : 1Component* sender) = O;

Base Interfaces

Smp::IService

180

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

Constants
Name Type | Description Value
SMP_Resolver | String8 | Name of the Resolver service. Resolver
Operations
Name Description

ResolveAbsolute | Resolve reference to component via absolute path.

ResolveRelative | Resolve reference to component via relative path.

45.1.1 Resolve Absolute

Resolve reference to component via absolute path.

An absolute path contains the name of either the Models or the Services
container, but not the name of the simulator, although the simulator itself is the
top-level component. This allows keeping names as short as possible, and
avoids a dependency on the name of the simulator itself.

Parameters

Name Dir. Type Description

return | IComponent | Component identified by path, or null if no
component with the given path could be found.

absolutePath in String8 Absolute path to component in simulation.
Exceptions
None

45.1.2 Resolve Relative

Resolve reference to component via relative path.

Parameters

Name Dir. Type Description

return | IComponent | Component identified by path, or null if no
component with the given path could be found.

relativePath in String8 Relative path to component in simulation.
sender in IComponent | Component that asks for resolving the reference.
Exceptions
None

181

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

45.2 Component Paths

The Resolver can be used to resolve component references by name, either by a
full path or by a relative path with respect to a given component. Therefore, it
needs to be specified how path names have to be built. As all components in the
tree of a simulation have a name, all that needs to be specified is how these
names compose a path name, and how the parent component is identified.

Rule 1: Component names are assembled with one of the following characters:
n \ V', ”/”I ”!”
Rule 2: The parent component is specified by the following string: ".."

Examples:
Models/Satellite/Receivers/Receiverl
Services!lLogger

.-\..\Transmitters\Transmitter4

4.6 Link Registry

The Link Registry service maintains a list of all links between components, and
can be used to find out whether a component can be safely removed from the
simulation.

4.6.1 ILink Registry

This interface is implemented by the Link Registry Service.

The link registry maintains a global collection of links between components.
Links can be added and removed, and can be queried for. Further, the link
registry supports fetching and removing all links to a given target.

File

#include "Smp/Services/ILinkRegistry.h"
Namespace

Smp::Services

Declaration of ILinkRegistry

/// Unique ldentifier of type ILinkRegistry.
extern const Uuid Uuid_lLinkRegistry;

/// This interface is implemented by the Link Registry Service.
/// The link registry maintains a global collection of links between
/// components. Links can be added and removed, and can be queried for.
/// Further, the link registry supports fetching and removing all links
/// to a given target.
class ILinkRegistry :

public virtual Smp::IService
{

public:

/// Virtual destructor to release memory.
virtual ~ILinkRegistry() {}

/// Add a link from source component to target component.

/// This method informs the link registry that a link between two
/// components has been created. The link registry does not create
/// this link, it only gets told about its existence.

/// This method can be called several times with the same

182

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

/// arguments, when a source component has several links to the
/// same target component.
/// @param source Source component of link (i.e. the component

/// that links to another component).
/// @param target Target component of link (i.e. the component
/// that is being linked to by another component).

virtual void AddLink(Smp::I1Component* source, Smp::IComponent* target)

/// Returns true if a link between source and target exists, false
/// otherwise.
/// @param source Source component of link (i.e. the component

/// that links to another component).

/// @param target Target component of link (i.e. the component
/// that is being linked to by another component).

/// @return True if such a link has been added before (and not
/// been removed), false otherwise.

virtual Smp::Bool HasLink(Smp::IComponent* source, Smp::IComponent*
target) = O;

/// Remove a link between source and target that has been added to
/// the service using AddLink() before.

/// This method informs the link registry that a link between two
/// components has been deleted. The link registry does not delete
/// this link, it only gets told about the fact that the link no
/// longer exists.

/// This method can be called several times with the same

/// arguments, when a source component had several links to the
/// same target component.

/// @param source Source component of link (i.e. the component

/// that links to another component).
/// @param target Target component of link (i.e. the component
/// that is being linked to by another component).

virtual void RemoveLink(Smp::I1Component* source, Smp::IComponent* tar-
get) = 0O;

/// Returns a collection of all sources that have a link to the

/// given target.

/// This method returns the collection of source components for

/// which a link to the given target component has been added to

/// the link registry.

/// @param target Target component to returns links for.

/// @return Collection of source components which link to the

/// given target.

virtual const Smp::ComponentCollection* GetLinks(Smp::I1Component* tar-
get) const = 0;

/// Returns true if all sources linking to the given target can be
/// asked to remove their link(s), false otherwise.

/// This method checks whether all sources that have a link to the
/// given target implement the optional interface

/// l1LinkingComponent. If so, they can be asked to remove their
/// links. The method returns false if at least one source exists
/// that does not implement the ILinkingComponent interface.

/// @param target Target component to check for links.

/// @return True if all links to the given target can be removed,
//7/ false otherwise.

virtual Smp::Bool CanRemove(Smp::I1Component* target) = O;

/// Removes all links to the given target.

/// This method calls the RemoveLinks() method of all source

/// components that implement the optional ILinkingComponent

/// interface, so it asks all link sources to remove their links to
/// the given target.

/// @param target Target component of link (i.e. the component
/// that is being linked to by other components).

virtual void RemovelLinks(Smp::1Component* target) = O;

183

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

Base Interfaces
Smp::IService

Constants

Name

Description Value

Type

SMP_LinkRegistry | String8 | Name of the LinkRegistry ser-

LinkRegistry

vice.

Operations

Name

Description

AddLink

Add a link from source component to target component.

CanRemove

Returns true if all sources linking to the given target can be asked
to remove their link(s), false otherwise.

GetLinks

Returns a collection of all sources that have a link to the given tar-
get.

HasLink

Returns true if a link between source and target exists, false other-
wise.

RemovelLink

Remove a link between source and target that has been added to
the service using AddLink() before.

RemoveLinks

Removes all links to the given target.

4.6.1.1 Add Link

Add a link from source component to target component.

This method informs the link registry that a link between two components has
been created. The link registry does not create this link, it only gets told about
its existence.

This method can be called several times with the same arguments, when a
source component has several links to the same target component.

Parameters

Name

Dir. Type

Description

source

in IComponent | Source component of link (i.e. the component

that links to another component).

target

in IComponent | Target component of link (i.e. the component that

is being linked to by another component).

Exceptions
None

4.6.1.2 Can Remove

Returns true if all sources linking to the given target can be asked to remove
their link(s), false otherwise.

184

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

This method checks whether all sources that have a link to the given target
implement the optional interface ILinkingComponent. If so, they can be asked
to remove their links. The method returns false if at least one source exists that
does not implement the ILinkingComponent interface.

Parameters
Name Dir. Type Description
return | Bool True if all links to the given target can be re-
moved, false otherwise.
target in IComponent | Target component to check for links.
Exceptions
None
4.6.1.3 Get Links
Returns a collection of all sources that have a link to the given target.
This method returns the collection of source components for which a link to the
given target component has been added to the link registry.
Parameters
Name Dir. Type Description
return | ComponentCollection | Collection of source components which
link to the given target.
target in IComponent Target component to returns links for.
Exceptions
None
4.6.1.4 Has Link
Returns true if a link between source and target exists, false otherwise.
Parameters
Name Dir. Type Description
return | Bool True if such a link has been added before (and
not been removed), false otherwise.
source in IComponent | Source component of link (i.e. the component
that links to another component).
target in IComponent | Target component of link (i.e. the component
that is being linked to by another component).
Exceptions
None

185

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

4.6.1.5 Remove Link

Remove a link between source and target that has been added to the service
using AddLink() before.

This method informs the link registry that a link between two components has
been deleted. The link registry does not delete this link, it only gets told about
the fact that the link no longer exists.

This method can be called several times with the same arguments, when a
source component had several links to the same target component.

Parameters
Name Dir. Type Description
source in IComponent | Source component of link (i.e. the component
that links to another component).
target in IComponent | Target component of link (i.e. the component that
is being linked to by another component).
Exceptions
None

4.6.1.6 Remove Links

Removes all links to the given target.

This method calls the RemoveLinks() method of all source components that
implement the optional ILinkingComponent interface, so it asks all link sources
to remove their links to the given target.

Parameters
Name Dir. Type Description
target in IComponent | Target component of link (i.e. the component that
is being linked to by other components).
Exceptions
None

186

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

5
Publication

SMP Models can publish their fields, operations and properties to a publication
receiver by calling the operations declared in the IPublication interface that is
provided by the simulation environment when calling the model’s Publish()
method. For every field, operation, property or parameter, a type needs to be
specified during publication. As C++ does not have a type reflection
mechanism, the C++ implementation of publication provides a type registry.

Therefore, the C++ implementation of publication is split into two major parts:

1. It allows registering user-defined types using their unique type
identification (UUID).

2. It allows publishing fields, operations and properties of models.

Fields are published to allow store and restore of their values (state), to show
them at run-time (view), and to support dataflow based simulation
(input/output). Operations and properties are published to show them at run-
time (view), and to support their use in script files. As this is limited to value
types, only these are published into the type registry. Consequently, only
properties of value types, and operations that only use value types for their
parameters and return values can be published using the I[Publication interface.

5.1 Type Registry

The Simulation Environment has to provide a single Type Registry that
provides the following operations:

e Asetof Add. .. () operations to register user-defined types.
o The GetType () operation to query for already registered types.

Registration of types is defined as part of the Package (see Smdl Package in
section 6.6), but can be done by other mechanisms as well. However, it is
mandatory that a type has been registered before it can be used by a feature.
Further, a type most only be registered once. Trying to register the same type a
second time (under the same UUID) results in an exception.

A type is basically registered by its name, description and UUID. For complex
types, additional information (e.g. enumeration literals, or fields of a structure)
is added. As the UUID of a type must be unique, there can be only one type
registered under a given UUID.

The type registry provides the following operations to add types to it:

AddFloatType Registers a user-defined Float taking the minimum,
maximum, the inclusive flags and the unit name as
additional publication attributes.

187

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

AddIntegerType

AddEnumerationType

AddArrayType

AddStringType

AddStructureType

AddClassType

Registers a user-defined Integer taking the
minimum and maximum values as additional
publication attributes.

Registers a user-defined Enumeration, taking the
size of the memory enumeration as additional
publication attribute. The enumeration literals have to
be added in subsequent calls to the returned
IEnumerationType interface.

Registers a user-defined Array, taking the item type,
item size and the array size as additional publication
attributes.

Registers a user-defined String, taking the string
size as additional publication attribute.

Registers a user-defined Structure. The fields of the
structure have to be added in subsequent calls to the
returned IStructureType interface.

Registers a user-defined Class, taking the type of a
potential base class as additional publication attribute.
The fields of the class have to be published in
subsequent calls of the returned IClassType
interface.

Each of these operations returns an instance of IType, or a derived interface.

5.1.1 IType Registry

This interface defines a registration mechanism for user types.

File

#include "Smp/Publication/ITypeRegistry.h"

Namespace

Smp::Publication

Declaration of ITypeRegistry

/// Unique ldentifier of type ITypeRegistry.
extern const Uuid Uuid_ITypeRegistry;

/// This interface defines a registration mechanism for user types.
class 1TypeRegistry

public:

const = O;

/// Virtual destructor to release memory.

virtual ~I1TypeRegistry() {}

/// Returns a type by its simple type Kind.

/// Q@remarks This method can be used to map primitive types to the
/// IType interface, to treat all types identically.

/// @param type Primitive type the type is requested for.

/// @return Interface to the requested type.

virtual Smp::Publication::1Type* GetType(Smp::PrimitiveTypeKind type)

/// Returns a type by universally unique identifier.
/// Q@remarks This method can be used to find out whether a specific

188

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

/// type has been registered before.

/// @param typeUuid Universally unique identifier for the

/// requested type.

/// Q@return Interface of the requested type, or null if no type
/// with the registered Uuid could be found.

virtual Smp::Publication::1Type* GetType(Smp::Uuid typeUuid) const = O;

/// Add a float type to the registry.

/// 1ManagedModel and IDynamiclnvocation support fields, parameters
/// and operations of Float types via the ST_Float32 and ST_Float64
/// primitive type, as a Float is mapped either to Float32 or

/// Float64.

/// @param name Name of the registered type.

/// Q@param description Description of the registered type.

/// @param typeUuid Universally unique identifier of the

/// registered type.

/// @param minimum Minimum value for float.

/// Q@param maximum Maximum value for float.

/// @param minlnclusive Flag whether the minimum value for float

/// is valid or not.
/// @param maxInclusive Flag whether the maximum value for float
/// is valid or not.

/// @param unit Unit of the type.
/// @param type Primitive type to use for Float type.
/// @return Interface to new type.
/// @throws Smp::Publication::ITypeRegistry::AlreadyRegistered
virtual Smp::Publication::1Type* AddFloatType(
Smp: :String8 name,
Smp::String8 description,
Smp: :Uuid typeUuid,
Smp::Float64 minimum,
Smp: :Float64 maximum,
Smp::Bool minlnclusive,
Smp: :Bool maxInclusive,
Smp::String8 unit,
Smp: :PrimitiveTypeKind type = PTK Float64) throw (
Smp::Publication:: ITypeRegistry: :AlreadyRegistered) = O;

/// Add an integer type to the registry.
/// 1ManagedModel and IDynamiclnvocation support fields, parameters
/// and operations of Integer types via the ST_Int primitive types,
/// as an Integer is mapped to one of Int8 / Intl6 / Int32 / Int64
/// 7/ UInt8 / UlIntl6 / UInt32.
/// @param name Name of the registered type.
/// Q@param description Description of the registered type.
/// @param typeUuid Universally unique identifier of the
/// registered type.
/// @param minimum Minimum value for integer.
/// Q@param maximum Maximum value for integer.
/// @param unit Unit of the type.
/// @param type Primitive type to use for Integer type.
/// @return Interface to new type.
/// @throws Smp::Publication::ITypeRegistry::AlreadyRegistered
virtual Smp::Publication::1Type* AddIntegerType(
Smp: :String8 name,
Smp: :String8 description,
Smp::Uuid typeUuid,
Smp::Int64 minimum,
Smp:: Int64 maximum,
Smp::String8 unit,
Smp: :PrimitiveTypeKind type = PTK _Int32) throw (
Smp::Publication::ITypeRegistry: :AlreadyRegistered) = O;

/// Add an enumeration type to the registry.

/// @param name Name of the registered type.

/// Q@param description Description of the registered type.
/// @param typeUuid Universally unique identifier of the
/// registered type.

189

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

/// Q@param

//7/

/// @return

/// @throws

virtual
Smp:
Smp:
Smp:
Smp::
Smp:

/// Add
/// @param
/// Q@param
/// @param
//7/
/// @param
//7/
/// @param
/// Q@param
/// Q@return
/// @throws
virtual
Smp:
Smp:
Smp:
Smp:
Smp::
Smp::
Smp:

/// Add
/// @param
/// @param
/// @param
///
/// @param
/// @return
/// @throws
virtual
Smp:
Smp:
Smp:
Smp::
Smp:

///
///
///
///
///
/// Q@return
/// @throws
virtual

Add
@param
@param
@param

Smp:

Smp:

Smp:
:String8 name,

:String8 description,

zUuid typeUuid,

Int64 length) throw (

Publication::ITypeRegistry: :AlreadyRegistered) = O;

Smp:

memorySize Size of an instance of this enumeration in
bytes. Valid values are 1, 2, 4, 8

Interface to new type.
Smp::Publication::1TypeRegistry: :AlreadyRegistered

:Publication::IType* AddEnumerationType(
:String8 name,

:String8 description,

zUuid typeUuid,

Intl6 memorySize) throw (
Publication::ITypeRegistry: :AlreadyRegistered) = 0;

an array type to the registry.

name Name of the registered type.

description Description of the registered type.
typeUuid Universally unique identifier of the
registered type.

itemTypeUuid Universally unique identifier of the Type
of the array items.

itemSize Size of an array item iIn bytes.

arrayCount Number of elements in the array.

Interface to new type.

Smp::Publication: :1TypeRegistry: :AlreadyRegistered

:Publication::IType* AddArrayType(

:String8 name,

:String8 description,

zUuid typeUuid,

Uuid itemTypelUuid,

Int64 itemSize,

Int64 arrayCount) throw (
:Publication::ITypeRegistry: :AlreadyRegistered) = 0;

a string type to the registry.

name Name of the registered type.

description Description of the registered type.
typeUuid Universally unique identifier of the
registered type.

length Maximum length of the string.

Interface to new type.
Smp::Publication::1TypeRegistry: :AlreadyRegistered
Publication::IType* AddStringType(

a structure type to the registry.

name Name of the registered type.

description Description of the registered type.
typeUuid Universally unique identifier of the
registered type.

Interface to new type that allows adding fields.
Smp::Publication::1TypeRegistry: :AlreadyRegistered
Publication:: IStructureType* AddStructureType(

Smp: :String8 name,

Smp: :String8 description,

Smp: :Uuid typeUuid) throw (
Smp::Publication::ITypeRegistry: :AlreadyRegistered) = O;

/// Add
/// @param
/// @param
/// @param
///

/// @param
///

/// Q@return
/// @throws

a class type to the registry.

name Name of the registered type.

description Description of the registered type.
typeUuid Universally unique identifier of the
registered type.

bassClassUuid baseClassUuid Universally unique
identifier of the base class.

Interface to new type that allows adding fields.
Smp: :Publication: :1TypeRegistry: :AlreadyRegistered

190

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

virtual Smp::Publication::1ClassType* AddClassType(
Smp: :String8 name,
Smp::String8 description,
Smp::Uuid typeUuid,
Smp: :Uuid bassClassUuid) throw (
Smp::Publication::ITypeRegistry: :AlreadyRegistered) = O;

}:

Base Interfaces

None

Operations
Name Description
AddArrayType Add an array type to the registry.
AddClassType Add a class type to the registry.
AddEnumerationType | Add an enumeration type to the registry.
AddFloatType Add a float type to the registry.
AddIntegerType Add an integer type to the registry.
AddStringType Add a string type to the registry.
AddStructureType Add a structure type to the registry.
GetType Returns a type by its simple type kind.
GetType Returns a type by universally unique identifier.

5.1.1.1 Add Array Type

Add an array type to the registry.

Parameters
Name Dir. Type | Description
name in String8 | Name of the registered type.
description in String8 | Description of the registered type.
typeUuid in Uuid | Universally unique identifier of the registered type.
itemTypeUuid | in Uuid | Universally unique identifier of the Type of the array
items.
itemSize in Int64 | Size of an array item in bytes.
arrayCount in Int64 | Number of elements in the array.
return | [Type | Interface to new type.

Exceptions

Smp::Publication::ITypeRegistry::AlreadyRegistered

191

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

5.1.1.2 Add Class Type

Add a class type to the registry.

Parameters
Name Dir. Type Description
name in String8 Name of the registered type.
description in String8 Description of the registered type.
typeUuid in Uuid Universally unique identifier of the registered
type.
bassClassUuid | in Uuid baseClassUuid Universally unique identifier of
the base class.
return | IClassType | Interface to new type that allows adding fields.
Exceptions
Smp::Publication::ITypeRegistry::AlreadyRegistered
5.1.1.3 Add Enumeration Type
Add an enumeration type to the registry.
Parameters
Name Dir. Type | Description
name in String8 | Name of the registered type.
description in String8 | Description of the registered type.
typeUuid in Uuid | Universally unique identifier of the registered type.
memorySize in Intl6 | Size of an instance of this enumeration in bytes. Valid
valuesarel,2,4,8
return | IType | Interface to new type.
Exceptions
Smp::Publication::ITypeRegistry::AlreadyRegistered
5.1.1.4 Add Float Type
Add a float type to the registry.
IManagedModel and IDynamicInvocation support fields, parameters and
operations of Float types via the ST_Float32 and ST_Float64 primitive type, as a
Float is mapped either to Float32 or Float64.
Parameters
Name Dir. Type Description
name in String8 Name of the registered type.
description in String8 Description of the registered type.
typeUuid in Uuid Universally unique identifier of the regis-
tered type.
minimum in Float64 Minimum value for float.

192

|[EY

ECSS-E-TM-40-07 Volume 4A

25 January 2011
Name Dir. Type Description
maximum in Float6t4 Maximum value for float.
minInclusive in Bool Flag whether the minimum value for float
is valid or not.
maxInclusive | in Bool Flag whether the maximum value for float
is valid or not.
unit in String8 Unit of the type.
type in PrimitiveTypeKind | Primitive type to use for Float type.
return | [Type Interface to new type.
Exceptions
Smp::Publication:: ITypeRegistry::AlreadyRegistered
5.1.1.5 Add Integer Type
Add an integer type to the registry.
IManagedModel and IDynamiclnvocation support fields, parameters and
operations of Integer types via the ST_Int primitive types, as an Integer is
mapped to one of Int8 / Int16 / Int32 / Int64 / UInt8 / Ulnt16 / Ulnt32.
Parameters
Name Dir. Type Description
name in String8 Name of the registered type.
description in String8 Description of the registered type.
typeUuid in Uuid Universally unique identifier of the regis-
tered type.
minimum in Int64 Minimum value for integer.
maximum in Int64 Maximum value for integer.
unit in String8 Unit of the type.
type in PrimitiveTypeKind | Primitive type to use for Integer type.
return | [Type Interface to new type.
Exceptions
Smp::Publication::ITypeRegistry::AlreadyRegistered
5.1.1.6 Add String Type
Add a string type to the registry.
Parameters
Name Dir. Type | Description
name in String8 | Name of the registered type.
description in String8 | Description of the registered type.
typeUuid in Uuid | Universally unique identifier of the registered type.
length in Int64 | Maximum length of the string.
return | IType | Interface to new type.

193

|[EY

ECSS-E-TM-40-07 Volume 4A

25 January 2011
Exceptions
Smp::Publication::ITypeRegistry::AlreadyRegistered
5.1.1.7 Add Structure Type
Add a structure type to the registry.
Parameters
Name Dir. Type Description
name in String8 Name of the registered type.
description in String8 Description of the registered type.
typeUuid in Uuid Universally unique identifier of the registered
type.
return | IStructureType | Interface to new type that allows adding
fields.
Exceptions
Smp::Publication::ITypeRegistry::AlreadyRegistered
5.1.1.8 Get Type
Returns a type by its simple type kind.
Remark: This method can be used to map primitive types to the IType interface,
to treat all types identically.
Parameters
Name Dir. Type Description
return | [Type Interface to the requested type.
type in PrimitiveTypeKind | Primitive type the type is requested for.
Exceptions
None
5.1.1.9 Get Type
Returns a type by universally unique identifier.
Remark: This method can be used to find out whether a specific type has been
registered before.
Parameters
Name Dir. Type | Description
return | [Type | Interface of the requested type, or null if no type with
the registered Uuid could be found.
typeUuid in Uuid | Universally unique identifier for the requested type.

194

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

Exceptions
None

5.1.1.10 Already Registered

This exception is raised when trying to register a type with a Uuid that has
already been registered.

File
#include "Smp/Publication/ITypeRegistry.h"
Namespace

Smp::Publication::ITypeRegistry

Declaration of AlreadyRegistered

/// This exception is raised when trying to register a type with a
/// Uuid that has already been registered.
class AlreadyRegistered : public Smp::Exception

{

public:

/// Constructor for new exception.
/// @param name Name of new type that cannot be registered.
/// @param type Type that uses the same Uuid already
AlreadyRegistered(

Smp: :String8 name,

Smp::Publication::I1Type* type) throw();

/// Copy constructor.
AlreadyRegistered(
AlreadyRegistered& ex) throw();

/// Virtual destructor to release memory.
virtual ~AlreadyRegistered();

/// Name of new type that cannot be registered.
Smp: :String8 name;

/// Type that uses the same Uuid already
Smp: :Publication::I1Type* type;

Fields

Name

Type | Description

name

String8 | Name of new type that cannot be registered.

type

IType | Type that uses the same Uuid already

5.1.2 IType

This base interface defines a type in the type registry.
File

#include "Smp/Publication/IType.h"

Namespace

Smp::Publication

195

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

Declaration of IType

/// Unique ldentifier of type IType.
extern const Uuid Uuid_IType;

/// This base interface defines a type in the type registry.
class 1Type :

{

public virtual Smp::IObject

public:

/// Virtual destructor to release memory.
virtual ~1Type() {3

/// Get primitive type that this type maps to, or PTK None when the
/// type cannot be mapped to a primitive type.

/// @return Primitive type kind that this type can be mapped to.
virtual Smp::PrimitiveTypeKind GetPrimitiveType() const = 0;

/// Get Universally Unique ldentifier of type.
/// @return Universally Unique Identifier of type.
virtual Smp::Uuid GetUuid() const = 0;

/// Publish an instance of the type against a receiver.
/// @param receiver Receiver to publish against.
/// @param name Name of instance.
/// @param description Description of instance.
/// Q@param address Address of instance.
/// @param view View kind of instance.
/// @param state State flag of instance.
/// @param input Input flag of instance.
/// Q@param output Output flag of instance.
virtual void Publish(

Smp::1Publication* receiver,

Smp: :String8 name,

Smp::String8 description,

void* address,

Smp::ViewKind view = VK_None,

Smp::Bool state = true,

Smp: :Bool input = false,

Smp::Bool output = false) = O;

Base Interfaces

Smp::1Object

Operations

Name

Description

GetPrimitiveType | Get primitive type that this type maps to, or PTK_None when the

type cannot be mapped to a primitive type.

GetUuid

Get Universally Unique Identifier of type.

Publish

Publish an instance of the type against a receiver.

5.1.2.1 Get Primitive Type

Get primitive type that this type maps to, or PTK_None when the type cannot
be mapped to a primitive type.

196

[EEY

ECSS-E-TM-40-07 Volume 4A

25 January 2011
Parameters
Name Dir. Type Description
return | PrimitiveTypeKind | Primitive type kind that this type can be
mapped to.
Exceptions
None
5.1.2.2 Get Uuid
Get Universally Unique Identifier of type.
Parameters
Name Dir. Type | Description
return | Uuid | Universally Unique Identifier of type.
Exceptions
None
5.1.2.3 Publish
Publish an instance of the type against a receiver.
Parameters
Name Dir. Type Description
receiver in IPublication | Receiver to publish against.
name in String8 Name of instance.
description in String8 Description of instance.
address in void* Address of instance.
view in ViewKind | View kind of instance.
state in Bool State flag of instance.
input in Bool Input flag of instance.
output in Bool Output flag of instance.
Exceptions
None
5.1.3 IEnumeration Type

This interface defines a user defined enumeration.

File

#include "Smp/Publication/I[EnumerationType.h"

Namespace

Smp::Publication

197

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

Declaration of IEnumerationType

77/

Unique ldentifier of type IEnumerationType.

extern const Uuid Uuid_lEnumerationType;

177/

This interface defines a user defined enumeration.

class IEnumerationType :

public virtual Smp::Publication::IType

{
public:
/// Virtual destructor to release memory.
virtual ~l1EnumerationType() {}
/// Add a literal to the Enumeration.
/// @param name Name of the literal.
/// @param description Description of the literal.
/// @param value Value of the literal
virtual void AddLiteral(
Smp: :String8 name,
Smp::String8 description,
Smp::Int32 value) = 0;
}:
Base Interfaces
Smp::Publication::IType
Operations
Name Description
AddLiteral Add a literal to the Enumeration.
5.1.3.1 Add Literal
Add a literal to the Enumeration.
Parameters
Name Dir. Type | Description
name in String8 | Name of the literal.
description in String8 | Description of the literal.
value in Int32 Value of the literal
Exceptions
None

5.1.4 |Structure Type

This interface defines a user defined structure.
File

#include "Smp/Publication/IStructureType.h"
Namespace

Smp::Publication

198

[EEY

ECSS-E-TM-40-07 Volume 4A

25 January 2011

Declaration of IStructureType

/// Unique ldentifier of type IStructureType.
extern const Uuid Uuid_IStructureType;
/// This interface defines a user defined structure.
class IStructureType :
public virtual Smp::Publication::IType
{
public:
/// Virtual destructor to release memory.
virtual ~I1StructureType() {}
/// Add a field to the Structure.
/// @param name Name of field.
/// @param description Description of field.
/// @param uuid Uuid of field Type, which must be a value type,
/// but not String8.
/// @param offset Memory offset of field relative to Structure.
/// @param view View kind of field.
/// @param state State flag of field.
/// @param input Input flag of field.
/// @param output Output flag of field.
virtual void AddField(
Smp: :String8 name,
Smp: :String8 description,
Smp: :Uuid uuid,
Smp::Int64 offset,
Smp::ViewKind view = VK_AII,
Smp::Bool state = true,
Smp::Bool input = false,
Smp: :Bool output = false) = O;
}:
Base Interfaces
Smp::Publication::IType
Operations
Name Description
AddField Add a field to the Structure.
5.1.4.1 Add Field
Add a field to the Structure.
Parameters
Name Dir. Type Description
name in String8 Name of field.
description in String8 Description of field.
uuid in Uuid Uuid of field Type, which must be a value type,
but not String8.
offset in Int64 Memory offset of field relative to Structure.
view in ViewKind | View kind of field.
state in Bool State flag of field.
input in Bool Input flag of field.
output in Bool Output flag of field.

199

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

Exceptions

None
5.1.5 IClass Type

This interface defines a user defined class.
File

#include "Smp/Publication/IClassType.h"
Namespace

Smp::Publication

Declaration of IClassType

/// Unique ldentifier of type IClassType.
extern const Uuid Uuid_IClassType;

/// This

interface defines a user defined class.

class IClassType :
public virtual Smp::Publication::IStructureType

{
}:

Base Interfaces

Smp::Publication::IStructureType

Operations

None

5.1.6 Not Registered

This exception is raised when trying to publish a feature with a type Uuid that
has not been registered.

File

#include "Smp/Publication/ITypeRegistry.h"

Namespace

Smp::Publication

Declaration of NotRegistered

/// This exception is raised when trying to publish a feature with a
/// type Uuid that has not been registered.
class NotRegistered : public Smp::Exception

public:

/// Constructor for new exception.
/// @param uuid Uuid that does not correspond to a registered type.
NotRegistered(

Smp: :Uuid uuid) throw();

/// Copy constructor.
NotRegistered(

NotRegistered& ex) throw();

/// Virtual destructor to release memory.

200

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

virtual ~NotRegistered();

/// Uuid that does not correspond to a registered type.
Smp: :Uuid uuid;

Base Exceptions

Smp::Exception

Fields
Name Type | Description
uuid Uuid | Uuid that does not correspond to a registered type.
5.2 Publication of Fields, Operations and Properties

5.2.1

IPublish Operation

This interface provides functionality to publish operation parameters.

File

#include "Smp/Publication/IPublishOperation.h"

Namespace

Smp::Publication

Declaration of IPublishOperation

/// Unique ldentifier of type IPublishOperation.
extern const Uuid Uuid_IPublishOperation;

/// This interface provides functionality to publish operation
/// parameters.
class 1PublishOperation

{
public:

/// Virtual destructor to release memory.
virtual ~I1PublishOperation() {}

177/
/777
177/
/777
177/
/77
177/
/77
//7/
/77
//7/

virtual

Publish a parameter of an operation.
This method works for all types.
@remarks Fields, parameters and operations of Enumeration types

@param
@param
@param
@param
@throws

void

are supported by IManagedModel and IDynamiclnvocation
via one of the ST_Int8, ST_Intl6, ST_Int32 or ST_Int64
primitive types, depending on their memory size.

name Parameter name.

description Parameter description.

typeUuid Uuid of parameter type.

direction Direction kind of parameter.

Smp: :Publication: :NotRegistered

PublishParameter(

Smp: :String8 name,
Smp: :String8 description,

201

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

Smp::Uuid typeUuid,
Smp: :Publication: :ParameterDirectionKind direction) throw (
Smp: :Publication::NotRegistered) = O;

};

Base Interfaces
None
Operations

Name Description

PublishParameter | Publish a parameter of an operation.
5.2.1.1 Publish Parameter
Publish a parameter of an operation.
This method works for all types.
Remark: Fields, parameters and operations of Enumeration types are supported
by IManagedModel and IDynamicInvocation via one of the ST_Int8, ST_Int16,
ST_Int32 or ST_Int64 primitive types, depending on their memory size.
Parameters

Name Dir. Type Description

name in String8 Parameter name.

description in String8 Parameter description.

typeUuid in Uuid Uuid of parameter type.

direction in ParameterDirectionKind | Direction kind of parameter.
Exceptions

Smp::Publication::NotRegistered

5.2.2 IPublication

Interface that provides functionality to allow publishing members, including
fields, properties and operations.

This interface is platform specific. For details see the SMP Platform Mappings.
File

#include "Smp/IPublication.h"

Namespace

Smp

Declaration of IPublication

/// Unique ldentifier of type IPublication.
extern const Uuid Uuid_IPublication;

/// Interface that provides functionality to allow publishing members,
/// including fields, properties and operations.
/// This interface is platform specific. For details see the SMP Platform

/// Mappings.

202

ECSS-E-TM-40-07 Volume 4A
25 January 2011

[EEY

class IPublication
t
public:

/// Virtual destructor to release memory.
virtual ~I1Publication() {}

/// Give access to the global type registry.

/// The type registry is typically a singleton, and must not be null,
/// to allow use of existing types, and registration of new types.
/// @return Reference to global type registry.

virtual Smp::Publication::I1TypeRegistry* GetTypeRegistry() const = O;

/// Publish a Char8 field.

/// @param name Field name.

/// Q@param description Field description.

/// @param address Field memory address.

/// Q@param view Show field in model tree.

/// @param state Include field in store/restore of simulation state.
/// Q@param input True if field is an input field, false otherwise.
/// @param output True if field is an output Ffield, false otherwise.

virtual void PublishField(
Smp: :String8 name,
Smp::String8 description,
Smp: :Char8* address,
Smp::ViewKind view = VK_None,
Smp::Bool state = true,
Smp::Bool input = false,
Smp::Bool output = false) = O;

/// Publish a Bool field.

/// @param name Field name.

/// @param description Field description.

/// @param address Field memory address.

/// @param view Show field in model tree.

/// @param state Include field in store/restore of simulation state.
/// @param input True if field is an input field, false otherwise.
/// @param output True if field is an output field, false otherwise.

virtual void

PublishField(

Smp: :String8 name,
Smp::String8 description,
Smp: :Bool* address,
Smp::ViewKind view = VK_None,

Smp: :Bool
Smp: :Bool

state = true,
input = false,

Smp: :Bool output = false) = O;

/// Publish a Int8 field.

/// Q@param name Field name.

/// @param description Field description.

/// Q@param address Field memory address.

/// @param view Show field in model tree.

/// @param state Include field in store/restore of simulation state.
/// @param input True if field is an input field, false otherwise.
/// @param output True if field is an output field, false otherwise.

virtual void

PublishField(

Smp: :String8 name,

Smp: :String8 description,
Smp::Int8* address,
Smp::ViewKind view = VK_None,

Smp: :Bool
Smp: :Bool

state = true,
input = false,

Smp: :Bool output = false) = 0;

/// Publish a Intl6 field.

/// Q@param name Field name.
/// @param description Field description.
/// @param address Field memory address.

203

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

/// Q@param
/// @param
/// @param
/// @param

virtual void

view Show field in model tree.

state Include field in store/restore of simulation state.
input True if field is an input field, false otherwise.
output True if field is an output Ffield, false otherwise.
PublishField(

Smp: :String8 name,
Smp::String8 description,
Smp::Intl6* address,
Smp::ViewKind view = VK_None,

Smp: :Bool
Smp: :Bool

state = true,
input = false,

Smp::Bool output = false) = O;

/// Publish a Int32 field.

/// @param
/// Q@param
/// @param
/// Q@param
/// @param
/// Q@param
/// @param

virtual void

name Field name.

description Field description.

address Field memory address.

view Show field in model tree.

state Include field in store/restore of simulation state.
input True if field is an input field, false otherwise.
output True if field is an output Ffield, false otherwise.
PublishField(

Smp: :String8 name,
Smp::String8 description,
Smp:: Int32* address,
Smp::ViewKind view = VK_None,

Smp: :Bool
Smp: :Bool

state = true,
input = false,

Smp::Bool output = false) = O;

/// Publish a UInt8 field.

/// @param
/// @param
/// @param
/// @param
/// @param
/// @param
/// @param

virtual void

name Field name.

description Field description.

address Field memory address.

view Show field in model tree.

state Include field in store/restore of simulation state.
input True if field is an input field, false otherwise.
output True if field is an output field, false otherwise.
PublishField(

Smp: :String8 name,
Smp::String8 description,
Smp::UInt8* address,
Smp::ViewKind view = VK_None,

Smp: :Bool
Smp: :Bool

state = true,
input = false,

Smp: :Bool output = false) = O;

/// Publish a UlIntl6 field.

/// Q@param
/// @param
/// Q@param
/// @param
/// @param
/// @param
/// @param

virtual void

name Field name.

description Field description.

address Field memory address.

view Show Field in model tree.

state Include field in store/restore of simulation state.
input True if field is an input field, false otherwise.
output True if field is an output field, false otherwise.
PublishField(

Smp: :String8 name,

Smp: :String8 description,
Smp::UIntl6* address,
Smp::ViewKind view = VK_None,

Smp: :Bool
Smp: :Bool

state = true,
input = false,

Smp: :Bool output = false) = 0;

/// Publish a UInt32 field.

/// Q@param
/// @param
/// @param

name Field name.
description Field description.
address Field memory address.

204

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

/// Q@param
/// @param
/// @param
/// @param

virtual void

view Show field in model tree.

state Include field in store/restore of simulation state.
input True if field is an input field, false otherwise.
output True if field is an output Ffield, false otherwise.
PublishField(

Smp: :String8 name,
Smp::String8 description,
Smp::UInt32* address,
Smp::ViewKind view = VK_None,

Smp: :Bool
Smp: :Bool

state = true,
input = false,

Smp::Bool output = false) = O;

/// Publish a UInt64 field.

/// @param
/// Q@param
/// @param
/// Q@param
/// @param
/// Q@param
/// @param

virtual void

name Field name.

description Field description.

address Field memory address.

view Show field in model tree.

state Include field in store/restore of simulation state.
input True if field is an input field, false otherwise.
output True if field is an output Ffield, false otherwise.
PublishField(

Smp: :String8 name,
Smp::String8 description,
Smp: :UInt64* address,
Smp::ViewKind view = VK_None,

Smp: :Bool
Smp: :Bool

state = true,
input = false,

Smp::Bool output = false) = O;

/// Publish a Float32 field.

/// @param
/// @param
/// @param
/// @param
/// @param
/// @param
/// @param

virtual void

name Field name.

description Field description.

address Field memory address.

view Show field in model tree.

state Include field in store/restore of simulation state.
input True if field is an input field, false otherwise.
output True if field is an output field, false otherwise.
PublishField(

Smp: :String8 name,
Smp::String8 description,
Smp: :Float32* address,
Smp::ViewKind view = VK_None,

Smp: :Bool
Smp: :Bool

state = true,
input = false,

Smp: :Bool output = false) = O;

/// Publish a Float64 field.

/// Q@param
/// @param
/// Q@param
/// @param
/// @param
/// @param
/// @param

virtual void

name Field name.

description Field description.

address Field memory address.

view Show Field in model tree.

state Include field in store/restore of simulation state.
input True if field is an input field, false otherwise.
output True if field is an output field, false otherwise.
PublishField(

Smp: :String8 name,

Smp: :String8 description,
Smp: :Float64* address,
Smp::ViewKind view = VK_None,

Smp: :Bool
Smp: :Bool

state = true,
input = false,

Smp: :Bool output = false) = 0;

/// Publish a field of any type via Uuid.

/// Q@param
/// @param
/// @param

name Field name.
description Field description.
address Field memory address.

205

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

/// @param typeUuid Uuid of field type (determines the size).
/// @param view Show field in model tree.
/// @param state Include field in store/restore of simulation state.
/// @param input True if field is an input field, false otherwise.
/// @param output True if field is an output field, false otherwise.
/// @throws Smp::IPublication::InvalidFieldType
/// @throws Smp::Publication::NotRegistered
virtual void PublishField(
Smp: :String8 name,
Smp: :String8 description,
void* address,
Smp::Uuid typeUuid,
Smp::ViewKind view = VK_None,
Smp::Bool state = true,
Smp::Bool input = false,
Smp: :Bool output = false) throw (
Smp::1Publication::InvalidFieldType,
Smp::Publication::NotRegistered) = O;

/// Publish array of simple type.
/// @param name Field name.
/// Q@param description Field description.
/// @param count Size of array.
/// Q@param address Field memory address.
/// @param type Array item type.
/// Q@param view Show field in model tree.
/// @param state Include field in store/restore of simulation state.
/// @param input True if field is an input field, false otherwise.
/// @param output True if field is an output field, false otherwise.
/// @throws Smp::IPublication::InvalidFieldType
virtual void PublishArray(
Smp: :String8 name,
Smp: :String8 description,
Smp::Int64 count,
void* address,
Smp: :PrimitiveTypeKind type,
Smp::ViewKind view = VK_None,
Smp: :Bool state = true,
Smp::Bool input = false,
Smp: :Bool output = Ffalse) throw (
Smp::1Publication::InvalidFieldType) = O;

/// Publish a Int64 field.
/// @param name Field name.
/// Q@param description Field description.
/// @param address Field memory address.
/// Q@param view Show field in model tree.
/// @param state Include field in store/restore of simulation state.
/// Q@param input True if field is an input field, false otherwise.
/// @param output True if field is an output Ffield, false otherwise.
virtual void PublishField(

Smp: :String8 name,

Smp::String8 description,

Smp:: Int64* address,

Smp::ViewKind view = VK_None,

Smp::Bool state = true,

Smp::Bool input = false,

Smp::Bool output = false) = O;

/// Publish array of any type.

/// @param name Array name.

/// @param description Array description.

/// QGreturn Interface to publish item type against.

virtual Smp::IPublication* PublishArray(Smp::String8 name, Smp::String8 de-
scription) = 0;

/// Publish structure.
/// @param name Structure name.

206

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

descript

throw (

/// Q@param description Structure description.

/// Q@return Reference to publish structure fields against.

virtual Smp::IPublication* PublishStructure(Smp::String8 name, Smp::String8
ion) = 0;

/// Publish an operation with complex return type.
/// The operation parameters (including an optional return parameter)
/// may be published against the returned IPublishOperation interface
/// after calling PublishOperation().
/// @param name Operation name.
/// @param description Operation description.
/// @param view Show field in model tree.
/// @return Reference to publish parameters against.
/// @throws Smp::Publication::NotRegistered
virtual Smp::Publication::1PublishOperation* PublishOperation(
Smp: :String8 name,
Smp::String8 description,
Smp::ViewKind view = true) throw (
Smp: :Publication::NotRegistered) = O;

/// Publish a property.
/// Q@param name Property name.
/// @param description Property description.
/// @param typeUuid Uuid of type of property.
/// @param accessKind Access kind of Property.
/// Q@param view Show field in model tree.
/// @throws Smp::Publication::NotRegistered
virtual void PublishProperty(

Smp: :String8 name,

Smp::String8 description,

Smp::Uuid typeUuid,

Smp: :AccessKind accessKind,

Smp::ViewKind view = true) throw (

Smp: :Publication: :NotRegistered) = O;

/// Get the field of given name that is an array of a simple type.

/// This method raises an exception of type InvalidFieldName if called
/// with a field name for which no corresponding field exists or for
/// which the corresponding field is not an array of simple type.

/77

/// This method can only be used to get array fields with items of

/// simple type.

/// @param fullName Fully qualified array field name (relative to the
//7/ model)

/// Q@return Array field.

/// @throws Smp::Management: :IManagedModel: : InvalidFieldName

virtual Smp::lArrayField* GetArrayField(Smp::String8 fullName) const throw

Smp: :Management: : IManagedModel : : InvalidFieldName) = O;

/// Get the field of given name that is typed by a simple type.

/77

/// This method raises an exception of type InvalidFieldName if called
/// with a field name for which no corresponding field exists or for
/// which the corresponding field is not of simple type.

/// For getting access to fields of structured or array types, this
/// method may be called multiply, for example by specifying a field
/// name "MyField.Position[2]" in order to access an array item of a
/// structure.

/// This method can only be used to get fields of simple type.

/// @param fullName Fully qualified field name (relative to the model).
/// Q@return Simple field.

/// @throws Smp::Management::IManagedModel: : InvalidFieldName

virtual Smp::I1SimpleField* GetSimpleField(Smp::String8 fullName) const

Smp: :Management: : IManagedModel : : InvalidFieldName) = O;

/// Create request object.

207

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

/// Returns a request object for the given operation that describes the
/// parameters and the return value.

/// Request object may be undefined if no operation with given name
/// could be found.

/// @param operationName Name of operation.

/// Q@return Request object for operation.

virtual Smp::IRequest* CreateRequest(Smp::String8 operationName) = O;

/// Delete request object.

/// Destroys a request object that has been created with the

/// CreateRequest() method before.

/// The request object must not be used anymore after DeleteRequest has
/// been called for it.

/// Q@param request Request object to delete.
. virtual void DeleteRequest(Smp:: IRequest* request) = O;
Base Interfaces
None
Operations
Name Description
CreateRequest Create request object.
DeleteRequest Delete request object.
GetArrayField Get the field of given name that is an array of a simple type.
GetSimpleField | Get the field of given name that is typed by a simple type.
GetTypeRegistry | Give access to the global type registry.
PublishArray Publish array of simple type.
PublishArray Publish array of any type.
PublishField Publish a Chars8 field.
PublishField Publish a Bool field.
PublishField Publish a Int8 field.
PublishField Publish a Int16 field.
PublishField Publish a Int32 field.
PublishField Publish a UlntS8 field.
PublishField Publish a Ulnt16 field.
PublishField Publish a UlInt32 field.
PublishField Publish a Ulnt64 field.
PublishField Publish a Float32 field.
PublishField Publish a Float64 field.
PublishField Publish a field of any type via Uuid.
PublishField Publish a Int64 field.
PublishOperation | Publish an operation with complex return type.
PublishProperty | Publish a property
PublishStructure | Publish structure.

208

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

5.2.2.1 Create Request

Create request object.

Returns a request object for the given operation that describes the parameters
and the return value.

Request object may be undefined if no operation with given name could be
found.

Parameters
Name Dir. Type Description
operationName | in String8 | Name of operation.
return | IRequest | Request object for operation.
Exceptions
None
5.2.2.2 Delete Request
Delete request object.
Destroys a request object that has been created with the CreateRequest()
method before.
The request object must not be used anymore after DeleteRequest has been
called for it.
Parameters
Name Dir. Type Description
request in IRequest | Request object to delete.
Exceptions
None
5.2.2.3 Get Array Field
Get the field of given name that is an array of a simple type.
This method raises an exception of type InvalidFieldName if called with a field
name for which no corresponding field exists or for which the corresponding
field is not an array of simple type.
This method can only be used to get array fields with items of simple type.
Parameters
Name Dir. Type Description
fullName in String8 Fully qualified array field name (relative to the

model)

return | [ArrayField | Array field.

209

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

Exceptions

Smp::Management::IManagedModel::InvalidFieldName
5.2.2.4 Get Simple Field

Get the field of given name that is typed by a simple type.

This method raises an exception of type InvalidFieldName if called with a field
name for which no corresponding field exists or for which the corresponding
field is not of simple type.

For getting access to fields of structured or array types, this method may be
called multiply, for example by specifying a field name "MyField.Position[2]" in
order to access an array item of a structure.

This method can only be used to get fields of simple type.

Parameters

Name

Dir. Type Description

return | ISimpleField | Simple field.

fullName

in String8 Fully qualified field name (relative to the
model).

Exceptions

Smp::Management::IManagedModel::InvalidFieldName

5.2.25 Get Type Registry

Give access to the global type registry.

The type registry is typically a singleton, and must not be null, to allow use of
existing types, and registration of new types.

Parameters

Name

Dir. Type Description

return | [TypeRegistry | Reference to global type registry.

Exceptions

None

5.2.2.6 Publish Array

Publish array of simple type.

This method can only be used for arrays of simple type, as each simple type can
be mapped to a primitive type. The memory layout of the array has to be
without any padding, i.e. the array element with index i (0-based) is assumed to
be stored at address + i*sizeof(primitiveType).

210

|[EY

ECSS-E-TM-40-07 Volume 4A

25 January 2011
Parameters
Name Dir. Type Description
name in String8 Field name.
description in String8 Field description.
count in Int64 Size of array.
address inout | void Field memory address.
type in PrimitiveTypeKind | Array item type.
view in ViewKind Show field in model tree.
state in Bool Include field in store/restore of simulation
state.
input in Bool True if field is an input field, false other-
wise.
output in Bool True if field is an output field, false other-
wise.
Exceptions
Smp::IPublication::InvalidFieldType
5.2.2.7 Publish Array
Publish array of any type.
This method can be used for arrays of any type. Individual array elements have
to be added manually to the returned IPublication interface, where each array
element can (and has to) be published with its own memory address.
Parameters
Name Dir. Type Description
name in String8 Array name.
description in String8 Array description.
return | [Publication | Interface to publish item type against.
Exceptions
None
5.2.2.8 Publish Field
Publish a Chars8 field.
Parameters
Name Dir. Type Description
name in String8 Field name.
description in String8 Field description.
address inout | Char8 Field memory address.
view in ViewKind | Show field in model tree.
state in Bool Include field in store/restore of simulation state.
input in Bool True if field is an input field, false otherwise.
output in Bool True if field is an output field, false otherwise.

211

|[EY

ECSS-E-TM-40-07 Volume 4A

25 January 2011
Exceptions
None
5.2.2.9 Publish Field
Publish a Bool field.
Parameters
Name Dir. Type Description
name in String8 Field name.
description in String8 Field description.
address inout | Bool Field memory address.
view in ViewKind | Show field in model tree.
state in Bool Include field in store/restore of simulation state.
input in Bool True if field is an input field, false otherwise.
output in Bool True if field is an output field, false otherwise.
Exceptions
None
5.2.2.10 Publish Field
Publish a Int8 field.
Parameters
Name Dir. Type Description
name in String8 Field name.
description in String8 Field description.
address inout | Int8 Field memory address.
view in ViewKind | Show field in model tree.
state in Bool Include field in store/restore of simulation state.
input in Bool True if field is an input field, false otherwise.
output in Bool True if field is an output field, false otherwise.
Exceptions
None
5.2.2.11 Publish Field
Publish a Int16 field.
Parameters
Name Dir. Type Description
name in String8 Field name.
description in String8 Field description.
address inout | Intl6 Field memory address.

212

|[EY

ECSS-E-TM-40-07 Volume 4A

25 January 2011
Name Dir. Type Description
view in ViewKind | Show field in model tree.
state in Bool Include field in store/restore of simulation state.
input in Bool True if field is an input field, false otherwise.
output in Bool True if field is an output field, false otherwise.
Exceptions
None
5.2.2.12 Publish Field
Publish a Int32 field.
Parameters
Name Dir. Type Description
name in String8 Field name.
description in String8 Field description.
address inout | Int32 Field memory address.
view in ViewKind | Show field in model tree.
state in Bool Include field in store/restore of simulation state.
input in Bool True if field is an input field, false otherwise.
output in Bool True if field is an output field, false otherwise.
Exceptions
None
5.2.2.13 Publish Field
Publish a Ulnt8 field.
Parameters
Name Dir. Type Description
name in String8 Field name.
description in String8 Field description.
address inout | UInt8 Field memory address.
view in ViewKind | Show field in model tree.
state in Bool Include field in store/restore of simulation state.
input in Bool True if field is an input field, false otherwise.
output in Bool True if field is an output field, false otherwise.
Exceptions
None

213

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

5.2.2.14 Publish Field

Publish a Ulnt16 field.
Parameters
Name Dir. Type Description
name in String8 Field name.
description in String8 Field description.
address inout | Ulntl6 Field memory address.
view in ViewKind | Show field in model tree.
state in Bool Include field in store/restore of simulation state.
input in Bool True if field is an input field, false otherwise.
output in Bool True if field is an output field, false otherwise.
Exceptions
None
5.2.2.15 Publish Field
Publish a Ulnt32 field.
Parameters
Name Dir. Type Description
name in String8 Field name.
description in String8 Field description.
address inout | Ulnt32 Field memory address.
view in ViewKind | Show field in model tree.
state in Bool Include field in store/restore of simulation state.
input in Bool True if field is an input field, false otherwise.
output in Bool True if field is an output field, false otherwise.
Exceptions
None
5.2.2.16 Publish Field
Publish a Ulnt64 field.
Parameters
Name Dir. Type Description
name in String8 Field name.
description in String8 Field description.
address inout | Ulnt64 Field memory address.
view in ViewKind | Show field in model tree.
state in Bool Include field in store/restore of simulation state.
input in Bool True if field is an input field, false otherwise.
output in Bool True if field is an output field, false otherwise.

214

|[EY

ECSS-E-TM-40-07 Volume 4A

25 January 2011
Exceptions
None
5.2.2.17 Publish Field
Publish a Float32 field.
Parameters
Name Dir. Type Description
name in String8 Field name.
description in String8 Field description.
address inout | Float32 Field memory address.
view in ViewKind | Show field in model tree.
state in Bool Include field in store/restore of simulation state.
input in Bool True if field is an input field, false otherwise.
output in Bool True if field is an output field, false otherwise.
Exceptions
None
5.2.2.18 Publish Field
Publish a Float64 field.
Parameters
Name Dir. Type Description
name in String8 Field name.
description in String8 Field description.
address inout | Float64 Field memory address.
view in ViewKind | Show field in model tree.
state in Bool Include field in store/restore of simulation state.
input in Bool True if field is an input field, false otherwise.
output in Bool True if field is an output field, false otherwise.
Exceptions
None
5.2.2.19 Publish Field
Publish a field of any type via Uuid.
Parameters
Name Dir. Type Description
name in String8 Field name.
description in String8 Field description.
address inout | void Field memory address.

215

[EEY

ECSS-E-TM-40-07 Volume 4A

25 January 2011
Name Dir. Type Description
typeUuid in Uuid Uuid of field type (determines the size).
view in ViewKind | Show field in model tree.
state in Bool Include field in store/restore of simulation state.
input in Bool True if field is an input field, false otherwise.
output in Bool True if field is an output field, false otherwise.
Exceptions
Smp::IPublication::InvalidFieldType, Smp::Publication::NotRegistered
5.2.2.20 Publish Field
Publish a Int64 field.
Parameters
Name Dir. Type Description
name in String8 Field name.
description in String8 Field description.
address inout | Int64 Field memory address.
view in ViewKind | Show field in model tree.
state in Bool Include field in store/restore of simulation state.
input in Bool True if field is an input field, false otherwise.
output in Bool True if field is an output field, false otherwise.
Exceptions
None
5.2.2.21 Publish Operation
Publish an operation with complex return type.
The operation parameters (including an optional return parameter) may be
published against the returned IPublishOperation interface after calling
PublishOperation).
Parameters
Name Dir. Type Description
name in String8 Operation name.
description in String8 Operation description.
view in ViewKind Show field in model tree.
return | IPublishOperation | Reference to publish parameters against.

Exceptions

Smp::Publication::NotRegistered

216

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

5.2.2.22 Publish Property

Publish a property.
Parameters
Name Dir. Type Description
name in String8 Property name.
description in String8 Property description.
typeUuid in Uuid Uuid of type of property.
accessKind in AccessKind | Access kind of Property.
view in ViewKind | Show field in model tree.
Exceptions
Smp::Publication::NotRegistered
5.2.2.23 Publish Structure
Publish structure.
Parameters
Name Dir. Type Description
name in String8 Structure name.
description in String8 Structure description.
return | [Publication | Reference to publish structure fields against.

Exceptions

None

5.2.2.24 Invalid Field Type

Invalid field type.

This exception is raised when trying to publish a field with invalid type.
File

#include "Smp/IPublication.h"

Namespace

Smp::IPublication

Declaration of InvalidFieldType

/// Invalid field type.

/// This exception is raised when trying to publish a field with
/// invalid type.

/// @remarks This can happen, for example, when trying to publish a

/77

field of the variable-length simple type String8.

class InvalidFieldType : public Smp::Exception

public:
/// Constructor for new exception.
InvalidFieldType() throw();

/// Copy constructor.
InvalidFieldType(

217

/ E CSS / ECSS-E-TM-40-07 Volume 4A

25 January 2011

InvalidFieldType& ex) throw();

/// Virtual destructor to release memory.
virtual ~InvalidFieldType(Q);

Remark: This can happen, for example, when trying to publish a field of the
variable-length simple type String8.

Fields

None
5.2.3 Access Kind

The Access Kind of a property defines whether it has getter and setter.
File

#include "Smp/IPublication.h"

Namespace

Smp

Declaration of AccessKind

/// Unique ldentifier of type AccessKind.
extern const Uuid Uuid_AccessKind;

/// The Access Kind of a property defines whether it has getter and setter.
enum AccessKind

{
/// Read/Write access, i.e. getter and setter.
AK_ReadWrite,
/// Read only access, i.e. only getter method.
AK_ReadOnly,
/// Write only access, i.e. only setter method.
AK_WriteOnly

}:

Table 8 - Enumeration Literals of AccessKind

Name Description

AK_ReadWrite | Read/Write access, i.e. getter and setter.

AK_ReadOnly | Read only access, i.e. only getter method.

AK_WriteOnly | Write only access, i.e. only setter method.

5.2.4 Parameter Direction Kind

The Parameter Direction Kind enumeration defines the possible parameter
directions.

File

#include "Smp/Publication/IPublishOperation.h"

218

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

Namespace

Smp::Publication

Declaration of ParameterDirectionKind

/// Unique ldentifier of type ParameterDirectionKind.
extern const Uuid Uuid_ParameterDirectionKind;

/// The Parameter Direction Kind enumeration defines the possible
/// parameter directions.
enum ParameterDirectionKind

{

/// The parameter is read-only to the operation, i.e. its value
/// must be specified on call, and cannot be changed inside the
/// operation.

PDK_In,

/// The parameter is write-only to the operation, i.e. its value is
/// unspecified on call, and must be set by the operation.
PDK_Out,

/// The parameter must be specified on call, and may be changed by
/// the operation.
PDK_InOut,

/// The parameter represents the operation®s return value.
PDK_Return

Table 9 - Enumeration Literals of ParameterDirectionKind

Name

Description

PDK_In

The parameter is read-only to the operation, i.e. its value must be
specified on call, and cannot be changed inside the operation.

PDK_Out

The parameter is write-only to the operation, i.e. its value is un-
specified on call, and must be set by the operation.

PDK_InOut

The parameter must be specified on call, and may be changed by
the operation.

PDK_Return The parameter represents the operation's return value.

219

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

6
Metamodel

This section describes the mapping of all relevant SMP Metamodel elements into
ISO/ANSI C++. The exact definition of this mapping is essential in order to allow
transforming modelling information stored in an SMDL Catalogue or Package into
ISO/ANSI C++ code in a unique way.

6.1 Overview

The C++ mapping of the SMP Metamodel produces code fragments, complete files or
directories depending on the kind of Element mapped. The following description of
the SMP Metamodel mapping uses a template like notation to describe the code
fragments or files in a generic way.

6.1.1 Placeholders

Non-general information coming out of the SMDL file, like names or types, is
mapped using placeholders. Placeholders are encased with the ‘$” symbol.
Example:

$Component.Name$
This placeholder shall be replaced by the actual name of the component.

6.1.2 Coloring and Font Schema

The coloring schema of the mapping description uses blue for C++ keywords, black
for the rest of the source code and green for a comment. The font of the mapped code
is Courier.

Example:

// An Smp.Int32 is a 32 bit signed Integer type:
typedef signed int Int32;

6.1.3 Generation of Type Identification

The expression TypeName() delivers the fully qualified name of a type. When used
in a header file, the fully qualified name shall be the type name plus preceding nest-
ing namespaces.

Example:
TypeName ($Parameter.Type$)

with a parameter of type MyType defined in a nested namespace of a namespace may
be replaced in a header file by:

- :Namespacel: :NestedNamespace2: :MyType

220

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

Remark: With the using keyword, it is possible to write more readable source code,
but at the risk of introducing ambiguities due to naming conflicts, as it is possible
and valid to use the same type name within different namespaces. The namespace is
indicated by the using command prefixed with all namespaces the namespace is

nested in (if there are any). For the example above, this would look as follows:
// The used namespace chain the type is nested in is defined.
using namespace ::Namespacel::NestedNamespace2;

After that, MyType can be referenced without a namespace prefix.

6.1.4 Alternative Code

Alternative code fragments are separated by the ‘|” separator, where exactly one of
the alternatives must be present.
Example:

// Set Visibility of Type
public:|protected: |private:

This means that one of three possible visibility keywords must be set.

6.1.5 Optional Code

Optional code is encased in brackets (‘[" and ‘]’).
Example:

// If embedded in a Class or Component set Visibility of Type
[public: |protected: |private:]

This means that a visibility keyword may be set (and then one of the three possibili-
ties can be chosen).

6.2 C++ Specific Attributes

The C++ platform mapping of the Metamodel is supported by a number of C++ spe-
cific attributes. These have been defined to support C++ specific features, such as
constructors and operators, which are not included in the Metamodel (as they may
not map to other target platforms). However, to be able to use a model driven devel-
opment process, where source code is auto-generated from a design captured in an
SMDL Catalogue, it is essential to support these C++ specific features. By adding
these attributes to the normative C++ Mapping, it can be ensured that all supporting
tools (especially C++ Code Generators) will support these mechanisms in a consistent
way.

6.2.1 C++ Attributes
This section summarises pre-defined SMDL attributes that can be attached to ele-
ments in a Catalogue.

6.2.1.1 Abstract

The Abstract attribute specifies that an operation or property is abstract, i.e. that it
must be overridden in a derived type. The default value for this attribute is false.

221

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

Abstract : AttributeType

Usage = "Operation” , "Property"

AllowMultiple = false

Description = "Operation _or Property is abstract (must be
overridden in derived type)"

Default = "false"

Id = "Smp.Attributes.Abstract"

Uuid = "8596d697-fb84-41ce-a685-6912006ed6¢l”

Type = Bool

Figure 6 - Abstract

6.2.1.2 Base Class
The BaseClass attribute specifies a name of a C++ class that shall be used as base class
(implementation inheritance) for the Class or Model implementation. This can be
used to inherit the implementation from a non-SMP C++ class into an SMP Class or
Model implementation, for example to wrap an existing C++ implementation as SMP
Class or Model. The default value for this attribute is the empty string, which corre-
sponds to no base class.

BaseClass : AttributeType

Usage = "Class" , "Exception”, "Model", "Service"
AllowMultiple = false

Description = "Specified C++ class shall be used as base
class for the implementation"

Default =""

Id = "Smp.Attributes.BaseClass"

Uuid = "8596d697-fb84-41ce-a685-6912006ed6¢c2"

Type = String8

Figure 7 - Base Class

6.2.1.3 By Reference

The ByReference attribute specifies that a parameter is passed by reference, i.e. as
pointer in C++. The default value for this attribute is false.

ByReference : AttributeType

Usage = "Parameter”

AllowMultiple = false

Description = "Parameter _is passed by reference"
Default = “false”

Id = "Smp.Attributes.ByReference"

Uuid = "8596d697-fb84-41ce-a685-6912006ed6¢c3"

Type = Bool

Figure 8 - By Reference

222

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

6.2.1.4 Const
The Const attribute specifies that a feature is "constant" in the following sense:
e Association: The value of the referenced element is constant, i.e. it cannot be
changed during runtime.
e Operation: The state of the containing type (e.g. Model) is constant, i.e. the op-
eration must not change any field values during execution.
e Property: The state of the containing type (e.g. Model) is constant, i.e. the
property getter must not change any field values during execution.
e Parameter: The value of the parameter is constant, i.e. the operation must not
change it during execution. When applied to reference parameters (pointers in
C++), the referenced element must not be changed.
The default value for this attribute is false.

Const : AttributeType

Usage = "Association" , "Property", "Operation”, "Parameter"
AllowMultiple = false

Description = "Association: Value of referenced element is
constant (unchangeable);

Operation: State of containing type must not be changed by

the operation;
Property: State of containing type must not be changed by

the property getter;

Parameter: Value of parameter must not be changed within
the Operation (in case of a reference parameter this applies
to the referenced element)"

Default = "false"”

Id = "Smp.Attributes.Const"

Uuid = "8596d697-fb84-41ce-a685-6912006ed6c4"

Type = Bool

Figure 9 - Const

Remark: This attribute cannot be applied to Fields since there is a first-level concept
(Constant) for the purpose of specifying constant values.

6.2.1.5 Constructor
The Constructor attribute specifies that the operation is mapped to a C++ constructor.
The default value for this attribute is false, which corresponds to not mapping to a
constructor.
A constructor must not have a return parameter.
The name of the constructor is ignored as the Class or Model name is used in C++.

223

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

Constructor : AttributeType

Usage = "Operation”

AllowMultiple = false

Description = "Operation _shall be mapped as constructor"
Default = “false”

Id = "Smp.Attributes.Constructor"

Uuid = "8596d697-fb84-41ce-a685-6912006ed6c5"

Type = Bool

Figure 10 - Constructor

6.2.1.6 Operator
The Operator attribute defines an operator kind for an operation. It can be used to
specify that the operation is mapped to a C++ operator. The default value for this at-
tribute is None, which corresponds to not mapping to an operator.

Operator : AttributeType

Usage = "Operation”

AllowMultiple = false

Description = "Operation _shall be mapped as operator"
Default = "None"

Id = "Smp.Attributes.Operator"

Uuid = "8596d697-fb84-41ce-a685-6912006ed6¢c6"
Type = OperatorKind

Figure 11 - Operator

6.2.1.7 Operator Kind
This enumeration defines possible operator kinds.

224

|[EY

ECSS-E-TM-40-07 Volume 4A

25 January 2011

<<enumeration>>
OperatorKind

None
Positive
Negative
Assign
Add
Subtract
Multiply
Divide
Remainder
Greater
Less
Equal
NotGreater
NotLess
NotEqual
Indexer
Sum
Difference
Product
Quotient
Module

Figure 12 - Operator Kind

Table 10 - Enumeration Literals of OperatorKind

Name Description

None Undefined

Positive Positive value of instance.
C++ Example: +x

Negative Negative value of instance.
C++ Example: -x

Assign Assigns new value to instance.
C++ Example: x=a

Add Adds value to instance.
C++ Example: x +=a

Subtract Subtracts value to instance.
C++ Example: x -= a

Multiply Multiplies instance with value.
C++ Example: x *=a

Divide Divides instance by value.
C++ Example: x /=a

Remainder Remainder of instance for value.
C++ Example: x %=a

Greater Compares whether instance is greater than

value.
C++ Example: x > a

225

[EEY

ECSS-E-TM-40-07 Volume 4A

25 January 2011

Name

Description

Less

Compares whether instance is less than
value.
C++ Example: x<a

Equal

Compares whether instance is equal to
value.
C++ Example: x ==a

NotGreater

Compares whether instance is not greater
than value.
C++ Example: x <= a

NotLess

Compares whether instance is not less than
value.
C++ Example: x >=a

NotEqual

Compares whether instance is not equal to
value.
C++ Example: x I=a

Indexer

Returns indexed value of instance.
C++ Example: x[a]

Sum

Returns sum of two values.
C++ Example:a+b

Difference

Returns difference of two values.
C++ Example:a-b

Product

Returns product of two values.
C++ Example: a*b

Quotient

Returns quotient of two values.
C++ Example:a /b

Module

Returns remainder of two values.
C++ Example:a % b

6.2.1.8 Static

The Static attribute specifies that a feature is static, i.e. that it is defined on
type/classifier scope. The default value for this attribute is false, which corresponds

to instance scope.

Static : AttributeType

Usage = "Operation" , "Property", "Field", "Association"

AllowMultiple = false

Description = "Feature _is static (type/classifier scope)"

Default = “false”
Id = "Smp.Attributes.Static"

Uuid = "8596d697-fb84-41ce-a685-6912006ed6¢7"

Type = Bool

Figure 13 - Static

226

/ E CSS / ECSS-E-TM-40-07 Volume 4A
25 January 2011
6.2.1.9 Virtual

The Virtual attribute specifies that an operation or property is virtual, i.e. that it may
be overridden in a derived type (polymorphism). The default value for this attribute
is false.

Virtual : AttributeType

Usage = "Operation" , "Property"

AllowMultiple = false

Description = "Operation _or Property is virtual (may be
overridden in derived type to allow polymorphism)"
Default = "false"

Id = "Smp.Attributes.Virtual"

Uuid = "8596d697-fb84-41ce-a685-6912006ed6¢c8"

Type = Bool

Figure 14 - Virtual

6.3 Core Elements

6.3.1 Basic Types

The Core Elements schema defines some basic types which are used for attributes
and elements of other types.

6.3.1.1 Identifier
The Identifier type, respectively the 1d attribute of NamedE lement is not
mapped to C++.

6.3.1.2 Name
The Name type, respectively the Name attribute of NamedElement is used for the
name of a C++ equivalent of a mapped SMDL element. As an example, C++ fields,
operations, types (such as structures and classes) and namespaces are named accord-
ing to the Name attribute of the corresponding SMDL element in a catalogue.

6.3.1.3 Description
The Description type, respectively the Description element of NamedElement
is not mapped to C++, but may be generated as a comment in the description of a C++
equivalent of a mapped SMDL element.

6.3.1.4 UUID
The UUID type is mapped to the equivalent Uuid type of the Component Model.

6.3.2 Elements

6.3.2.1 Named Element

A NamedElement is not mapped directly into C++, because it is an abstract base
type. Nevertheless types derived from NamedElement use the inherited Name at-

227

ECSS-E-TM-40-07 Volume 4A

/ E CSS / 25 January 2011

tribute for the naming of their C++ equivalent (see section 6.3.1.2 on Name). The De-
scription element is not mapped to C++, but may be generated as a comment (see

section 6.3.1.3 on Description).
6.3.2.2 Document

The Document type is the abstract base type for XML files defined by SMDL. It is not
mapped to C++, but the derived Package document type is (see section 6.6.1.1 on
Package).

6.3.3 Metadata

Metadata is additional, named information stored with a named element. It is used to
further annotate named elements, as the Description element is typically not suffi-
cient.

6.3.3.1 Metadata
Metadata is an abstract base type and not mapped to C++.

6.3.3.2 Comment
A Comment is not mapped to C++, but may be generated as code comment.

6.3.3.3 Documentation

Documentation is not mapped to C++, but may be generated as code documenta-
tion.

6.4 Core Types

6.4.1 Types

Types are used in different contexts. The most common type is a LanguageType,
which has a mapping to the C++ programming language via the types derived from
it. Typing is used as well for other mechanisms, e.g. for Attributes and Events.
6.4.1.1 Visibility Element
A VisibilityElement is not directly mapped to C++, because it is an abstract base
type. Types and features derived from VisibilityElement map the inherited
Visibility attribute to define their C++ visibility (see Visibility Kind below).
6.4.1.2 Visibility Kind
The Visibi lityKind attribute is mapped to C++ according to the following table:

Visibility C++ Visibil-
Kind ity

private private
protected protected
package public
public public

228

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

The C++ visibility coincides with the Visibi lity attribute except for package,
which is not supported by C++.
6.4.1.3 Type

Type is an abstract base type and not mapped to C++. However, the Uuild attribute
of inherited types is mapped to a constant of type Uuid:

/// Unique Identifier of type $Type.Name$.
extern const Smp::Uuid Uuid_$Type.Name$;

The implementation has to be provided in another file, typically in a source file.
The mapping may as well use a type derived from Smp: zUuid.

6.4.1.4 Language Type
LanguageType is an abstract base type and not mapped to C++. All types derived
from LanguageType have a mapping to C++. See section 6.4.2 for Value Types, sec-
tion 6.4.1.6 for Value Reference, section 6.4.1.7 for Native Type and Platform Map-
ping, and section 6.5.2 for Reference Types.

6.4.1.5 Value Type
ValueType is an abstract base type and not mapped to C++. See section 6.4.2 on
Value Types for derived types.

6.4.1.6 Value Reference
A ValueReference is mapped as a typedef of a pointer to a ValueType.
¢ In case the ValueReference belongs to a ReferenceType (i.e. is a nested

type), the Visibility is defined.

// If embedded in a Reference Type set Visibility
[public: | protected: | private:]

// Define Value Reference as pointer to existing Value Type
typedef TypeName($ValueReference. Type$)* $ValueReference.Name$;

6.4.1.7 Native Type and Platform Mapping

A NativeType is mapped as a typedef to an existing C++ type if (and only if) it has a

PlatformMapping to the C++ platform. The following holds:

e A PlatformMapping is considered to be for the C++ platform if (and only if) its
Name starts with “cpp”.

e A PlatformMapping with Name equals to “cpp” is called the default C++ map-
ping.

e A PlatformMapping with a Name not equals to “cpp” is called a conditional
C++ mapping, where the remainder of the Name is called the Condition (called
$PlatformMapping.Condition$ below).

A NativeType is mapped as follows:

e A NativeType with only a default C++ mapping is mapped as an #include and a
typedef, where the include statement is added at the beginning of the file:

229

/ E m/ ECSS-E-TM-40-07 Volume 4A
25 January 2011

// Include header file if Platform Mapping has one
[#include "$PlatformMapping.Location$"]

// If embedded in a Reference Type set Visibility
[public: | protected: | private:]

// Use Namespace if Platform Mapping has one
typedef [$PlatformMapping.Namespace$::]$PlatformMapping.Type$ $NativeType.Name$;

e A NativeType with only conditional C++ mappings is mapped as a switch of
conditional typedef statements, where the order of conditions is defined as the or-
der of the PlatformMapping elements:

// Include header file if Platform Mapping has one

#if defined ($PlatformMappingl.Condition$)
[#include "$PlatformMappingl.Location$"]

#elif defined ($PlatformMapping2.Condition$)
[#include "$PlatformMapping2.Location$"]

#endif

// If embedded in a Reference Type set Visibility
[public: | protected: | private:]

// Define Native Type via typedef
#if defined ($PlatformMappingl.Condition$)

typedef [$PlatformMappingl.Namespace$::]$PlatformMappingl.Type$ $NativeType.Name$;
#elif defined ($PlatformMapping2.Condition$)

typedef [$PlatformMapping2.Namespace$::]$PlatformMapping2.Type$ $NativeType.Name$;

#endif

e A NativeType with both a default and conditional C++ mappings is mapped as
a switch of conditional typedef statements with a final #else statement, where the
order of conditions is defined as the order of the PlatformMapping elements
(except for the default mapping, which is always generated at the end):

// Include header file if Platform Mapping has one
#if defined ($PlatformMappingl.Condition$)
[#include "$PlatformMappingl.Location$"]
#elif defined ($PlatformMapping2.Condition$)
[#include "$PlatformMapping2.Location$"]
#else
[#include "$PlatformMappingX.Location$"]
#endif

// If embedded in a Reference Type set Visibility
[public: | protected: | private:]

// Define Native Type via typedef
#if defined ($PlatformMappingl.Condition$)

typedef [$PlatformMappingl.Namespace$::]$PlatformMappingl.Type$ $NativeType.Name$;
#elif defined ($PlatformMapping2.Condition$)

230

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

typedef [$PlatformMapping2.Namespace$::]$PlatformMapping?2.Type$ $NativeType.Name$;
#else

typedef [$PlatformMappingX .Namespace$::]$PlatformMappingX.Type$ $NativeType. Name$;
#endif

6.4.2 Value Types

6.4.2.1 Simple Type
SimpleType is an abstract base type and not mapped to C++.

6.4.2.2 Primitive Type
All primitive types are mapped to basic ISO/ANSI C++ types. As this mapping de-
pends on hardware platform (e.g. 32 bit or 64 bit) and compiler, the actual mapping
is provided in an include file called Platform.h.

6.4.2.3 Enumeration
An Enumeration is mapped to an ISO/ANSI C++ enum type. In addition, a function is
defined that registers the enumeration and all its literals in the type registry. In case
the Enumeration belongs to a ReferenceType (i.e. is a nested type), the Visi-
bility is defined. In this case, the function becomes a static method of the refer-
ence type with the same visibility as the type.

// If embedded in a Reference Type set Visibility
[public: | protected: | private:]

enum $Enum.Name$

{

/| Comma-separated mapping of Enumeration Literals
See 6.4.2.4 (Enumeration Literal)
1

/] Register type in type registry
[static] void _Register_$Enum.Name$(Smp::Publication::ITypeRegistry* registry);

6.4.2.4 Enumeration Literal

Each EnumerationLiteral is mapped as C++ enum literal with value assignment.

$EnumerationLiteral. Name$ = $EnumerationLiteral.Value$

6.4.2.5 Integer
An Integer type is mapped as a typedef to the primitive type it references, or to
Smp: : Int32 if it does not reference a type. The Maximum, Minimum and Unit at-
tributes are not mapped, but can be shown as comments in the code. In addition, a
function is defined that registers the integer type (with its limits and unit) in the type
registry.

231

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

e In case the Integer belongs to a ReferenceType (i.e. is a nested type), the
Visibility is defined. In this case, the function becomes a static method of the
reference type with the same visibility as the type.

// If embedded in a Reference Type set Visibility
[public: | protected: | private:]

// Define Integer as typedef to existing Integer type, with default of Int32
typedef $Integer.Type$ | Smp::Int32 $Integer.Name$;

/] Register type in type registry
[static] void _Register_$Integer.Name$(Smp::Publication: ITypeRegistry* registry);

6.4.2.6 Float
A Float type is mapped as a typedef to either Smp: :Float32 or Smp: :Float64.
The Maximum, Minimum, MaxInclusive, MinInclusive and Unit attributes are
not mapped, but can be shown as comments. In addition, a function is defined that
registers the float type (with its limits and unit) in the type registry.
¢ In case the Float belongs to a ReferenceType (i.e. is a nested type), the Visi-
bility is defined. In this case, the function becomes a static method of the ref-
erence type with the same visibility as the type.

// If embedded in a Reference Type set Visibility
[public: | protected: | private:]

// Define Integer as typedef to existing Float type, with default of Float64
typedef $Float. Type$ | Smp::Float64 $Float.Name$;

/] Register type in type registry
[static] void _Register_$Float.Name$(Smp::Publication:: ITypeRegistry” registry);

6.4.2.7 String
A String type is mapped as an ISO/ANSI C++ struct with an internal fixed size
array of type Smp::Chars. The size of the array is given by the Length attribute of the
String, but extended by one to ensure the terminating null character fits into the
string. In addition, a function is defined that registers the string type in the type reg-
istry.
e In case the String belongs to a ReferenceType (i.e. is a nested type), the
Visibility is defined. In this case, the function becomes a static method of the
reference type with the same visibility as the type.

// If embedded in a Reference Type set Visibility
[public: | protected: | private:]

// Define String as structure with array field
struct $String. Name$

{
Smp::Char8 internalString[$String.Length$+1];

232

/ E m/ ECSS-E-TM-40-07 Volume 4A
25 January 2011

|

/] Register type in type registry
[static] void _Register_$String.Name$(Smp::Publication::ITypeRegistry* registry);

6.4.2.8 Array

An Array type is mapped as an ISO/ANSI C++ struct (not as a typedef of an ar-

ray)'. In addition, a function is defined that registers the array type in the type regis-

try.

e In case the Array belongs to a ReferenceType (i.e. is a nested type), the Visi-
bility is defined. In this case, the function becomes a static method of the ref-
erence type with the same visibility as the type.

// If embedded in a Reference Type set Visibility
[public: | protected: | private:]

// Define Array as structure with array field
struct $Array.Name$

{
TypeName($Array.ItemType$) internal Array[$Array.Size$];

}I

/] Register type in type registry
[static] void _Register_$Array. Name$(Smp::Publication::ITypeRegistry* registry);

6.4.2.9 Structure
A Structure type is mapped as an ISO/ANSI C++ struct. Each field of the struc-
ture is mapped to a field in C++. In addition, a static method is defined that registers
the structure type in the type registry.
e In case the Structure belongs to a ReferenceType (i.e. is a nested type), the
Visibility is defined.

// If embedded in a Reference Type set Visibility
[public: | protected: | private:]

// Define Structure as struct with static _Register method

struct $Structure.Name$

{
// Define the Fields of the Structure here
See 6.4.3.2 (Field)

/] Register type in type registry
static void _Register(Smp::Publication::ITypeRegistry* registry);
b

If a forward declaration is needed, this can be generated as follows:

// If embedded in a Reference Type set Visibility

1 This is because an array cannot be used as return type of an operation in C++.

233

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

[public: | protected: | private:]

struct $Structure.Name$;

6.4.2.10 Class

A Class is mapped as a C++ class. In addition, a static method is defined that regis-

ters the class type in the type registry.

e In case the Class belongs to a ReferenceType (i.e. is a nested type), the Visi-
bility is defined.

e In case the Class has a Base class defined, it inherits from the specified base
class.

e In case the Class has no constructor defined (i.e. no Operation with the Con-
structor attribute), a default constructor is generated.

e A virtual destructor is always generated.

e All features (Constant, Field, Property, Association, Operation) are
generated.

The mapping can be tailored via the following attributes:

e In case the Class has a BaseClass attribute, it inherits from the specified base
class (possibly in addition to the inheritance from the specified Base class, as C++
supports multiple implementation inheritance).

// If embedded in a Reference Type set Visibility
[public: | protected: | private:]

/I If the Class has a Base Class it needs to inherit from it.

class $Class.Name$ [: public TypeName($Class.Base$)][, public $BaseClass.Name$]

{
// Constructor and virtual Destructor are declared with Visibility of the Class
public: | protected: | private:

// Default constructor is generated if no other constructors are defined
[$Class.Name$(void);]

// Virtual destructor is always generated
virtual ~$Class.Name$(void);

// If the Class has Constants, these are declared:
See 6.4.3.1 (Constant)

// If the Class has Fields, these are declared:
See 6.4.3.2 (Field)

// If the Class has Properties, these are declared virtual:
See 6.4.3.3 (Property)

// If the Class has associations, these are declared:
See 6.4.3.4 (Association)

/I If the Class has Operations, these are declared virtual:
See 6.4.3.5 (Operation)

234

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

/] Register type in type registry
static void _Register(Smp::Publication:ITypeRegistry* registry);
b

6.4.2.11 Exception

An Exception is mapped to a C++ class. In addition, a static method is defined that

registers the exception type (as a class type) in the type registry.

e In case the Exception belongs to a ReferenceType (i.e. is a nested type), the
Visibility is defined.

e In case the Exception has a Base class defined, it inherits from the specified
base class. Otherwise, it inherits from Smp: :Exception.

e In case the Exception has no constructor defined (i.e. no Operation with the
Constructor attribute), a default constructor is generated.

e A copy constructor is always generated, as this is needed to be able to catch ex-
ceptions by value.

e A virtual destructor is always generated.

e All features (Constant, Field, Property, Association, Operation) are
generated.

The mapping can be tailored via the following attributes:

e In case the Exception has a BaseClass attribute, it inherits from the specified
base class (in addition to the inheritance from the specified Base class or
Smp: :Exception, as C++ supports multiple implementation inheritance).

// If embedded in a Reference Type set Visibility
[public: | protected: | private:]

/I If the Exception has a Base Exception it needs to inherit from it.
class $Exception.Name$:
public TypeName($Exception.Base$) | Smp::Exception[, public $BaseClass.Name$]
{
// Constructors and virtual Destructor are declared with Visibility of the Exception
public: | protected: | private:

// Default constructor is generated if no other constructors are defined
[$Exception.Name$(void) throw();]

// Copy constructor is always generated, to allow catching exception by value
$Exception.Name$($Exception.Name$& exception) throw();

// Virtual destructor is always generated
virtual ~$Exception.Name$(void);

// 1If the Exception has Constants, these are declared:
See 6.4.3.1 (Constant)

/[If the Exception has Fields, these are declared:
See 6.4.3.2 (Field)

// 1f the Exception has Properties, these are declared virtual:
See 6.4.3.3 (Property)

235

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

/[If the Exception has associations, these are declared:
See 6.4.3.4 (Association)

// 1f the Exception has Operations, these are declared virtual:
See 6.4.3.5 (Operation)

/] Register type in type registry
static void _Register(Smp::Publication:ITypeRegistry* registry);
1

The mapping on an Exception is therefore almost identical to the mapping of a
Class, but each Exception must inherit from another Exception (with the de-
fault Smp: :Exception). Further, an Exception always needs a copy constructor,
to allow catching exceptions by value.

6.4.3 Features
Features are either contained in a value type (Structure, Class, Exception), or
in a reference type (Interface, Model, Service).

6.4.3.1 Constant

A Constant is mapped to C++ as a static const member variable of a C++ struct or
a C++ class.
e TheVisibility is defined.

// Set Visibility
public: | protected: | private:

// Constant of value type.
static const TypeName($Constant.Type$) $Constant. Name$;

In addition, an implementation with the value of the Constant needs to be defined
in a source file.
For the mapping of a Value, see section 6.4.4 on Values below.
Remark: In case the Constant belongs to a Structure the visibility should be pub-
lic.
6.4.3.2 Field
A Field is mapped to C++ as a member variable of a C++ struct or a C++ class.
e TheVisibility is defined.
The mapping can be tailored via the following attributes:
e If the Field has the Static attribute, it is declared static.
e If the Field has the Forcible attribute, an additional field for the forced value,
and a Boolean field for the forcing status are generated.
The View attribute is only taken into account in the publication of the field.

// Set Visibility
public: | protected: | private:

/[Field of value type.
[static] TypeName($Field. Type$) $Field Name$;

236

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

[// Forced value of field of value type.
[static] TypeName($Field. Type$) _forced_$Field.Name$;

// Flag whether field is forced.
[static] Smp::Bool _isForced_$Field.Name$;]

Remark: In case the Field belongs to a Structure the visibility should be public.
6.4.3.3 Property

A Property is mapped as one or two ISO/ANSI C++ methods, one for a possible set-

ter and one for a possible getter.

e TheVisibility is defined.

o If the Property is of type readWrite or readOnly, a getter method is defined.

e If the Property is of type readWrite or writeOnly, a setter method is defined.

o If the Property belongs to an Interface, it is declared as pure virtual (“= 0”

o [f the Property is of ReferenceType, it is declared as a pointer (unless it has
the ByReference attribute).

The mapping can be tailored via the following attributes:

o If the Property has the Abstract attribute, it is declared pure virtual (“= 0”).

e If the Property has the Virtual attribute, it is declared virtual in order to al-
low overwriting it.

e If the Property has the Static attribute, it is declared static.

o If the Property has the ByReference attribute, it is declared as a reference
(“&”).

o If the Property has the Const attribute, the property getter method is defined
as const.

The View attribute is only taken into account in the publication of the property.

Table 11 — Property Type Modifier depending on type and attribute

Attribute none ByReference
ValueType &
ValueReference &
ReferenceType |* &
NativeType &

/I Set Visibility
public: | protected: | private:

// In case the Property is ReadOnly or ReadWrite:
[virtual] [static] TypeName($Property. Type$)[* | &] get_$Property.Name$()[const][= 0];

// In case the Property is WriteOnly or ReadWrite:
[virtual] [static] void set_$Property.Name$(TypeName($Property. Type$)[* | &] val)[= 0];

237

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

Remark: A Property that is Static must neither by Virtual nor Abstract, as a
static method cannot be virtual.

Remark: In case the Property belongs to an Interface the visibility should be
public.

Remark: In case a Property has an attached field, a code generator may generate an
implementation giving access to this field.

// In case the Property is ReadOnly or ReadWrite:
TypeName($Property. Type$)[* | &] TypeName($Property.Owner$)::get_$Property. Name$()[const]
{
return $Property.AttachedField.Name$;
}

// In case the Property is WriteOnly or ReadWrite:
void TypeName($Property.Owner$)::set_$Property.Name$(TypeName($Property. Type$)[* | &] val)
{
$Property.AttachedField.Name$ = val;
}

6.4.3.4 Association

An Association is mapped to C++ as a member variable of a C++ class.

e The Visibility is defined.

e If the Association is of a ValueType or ReferenceType, it is defined as a
pointer (“*”).

The mapping can be tailored via the following attributes:

e [f the Association has the Static attribute, it is declared static.

e If the Association has the ByReference attribute, it is defined as a reference
(“&”).

e If the Association has the Const attribute, it is defined as const.

Table 12 — Association Type Modifier depending on type and attribute

Type ValueType | ValueReference | ReferenceType | NativeType
Default * *
ByReference | & & & &

/I Set Visibility
public: | protected: | private:

/| Association of type reference.
[const] [static] TypeName($Association. Type$)[*| &] $Association.Name$;

6.4.3.5 Operation

An Operation is mapped to an ISO/ANSI C++ method.
e TheVisibility is defined.
o If the Operation belongs to an Interface, it is declared as pure virtual (“= 0”

238

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

e If the Operation has a Parameter of return direction, this parameter defines
the return type of the operation (called $Operation.ReturnType$ below).

e If the Operation returns a ReferenceType, it returns a pointer (“*”), other-
wise it returns a value.

The mapping can be tailored via the following attributes:

o If the Operation has the Abstract attribute, it is declared pure virtual (“= 0”).

e If the Operation has the Static attribute, it is declared static.

e If the Operation has a return Parameter with the ByReference attribute, it
returns a reference (“&”).

e If the Operation has the Virtual attribute, it is declared virtual in order to al-
low overwriting it.

e If the Operation has the Const attribute, it is defined as const.

The View attribute is only taken into account in the publication of the operation.

// Set Visibility
public: | protected: | private:

// Return type of Operation is defined by the return parameter, or void

[virtual] [static] void | TypeName($Operation.ReturnType$)[* | &] $Operation.Name$(
/| Comma-separated mapping of Parameters, except for return Parameter
See 6.4.3.6 (Parameter)

)[const][= 0];

Remark: In case the Operation belongs to an Interface the visibility should be
public.
e If the Operation has the Operator attribute, it is declared as an operator.

/I Set Visibility
public: | protected: | private:

/] Return type of Operator is defined by the return parameter, or void

[virtual] [static] void | TypeName($Operation.ReturnType$)[* | &] operator $Operator.Kind$(
// Comma-separated mapping of Parameters, except for return Parameter
See 6.4.3.6 (Parameter)

)[const][=0];

e If the Operation has the Constructor attribute, it is declared as a constructor.

// Set Visibility
public: | protected: | private:

// Constructor must neither be const, nor virtual, nor have a return Parameter
$Operation.Owner.Name$(Parameters);

Remark: In case the Operation has the Constructor attribute, it should not have
the Const, Virtual or Static attribute, or a Parameter of return direction.

239

ECSS-E-TM-40-07 Volume 4A
25 January 2011

[EEY

6.4.3.6 Parameter

A Parameter is mapped to an argument of a C++ operation, operator or constructor,

or to the return type of an operation or operator.

e Anempty parameter list (i.e. at most a return parameter) is mapped to void.

¢ A non-empty parameter list is mapped to a comma-separated list of arguments
with optional type modifier, type and name for each argument (but excluding an
optional return parameter).

e Based on Type and Direction, the Parameter is passed by value, as a pointer,
or as a reference, according to the following table:

Table 13 - Parameter Modifier depending on type and direction

Direction in out inout return
ValueType const * *

ValueReference | const

ReferenceType |const & * * *
NativeType const * "

The mapping can be tailored via the following attributes:
e If the Parameter has the ByReference attribute, it is passed by reference (“&”).
o If the Parameter has the Const attribute, it is passed as const.

/| Parameter can be passed by value, by reference, or as a pointer
[const] TypeName($Parameter. Type$)[* | &] $Parameter.Name$

6.4.4 Values

Default values of fields, and values of constants are mapped to C++ using the appro-
priate mechanisms to initialise fields in a class or structure.

6.4.4.1 Value
This base class is not mapped to C++.

6.4.4.2 Simple Value

A SimpleValue maps to a corresponding value in C++. It is always used together
with an owner, such as a Constant, Field, or Parameter.
6.4.42.1 Bool Value

Smp::Bool $BoolValue.Owner.Name$ = false | true;

6.4.4.2.2 Char8Value

A Char8Value holds a value for an item of type Char8.

Smp::Char8 $Char8Value.Owner.Name$ = $Char8Value.Value$;

6.4.4.2.3 Date Time Value

Smp::DateTime $BoolValue.Owner.Name$ = $DateTimeValue.Value$;

240

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

6.4.4.2.4 Duration Value

Smp::Duration $DurationValue.Owner.Name$ = $DurationValue.Value$;

6.4.4.2.5 Enumeration Value

TypeName($EnumerationValue.Owner.Type) $EnumerationValue.Owner.Name$
= $EnumerationValue.Literal$;

An EnumerationValue maps to the enumeration Literal of the Enumeration-
Value, not to the Value.
6.4.4.2.6 Float32Value

Smp::Float32 $Float32Value.Owner.Name$ = $Float32Value.Value$;

6.4.4.2.7 Float64Value

Smp::Float64 $Float64Value.Owner.Name$ = $Float64Value.Value$;

6.4.4.2.8 Intl6Value

Smp::Int16 $Int16Value.Owner.Name$ = $Int16Value.Value$;

6.4.4.2.9 Int32Value

Smp::Int32 $Int32Value.Owner.Name$ = $Int32Value.Value$;

6.4.4.2.10 Int64Value

Smp::Int64 $Int64Value.Owner.Name$ = $Int64Value.Value$;

6.4.4.2.11 Int8Value

Smp::Int8 $Int8Value.Owner.Name$ = $Int8Value.Value$;

6.4.4.2.12 String8Value

Smp::String8 $String8Value.Owner.Name$ = $String8Value.Value$;

6.4.4.2.13 Ulintl6Value

Smp::UInt16 $UInt16Value.Owner.Name$ = $UInt16Value.Value$;

6.4.4.2.14 UlInt32Value

Smp::UInt32 $UInt32Value.Owner.Name$ = $UInt32Value.Value$;

6.4.4.2.15 UlInt64Value

Smp::Ulnt64 $UInt64Value.Owner.Name$ = $UInt64Value.Value$;

6.4.4.2.16 Ulint8Value

Smp::UInt8 $UInt8Value.Owner.Name$ = $UInt8Value.Value$;

Examples:
Smp::Int32 myInt32Field 123;
Smp::Char8 myChar8Field = *"x";
6.4.4.3 Simple Array Value
A SimpleArrayValue maps to an array of simple values.
Example:

struct MyPosition

{
}

Smp::Float64 internalArray[3];

241

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

MyPosition myArrayField = {{1.0, 2.0, 3.0}};
6.4.4.4 Array Value
An ArrayValue maps to an array of values.
6.4.45 Structure Value
A StructureValue maps to a value of a structure, which is a comma-separated list
of field values enclosed in “{” and “}”.
Example:

struct MyStruct

{
Smp::Int64 size;
Smp::Char8 text;
}:

MyStruct myStructField = { 1, "x" };

6.4.5 Attributes
An Attribute is not mapped to C++.

242

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

6.5 Smdl Catalogue

6.5.1 Catalogue

6.5.1.1 Catalogue
A Catalogue itself is not mapped to C++, but its name may be used as the name of a
root directory for files generated for namespaces in the catalogue.

6.5.1.2 Namespace
A Namespace is mapped to C++ namespace. As no code is generated for a namespace,
every type contained within a namespace will be wrapped by a C++ namespace defini-
tion. As namespaces may contain nested namespaces, a C++ namespace may contain
further namespaces.

namespace $Namespace.Name$

{

// Define nested namespaces and types

}

Remark: To avoid problems with circular includes of files for the definition of com-
posed types, it may be necessary to add a forward declaration of Structure,
Class, Interface and Model. Further, it is recommended to define each Struc-
ture, Class, Interface or Model in a dedicated header file, and to provide the
implementation of a Structure, Class or Model in a dedicated source file.

6.5.2 Reference Types

6.5.2.1 Reference Type
ReferenceType is an abstract base type. Each type derived from ReferenceType
is mapped to a C++ class.

6.5.2.2 Component
Component is an abstract base type. Each type derived from Component is mapped
to a C++ class.

6.5.2.3 Interface
An Interface is mapped to an abstract C++ class, which means that every C++
method for any Operation or Property of the Interface is declared pure virtual (“= 0”).
e An Interface always has a virtual destructor with an empty implementation.
e [f the Interface has base interfaces, virtual inheritance is used.

// In case the Interface has Base Interfaces these will be inherited virtual and public.

class $Interface.Name$
[: virtual public TypeName($Interface.Basel$), ...]

{
/[Virtual destructor is always generated
virtual ~$Interface.Name$(void) {}

243

[E

ECSS-E-TM-40-07 Volume 4A
25 January 2011

// If the Interface has Properties, these are declared pure virtual:

See 6.4.3.3 (Property)

// If the Interface has Operations, these are declared pure virtual:

See 6.4.3.5 (Operation)
7
6.5.2.4 Model
A Model is mapped to a C++ class. For basic SMP compliance, the model is mapped
as follows:
e The Model implements the IModel interface.
e If the Model has at least one Container, it implements the IComposi te inter-
face.
e If the Model provides an Interface, it implements this interfaces via public,
virtual inheritance.
[]

The mapping can be tailored via the following attributes:

If the Model has a Base model, it inherits its implementation via public, non-

virtual inheritance.

o If the Model has a BaseClass attribute, it inherits from the specified base class.

o If the Model has a Fal lible attribute, it implements the 1Fal I ibleModel in-
terface.

class $Model.Name$:

[public $BaseClass.Name$,]

[public TypeName($Model.Base$),]

[virtual public TypeName($Model.Interfacel$), ...]
[virtual public Smp::IComposite,]

virtual public Smp::IModel | Smp::IFallibleModel

// In case the Model has nested types these are defined:
See 6.4.1 (Types)

// Constructor and virtual Destructor are declared with Visibility of the Model

public: | protected: | private:

// Default Constructor is always generated.
$Model.Name$(void);

// Virtual Destructor is always generated.
virtual ~$Model.Name$(void);

// If the Model has Constants, these are declared:
See 6.4.3.1 (Constant)

// If the Model has Fields, these are declared:
See 6.4.3.2 (Field)

// 1If the Model has Properties, these are declared virtual:
See 6.4.3.3 (Property)

// If the Model has associations, these are declared:
See 6.4.3.4 (Association)

244

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

/[If the Model has Operations, these are declared virtual:

See 6.4.3.5 (Operation)

// 1If the Model has Entry Points, they will be declared:
See 6.5.3.1.1 (Entry Point)

//'1f the Model has Containers, they will be declared:
See 6.5.3.2.1 (Container)

// If the Model has References, they will be declared:
See 6.5.3.2.2 (Reference)

/' If the Model has Event Sources, they will be declared:
See 6.5.3.3.2 (Event Source)

// 1f the Model has Event Sinks, they will be declared:
See 6.5.3.3.3 (Event Sink)

Each of the interfaces that the Model has to implement could be implemented by in-
heritance from another class that implements the interface.

For full SMP compliance, the following holds in addition:

The Model implements the IManagedMode Il interface.
If the Model has at least one Reference, it implements the 1Aggregate inter-

face.

If the Model has at least one EventSource, it implements the IEventProvider

Interface.

If the Model has at least one EventSink, it implements the 1EventConsumer

Interface.

If the Model has at least one EntryPoint, it implements the IEntryPointPub-

lisher Interface.

/I 1f the Model has a Base Model it uses public (non-virtual) implementation inheritance.

// If the Model provides Interfaces, it uses public, virtual inheritance.

class $Model. Name$:

{

[public $BaseClass.Name$,]

[public TypeName($Model.Base$),]

[virtual public TypeName($Model.Interfacel$), ...]
[virtual public Smp::IComposite,]

[virtual public Smp::IAggregate,]

[virtual public Smp::Management::IEventProvider,]
[virtual public Smp::Management::IEventConsumer,]
[virtual public Smp::Management::IEntryPointPublisher,]
[virtual public Smp::IFallibleModel,]

virtual public Smp::Management::IManagedModel

}

6.5.2.5 Service

A Service is mapped to a C++ class.

245

/ E m/ ECSS-E-TM-40-07 Volume 4A
25 January 2011

e The Service implements the 1Service interface.

o If the Service provides an Interface, it implements this interfaces.

e If the Service has a Base component, it inherits its implementation.

The mapping can be tailored via the following attributes:

e If the Service has a BaseClass attribute, it inherits from the specified base
class.

/I If the Service has a Base Component it uses public (non-virtual) inheritance.
/I If the Service provides Interfaces, it uses public, virtual inheritance.
class $Service.Name$:
[public $BaseClass.Name$,]
[public TypeName($Service.Base$),]
[virtual public TypeName($Service.Interfacel$), ...]
virtual public Smp::IService
{
// In case the Service has nested types these are defined:
See 6.4.1 (Types)

// Constructor and virtual Destructor are declared with Visibility of the Service
public: | protected: | private:

// Default Constructor is always generated.
$Service.Name$(void);

// Virtual Destructor is always generated.
virtual ~$Service.Name$(void);

// If the Service has Constants, these are declared:
See 6.4.3.1 (Constant)

// If the Service has Fields, these are declared:
See 6.4.3.2 (Field)

// If the Service has Properties, these are declared virtual:
See 6.4.3.3 (Property)

// If the Service has Associations, these are declared:
See 6.4.3.4 (Association)

// 1f the Service has Operations, these are declared virtual:
See 6.4.3.5 (Operation)

/I If the Service has Entry Points, they will be declared:
See 6.5.3.1.1 (Entry Point)

// If the Service has Event Sources, they will be declared:
See 6.5.3.3.2 (Event Source)

// If the Service has Event Sinks, they will be declared:
See 6.5.3.3.3 (Event Sink)

Remark: Each of the interfaces that the Service has to implement could be imple-
mented by inheritance from another class that implements the interface.

246

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

6.5.3 Modelling Mechanisms

6.5.3.1 Class based Design
6.5.3.1.1 Entry Point

An EntryPoint is mapped to a reference to the IEntryPoint interface. The En-
tryPoint is mapped public.

public:
/] Expose entry point as pointer to IEntryPoint interface
Smp:IEntryPoint* $EntryPoint.Name$;

The model has to ensure that an implementation is available when other components
call the handler of the entry point.
Remark: An entry point can as well be mapped to a type that implements the
Smp:: 1EntryPoint interface.
6.5.3.2 Component based Design
6.5.3.2.1 Container

A Container is mapped to a pointer to the IContainer interface. The Container
is mapped public.

public:
// Expose container as pointer to IContainer interface
Smp::IContainer* $Container.Name$;

The model has to ensure that an implementation is available when other components
access the container.
Remark: A container can as well be mapped to a type that implements the
Smp: : 1Container interface.

6.5.3.2.2 Reference
A Reference is mapped to a pointer to the IReference interface. The Reference
is mapped public.

public:
/] Expose reference as pointer to IReference interface
Smp::IReference* $Reference.Name$;

The model has to ensure that an implementation is available when other components
access the reference.
Remark: A reference can as well be mapped to a type that implements the
Smp: : IReference interface.

6.5.3.3 Event based Design

6.5.3.3.1 Event Type
An event type itself is not mapped to C++, as the event notification mechanism uses
an argument of AnySimple type to pass a value with each event.
Remark: The event type can be used to ensure that event sinks and event sources are
only connected if they are of the same event type.

247

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

6.5.3.3.2 Event Source

An EventSource is mapped to a pointer to the IEventSource interface. The
EventSource is mapped public.

public:
/] Expose event source as pointer to IEventSource interface
Smp::IEventSource* $EventSource.Name$;

The model has to ensure that an implementation is available when other components
access the event source.
Remark: An event source can as well be mapped to a type that implements the
Smp: : IEventSource interface.

6.5.3.3.3 Event Sink
An EventSink is mapped to a pointer to the IEventSink interface. The
EventSink is mapped public.

public:
/] Expose event sink as pointer to IEventSink interface
Smp::IEventSink* $EventSink.Name$;

The model has to ensure that an implementation is available when other components
access the event sink.

Remark: An event sink can as well be mapped to a type that implements the

Smp: - 1EventSink interface.

6.5.4 Catalogue Attributes

6.5.4.1 View and ViewKind
The View attribute, together with the ViewKind enumeration, is used to specify the
view argument for the publication call of a Field, Property or Operation. In case
that a field, property or operation is published, this publication call shall use the
value assigned to the View attribute, or VK_None as default.

248

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

6.6 Smdl Package

6.6.1 Package

A package describes all metamodel elements that are needed in order to define
how implementations of types defined in catalogues are packaged.

6.6.1.1 Package

A Package is a Document that holds an arbitrary number of
Implementation elements. Each of these implementations references a type
in a catalogue that shall be implemented in the package.

The C++ mapping of a Package is a static or dynamic library providing an
implementation for each of the Implementation elements. To make these
types available for later use, many of them need to be registered: For each
model, a factory needs to be registered, while value types are registered in the
type registry. This registration of types shall be done from a standardised
Initialise() function. In a corresponding Finalise() function, memory
has to be released. To avoid duplicate symbols in the linker, these functions
shall contain the name of the package as well.

extern "C"

{

/// Initialise function for static package.

bool Initialise$Package.Name$(
Smp::ISimulator* simulator,
Smp::Publication::ITypeRegistry* typeRegistry);

/// Finalise function for static package.
bool Finalise$Package.Name$();

For a dynamic library (Dynamic Link Library (DLL) on the Microsoft Windows
OS, or Dynamic Shared Object (DSO) on the Unix OS), two additional functions
that do not include the name of the package shall be defined as well, as global
functions in dynamic libraries do not create naming conflicts at link time. These
Initialise() and corresponding Finalise() functions shall call the
functions including the package name. As a package may reference other
packages as a Dependency, which indicates that a type referenced from an
implementation in the package requires a type implemented in the referenced
package, the initialise and finalise functions of these dependencies shall be
called as well.

#ifdef WIN32

#define DLL_EXPORT __declspec(dllexport)

#else
#define DLL_EXPORT
#endif

extern "C"

{

249

ECSS-E-TM-40-07 Vol 4A
|E[17 Volume 42

/// Initialise function for dynamic package.
DLL_EXPORT bool Initialise(
Smp::ISimulator* simulator,
Smp::Publication::ITypeRegistry* typeRegistry);

/// Finalise function for dynamic package.
DLL_EXPORT bool Finalise();
}

There are no rules on the order in which packages are initialised, as the type
registration process via Universally Unique Identifiers (UUIDs) does not
introduce dependencies on the order. However, the initialise and finalise
functions may get called several times during initialisation (e.g. when
referenced from more than one package), so the implementation needs to
ensure that types are only registered once, and memory is released only once as
well.

6.6.1.2 Implementation

An Implementation selects a single Type from a catalogue for a Package.
For the implementation, the Uuid of the type is used, unless the type is a
Model: For a model, a different UUID for the implementation can be specified,
as for a model, different implementations may exist in different packages.

Implementation of a Model

When the Implementation points to a Model (via its Type link), a
corresponding class factory has to be registered with the managed simulator
(IManagedSimulator) using the RegisterFactory() method. This class
factory uses the Uuid of the Model (as specification identifier) as well as the
Uuid of the Implementation (as implementation identifier). This allows
registering more than one implementation for a Model definition in a
Catalogue.

This will only work when the simulator passed to the Initialise() function
is a managed simulator, i.e. it implements the optional IManagedSimulator
interface.

Implementation of a Service

When the Implementation points to a Service (via its Type link), an
instance of the Service shall be created and added to the simulator
(ISimulator) using the AddService() method.

Implementation of a Value Type

When the Implementation points to a ValueType (via its Type link), the
corresponding user-defined value type has to be registered in the type registry
(ITypeRegistry). This is done by calling the global register function (for
Enumeration, Integer, Float, Array, String) or method (Structure,
Class, Exception) of the type.

6.6.2 Bundle Format

For distribution of a binary package, this C++ Mapping defines a C++ specific
Bundle Format. A Bundle is an archive (e.g. a tar file on Linux, or a zip file on
Windows) which can provide any number of folders and files that make up the

250

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

bundle. The structure of folders and files within the bundle, and the names of
folders and files are not standardised, and can include both SMP artefacts (Smdl
Catalogues, Assemblies, Schedules, Packages and Configurations) and other
files not standardised by SMP (including, but not limited to, source code files,

libraries, and documentation).

The added value of a Bundle is an additional Bundle Manifest with the
following name:

SMP _MF

This Manifest is an ASCII file (aligned with the OSGi manifest format) which
contains key-value pairs in the following format:

Key: Value
Key and Value are separated by a colon.

They Key must only contain alpha-numerical characters, underscore
(“_") and dash (”-“).

The Value starts at the first non-whitespace character after the colon
(“+”), and is terminated by the end of line

All valid Keys are allowed, but a number of Keys have a defined meaning;:

Key

Meaning

Bundle-Copyright

Copyright statement for the bundle.

Bundle-ContactAddress

Full address of a person or company that can be contacted.

Bundle-DocURL

URL where documentation for the bundle can be retrieved
from.

Bundle-Description

Textual description of the bundle and its content.

Bundle-ManifestVersion

A bundle manifest may express the version of the OSGi mani-
fest header syntax in the Bundle-ManifestVersion header. If
specified, the bundle manifest version must be’2’.

Bundle-Name

The Bundle-Name header defines a readable name for this
bundle. This should be a short, human-readable name that can
contain spaces.

Bundle-SymbolicName

The Bundle-SymbolicName manifest header is a mandatory
header. The bundle symbolic name and bundle version allow a
bundle to be uniquely identified in the Framework. That is, a
bundle with a given symbolic name and version is treated as
equal to another bundle with the same (case sensitive) sym-
bolic name and exact version.

The installation of a bundle with a Bundle-SymbolicName and
Bundle-Version identical to an existing bundle must fail.

Bundle-Vendor

The Bundle-Vendor header contains a human-readable de-
scription of the bundle vendor.

Bundle-Version

Bundle-Version is an optional header; the default value is
0.0.0.

251

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

Key

Meaning

A version consists of major, minor and micro version compo-
nents. If the minor or micro version components are not speci-
fied, they have a default value of 0.

Versions are comparable. Their comparison is done numeri-
cally and sequentially on the major, minor, and micro compo-
nents. A version is considered equal to another version if the
major, minor, and micro components are equal.

Require-Bundle

The Require-Bundle header specifies the required exports from
another bundle. This is a comma-separated list of required
bundles, where each bundle is at least specified by its symbolic
name, optionally followed by a specific version:

<Bundle-SymbolicName>[; Bundle-Version="<Bundle-Version>"]

Compiler-Name

Name of the compiler that has been used to compile the source
code.

Compiler-Version

Version of the compiler that has been used to compile the
source code.

OS-Name

Name of the Operating System.

OS-Version

Version of the Operating System.

252

[EEY

ECSS-E-TM-40-07 Volume 4A
25 January 2011

6.6.3 Binary Distribution

The mapping of a Package to C++ defines which symbols a static or dynamic
library of SMP2 Types has to expose. This has been done to enable binary
distribution of models, where only the header files (for the compiler) and the
libraries (for the linker) have to be provided, but no implementation source
code. Nevertheless, binary compatibility depends on a number of other
constraints, which may even vary between operating systems and compilers.
The following guidelines help to reduce problems, but are by no means
complete:

e The operating system on which the Simulation Environment runs
should be used to compile the models.

e The same C++ compiler that has been used to compile the Simulation
Environment (the component providing the implementation of the ISimulator
interface) should be used to compile the models.

e The compiler settings that have been used to compile the Simulation
Environment (the component providing the implementation of the ISimulator
interface) should be used to compile the models.

The objective of these guidelines is to ensure that resolving of symbols and
Run-Time Type Information (RTTI) is compatible between the Simulation
Environment and the models, and that both depend on the same libraries of the
same operating system (e.g. same glibc library).

253

